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ABSTRACT: 

 

Apps available for Smartphone, as well as software for GNSS/GIS devices, permit to easily mapping the localization and shape of an 

area by acquiring the vertices coordinates of its contour. This option is useful for remote sensing classification, supporting the 

detection of representative sample sites of a known cover type to use for algorithm training or to test classification results. This 

article aims to analyse the possibility to produce smart maps from remotely sensed image classification in rapid way: the attention is 

focalized on different methods that are compared to identify fast and accurate procedure for producing up-to-date and reliable maps. 

Landsat 8 OLI multispectral images of northern Sicily (Italy) are submitted to various classification algorithms to distinguish water, 

bare soil and vegetation. The resulting map is useful for many purposes: appropriately inserted in a larger database aimed at 

representing the situation in a space-time evolutionary scenario, it is suitable whenever you want to capture the variation induced in a 

scene, e.g. burnt areas identification, vegetated areas definition for tourist-recreational purposes, etc. Particularly, pixel-based 

classification approaches are preferred, and experiments are carried out using unsupervised (k-means), vegetation index (NDVI, 

Normalized Difference Vegetation Index), supervised (minimum distance, maximum likelihood) methods. Using test sites, confusion 

matrix is built for each method, and quality indices are calculated to compare the results. Experiments demonstrate that NDVI 

submitted to k-means algorithm allows the best performance for distinguishing not only vegetation areas but also water bodies and 

bare soils. The resulting thematic map is converted for web publishing. 

 

 

1. INTRODUCTION 

Remote sensing allows to acquire a lot of information about an 

object or phenomenon without making physical contact with the 

object: the use of satellite or aircraft-based sensor technologies 

lets to detect and classify objects on Earth, including the 

surface, the atmosphere and the oceans (Thenkabail, 2018).   

However, in some situations, to associate remote sensing 

techniques with in situ observations is useful. In the 

classification phase, for example, survey operations are suitable 

to identify sample areas representative of a known type of 

coverage to be used for training the algorithms (training sites) or 

to test the results of the classification (test sites). In situ 

sampling data as input is required in order to add value to 

physical imaging remote sensing observations, e.g. in the case 

of forest health assessment which needs hyperlinks with biotic 

and abiotic factors (Pause et al., 2016). The mapping of sample 

areas, i.e. the determination of their shape and spatial 

localization, can be carried out by acquiring the coordinates of 

the vertices of its boundary. Among the various methods, these 

coordinates can be obtained with GPS survey; this can be done 

in different ways, i.e. static, kinematic, Real Time Kinematic 

(RTK) and Network Real Time Kinematic (NRTK), and with 

various types of receivers, from geodetic to low cost ones, 

characterized by different levels of accuracy.  

The advent of modern smartphones with the Android operating 

system has significantly changed this scenario. In fact, these 

mobile devices, with their ability to receive GNSS signals, can 

currently be considered as real positioning devices (Tomaštík et 

al., 2021). 

Nowadays smartphones include sensors that allows them to 

compute the user position. Inside the device there are different 

sensors that are useful for the scope, i.e. accelerometers, 

gyroscopes and magnetometers, teslameter, proximity sensors, 

barometer, and GPS/GNSS chipset (Dabove et al., 2017). 

Smartphones are considered the most widespread device that 

provides the position of the user within few meters accuracy in 

Line of Site (LOS) using a low-cost GPS receiver, and indoor 

using low-cost Inertial Measurement Unit (IMU) based on 

Micro Electro-Mechanical System (MEMS) containing three 

accelerometers and three gyroscopes (Al-Hamad and El-

Sheimy, 2014). Smartphones also include high resolution digital 

camera to capture multiple images that are suitable for 

generating point clouds and 3D models. Since the availability of 

different sensors in one device, smartphones are considered 

competitive with the traditional mobile mapping platforms. 

Regarding this aspect, the main advantage of a smartphone is 

the cost-effectiveness, the biggest disadvantage is related to the 

accuracy of the acquired data that can ensure the devices that 

compose them. Different studies are available in literature on 

the possibility to enhance the position accuracy acquired by 

smartphone (Robustelli et al., 2019) as well as the Exterior 

Orientation Parameters of the smartphone digital camera 

(Alsubaie et al., 2017). 

Using smartphone to test results of remotely sensed image 

classification requires to display on it the produced thematic 

map. In addition, global internet further renders billions of 

ordinary people loyal users of maps and geographic information 

(Liu and Li, 2019). The fast diffusion of smartphones and their 

rapidly increased use for different scopes, i.e. navigation, 

tourism, exploration, etc., require smart maps designed to 

provide the users with fast access to information. Smart maps 

can be viewed on smartphones as well as on tablets and PC, 

making them useful for most situations. Smart maps covering 
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different themes can be produced also using remotely sensed 

images for updating the information and representing the 

dynamic nature of the surrounding world.  

This paper aims to analyse the possibility to produce smart 

maps in rapid way from remotely sensed images: Landsat 8 OLI 

satellite data are considered for promptly mapping at medium 

scale land cover distinguishing the three principal components 

of the earth surface: water, soil and vegetation.  

The article is organized as follow: section 2 presents an 

introduction of study area and dataset adopted for this research; 

section 3 describes the methods applied in our experiments in 

order to classify the images and develop a smart thematic map; 

section 4 provides the results of the classification and the 

discussion in relation to them; section 5 reports an overview of 

the outcomes and further considerations. 

 

2. STUDY AREA AND DATASET 

The study area chosen for this article covers a surface of 5,400 

Km2 (60 Km x 90 Km) located in the north of Sicily (Italy) as 

shown in Figure 1. 

 

 
Figure 1. Geolocalization of the study area in the north of Sicily 

(red rectangle), in equirectangular projection and 

WGS84 geographic coordinates. 

 

The considered area comprises many of the main characteristics 

of the Island in terms of land cover. In fact, in the south-eastern 

area is the west hillside of the Etna volcano, which has both 

dense and scattered vegetation and bare soil covered with lava 

(Harris et al., 2011). The south/south-western zone of the study 

area has variety of coverage, in fact there are small wooded 

areas, cultivated areas that pass from a good state of health in 

the easternmost areas to senescence (or probably burned) in the 

western part, also presenting arid areas, and finally, pools of 

water of natural and artificial origin (Giordano et al., 2002). The 

northern part collects the stretch of coast that connects the cities 

of Cefalù and Capo D'Orlando and that overlooks the 

Tyrrhenian Sea. Finally, the area just south of the coast has 

dense vegetation, especially in the eastern part. 

The study area extends between the following UTM-WGS84 

(zone 33 N) plane coordinates: E1 = 404,715 m; E2 = 494,715 

m; N1 = 4,162,605 m; N2 = 4,222,605 m, and it is shown in 

Figure 2, in RGB true colour composition of the Landsat 8 OLI 

imagery used for this article. 

The Landsat 8 dataset used for this study was acquired on 

01/08/2020 at 09:42 GMT. The file was distributed as a L1TP 

(Level 1 Terrain Product) image data, which is radiometrically 

and geometrically corrected by using a Digital Elevation Model 

to correct parallax errors due to local topographic relief (U. S. 

Geological Survey, 2020). A clip containing 3000 x 2000 pixels 

(90 x 60 Km) has been considered for this analysis. 

 

 
Figure 2. RGB true colour composition of the Landsat 8 OLI 

images, in UTM-WGS84 plane coordinate. 

 

Various studies support the use of Landsat 8 OLI for land cover 

classification (Jia et al., 2014) (Li et al., 2015) (Deng et al., 

2019) making them one of the most adopted in this field also for 

the possibility of downloading them for free. 

Born from a collaboration between NASA and the United States 

Geological Survey (USGS), Landsat 8 satellite carries the 

Operational Land Imager (OLI), and the Thermal Infrared 

Sensor (TIRS) (U. S. Geological Survey, 2013). 

Landsat 8 OLI imagery comprises 8 multispectral bands (MS) 

and one panchromatic band (PAN), as reported in Table 1. 

 

Bands Wavelength (μm) Resolution (m) 

Band 1 - Coastal 0.435 - 0.451 30 

Band 2 - Blue 0.452 - 0.512 30 

Band 3 - Green 0.533 - 0.590 30 

Band 4 - Red 0.636 - 0.673 30 

Band 5 - Near Infrared 0.851 - 0.879 30 

Band 6 - SWIR 1 1.566 - 1.651 30 

Band 7 - SWIR 2 2.107 - 2.294 30 

Band 8 - Panchromatic 0.503 - 0.676 15 

Band 9 - Cirrus 1.363 - 1.384 30 

Table 1. Main characteristics of Landsat 8 OLI images. 

 

3. METHODS 

As mentioned earlier, the purpose of this article is to produce a 

smart thematic map in rapid way from Landsat OLI imagery 

and to compare different classification methods to provide this 

map. Here are the steps followed in this study for the production 

of a smart map: 

− Conversion of BV values into reflectance at the top of 

the atmosphere (TOA) and atmospheric correction; 

− Classification of images through the use of different 

methods of classification (Unsupervised classification, 

supervised classification Normalized Difference 

Vegetation Index (NDVI)); 

− Production of thematic maps; 

− Evaluation of the level of thematic accuracy of the 

produced maps and choice of the most accurate 

thematic map; 

− Production of the Smart Map for web usage. 

All experiments are carried out using QGIS 3.16.5, a free and 

open-source software that includes also SAGA-GIS tools and 

QGIS2Web plugin for web map production. 
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3.1 Top Of Atmosphere reflectance (TOA) and 

atmospheric corrections 

Landsat Collections namely “Level-1 data products” consist of 

quantized and calibrated scaled Digital Numbers (DN) provided 

in 16-bit unsigned integer format. Initial DNs need to be 

transformed in TOA (Top of Atmosphere) reflectance, the solar 

radiation incident on the satellite sensor, using formula by 

USGS (U. S. Geological Survey, 2015) that requires specific 

parameters comprised in the metadata file included with the 

dataset (i.e. Band-specific multiplicative rescaling factor, Band-

specific additive rescaling factor, Local sun elevation angle).  

Remotely sensed images at the TOA do not represent the 

effective reflectance at the Earth surface, also called Bottom-of-

Atmosphere (BOA) reflectance, since they include the effect of 

the interactions of the electro-magnetic radiations (EMR) with 

the atmosphere that generate scattering, absorption and emission 

(Campbell and Wynne, 2011). In other terms, what a sensor 

"sees" (i.e. records) from a satellite is an image disturbed by the 

atmosphere: satellite sensors measure the radiance in the upper 

layer of the atmosphere, here the radiance values are different 

than those measured on the earth's surface (White et al., 2004).  

Various approaches are available in literature for atmospheric 

corrections of TOA images to obtain BOA, including empirical 

methods (Wang and Gastellu-Etchegorry, 2021), such as the 

dark-object subtraction (DOS) model (Chavez, 1988) and the 

COST model (Chavez, 1996). In this study TOA is calculated 

and DOS model applied for atmospheric corrections.  

 

3.2 Unsupervised Classification 

Classifying the myriad features in satellite images into 

meaningful categories or classes is the primary purpose of the 

remote sensing: the image becomes a thematic map capable to 

represent the spatial variation of one or a small number of 

geographic distributions e.g. land use, vegetation types, 

geology, etc. In a broad sense, image classification is defined as 

the process of categorizing all pixels in an image or raw 

remotely sensed satellite data to obtain a given set of labels or 

land cover themes (Lillesand and Keifer, 1994). There are 

different methods for remote sensing image classification, such 

as supervised and unsupervised techniques. Generally, they 

show different levels of accuracy after accuracy assessment was 

conducted (Hasmadi et al., 2009).  

In unsupervised classification the assignment of classes to 

pixels is carried out without the necessity for external data but 

completely automatically (Al-Doski et al., 2013). The first step 

is to group pixels into “clusters” based on their properties; the 

second step is to manually assign land cover classes to clusters 

by interpreting the results (cluster analysis) (Chaovalit and 

Zhou, 2005). Different methods for unsupervised classification 

are described in literature and available in GIS and Remote 

sensing software. In the next subsection the main characteristics 

of K-means are described since it is the unsupervised 

classification method applied in this study using SAGA-GIS 

tool.  

 

3.2.1 K-Means 

K-means is a numerical, unsupervised, non-deterministic, 

iterative method usable for image classification (Na et al., 

2010). This algorithm dividers dataset into K number of clusters 

by standard Euclidean distance (Kaur et al., 2010); it is an 

iterative method that needs to cyclically define the centre of the 

clusters (Xie et al., 2011). In fact, the K-means algorithm 

detects k number of centroids, and then assigns every data point 

to the nearest cluster (Kanungo et al., 2002). The means in the 

K-means refers to averaging of the data; that is, finding the 

centroid (Hora et al., 2020) 

Supposing that the target object is a n-dimensional real vector x, 

µi indicates the mean vector of cluster Ci, the objective is to find 

the minimum of the function: 

 

     (1) 

 

The distance between x and µi is Euclidean distance. Being n 

the number of the j-components of x (and µ), named µ* the 

mean value of the Cluster C*, the Euclidean distance d(x, µ*) 

can be obtained using the formula (Nazeer and Sebastian, 

2009): 

 

(2) 

 

The process of k-means algorithm can be summarised as 

reported below (Fahim et al., 2006). 

Input: 

Number of chosen clusters, k, and a database X= {x1, x2,…xN} 

containing N data objects. 

Output: 

A set of k clusters. 

Steps: 

1) Casually select k data objects from dataset X as initial cluster 

centres µi. 

2) Calculate the distance between each data object xp (1 ≤ p≤ N) 

and all k cluster centres µi (1≤ i ≤ k) and assign data object xp to 

the nearest cluster. 

3) For each cluster i (1≤ i≤ k), recalculate the cluster centre. 

4) repeat step 2 and 3 until no changing in the centre of clusters  

 

The process stops creating and optimizing clusters when either: 

- The centroids have stabilized — there is no change in 

their values because the clustering has been 

successful. 

- The defined number of iterations has been achieved. 

 

In this approach, classes are determined statistically by 

assigning pixels to the nearest cluster mean based on all 

available bands (De Amorim and Mirkin, 2012).  

 

3.3 Supervised Classification 

Supervised classification is based on the idea of dividing the 

spectral field into regions associable with land cover classes of 

interest for a particular application (Richards, 2013). It also 

needs some prior knowledge of samples of the image classes, 

named in-sites: the image process requires to develop a 

statistical characterization of the reflectance for each 

information class (signature analysis) (Sisodia et al., 2014). The 

image is then classified by examining the reflectance for each 

pixel and assigning it to the class for which there is the greatest 

similarity (Schowengerdt, 2012). 

Supervised classifiers require an accurate choice of 

representative training sites for a correct classification (Liu, 

2005). In particular, those should satisfy some constraints such 

as: 

- to describes all the land cover classes; 

- to include a sufficient number of significant pixels for 

class for a certain estimate of the classifier 

parameters; 

- to contain information that completely describes the 

variability between the different classes due to the 
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non-stationary behaviour of the spectral signature 

(Muñoz-Marí, et al., 2007). 

 

Particularly, in this study for supervised classification training 

sites are detected by means of visual analysis on RGB 

composition, as well as consulting higher resolution image 

acquired in the same period. 

Naturally, the quality of a supervised classification depends on 

the quality of the training sites (Palaniswami et al., 2006). 

Supervised classification includes various methods: the main 

characteristics of Minimum Distance (MD) and Maximum 

likelihood (ML) are resumed in the next two sub-sections since 

they are applied in this study using SAGA-GIS tools.  

 

3.3.1 Minimum distance 

In the supervised classification with the Minimum Distance 

(Wacker and Landgrebe, 1972; Mather and Tso, 2016), a pixel 

is associated to a certain class based on the calculation of the 

minimum spectral distance between the measurement vector for 

the considered pixel and the average vector of each sample 

(Abburu and Golla, 2015). MD algorithm calculates the 

Euclidean distance between the two vector and the pixel is then 

assigned to the class having the minimum spectral distance 

(Perumal and Bhaskaran, 2010). This algorithm is easy to 

perform and simple to process (Sabins, 2007). 

 

3.3.2 Maximum likelihood 

The Maximum Likelihood Classification uses training sites to 

estimate means and variances of the classes, which are used to 

evaluate probabilities that a pixel is assigned to a determinate 

class (Sisodia et al., 2014). This method is based on Bayesian 

probability theory, and, as reported in literature, it is considered 

as the most powerful classification methods if accurate training 

sites are provided (Perumal and Bhaskaran, 2010). 

 

3.4 Vegetation Indices 

Vegetation indices are used in remote sensing to identify 

vegetation and its health status. They are generally used for the 

analysis of productivity characteristics, identification of 

biomass, identification of vegetation cover, etc. (Huete, 2012).  

Thanks to the vegetation indices it is possible to obtain thematic 

maps of the land cover (Lyon et al., 1998). 

Among the various vegetation indices, we find the Ratio 

Vegetation Index (RVI) (Jordan, 1969), widely used for the 

estimation and monitoring of green biomass. This index is very 

sensitive to vegetation and has a good correlation with plant 

biomass. Another index used is the Difference Vegetation Index 

(DVI) (Richardson and Weigand, 1977), which is very sensitive 

to soil variations and applicable to monitoring the ecological 

environment of vegetation. We also have the Perpendicular 

Vegetation Index (PVI) (Richardson and Weigand, 1977), 

characterized by a lower sensitivity to atmospheric effects and 

mainly used for the inversion of the parameters of the surface 

vegetation. Instead, it is sensitive to the brightness and 

reflectivity of the ground. 

The most used among the methods of this group is undoubtedly 

the Normalized Difference Vegetation Index (NDVI) (Rouse et 

al., 1974), to which the following subparagraph is dedicated 

since it is applied in this study. 

 

3.4.1 Normalized Difference Vegetation Index 

Even if NDVI is usually adopted for the identification of 

vegetation, however it allows to easily distinguish also two 

other classes, namely bare soil and water. It is calculated as 

normalized ratio between the red and near infrared bands 

(Rouse et al., 1974), and for Landsat 8 OLI it can be written as 

follow: 

 
(3) 

 

NDVI values are variable in the range [-1, +1]. 

Because of its simple formula, in this article NDVI is achieved 

by means of Raster Calculator available in QGIS (QGIS, Raster 

Calculator). However, NDVI does not produce a thematic map 

showing three classes, rather it is a further layer or a synthetic 

band that needs the application of classification criterion for 

distinguishing categorically in it pixels of water, bare soil and 

vegetation (Alcaras et al. 2019). 

 

3.5 Thematic accuracy assessment  

To establish the thematic accuracy of the obtained results, test 

sites are chosen, distinct from the training sites used in 

supervised classification, but, like the latter, representative of 

the individual classes. The tests enable to know the number of 

pixels correctly classified in each thematic map. For our 

applications, test sites are chosen in a similar way of training 

ones. Considering the test sites, confusion Matrix (Story and 

Congalton, 1986) is used as the quantitative method to evaluate 

the image classification accuracy: it is a simple cross-tabulation 

of the predicted and actual class labels for the selected sites 

(Foody, 2004). Analyzing only the pixels included in the test 

sites, a confusion matrix is realized in this study for each 

method as a table showing correspondence between the 

classification result and ground truth data which, similarly to 

what was done for the training sites, are derived from the visual 

analysis of both the pan image and the multispectral images. 

The quantitative analysis of the thematic accuracy of each 

classified image is resumed by the values of the traditional 

indices named Producer Accuracy (PA), User Accuracy (UA) 

and Overall Accuracy (OA) (Liu et al., 2007). 

 

3.6 Smart Maps production for web application 

Operations to publish GIS data to the web and make them 

accessible to other users are commonly called web mapping 

(Haklay et al., 2008). The resulting products are also known as 

“smart maps” since they are suitable for smart applications on 

tablet and smartphone. We can distinguish smart map from 

smartphone mapping that is the activity based on smartphone 

used as a tool for surveying an area: shape and location of 

different objects are detected and archived by the coordinates of 

the vertices defining their features. Actually, several mapping 

applications available for most smartphones allow the user to 

carry out an accurate survey. However, accuracy levels have 

only recently gone high. In fact, the first smartphones equipped 

with GPS were produced in 1999 but, for about twenty years, 

they have provided the fully processed position without any 

possibility of modifying the process. Since the raw code and 

phase measurements were not available, data collected by a 

smartphone could not be handled by the post-processing 

software and therefore, under the best conditions, the 

positioning accuracy could reach three meters, while under 

adverse conditions due to multipath, it degraded to tens of 

meters (Robustelli et al., 2019). 

For several years, the satellite receivers of most smartphones 

were single frequencies (L1) receivers and this did not allow to 

apply neither the most common differencing methods, i.e. 

double or triple differences, nor to combine different 

observations (Dabove et al., 2020). In May 2018 appeared the 
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world's first dual-frequency multi-constellation GNSS 

smartphone produced by Xiaomi (Xiaomi Mi8), capable of 

receiving L1 / E1 / and L5 / E5 signals from GPS, Galileo, 

Beidou and GLONASS satellites (Robustelli et al., 2019). The 

availability of two frequencies allows to increase the accuracy 

and reliability of positioning by reducing the multipath error 

and eliminating the influence of ionospheric refraction, this has 

paved the way for the application of measurement and 

calculation methods previously reserved to high-precision 

geodetic applications (Skorupa, 2019).  

The use of smartphones with dual frequency receivers and 

special apps allows you to acquire, with high levels of accuracy, 

data for mapping as well as to support remote sensing for the 

identification of training sites and test sites. However, the 

production of the map or its update are carried out on a 

dedicated device, typically PC, by using software ad hoc, 

specifically web mapping enables the user to transform this map 

into a product available online, even for smartphones and 

tablets. Creating a web map is a very different process than 

creating one in a GIS and requires specific competence as web 

programmers; nevertheless, there are tools to easily translate 

your work in GIS to web maps (Gandhi, 2019).  

One of these tools is QGIS2Web plugin which is useful to 

create an interactive web map by turning QGIS layers into 

HTML, JavaScript, and CSS (Cascading Style Sheets) files that 

describe how elements are displayed on the screen files.  

Starting from the selected thematic map, QGIS2Web generates 

an index.html file and three folders with associated Java-script 

and CSS files. The resulting map can be published online using 

a web hosting account and just uploading the index.html file and 

the three associated folders to the main public html directory: 

the map is shown in the browser every time the website is 

accessed (Upadhyay, 2018).  

In this study we convert the produced thematic maps in the 

above mentioned format files to render them suitable for web 

publishing. In this way we can use them also for testing the 

achieved level of thematic accuracy in the case of in situ 

observation. 

 

4. RESULTS AND DISCUSSION 

In this study, Minimum Distance, Maximum Likelihood and K-

means classification methods are applied to all Landsat 8 OLI 

images or to a selection of them as well as to NDVI; particularly 

the following combination are used: 

• NDVI with Minimum Distance (NDVI MD); 

• NDVI with Maximum Likelihood (NDVI ML); 

• NDVI with K-Means (NDVI KM); 

• RED & NIR with Minimum Distance (RN MD); 

• RED & NIR with Maximum Likelihood (RN ML); 

• RED & NIR with K-Means (RN KM); 

• RGB & NIR with Minimum Distance (RGBN MD); 

• RGB & NIR with Maximum Likelihood (RGBN ML); 

• RGB & NIR with K-Means (RGBN KM); 

• All 8 MS bands with Minimum Distance (8MS MD); 

• All 8 MS bands with Maximum Likelihood (8MS ML); 

• All 8 MS bands with K-Means (8MS KM). 

Supervised classification is applied in SAGA-GIS (SAGA, 

Module Supervised Classification for Grids) to achieve 

Minimum Distance and Maximum Likelihood classifications, as 

well as Unsupervised classification to achieve K-Means 

clustering (SAGA, Tool K-Means clustering for Grids). The 

outputs are classified in three classes: water, bare soil and 

vegetation. 

A visual comparison of some classification results, specifically 

those obtained from NDVI KM, RN KM, RGBN MD and 8MS 

ML, is shown in Figure 3. 

 

 

 

 

 
Figure 3. Thematic Maps in 3 classes (water, soil, vegetation), 

obtained by (from higher to lower) NDVI KM, RN 

KM, RGBN MD and 8MS ML. 

 

The values obtained for the thematic accuracy indices (PA, UA 

and OA) are shown in Table 2.  
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Methods Classes 
Accuracy Indices 

PA UA OA 

NDVI MD 

Water 1 1 

0.9923 Soil 1 0.9774 

Vegetation 0.9769 1 

NDVI ML 

Water 1 0.9997 

0.9903 Soil 0.9997 0.9720 

Vegetation 0.9711 1 

NDVI KM 

Water 1 1 

0.9962 Soil 1 0.9887 

Vegetation 0.9886 1 

RN MD 

Water 1 0.9898 

0.8990 Soil 0.8186 0.8711 

Vegetation 0.8783 0.8365 

RN ML 

Water 0.9903 1 

0.9830 Soil 1 0.9516 

Vegetation 0.9589 1 

RN KM 

Water 1 0.6772 

0.8134 Soil 0.5244 0.8628 

Vegetation 0.9157 1 

RGBN MD 

Water 0.9969 0.9850 

0.9439 Soil 0.9392 0.8979 

Vegetation 0.8957 0.9509 

RGBN ML 

Water 0.9997 1 

0.9830 Soil 1 0.9514 

Vegetation 0.9491 1 

RGBN KM 

Water 1 0.6621 

0.8291 Soil 0.4913 0.9948 

Vegetation 0.996 1 

8MS MD 

Water 1 0.9966 

0.9870 Soil 1 0.9655 

Vegetation 0.9609 1 

8MS ML 

Water 0.9937 1 

0.9907 Soil 1 0.9728 

Vegetation 0.9783 1 

8MS KM 

Water 1 0.9867 

0.8269 Soil 0.4847 0.9953 

Vegetation 0.996 0.6641 

Table 2. Thematic accuracy indices applied to the classification 

methods. 

 

For each of these indices, which values are comprising between 

0 and 1, the closer is the value to 1, the better the result. 

NDVI KM is the most performing method, providing the 

highest OA value (0.9962) and optimal PA and UA values, 

since they are equal to 1, except in the case of vegetation PA 

(0.9886) and soil UA (0.9887). 

The high level of information of this vegetation index is testifies 

also by the results obtained with NDVI MD and NDVI ML. The 

good performance of k-means is unique in combination with 

NDVI since in the case of RN, RGBN and 8MS this clustering 

algorithm provides the poorest outputs, while maximum 

likelihood provides the best ones.  

Furthermore, we want to highlight that RN KM provides the 

worst output in terms of OA (0.8134) and RN MD is the only 

minimum distance application who goes under the value of 0.9. 

These results permit to make another consideration: even if 

NDVI is obtained by a combination of the Red and NIR bands, 

the results provided by it are totally different from those 

provided by classification applied directly to Red and NIR. This 

is even more evident when comparing the results obtained by 

applying K-Means: NDVI KM and RN KM are respectively the 

best and the worst results and both are not influenced by human 

involvement in taking into consideration the training sites. 

It also seems that the more bands are used to classify, with the 

same method, the better are the achieved results, with the 

exception of NDVI that is a powerful synthetic band derived by 

two highly unrelated bands. 

The resulting thematic map from NDVI KM in web format, 

produced by using QGIS2Web plugin, is shown in Figure 3:  

 

 
Figure 4. Visualization of thematic map from NDVI KM in 

web format in overlap with the Italian Region vector 

file. 

 

5. CONCLUSIONS 

This study testifies that web thematic maps focused to 

distinguish the earth surface in water, bare soil and vegetation 

can be easily produced in automatic way using few MS bands of 

satellite images, specifically only two bands of Landsat 8 OLI 

imagery, which are Red and NIR used for NDVI production.  

Our experiments demonstrate that the use of k-means, which 

does not require the human supervision, allows to disaggregate 

NDVI results and quickly assign labels to the three named 

classes keeping very high level of thematic accuracy. These 

results seem to be in contradiction with the fact that supervised 

classification methods are usually better performing than 

unsupervised classification ones. Nevertheless, unsupervised 

classification is useful for distinguish few, uncomplicated and 

wide-ranging land cover classes such as water, bare soil and 

vegetation. Furthermore, unsupervised classification may 

reduce the operator errors in training sites identification. 

Finally, k-means applied to the NDVI layer that is capable to 

highlight the different reflectance of the water, bare soil and 

vegetation in the Red and NIR bands, allow to assign the class 

label to the pixel in a right way. 

The publication on web of the produced thematic map, a 

difficult task that usually requires specific skills different from 

those that characterize the traditional map maker, is possible in 

rapid way by using specific tools such as QGIS2Web plugin.  
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