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Abstract: An in-depth study of harmonic current reduction in European commercial buildings due
to the harmonic cancellation effect when a set of single-phase uncontrolled rectifiers and a set of
fluorescent lamps are connected at the same voltage level is essential, since both types of non-linear
loads are very present in commercial and residential sectors. This paper provides an appropriate
index to assess the global cancellation level of the harmonic currents for this study. The equivalent
circuit per phase of the typical three-phase power system of European commercial installations is
presented and simplified for the cancellation analysis of the harmonic currents consumed by a set
of multiple identical single-phase uncontrolled rectifiers and a set of multiple identical fluorescent
lamps connected at the same voltage level. The suitability and usefulness of the proposed index are
shown by applying it to that analysis, which leads to some results of practical interest. This index can
be generalized to any number of sets of multiple identical non-linear loads and can be applied in
graphical and optimization studies that will allow a greater benefit from the harmonic cancellation
effect to be obtained given the global nature of the index.

Keywords: commercial installation; residential installation; harmonic current; harmonic cancellation;
single-phase uncontrolled rectifier; fluorescent lamp; diversity factor

1. Introduction

The growing presence of non-linear loads (NLLs) in commercial and residential in-
stallations has raised the harmonic distortion levels in power distribution systems [1,2].
NLLs in these installations are mainly small-power single-phase loads in the 15–300 W
range, but high-power three-phase loads in the 15–75 kW range are significantly increasing
(see Table 1). Small-power single-phase NLLs are switched-mode power supplies of office
and entertainment equipment, as well as lighting devices. They include, for example,
single-phase uncontrolled rectifiers (URs) representing power supplies of personal com-
puters (PCs) (units in the 100–300 W range), and fluorescent lamps (FLs) and compact
fluorescent lamps (CFLs), representing magnetically and electronically ballasted lighting
devices (units in the 15–80 W range), respectively. It should be noted that the waveforms
of currents consumed by some CFLs and some LED lamps are similar to those of URs,
which makes it possible to treat these lamps as URs. High-power NLLs are three-phase
uncontrolled rectifiers representing adjustable-speed drives (ASDs) for heating, ventilation,
and air-conditioning (HVAC) equipment, and phase-controlled rectifiers for temperature
regulation of residential households [3]. Although the individual power consumption of
NLLs of the first group is small, their collective power consumption can be as high as that
of the second group because many of these loads can be connected to the same bus.
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Table 1. Non-linear loads in commercial and residential installations.

Commercial Installations Residential Installations

1-
ph

as
e

N
LL

s

Office equipment:

- PCs
- Fax machines
- Photocopiers
- . . .

Lighting devices:

- FLs, CFLs, and LED lamps

Entertainment and work equipment:

- TV sets
- Audio/visual devices
- PCs
- . . .

Lighting devices:

- FLs, CFLs, and LED lamps

3-
ph

as
e

N
LL

s

HVAC equipment:

- Heating, ventilation, and air-conditioning

HVAC equipment:

- Heating and air-conditioning

Household electric appliances:

- Dryers
- Dishwashers
- Freezers/fridges
- Ranges/ovens
- . . .

As an example of a commercial installation, the typical three-phase, four-wire power
system of a European commercial office building is shown in Figure 1. The utility incoming
medium voltage (MV) is transformed to 400/230 V low-voltage (LV) levels at the point
where three- and single-phase loads share the MV/LV transformer. Three-phase linear
and non-linear loads are connected at the line-to-line 400 V level, while single-phase NLLs
such as office equipment and lighting devices are connected at the line-to-neutral 230 V
level. In North American commercial office buildings, a 480/277 to 208/120 V delta-wye
transformer separates three-phase loads and lighting devices from single-phase loads
connected at the voltage levels of 480, 277, and 120 V, respectively [3,4]. On the other hand,
the typical residential installation has a one-line diagram remarkably similar to that of
the European commercial office building of Figure 1. The main difference between both
installations is the type of connected loads.

It is known that the fixed harmonic current method for modeling NLL behavior leads
to an overestimation of the harmonic currents consumed by the aggregate of the NLLs of
the above installations, because the harmonic attenuation and cancellation effects [3–17]
can significantly reduce these currents. The harmonic attenuation effect refers to the
interaction between voltage and current distortion due to shared system impedance [5,13].
The harmonic cancellation effect is owing to the phase angle diversity of harmonic currents
due to the following factors: (1) three- and single-phase loads connected at the same
voltage level, (2) similar types of loads with differences in system impedances and load
parameters, (3) different types of loads connected at the same voltage level, and (4) delta-
wye transformer phase shift for single-phase loads connected at two different voltage
levels. Some of these harmonic current reduction causes have already been analyzed in
the literature. For example, the attenuation and cancellation effects (cancellation effect due
to the second factor) on PC harmonic currents are studied in [3,6–9,15]. Cancellation of
harmonic currents consumed by HVAC equipment and PCs due to the first factor is studied
in [3,10], and by lighting devices and PCs due to the third factor is studied in [3,11,12,14,16].
Harmonic cancellation due to the first and third factors is not usual in North American
commercial installations because a 480/277 to 208/120 V delta-wye transformer separates
HVAC equipment and lighting devices from PCs. However, harmonic cancellation due to
the fourth factor is commonly present in these installations [3,4].
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Figure 1. One-line diagram of the typical three-phase power system of a European commercial
office building.

Several indexes have been proposed to assess the cancellation level of the harmonic
currents consumed by NLLs. They can be grouped under those that assess the cancella-
tion level of individual harmonic currents and those that assess the global cancellation
level of harmonic currents. Indexes such as the summation exponent or summation co-
efficient [17–19], the diversity factor [3,6,8,12,15,17–28], the weighted-average diversity
factor [29], and the prevailing ratio [30] belong to the first group, whereas indexes such
as the total equivalent CFL index in combination with the total compatibility index [31]
belong to the second group.

Among the indexes to assess the cancellation level of individual harmonic currents,
the summation exponent or summation coefficient is the only index that assesses the
cancellation level of individual harmonic currents when their phase angles are not available,
but their magnitudes are. However, the value of this index must be obtained by solving a
non-linear equation iteratively and, under some conditions, the equation may not have a
solution. If both the magnitudes and phase angles of the harmonic currents are available,
the diversity factor is the appropriate index to assess the cancellation level of individual
harmonic currents. This index has a more general version, known as the weighted-average
diversity factor, which is normally used when the diversity factors of different aggregations
of loads are available. Another general version of the diversity factor is the prevailing ratio,
which is usually employed when the variation level of the individual harmonic currents
during a specific time interval (a level assessed by cancellation) is of interest.

Among the indexes to assess the global cancellation level of harmonic currents, the
total equivalent CFL index is a magnitude-based index to quantify each NLL in terms
of its harmonic effect, expressed as the number of CFLs it is equivalent to. This index is
useful for comparing the harmonic current magnitudes of NLLs, but it does not provide
information on harmonic phase angle diversification. This is the reason this index is
used in combination with the total compatibility index, which is a phase angle-based
index to quantify the harmonic cancellation level between two NLLs for equal harmonic
current magnitudes.

With the purpose of solving the lack of a single, appropriate index to assess the
global cancellation level of harmonic currents considering their magnitudes and phase
angles simultaneously, the aim of this paper is to provide such an index. The suitability
and usefulness of the proposed index are shown by applying it to the study of harmonic
current reduction in European commercial buildings due to the harmonic cancellation
effect. Only a set of URs (power supplies of PCs) and a set of FLs (magnetically ballasted
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lighting devices) connected at the same voltage level are considered, meaning that only
harmonic cancellation due to the third factor is analyzed. Such an in-depth study is
essential because both types of NLLs are very present in commercial and residential sectors:
PCs are the most common small-power NLLs in low-voltage installations [2], and FLs
are among the most used and efficient lighting devices because of their low cost and
simple design [1,2,32]. The study is based on the univocal characterization of these devices
through their invariants. These, which are the minimum number of normalized parameters
required to completely characterize NLL behavior, can be used to efficiently conduct
NLL studies (e.g., investigations on harmonic interaction, cancellation, and attenuation
effects [33–40]) [41].

The original contribution of the paper is an index that allows cancellation studies
of harmonic currents to be carried out from a global point of view, the latter being a
scientific novelty for studies of this sort. This paper is organized as follows. Section 2
shows the UR and FL circuits, the invariants to univocally characterize the behavior of
both NLLs together with their respective usual ranges of values, and how the fundamental
and harmonic currents consumed by these NLLs can be expressed as a function of their
respective invariants. In Section 3, the equivalent circuit per phase of the typical three-phase
power system of European commercial installations is presented and simplified for the
cancellation analysis of the harmonic currents consumed by a set of multiple identical URs
and a set of multiple identical FLs connected at the same voltage level. In Section 4, the
proposed index to assess the global cancellation level of harmonic currents is provided,
and its suitability and usefulness are shown by applying it to that analysis. In Section 5,
some remarks on the performed analysis are made. Finally, Section 6 draws conclusions
from the results obtained and discussed in Sections 4 and 5.

2. Single-Phase Uncontrolled Rectifiers and Fluorescent Lamps
2.1. Non-Linear Load Modeling

The typical circuits of the single-phase NLLs studied here are presented in Figure 2,
where ω1 = 2π·f 1, f 1 being the fundamental frequency of the supply system. In the UR
(representing a power supply of a PC), the resistance, RD, models the DC power con-
sumption [6,7,33]. In the FL (representing a magnetically ballasted lighting device), the
arc voltage phenomenon is modeled by the square wave vA = ±VA [42]. The UR and FL
characterizations are presented in [41]. Based on a suitable normalization, the behavior of
these loads is univocally characterized from normalized parameters. The resistances of the
AC side impedances in both NLLs are not considered in this study (i.e., R = 0) because their
influence on NLL behavior is much smaller than that of the inductive reactances of these
impedances [6,7,33,42]. The normalized parameters, called invariants, are also presented
in [43] (UR) and [42] (FL) for the UR and FL, respectively. Their usefulness lies in the fact
that they are the minimum number of parameters required to completely characterize NLL
behavior. Thus, they can be used to perform studies of NLLs (e.g., harmonic cancellation
studies) in a friendly way. The above invariants are presented below.
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Figure 2. Non-linear load circuits: (a) single-phase uncontrolled rectifier and (b) fluorescent lamp. Figure 2. Non-linear load circuits: (a) single-phase uncontrolled rectifier and (b) fluorescent lamp.
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2.1.1. Single-Phase Uncontrolled Rectifier

Choosing the fundamental supply voltage rms value and the rectifier DC resistance
as references (i.e., UR = V1, ZR = RD in Figure 2a, and therefore IR = UR/ZR = V1/RD), the
normalized variables iN = i/IR and vC,N = vC/UR can be univocally described only by the
UR invariants:

xL,N =
XL
ZR

=
L ·ω1

RD
, xC,N =

XC
ZR

=
1/(C ·ω1)

RD
, (1)

and the parameters vk,N = Vk/V1 and βk (k = 1, 3, 5, . . . ) make it possible to consider the
harmonic distortion influence on the rectifier behavior.

The usual range of xL,N and xC,N values in practical applications is obtained in [41,43]
by relating each one of these invariants to the short-circuit ratio, RSC, at the PCC and the
rectifier DC voltage ripple, ∆vC/VC, respectively. Thus, according to [41], their typical
values are xL,N (%) = (0.05 . . . 10) and xC,N (%) = (0.5 . . . 4.5), which approximately
correspond to an RSC = (5 . . . 1000) and a ∆vC/VC (%) = (1 . . . 10).

2.1.2. Fluorescent Lamp

Choosing the fundamental supply voltage rms value and the lamp reactance as refer-
ences (i.e., UR = V1, ZR = XL = L·ω1 in Figure 2b, and therefore IR = UR/ZR = V1/XL), the
normalized variable iN = i/IR can be univocally described only by the FL invariant:

vA,N =
VA
UR

=
VA
V1

, (2)

and the parameters vk,N = Vk/V1 and βk (k = 1, 3, 5, . . . ) make it possible to consider the
harmonic distortion influence on the lamp behavior.

The usual range of vA,N values in practical applications is obtained in [41,42] by
relating this invariant to θ1 (final angle of the positive half-wave of i and initial an-
gle of the negative half-wave of vA). Thus, according to [41], its typical values are
vA,N (%) = (0 . . . 75.9), which correspond to a θ1 (◦) = (122.48 . . . 180) considering the
fundamental supply voltage, V1, as a reference (i.e., β1 = 0 in Figure 2).

2.2. Non-Linear Load Fundamental and Harmonic Currents

According to [41], the fundamental and harmonic currents consumed by these NLLs,
Ih (h = 1, 3, 5, . . . ), can be easily obtained by multiplying their normalized fundamental
and harmonic currents, Ih,N (h = 1, 3, 5, . . . ), by the NLL reference current, IR, i.e.,

I(UR)
h = I(UR)

R I(UR)
h,N = V1

RD
g(UR)

h (xL,N , xC,N)

I(FL)
h = I(FL)

R I(FL)
h,N = V1

XL
g(FL)

h (vA,N)
(h = 1, 3, 5, . . .), (3)

where the superscripts (UR) and (FL) denote the single-phase uncontrolled rectifier and
the fluorescent lamp, respectively. It must be noted that the normalized fundamental and
harmonic currents, Ih,N, are directly related to the NLL invariants. Their influence on
these currents is analyzed in [41] from extensive simulations performed by a MATLAB cus-
tomized program based on (3) considering the typical values of the invariants (Sections 2.1.1
and 2.1.2) and sinusoidal supply voltages (i.e., vk,N = 0, with k = 3, 5, . . . ).

The UR behavior is analyzed from xL,N and xC,N. It is concluded that the fundamental
and harmonic currents are mainly characterized by the invariant xL,N. The FL behavior
is analyzed from vA,N. Considering sinusoidal supply voltages, the fundamental and
harmonic currents of both loads can be described by the formulae in [44] for the UR and
in [45] (model C) for the FL.

3. Power System Model

Figure 3 shows the equivalent circuit per phase, including only PCs and FLs, of the
typical European commercial installations (circuit also valid for residential installations) in
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Figure 1. The common MV/LV transformer and the wall outlet circuits are represented by
the impedances Zth = Rth + j·Lth·ω1 and Zb,i = Rb,i + j·Lb,i·ω1, respectively, where i = 1, . . . ,
N + M. For the cancellation study of the harmonic currents consumed by a set of PCs (URs)
and a set of FLs, the following hypotheses are considered:

• The PC and FL wall outlet circuits are connected to a common stiff bus in parallel
supplied by a sinusoidal voltage [6]. The supply voltage assumption is reasonable
given the relative independence of harmonic current reduction due to diversity from
voltage distortion [7] and the voltage distortion levels in current distribution systems
(approximately 2–3%) [41].

• The wall outlet circuit impedances, Zb,i, are not considered since PC and FL harmonic
cancellation mainly depends on the NLL parameters rather than on the branch circuit
impedances, Zb,i [7,46].

• A set of N identical PCs and a set of M identical FLs are considered since harmonic
cancellation due to differences in the parameters of the N PCs or of the M FLs is
not significant (i.e., the reduction of the total harmonic current consumed by N PCs
with different parameters or by M FLs with different parameters is mainly due to the
attenuation effect) [7,46].
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Thus, the simplified equivalent circuit per phase in Figure 4 is used for the cancellation
analysis of the harmonic currents consumed by a set of N identical PCs (URs) and a set of
M identical FLs connected at the same voltage level.
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Figure 4. Simplified equivalent circuit per phase.

4. Cancellation Study of Harmonic Currents

Cancellation of the harmonic currents consumed by a set of N identical PCs (URs)
and a set of M identical FLs connected at the same voltage level is analyzed according to
Figure 4 and using the models based on the invariants in Section 2. This effect consists
of the reduction of the rms value of the total h-th harmonic current consumed by both
sets of NLLs together, Ih

(T) = |N·Ih
(UR) + M·Ih

(FL)|, due to the phase angle diversity of
the h-th harmonic currents consumed by each of the two sets of NLLs individually, i.e.,
N·Ih

(UR) = N·Ih
(UR)∠φh

(UR) and M·Ih
(FL) = M·Ih

(FL))∠φh
(FL) for the set of PCs (URs) and the

set of FLs, respectively.
The study aims to obtain the values of the NLL invariants (xL,N and xC,N for the URs

and vA,N for the FLs) for which this effect is produced. In broad terms, these values can
be achieved by determining when the h-th harmonic current phasors of both sets of NLLs
are close to counterphase, i.e., when the absolute value of the phase difference of the h-th
harmonic current phasors of both sets of NLLs is close to 180◦ [41]. However, as can be
seen in Appendix A, the magnitudes of the h-th harmonic current phasors of both sets
of NLLs must also be considered. Therefore, it is better to study cancellation with the
diversity factor of the h-th harmonic current (DFh) because it allows the h-th harmonic
current reduction due to this effect to be quantified [3,6,8,12,15,17–28]. This factor ranges
from 0 to 1 (i.e., 0 ≤ DFh (%) ≤ 100), with lower values resulting in higher cancellation
levels. Thus, the diversity factor of the h-th harmonic current is expressed as a function
of the invariants and the ratio of the power consumption of the set of FLs to total power
consumption, i.e., ∆p(FL) = M·P(FL)/(N·P(UR) + M·P(FL)) ∈ ]0, 1[, where P(UR) and P(FL) are
the power consumptions of a PC (UR) unit and an FL unit, respectively:

DFh(xL, N , xC, N , vA, N , ∆p(FL)) =

=

∣∣∣N·I(UR)
h +M·I(FL)

h

∣∣∣
N·I(UR)

h +M·I(FL)
h

=

∣∣∣∣∣I(UR)
h, N +

M·I(FL)
R

N·I(UR)
R

·I(FL)
h, N

∣∣∣∣∣
I(UR)
h, N +

M·I(FL)
R

N·I(UR)
R

·I(FL)
h, N

=

∣∣∣∣I(UR)
h, N + Ĩ

(FL)
h, N

∣∣∣∣
I(UR)
h, N + Ĩ(FL)

h, N

.
(4)
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In (4), the UR normalized harmonic currents, Ih,N
(UR), are functions of the corre-

sponding invariants, (3), and the FL modified normalized harmonic currents, Ĩh,N
(FL), are

functions of the corresponding invariants, (3), the FL normalized fundamental current, and
the ∆p(FL) ratio:

I(FL)
R

I(UR)
R

=
I(FL)
1 /I(FL)

1, N
V1/RD

≈ 18
π2·I(FL)

1, N ·cos φ
(FL)
1

· P(FL)

P(UR)

⇒ M·I(FL)
R

N·I(UR)
R

≈ 18
π2·I(FL)

1, N ·cos φ
(FL)
1

· ∆p(FL)

1−∆p(FL) .
(5)

The expressions of the power consumptions of a PC (UR) unit and an FL unit,
P(UR) = VC

2/RD and P(FL) = V1·I1
(FL)·cosφ1

(FL), and the approximation of the UR DC volt-
age mean value VC ≈ (3·

√
2/π)·V1 [41], are considered in (5). It is important to note that

the ∆p(FL) range ]0, 0.5] corresponds to (M·P(FL))/(N·P(UR)) ≤ 1 (i.e., power consumption
of the set of PCs is higher than that of the set of FLs), whereas the ∆p(FL) range [0.5, 1[
corresponds to (M·P(FL))/(N·P(UR)) ≥ 1 (i.e., power consumption of the set of PCs is lower
than that of the set of FLs).

To assess the global cancellation level of harmonic currents, and as in [47,48] with the
attenuation factor, the definition of the diversity factor of the h-th harmonic current, DFh,
is extended to a total diversity factor of the harmonic currents, TDF, using the definition
of total harmonic distortion, THD, as a reference and considering the weightings of the
individual DFh. This total diversity factor can be obtained by calculating a weighted
average of the individual DFh, as:

TDF(xL, N , xC, N , vA, N , ∆p(FL)) =

=

√
5, 7, ...

∑
h=3

∣∣∣N·I(UR)
h +M·I(FL)

h

∣∣∣2√
5, 7, ...

∑
h=3

(
N·I(UR)

h +M·I(FL)
h

)2
=

√
5, 7, ...

∑
h=3

∣∣∣∣I(UR)
h, N + Ĩ

(FL)
h, N

∣∣∣∣2√
5, 7, ...

∑
h=3

(
I(UR)
h, N + Ĩ(FL)

h, N

)2
=

√
5, 7, ...

∑
h=3

(wh · DFh)
2,

(6)

where:

wh =
N · I(UR)

h + M · I(FL)
h√

5, 7, ...
∑

h=3

(
N · I(UR)

h + M · I(FL)
h

)2
=

I(UR)
h, N + Ĩ(FL)

h, N√
5, 7, ...

∑
h=3

(
I(UR)
h, N + Ĩ(FL)

h, N

)2
(7)

are the weightings of the individual DFh. It is worth highlighting that the proposed total
diversity factor of the harmonic currents can be generalized to any number of sets of
multiple identical NLLs, as detailed in Appendix B.

4.1. Graphical Study

In order to analyze the cancellation of the harmonic currents consumed by a set of N
identical PCs (URs) and a set of M identical FLs connected at the same voltage level from a
graphical point of view, the MATLAB customized program based on (3), which was used
to examine the influence of the NLL invariants on the normalized harmonic currents, Ih,N,
in [41], was adapted to obtain contour plots of (4) and (6) resulting from setting specific
typical values for one of the NLL invariants and the ∆p(FL) ratio, and performing a joint
sweep of the other two NLL invariants considering the complete range of their typical
values (Sections 2.1.1 and 2.1.2). In addition, the zones where the diversity factors of the
h-th harmonic currents range from 0% to 30%, the absolute values of the phase differences
of the h-th harmonic currents range from 150◦ to 180◦, and the magnitude resemblances of
the h-th harmonic currents range from 50% to 100%, are also provided by the program and
shown for comparison.

Contour plots for h = 3, 5, 7, and 9 in Figure 5 show the diversity factors of the h-th
harmonic currents (DFh) and the total diversity factor of the harmonic currents (TDF) as a
function of the invariants with the greatest influence on the NLL consumed currents (xL,N
and vA,N) and for ∆p(FL) = 70%, 80%, and 90%. In these contour plots, xC,N = 2% since it
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was numerically verified that the results obtained can be approximately generalized for
any value of the invariant xC,N because of its small influence on the UR consumed current.
Moreover, values of ∆p(FL) < 70% are not considered in this study because the harmonic
cancellation levels associated with them are not significant.
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Figure 5. Diversity factors of the h-th harmonic currents (DFh) and total diversity factor of the
harmonic currents (TDF) as a function of xL,N and vA,N for ∆p(FL) = 70% (left column), 80% (central
column), and 90% (right column).

It must be noted that, for any of the ∆p(FL) values and harmonic orders considered,
the contour plots in the first four rows of Figure 5 serve to determine the xL,N and vA,N
values leading to a specific cancellation level of the individual harmonic currents consumed
by a set of URs and a set of FLs. Likewise, given particular xL,N and vA,N values, it is
possible to obtain the corresponding cancellation level of the above individual harmonic
currents for any of the ∆p(FL) values and harmonic orders considered. Three types of zones
are also shown in these plots for comparison: those where the diversity factors of the
h-th harmonic currents range from 0% to 30% (i.e., 0 ≤ DFh (%) ≤ 30), those where the
absolute values of the phase differences of the h-th harmonic currents range from 150◦ to
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180◦ (i.e., 150 ≤ ∆φh (◦) ≤ 180), and those where the magnitude resemblances of the h-th
harmonic currents range from 50% to 100% (i.e., 50 ≤ ∆Ih (%) ≤ 100). For the harmonic
orders considered, it can be observed that:

• The zone where 150 ≤ ∆φh (◦) ≤ 180 remains unchanged when ∆p(FL) varies, covering
the whole range of xL,N. On the other hand, the whole range of vA,N is covered by this
zone only for the seventh and ninth harmonic orders.

• The zone where 50 ≤ ∆Ih (%) ≤ 100 covers the whole range of vA,N and moves from
high values of xL,N to low values when ∆p(FL) increases.

• Practically the whole zone where 0 ≤ DFh (%) ≤ 30 is contained in the intersec-
tion of the two previous zones in all the plots. Therefore, like the zone where
50 ≤ ∆Ih (%) ≤ 100, it moves from high to low values of xL,N when ∆p(FL) increases.

If the aim is to assess the global cancellation level of harmonic currents, the TDF is
the proposed index. Thus, for any of the ∆p(FL) values considered, the contour plots in the
fifth row of Figure 5 make it possible to determine the xL,N and vA,N values leading to a
specific global cancellation level of the harmonic currents consumed by a set of URs and
a set of FLs. Likewise, given particular xL,N and vA,N values, it is possible to obtain the
corresponding global cancellation level of the above harmonic currents for any of the ∆p(FL)

values considered. It can be observed that, like the zones where 50 ≤ ∆Ih (%) ≤ 100 and
0 ≤ DFh (%) ≤ 30 for the harmonic orders studied, the zone with the lowest TDF moves
from high to low values of xL,N when ∆p(FL) increases.

The contour plots of the TDF globally summarize, in a weighted manner, what is
observed in the contour plots of the individual DFh for the harmonic orders h = 3, 5, 7,
and 9, both for any of the ∆p(FL) values considered and when ∆p(FL) increases. Therefore,
the suitability of the TDF to assess the global cancellation level of harmonic currents,
simultaneously taking into account their magnitudes and phase angles, has been graphically
checked for a set of N identical PCs (URs) and a set of M identical FLs connected at the
same voltage level.

4.2. Optimization Study

Considering the power ranges for a PC (UR) unit (100–300 W) and an FL unit (15–80 W)
in Section 1, this study aims to find the values of their respective invariants, as well as the
M/N ratio range, in order to maximize the global cancellation level of the harmonic currents
consumed by a set of N identical PCs (URs) and a set of M identical FLs connected at the
same voltage level. To that end, the MATLAB program used in Section 4.1 is simplified to
provide values of (4) and (6) as a result of setting specific values for the NLL invariants
and the ∆p(FL) ratio. The resulting program is a MATLAB function that will be passed as
an argument to the global optimization numerical method ECAM [49] supplied by the
MATLAB version of the GANSO programming library [50].

The GANSO library implements a number of Global And Non-Smooth Optimization
methods that can solve the generic optimization problem:

min f (x)
s.t. x ∈ D ⊂ Rn (8)

The feasible domain, D, is specified by a number of linear constraints (equations and
inequalities), including box constraints. In the case of unconstrained minimization, D = Rn.
Differentiability of the objective function, f, is not assumed, and only Lipschitz continuity
(local or global) is required, i.e.,

| f (x)− f (y)| ≤ L · d(x, y), (9)

where x and y are two points in D, d(x, y) is the distance between these points, and L
is a positive number. The inequality should hold for all x, y ∈ D. Under such a general
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condition, the optimization problem is extremely difficult. The objective function may have
many local extrema, and locating its global minimum is very challenging.

Under the Lipschitz continuity assumption, it is possible to estimate the smallest
possible minimum of the objective function from its recorded values at various points. It
follows from the Lipschitz condition that:

f (x) ≥ max
k=1,...,K

{
f (xk)− L · d(xk, x)

}
= H(x), (10)

where xk are the points with the recorded values of f (xk), and L is the Lipschitz constant of f.
The expression on the right is called the (saw-tooth) underestimate of f. By using a large
number of points, xk, it is possible to approximate f closely by its underestimate H, and
then use the global minimum of the underestimate to approximate that of f. It turns out
that minimizing the underestimate H is a structured optimization problem, and all its local
(and hence global) minimizers can be explicitly found. This is the basis of the Extended
Cutting Angle Method (ECAM), which uses a computationally efficient representation of
local minimizers of H in a tree data structure and computes the global minimum of f from
this information. The method guarantees the globally optimal solution.

In order to analyze the cancellation of the harmonic currents consumed by a set of N
identical PCs (URs) and a set of M identical FLs connected at the same voltage level from
an optimization point of view, five optimization problems are of interest:

minDFh(xL, N , xC, N , vA, N , ∆p(FL)) (h = 3, 5, 7, 9)
s.t. (xL, N , xC, N , vA, N , ∆p(FL)) ∈ D

minTDF(xL, N , xC, N , vA, N , ∆p(FL))

s.t. (xL, N , xC, N , vA, N , ∆p(FL)) ∈ D

(11)

For the five optimization problems, D = [0.05 . . . 10, 0.5 . . . 4.5, 0 . . . 75.9, 5 . . . 95]% is
the feasible domain specified by four box constraints.

As justifiably assumed in Section 4.1, xC,N = 2%, enabling the five optimization prob-
lems to be reformulated as follows:

minDFh(xL, N , vA, N , ∆p(FL)) (h = 3, 5, 7, 9)
s.t. (xL, N , vA, N , ∆p(FL)) ∈ D

minTDF(xL, N , vA, N , ∆p(FL))

s.t. (xL, N , vA, N , ∆p(FL)) ∈ D

(12)

For the five reformulated optimization problems, D = [0.05 . . . 10, 0 . . . 75.9, 5 . . . 95]%
is the feasible domain specified by three box constraints.

The optimal objective function values (min) and the optimal arguments (arg min)
of the five reformulated optimization problems are obtained by applying ECAM with a
starting point located in the center of the feasible domain, an estimate of the Lipschitz
constant of the objective function equal to 10000, and a maximum number of iterations
equal to 5000.

Phasorial plots for h = 3, 5, 7, and 9 in Figures 6 and 7 show the Ih,N
(UR) phasors

for xC,N = 2% and the optimal argument xL,N, and the Ĩh,N
(FL) phasors for the optimal

arguments vA,N and ∆p(FL), associated with the five reformulated optimization problems.
In addition, the sets of ends of the Ih,N

(UR) phasors for xC,N = 2% and the usual range of
xL,N values, and the sets of ends of the Ĩh,N

(FL) phasors for the optimal argument ∆p(FL) and
the usual range of vA,N values, are also depicted to show where the Ih,N

(UR) and Ĩh,N
(FL)

phasors associated with the optima are located within the sets of feasible Ih,N
(UR) and

Ĩh,N
(FL) phasors, respectively. A zoomed-in view of the zone of interest is provided in some

phasorial plots of Figures 6 and 7 for easy viewing. The phasorial plots associated with the
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reformulated optimization problem min TDF are shown in the right column for comfortable
comparison with those associated with the other reformulated optimization problems in
the left and central columns.
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The optimal objective function values and the optimal arguments, the latter associated
with the Ih,N

(UR) and Ĩh,N
(FL) phasors in Figures 6 and 7, were obtained by applying ECAM

to solve the different reformulated optimization problems and are provided in Table 2.
The diversity factors of the h-th harmonic currents (DFh) and the total diversity factor
of the harmonic currents (TDF) associated with the optima of the different reformulated
optimization problems are presented in Table 3.
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Table 2. Optimal objective function values and optimal arguments obtained by applying ECAM to
solve the different reformulated optimization problems.

Optimization
Problem min

arg min

xL,N vA,N ∆p(FL)

min DF3 0% 6.53% 44.98% 77.89%
min DF5 0% 5.48% 2.26% 76.06%
min DF7 0% 6.66% 41.98% 74.36%
min DF9 0% 6.21% 66.55% 63.27%
min TDF 28.03% 10% 39.74% 73.58%

Table 3. Diversity factors of the h-th harmonic currents (DFh) and total diversity factor of the harmonic
currents (TDF) associated with the optima of the different reformulated optimization problems.

Optimization
Problem DF3 DF5 DF7 DF9 TDF

min DF3 0% 98.37% 15.5% 96.68% 29.1%
min DF5 71.65% 0% 97.91% 63.76% 69.36%
min DF7 11.57% 96.6% 0% 99.2% 29.89%
min DF9 48.63% 85.63% 91.61% 0% 53.68%
min TDF 2.69% 99.7% 28.92% 81.09% 28.03%

From the above, it can be deduced that:

• The higher the harmonic order, h, the lower the optimal argument ∆p(FL) and the
shorter the Ĩh,N

(FL) phasors associated with the optimum of the corresponding refor-
mulated optimization problem min DFh. These shorter Ĩh,N

(FL) phasors are located
within sets of also shorter feasible Ĩh,N

(FL) phasors.
• Total cancellation of any of the h-th harmonic currents considered in the study is

possible, but total global cancellation of all of them is impossible.
• Only total cancellation of the third or seventh harmonic currents leads to high global

cancellation of the harmonic currents.
• High cancellations of the third and seventh harmonic currents, with higher cancellation

of the harmonic current with the lowest harmonic order, lead to the highest global
cancellation of the harmonic currents.

• Total cancellation of any of the h-th harmonic currents considered in the study does
not imply the highest global cancellation of the harmonic currents.

• The highest global cancellation of the harmonic currents does not imply total cancella-
tion of any of the h-th harmonic currents considered in the study.

The optimal objective function value and the optimal arguments enabling the global
cancellation level of the harmonic currents consumed by a set of N identical PCs (URs) and
a set of M identical FLs connected at the same voltage level to be maximized, i.e., those
obtained by solving the fifth reformulated optimization problem of (12) and shown in the
last row of Table 2, must be compared for accuracy with those obtained by solving the
fifth optimization problem of (11) before being used in further studies. This can be seen
from Figure 8, where the relative errors of the fifth reformulated optimization problem of
(12) with respect to the fifth optimization problem of (11) not only in the optimal objective
function value but also in the optimal arguments are plotted. With a maximum value of
relative error below 2.5%, a value associated with only one of the optimal arguments, it
can be said that the optimal objective function value and the optimal arguments shown
in the last row of Table 2 are accurate enough. This means that, according to the power
ranges in Section 1 for a PC (UR) unit (100–300 W) and an FL unit (15–80 W), the optimal
argument ∆p(FL) = 73.58% can be used to determine the optimal M/N ratio range for a set
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of N identical PCs (URs) with xL,N = 10% and xC,N ∈ [0.5, 4.5]% and a set of M identical
FLs with vA,N = 39.74% connected at the same voltage level. The expressions in (5) lead to:

M
N
≈ ∆p(FL)

1− ∆p(FL)
· P(UR)

P(FL)
. (13)
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considering xC,N = 2% with respect to the optimization problem min TDF(xL,N, xC,N, vA,N, ∆p(FL)):
(a) in the optimal objective function value, (b) in the optimal argument xL,N, (c) in the optimal
argument vA,N , and (d) in the optimal argument ∆p(FL).

According to interval arithmetic, the lower bound of the optimal M/N ratio range is
obtained from (13) by using the lower bound of the power range for a PC (UR) unit and
the upper bound of the power range for an FL unit, i.e., the lowest feasible P(UR)/P(FL)

ratio. Likewise, the upper bound of the optimal M/N ratio range is obtained from (13) by
using the upper bound of the power range for a PC (UR) unit and the lower bound of the
power range for an FL unit, i.e., the highest feasible P(UR)/P(FL) ratio. Thus, the resulting
optimal M/N ratio range is [3.4, 55.8] = [17/5, 279/5]. From a practical point of view, this
means that, for the lowest feasible P(UR)/P(FL) ratio, every set of 5 identical PCs (URs) with
xL,N = 10% and xC,N ∈ [0.5, 4.5]% must be connected at the same voltage level to a set of
17 identical FLs with vA,N = 39.74% in order to achieve the highest global cancellation of
the harmonic currents. Likewise, for the highest feasible P(UR)/P(FL) ratio, every set of
5 identical PCs (URs) with xL,N = 10% and xC,N ∈ [0.5, 4.5]% must be connected at the
same voltage level to a set of 279 identical FLs with vA,N = 39.74% in order to achieve the
highest global cancellation of the harmonic currents. For other feasible P(UR)/P(FL) ratios,
the corresponding optimal M/N ratios are also obtained from (13), e.g., a P(UR)/P(FL) ratio
of 200/30 W leads to an optimal M/N ratio of 18.6 = 93/5, and obviously 18.6 ∈ [3.4, 55.8],
i.e., 93/5 ∈ [17/5, 279/5]. As can be seen, the usefulness of the TDF to assess the global
cancellation level of harmonic currents considering their magnitudes and phase angles
simultaneously has been checked by applying it to the optimization study developed in
this section.
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5. Some Remarks on the Performed Cancellation Study

It can be seen that the two types of loads connected at the same voltage level have
different harmonic profiles, which is why there is a real possibility of cancellation of their
corresponding harmonic currents. The harmonic cancellation effect is a reduction of the
harmonic currents owing to their phase angle diversity. The diversity factor allows the
reduction due to this effect to be quantified. The study carried out in this paper reveals that
only two different types of loads connected at the same voltage level are enough to have
such a phase angle diversity that it leads to low values of the diversity factor, i.e., to high
levels of cancellation (see Tables 2 and 3). More than two different types of loads connected
at the same voltage level would increase the phase angle diversity, but this would not
necessarily lead to lower values of the diversity factor, i.e., to higher levels of cancellation.
On the other hand, there are other types of loads with both higher powers and much more
different harmonic profiles compared to those of the types of loads studied, which would
increase the harmonic cancellation impact when connected at the same voltage level.

A set of multiple identical PCs and a set of multiple identical FLs have been considered,
when in fact there is a wide variety of each of these types of loads with quite different
harmonic spectra on the market. The specific PC studied corresponds to the typical
single-phase capacitive rectifier without active filtering stages, and the specific FL studied
corresponds to the typical FL with an arc voltage modeled by a square wave and with a
magnetic ballast (see their respective circuits in Figure 2). The choice of these two specific
loads is because their modeling is well-known in the literature, which has allowed a better
study of the problem and of the application of the proposed index to be performed. It is
true that there is no cancellation of harmonic currents between the multiple PCs of the
set because they are identical, and the same occurs with the multiple FLs of the other set.
However, there is a cancellation of harmonic currents between both sets of loads because
their loads are of different types and of different harmonic profiles. If it were of interest
to carry out a cancellation study of harmonic currents between two loads of a specific
type with quite different harmonic spectra, each of these two loads could be included in a
different set (two sets in total), enabling this cancellation study to be performed in a similar
way as has been carried out in this paper.

The emission of harmonic currents from a non-linear load depends on many factors.
Some of the factors have been considered in the models and in the optimization, while other
factors have not been considered in a justified way so as not to complicate the cancellation
study, although without loss of generality. Thus, the type of rectifier circuit and its topology
have been contemplated in the non-linear load model used, and in its parameters, although
other types of rectifier circuits and their topologies could have been considered. The
type of power system has been contemplated in the power system model used, and in
its parameters, carrying out some justified simplifications on it, although other types of
power systems could have been considered. The presence of voltages with harmonic
distortions in the power system has not been contemplated because the limits imposed
by the standards allow stating that in general, these distortions will not be high, being at
most 3% in current power systems, as indicated in Section 3. However, the presence of
voltages with harmonic distortions in the power system could have been considered. In
summary, the models and the optimization explicitly or implicitly consider some of the
factors that can affect the cancellation of harmonic currents, while the non-consideration of
other factors is justifiably performed. It is true that a more complete study could have been
carried out in terms of types of loads, types of power systems, and the presence of voltages
with harmonic distortions, but this does not detract from the generality of the cancellation
study of harmonic currents presented in this paper.

6. Conclusions

With the purpose of assessing the global cancellation level of harmonic currents
considering their magnitudes and phase angles simultaneously from a single index, an
appropriate index was proposed. This index is an extension of the definition of the diver-
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sity factor of the h-th harmonic current, DFh, to a total diversity factor of the harmonic
currents, TDF, by using the definition of total harmonic distortion, THD, as a reference and
considering the weightings of the individual DFh. After simplifying the equivalent circuit
per phase of the typical three-phase power system of European commercial installations,
the TDF was applied to the cancellation study of the harmonic currents consumed by a set
of N identical PCs (URs) and a set of M identical FLs connected at the same voltage level.
In view of the results obtained and discussed in Sections 4 and 5, it can be concluded that:

• The TDF globally summarizes, in a weighted manner, what the individual DFh indicate,
demonstrating the suitability of the TDF.

• By using a global optimization numerical method such as ECAM, the TDF can be used
to find optimal values of the UR and FL invariants, as well as optimal M/N ratios,
which is of interest from a practical point of view. The optimization study that made it
possible to obtain them demonstrates the usefulness of the TDF.

Since the TDF can be generalized to any number of sets of multiple identical NLLs,
future work could extend the cancellation study of harmonic currents presented in this
paper not only to other pairs of sets of multiple identical NLLs, but also to more than two
such sets connected at the same voltage level. It is also proposed as future work to analyze
how factors such as other types of rectifier circuits and their topologies different from that
considered in this paper, other types of power systems different from that contemplated in
this paper, and the presence of voltages with harmonic distortions in the power systems,
influence the TDF.
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Appendix A. Cancellation of the Harmonic Currents

It is commonly accepted that a high cancellation level of the h-th harmonic current
occurs when two h-th harmonic current phasors (Ih

(1) = Ih
(1)∠φh

(1) and Ih
(2) = Ih

(2))∠φh
(2))

are close to counterphase (i.e., when the absolute value of the phase difference of two
h-th harmonic current phasors is close to 180◦). As a result, their geometric sum is much
smaller than their arithmetic sum. Nevertheless, the magnitudes of the two h-th harmonic
current phasors also influence their geometric sum, which must be considered in harmonic
cancellation studies. To explore this influence, the diversity factor of the h-th harmonic
current is written as a function of ∆φh = |φh

(1) − φh
(2)| (∆φh allows the absolute value of the

phase difference of two h-th harmonic current phasors to be determined) and ∆Ih = min{Ih
(1),

Ih
(2)}/max{Ih

(1), Ih
(2)} (∆Ih allows the magnitude resemblance of two h-th harmonic current

phasors to be determined):

DFh(∆φh, ∆Ih) =

∣∣∣I(1)h + I(2)h

∣∣∣
I(1)h + I(2)h

=

√
1 + (∆Ih)

2 + 2∆Ih cos(∆φh)

1 + ∆Ih
. (A1)

Figure A1a shows (A1) in a contour plot. It can be observed that two h-th harmonic
current phasors far from counterphase (point B and plot B in Figures A1a and A1b, respec-
tively) may lead to a higher cancellation level than two h-th harmonic current phasors close
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to counterphase (point A and plot A in Figures A1a and A1b, respectively). Therefore, to
achieve a high cancellation level of the h-th harmonic current, not only must the two h-th
harmonic current phasors be close to counterphase, but their magnitudes must also be very
similar (point C and plot C in Figures A1a and A1b, respectively).
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Appendix B. Generalization of the Total Diversity Factor of the Harmonic Currents

Suppose that it is of interest to analyze the cancellation of the harmonic currents
consumed by a set of N identical NLL1s, a set of M1 identical NLL2s, . . . , and a set of
Mn−1 identical NLLns connected at the same voltage level. This effect consists of the
reduction of the rms value of the total h-th harmonic current consumed by all the n sets
of NLLs together, Ih

(T) = |N·Ih
(NLL1) + M1·Ih

(NLL2) + · · · · · · + Mn−1·Ih
(NLLn)|, due to the

phase angle diversity of the h-th harmonic currents consumed by each of the n sets of NLLs
individually, i.e., N·Ih

(NLL1) = N·Ih
(NLL1)∠φh

(NLL1), M1·Ih
(NLL2) = M1·Ih

(NLL2)∠φh
(NLL2), . . . ,

and Mn−1·Ih
(NLLn) = Mn−1·Ih

(NLLn)∠φh
(NLLn) for the set of NLL1s, the set of NLL2s, . . . ,

and the set of NLLns, respectively.
It is convenient to study the cancellation with the diversity factor of the h-th harmonic

current (DFh), because it allows the h-th harmonic current reduction due to this effect to be
quantified [3,6,8,12,15,17–28]. This factor ranges from 0 to 1 (i.e., 0 ≤ DFh (%) ≤ 100), with
lower values resulting in higher cancellation levels. Thus, the diversity factor of the h-th
harmonic current is expressed as a function of the invariants p1,N, . . . , pm,N and the ratios
of the power consumptions of the sets of NLL2s, . . . , NLLns to total power consump-
tion, i.e., ∆p(NLL2) = M1·P(NLL2)/(N·P(NLL1) + M1·P(NLL2) + ··· + Mn−1·P(NLLn)) ∈ ]0, 1[, . . . ,
∆p(NLLn) = Mn−1·P(NLLn)/(N·P(NLL1) + M1·P(NLL2) + ··· + Mn−1·P(NLLn))∈ ]0, 1[, where P(NLL1),
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P(NLL2), . . . , and P(NLLn) are the power consumptions of an NLL1 unit, an NLL2 unit, . . . ,
and an NLLn unit, respectively:

DFh(p1, N , . . . , pm, N , ∆p(NLL2), . . . , ∆p(NLLn))

=

∣∣∣N·I(NLL1)
h +M1·I

(NLL2)
h +···+Mn−1·I

(NLLn)
h

∣∣∣
N·I(NLL1)

h +M1·I
(NLL2)
h +···+Mn−1·I

(NLLn)
h

=

∣∣∣∣∣I(NLL1)
h, N +

M1 ·I
(NLL2)
R

N·I(NLL1)
R

·I(NLL2)
h, N +···+

Mn−1 ·I
(NLLn)
R

N·I(NLL1)
R

·I(NLLn)
h, N

∣∣∣∣∣
I(NLL1)
h, N +

M1 ·I
(NLL2)
R

N·I(NLL1)
R

·I(NLL2)
h, N +···+

Mn−1 ·I
(NLLn)
R

N·I(NLL1)
R

·I(NLLn)
h, N

=

∣∣∣∣I(NLL1)
h, N + Ĩ

(NLL2)
h, N +···+ Ĩ

(NLLn)
h, N

∣∣∣∣
I(NLL1)
h, N + Ĩ(NLL2)

h, N +···+ Ĩ(NLLn)
h, N

.

(A2)

In (A2), the NLL1 normalized harmonic currents, Ih,N
(NLL1), are functions of the corre-

sponding invariants, and the NLLi modified normalized harmonic currents, Ĩh,N
(NLLi), are

functions of at least the corresponding invariants and the corresponding ∆p(NLLi) ratio. It is
important to note that the ∆p(NLLi) range ]0, 0.5] corresponds to (Mi−1·P(NLLi))/(N·P(NLL1))≤ 1
(i.e., power consumption of the set of NLL1s is higher than that of the set of NLLis), whereas
the ∆p(NLLi) range [0.5, 1[ corresponds to (Mi−1·P(NLLi))/(N·P(NLL1)) ≥ 1 (i.e., power con-
sumption of the set of NLL1s is lower than that of the set of NLLis).

To assess the global cancellation level of harmonic currents, and as in [47,48] with the
attenuation factor, the definition of the diversity factor of the h-th harmonic current, DFh,
is extended to a total diversity factor of the harmonic currents, TDF, using the definition
of total harmonic distortion, THD, as a reference and considering the weightings of the
individual DFh. This total diversity factor can be obtained by calculating a weighted
average of the individual DFh, as:

TDF(p1, N , . . . , pm, N , ∆p(NLL2), . . . , ∆p(NLLn))

=

√
5, 7, ...

∑
h=3

∣∣∣N·I(NLL1)
h +M1·I

(NLL2)
h +···+Mn−1·I

(NLLn)
h

∣∣∣2√
5, 7, ...

∑
h=3

(
N·I(NLL1)

h +M1·I
(NLL2)
h +···+Mn−1·I

(NLLn)
h

)2

=

√
5, 7, ...

∑
h=3

∣∣∣∣I(NLL1)
h, N + Ĩ

(NLL2)
h, N +···+ Ĩ

(NLLn)
h, N

∣∣∣∣2√
5, 7, ...

∑
h=3

(
I(NLL1)
h, N + Ĩ(NLL2)

h, N +···+ Ĩ(NLLn)
h, N

)2
=

√
5, 7, ...

∑
h=3

(wh · DFh)
2,

(A3)

where:

wh =
N·I(NLL1)

h +M1·I
(NLL2)
h +···+Mn−1·I

(NLLn)
h√

5, 7, ...
∑

h=3

(
N·I(NLL1)

h +M1·I
(NLL2)
h +···+Mn−1·I

(NLLn)
h

)2

=
I(NLL1)
h, N + Ĩ(NLL2)

h, N +···+ Ĩ(NLLn)
h, N√

5, 7, ...
∑

h=3

(
I(NLL1)
h, N + Ĩ(NLL2)

h, N +···+ Ĩ(NLLn)
h, N

)2

(A4)

are the weightings of the individual DFh.
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