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Abstract — A novel implementation of the eXtended Finite Element Methhat makes use of qua-
dratic elements is discussed. The present formulationowistio behave fairly better compared to usual
quadratic elements enriched with Heaviside functions at tioth the number of unknowns and the
condition number of element matrices considerably deeredth respect to a classical second order
scheme. A representative example demonstrates the dépalif the proposed approach.
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1 Introduction

There is no question that the quality of eXtended Finite Elen{X-Fem) solutions to problems with
discontinuities has dramatically improved in the last dieganor can it be doubted that there is still a
long way to go.

For instance, most X-Fem implementations rely upon usetb&elinear triangles/quadrilaterals in
2D or linear tetrahedra/hexahedra in 3D. Aiming to get beteformances and higher order convergence
properties the X-Fem approximation could be modifiede quadratic However, despite all expected
beneficial effects of quadratic elements, in published Xifigerature almost all but a few authors, see
e.g[1, 2, 3, 4], choosmkot to be quadraticThe main motivation beyond this choice is that in the presen
context a successful implementation of higher order elésrisiconditional to the possibility that element
matrices created by X-Fem are not ill-conditioned, that ease is intrinsic to the method itself.

2 X-Fem for discontinuities

Generally speaking, the X-Fem concept can be regarded asc@kpase of the partition of unity
paradigm [5], the basic underlying idea being the augmiematf the approximation space generated by
standard finite element shape functions. This is obtainddrimvia suitable enrichment functions that
incorporate some a priori knowledge about the solution ®@fpitoblem under consideration. For instance,
in fracture mechanics displacement discontinuities cantbeduced via the generalized Heaviside func-

tion : "
+1 if ¢(x)>0
. 1)
-1 if ¢(x)<0
where¢(x) is a function that defines the interface position, e.g. Bibica signed distance function. At
any pointx of the finite element mesh the displacement approximatitimeis obtained as :
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where@ (x) and )j(x) are standard finite element shape functions mmehnpis the number of nodal
points. The degrees of freedom of the regular part of thepotated displacement field are denoted by
a;, whereas the additional degrees of freedom associatedivéthleaviside enrichment are denoted as
gj. The latter are active on the set of nodgs whose support is bisected by the interface ; therefore, at
the element level the matrices do not have in general eqoedra§ions.

In usual X-Fem implementations the functiogg that are used to describe the jumps are taken
identical to the shape functiong representing the regular part of the displacement fields Tinot



strictly required by the method since for the Heaviside fiomcto be exactly represented it is sufficient
that functionsy; do comply with the partition of unity property. Likewise gtilegrees of freedouy; of
the jumps are usually attached to the same nodal pointsimguttye unknowns of the regular part of
the displacement. Once again, this is not a compulsory tiondiut only a customary choice, probably
originating from the fact that, at least for fracture medbamproblems, most X-Fem implementations
make use of linear elements.

Unlike continuous elements, increasing the order of thedstad shape functions in the X-Fem ap-
proximation (2) is not sufficient to guarantee an improvenieiperformances and convergence proper-
ties. Actually, when considering the Heaviside enrichmeatere ill-conditioning is likely to occur for
elements crossed by an interface whenever the area or voaiim&etween the two parts on the opposite
sides of the interface is very small, see e.g. Figure 3. Ih sases one of the Heaviside-enriched func-
tions describing the displacement jumps tend to coincidb wme standard continuous shape function,
whereby the stiffness matrix becomes rank-deficient.
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Figure 1 — interface positions that cause ill-conditioning

In practical applications there is no way to avoid the oceuece of discontinuities arbitrarily close
to nodes or element sides within the mesh, since by its vdigitien an X-Fem interface can be arbi-
trarily positioned within a mesh. Special treatments o tpéthological situation have been presented
in [2, 3, 6], that make use either of a pre-conditioner to glate linear dependencies between standard
shape functions and enrichment functions or rely upon gétiora stiffness weighting criteria to decide
whether to enrich a given node. Unfortunately, the abowrments seems to be not robust enough to let
quadratic lagrangian elements perform well [4].

In view of general industrial applications, where simpli@f model preparation and mesh generation
are essential requirements as much as good accuracy anetgemve propertieso be quadratiowith
X-Fem we design elements including corner rotations ase#sgof freedom. Such rotations are usually
termed drilling degrees of freedom in reference to theidégey to twist nodes about the normal to the
element surface.

3 Quadratic elementswith drilling rotations

Finite element methods designed to include corner rotatitave been discussed in many papers
since the 1980s. Earlier works did not succeed in the désivaf elements with an independent rotation
field in the sense of Reissner [7] either due to the presenzerofenergy modes or to the instability of
finite dimensional formulations despite the well-posedr&ghe continuum problem.

A consistent variational framework for problems includirmgational degrees of freedom has been
presented by Hughes and Brezzi in [8], where a methodologgsoigded to obtain a robust finite element
method that permits the representation of drilling rotagiasing aC(©) interpolation.

In the following it is summarized the derivation of the quattlr quadrilateral sketched in Figure 2;
key points in setting the functional from which the elemeritrices are obtained are as follows :

1. the stress tensor is not a priori assumed to be symmetric ;

2. the drilling rotation is identified with the component bétinfinitesimal continuum rotation normal
to the plane of the element;



These conditions are both enforced in weak form using tHeviiahg functional, see [8] pag 115 :
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wherelt is the 2D plane elasticity matrikare the body forces is the displacement field,andT are the
infinitesimal rotation and stress, and the symlef$and(-)" stand for symmetric and skew-symmetric
part of the argument, respectively. Moreover, the constam{(3) is a positive penalty parameter that in

linear elastostatics ensures that the discrete varidtoalem inherits the ellipticity property from its
continuum counterpart.

A

Toh 3 ud

Figure 2 — quadrilateral element with drilling degrees etfilom.

The normal rotation field over the quadrilateral is integtetl by the standard bilinear shape func-

tions whereas the in-plane displacement components arexap@ated using an Allman-like interpola-
tion. In matrix notation one has :

[u1] S Ni(x1.50)u' = Na ()
u= = Xq, X)U' =
" I; (X1, X2
€1 4
(Ou)*= | & :I;B|(x1,x2)u':8a (5)
Y12
4
(Ou)V—0 = IZ\b|(x1,x2)u' —ba (6)

u' = [u},u}, 65T being the displacement vector at nodanda the vector collecting all the element
displacement components. The discretized counterpanediinctional (3) that is arrived at reads :

M(a 1) = }/EBa.BadQ+/ bardQ—}yl/rde—/f-NadQ 7)
2Ja o) 2 Q o)

where the parameterrepresents the interpolation for the skew-symmetric stresce no continuity is
needed for it, an element-wise constant interpolation @seh and the unknownis condensed out at the

element level. Therefore, the element stiffness matribigioned by adding to the usual stiffness matrix
the rank-one correction : v

m/ﬂ(b@b)dn ®)

wheremeasQ) is the element area.



4 Numerical example

To demonstrate the current element capabilities a simmblgm is considered that consists of a
single element, either a standard serendipity element@@QByuadrilateral with drilling rotations (QD4),
occupying the domaifi-1,1] x [-1,1]. The element is cut by an X-Fem interface parallel to onesof it
sides and the discontinuity is described via the Heavisidetfon (1).

The position of the interface on the element is paramettizexligh the abscissae = 0 corresponds
to the left side of the element). No boundary condition isasgd on the element, that it is completely
free ; therefore it possesses six rigid-body motions, he.three rigid body motions of the underlying
continuum element plus three extra rigid-body motions duthe presence of the X-Fem interface.

In figure 3 is depicted the condition number of the Q8 and Qeht stiffness matrices at varying
interface position. The superior performance of the QD#nelat, that remains workable for up ¢6=
1-107, is immediately recognized whereas the stiffness matrithefQ8 element is already almost
singular fore = 1-1073.
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Figure 3 — conditioning of element matrices.
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