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Abstract
This paper proposes a set of extensions to the OpenMP

programming model to express complex pipelined compu-
tations. This is accomplished by defining, in the form of
directives, precedence relations among the tasks originated
from work–sharing constructs. The proposal is based on the
definition of a name space that identifies the work parceled
out by these work–sharing constructs. Then the program-
mer defines the precedence relations using this name space.
This relieves the programmer from the burden of defining
complex synchronization data structures and the insertion
of explicit synchronization actions in the program that make
the program difficult to understand and maintain. This work
is transparently done by the compiler with the support of
the OpenMP runtime library. The proposal is motivated
and evaluated with a synthetic multi-block example. The
paper also includes a description of the compiler and run–
time support in the framework of the NanosCompiler for
OpenMP.

1 Introduction

Parallel processing is being accepted by the computer in-
dustry as the path to increase the computational power of
low–end workstations and even personal computers. Paral-
lel architectures, ranging from multiprocessor workstations
(with 2 to 4 processors) to medium scale shared–memory
systems (up to 64 processors) are becoming more and more
affordable and common for the development of computing-
demanding applications.

However, making these parallel machines truly usable
requires easy–to–understand and portable programming
models that allow the exploitation of parallelism out of ap-
plications written in standard high–level languages. These
programming models usually offer new mechanisms or ex-
tensions to the sequential language to express the paral-
lelism available in the application. For instance, OpenMP
has emerged as the standard for shared–memory parallel
programming. Its simplicity and portability across a range
of parallel platforms are achieved without significantly sac-
rificing the performance on the parallel execution.

One of the features available in the current definition
of OpenMP is the possibility of expressing multiple–levels
of parallelism. This is achieved by nesting parallel con-
structs, which includes parallel loops and sections. How-
ever, the majority of current compiler implementations se-
rialize nested parallel constructs. Once parallelism is acti-
vated, new opportunities for parallel work creation are ig-
nored by the execution environment. Exploiting a single–
level of parallelism may incur in low performance returns
when the number of processors to run the application is in-
creased.

There have been previous attempts in the past to ap-
proach the exploitation of multi–level parallelism. For in-
stance, some focused on providing coordination support to
allow the interaction of a set of program modules in the
framework of data parallel programs for distributed mem-
ory architectures. For example, [3] proposed a library–
based approach that provides a set of functions for cou-
pling multiple HPF tasks to form task–parallel computa-
tions. Other alternatives [2, 6, 10] proposed a small set
of Fortran directives to integrate task and data parallelism
also in an HPF framework. Our group has proposed exten-
sions to OpenMP in order to allow an efficient exploitation
of nested parallelism. The extensions offer the concept of
thread groups [5]. This concept is similar to the concept
of processor subgroup proposed in similar frameworks (e.g.
the FX compiler [6]). However, the definition of subgroups
was static and closely related to the exploitation of task par-
allelism. Our extension to OpenMP allows the dynamic
creation of thread groups and the definition of the actual
composition of groups at runtime. Groups can be created to
exploit both loop and task–level parallelism.

The specification of generic task graphs as well as com-
plex pipelined structures is not an easy task in the frame-
work of OpenMP. In a large number of scientific applica-
tions, the exploitation of parallelism requires the specifica-
tion of a set of tasks and tight relationships among them,
which usually crosses the boundaries of timestep loops
leading to complex wavefronts. In order to exploit this par-
allelism, the programmer has to define complex synchro-
nization data structures and use synchronization primitives
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along the program, sacrificing readability and maintainabil-
ity.

Previous researchers proposed to include in the language
definition support for pipelining wavefront computations
[1] and to express data parallel pipelines when integrating
task and data parallelism [6]. In this paper we follow a
similar approach and propose an extension to the OpenMP
programming model that enables the specification of prece-
dence relations among tasks originated from work–sharing
constructs (parallel loops and sections).

In addition to having the appropriate support at the
language level to express generic task graphs including
pipelined schemes, good scheduling techniques are required
to map the different levels of parallelism onto the available
processors. A large number of heuristics have been pro-
posed in the literature [12, 9, 10] for mixed task and data
parallel scheduling. The proposal in this paper includes a
set of new directives and clauses for the emerging indutrial
standard OpenMP to specify generic task graphs and an as-
sociated processor mapping. The paper does not assume
any particular scheduling heuristic.

The paper is organized as follows. Section 2 moti-
vates the proposed extensions with an example. Section 3
overviews one of the proposed extensions (thread groups)
and details the extension oriented towards the specification
of precedence relations. Section 4 outlines some implemen-
tation details in the OpenMP NanosCompiler for Fortran
[4]. Section 5 presents experimental results for the motivat-
ing example. Finally, Section 6 summarizes the paper.

2 Motivating Example

In this section we describe an example that motivates the
extensions to OpenMP proposed in this paper. The example
is based on a multi-block code that performs a specific com-
putation over a number of rectangular blocks. Blocks may
have different size (defined by vectorsnx, ny andnz). The
computation on one block may depend on the computation
on other spatially contiguous blocks. Blocks are stored con-
secutively in a vector nameda. An outline of the kernel is
shown in Figure 1.

The kernel has two different phases. An initialization
phase (lines 1–18) where all data is read, including the sizes
of the blocks and their relationships. The second phase
(lines 19–34) contains the solver, which consists of an it-
erative time-step loop that performs the same computation
(inside routinesolve in lines 35–46) on each point of each
block. The initialization is done exploiting two levels of
parallelism. The outer level exploits the parallelism at the
level of independent blocks (loopib). The inner level of
parallelism is exploited in the initialization of the elements
that compose each block. The same multilevel structure ap-
pears in the solver (computation for each block and compu-

1 C Initialize blocks and dependence relations
2 ...
3 read *, nblock
4 read *, (nx(i), ny(i), nz(i),i=1,nblock)
5 do ib = 1, nblock
6 read *, numpred(ib)
7 read *,(listpred(ib,i),i=1,numpred(ib))
8 read *, numsucc(ib)
9 read *,(listsucc(ib,i),i=1,numsucc(ib))

10 ...
11 work(ib) = nx(ib) * ny(ib) * nz(ib)
12 enddo
13 ...
14 C Computation of thread groups according to the
15 C weight of blocks and precedence relations
16 call compute_groups(nblock, work, numsucc,
17 + listsucc,masters, howmany)
18 ...
19 C Solver part of the kernel
20 10 continue
21 C$OMP PARALLEL DO SCHEDULE(STATIC)
22 C$OMP& GROUPS(nblock, masters, howmany)
23 C$OMP& PRED(numpred(ib),listpred(ib))
24 C$OMP& SUCC(numsucc(ib),listsucc(ib))
25 do ib = 1, nblock
26 call solve(a(loc(ib)),
27 + nx(ib), ny(ib), nz(ib),...)
28 ...
29 enddo
30 C$OMP END PARALLEL DO
31 if ... goto 10
32 ...
33 C Final updates and write results
34 ...
35 subroutine solve(t,nx,ny,nz, ...)
36 ...
37 C$OMP PARALLEL DO SCHEDULE(STATIC)
38 C$OMP& PRIVATE(i,j,k)
39 do 10 k=1,nz
40 do 10 j=1,ny
41 do 10 i=1,nx
42 ...
43 10 continue
44 C$OMP END PARALLEL DO
45 ...
46 endFigure 1. Source code for the motivating example.
tation within each block). However, the interaction between
blocks forces their sequential execution. In fact, some par-
allelism could be exploited if one pipelines the execution of
dependent blocks, thus creating a wavefront of independent
computations that advances as soon as one block is com-
puted.

Exploiting a single level of parallelism in this code leads
to an exploitation of limited parallelism. The exploitation of
the outer level (i.e. blocks) is limited to the maximum num-
ber of blocks. In addition, if blocks have not the same size,
the largest one will determine the execution time and thus
reduce the maximum achievable parallelism (i.e. 8). The
exploitation of the inner parallelism (inside function solve)
can theoretically reach the maximum parallelism (i.e. num-
ber of processors). However, the efficiency of the paral-
lelism is clearly reduced when the amount of work per pro-
cessor in any of the blocks is not sufficient to compensate
parallelism overheads. As we will observe in Section 5 for
this kernel and a specific input file, this level of parallelism



is not able to efficiently use more than 16 processors. When
more processors are available, it is necessary to combine the
exploitation of both levels of parallelism.

In the main program shown in Figure 1 the reader can
observe the two levels of parallelism in the computational
phase of the kernel (i.e.PARALLEL DO constructs in lines
21 and 37). The following extensions to OpenMP are used
for the outermost parallel loop:� Definition of groups of threads. The computation of a

block is assigned to a group of threads, whose size is
proportional to the amount of computation inside the
block. As many groups as number of blocks are de-
fined.� Definition of precedences between groups of threads.
These precedences will force the correct relative order-
ing among dependent blocks.

Next we consider each aspect in turn. For instance, as-
sume that vectorwork is initialized as follows:

nblock = 8
work[8] = {8192, 4096, 1024, 4096,

1024, 1024, 1024, 1024}

If no precedences among blocks were specified, a simple
directive in line 22 like:
22 C$OMP& GROUPS(nblock, work)

would force the runtime to distribute the available proces-
sors among the groups using a default allocation scheme [5]
that considers the numbers in vectorwork as proportions
and ensures that each group at least receives one. So for
instance, if 16 processors were available, the small groups
would receive one processor each, the medium–size groups
would receive 3 and the largest one 5 processors. This allo-
cation achieves a theoretical speed–up of 13.125. In this al-
location, the processors executing small blocks finish their
computation before the other ones. Other allocations that
cluster small blocks and force them to share processors may
improve the efficiency [5].

However when precedences among blocks exist this
may lead to idle processors (i.e. just waiting for other
blocks to complete) as shown in Figure 2.b when the prece-
dences graph shown in Figure 2.a is considered (thus re-
ducing the theoretical speed–up to 4.25). For this rea-
son, a different strategy for the composition for thread
groups, that takes into account the precedence relations,
must be used. For example this is included in the source
code in Figure 1 when the main program invokes routine
compute groups (lines 14–18). This user–defined rou-
tine is in charge of determining, at runtime and according to
the total number of processors available, the actual compo-
sition of each group of threads. For this purpose, it uses the
size of each block (vectorwork) and the list of successors
for each block (vectornumsucc and matrixlistsucc).
Different heuristics have been proposed in the literature for
doing this assignment [9, 12, 10].

For instance, assume that the following list of successors
is specified (corresponding to the graph shown in Figure
2.a:

numsucc[8] = {2, 1, 0, 2, 1, 0, 1, 0}
listsucc[8,2] = {2, 4, 3, 0, 0, 0, 5, 7,

6, 0, 0, 0, 8, 0, 0, 0}

In this case, for instance block number 4 has two succes-
sors (as indicated bynumsucc[4]=2): blocks 5 and 7 (as
indicated by the two valid entries inlistsucc[4]=f5,
7g). A possible allocation strategy could end-up cluster-
ing groups as shown in Figure 2.c. In this allocation, first
block1 is executed using all the 16 processors. After that,
the allocation of processors to groups is done considering
two clusters: one composed of blocks2--3, and the other
composed of groups4--8. The weight of the clusters is
5120 and 8192, respectively. So at this point the allocation
of processors is done considering these values as propor-
tions, ending up with 6 and 10 processors, respectively. In
this second cluster, the execution can be further divided so
that block 4 starts first using all the 10 processors; after that,
two sub-clusters are considered including blocks5--6 and
7--8. Each block in these sub-clusters will receive half of
the processors available in the cluster (i.e. 5 processors).
This allocation achieves a theoretical speed–up of 15.75.

The specification of this composition for the groups of
threads is easy to perform by using one of the clauses pro-
posed as part of our OpenMP extensions:
22 C$OMP& GROUPS(nblock, masters, howmany)

Vector masters specifies the thread that will behave as
master of the group. Vectorhowmany specifies the number
of threads used in the group. For the allocation shown in
Figure 2.c, routinecompute groups should return:

masters[8]={0, 0, 0, 6, 6, 6, 11, 11}
howmany[8]={16, 6, 6, 10, 5, 5, 5, 5}

A set of predefinedcompute groups routines could
be offered by the runtime system, or the user could simply
define its own ones. This topic is not considered in this pa-
per. Several solutions to the problem of automatic schedul-
ing of task and data parallelism have been published else-
where [12, 9, 10].

3 Extensions to OpenMP

In the fork/join execution model defined by OpenMP [8],
a program begins execution as a single process or thread.
This thread executes sequentially until aPARALLEL con-
struct is found. At this time, the thread creates ateamof
threads and it becomes its master thread. All threads ex-
ecute the statements enclosed lexically within the parallel
constructs. Work–sharing constructs (DO, SECTIONS and
SINGLE) are provided to divide the execution of the en-
closed code region among the members of a team. All
threads are independent and may synchronize at the end of
each work–sharing construct or at specific points (specified
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Figure 2. a) Precedence graph, b) initial thread allocation,c) �nal thread allocation.
by theBARRIER directive). Exclusive execution mode is
also possible through the definition ofCRITICAL regions.

Next we describe the two extensions proposed to support
the specification of complex pipelines that include tasks
generated from OpenMP work–sharing constructs. The ex-
tensions are in the framework of nested parallelism and tar-
get the pipelined execution at the outer levels.3.1 Extension 1: Thread Groups

In our proposal, agroup of threadsis composed of a sub-
set of the total number of threads available in the team to run
a parallel construct. We restrict that the threads are consecu-
tive following the active numeration inside the current team
(from 0 to omp get num threads()-1). In a parallel
construct, the programmer may define the number of groups
and the composition of each one. When a thread in the cur-
rent team encounters a parallel construct defining groups,
the thread creates a new team and it becomes its master
thread. The new team is composed of as many threads as
groups are defined; the rest of threads are reserved to sup-
port the execution of nested parallel constructs. In other
words, the groups definition establishes the threads that are
involved in the execution of the parallel construct plus an
allocation strategy or scenario for the inner levels of paral-
lelism that might be spawned.

TheGROUPS clause allows the user to specify the defi-
nition of thread groups. It can only appear in aPARALLEL
construct or combinedPARALLEL DO and PARALLEL
SECTIONS constructs.
C$OMP PARALLEL [DO|SECTIONS] [GROUPS(gspec)]

Different formats for the groups specifiergspec are al-
lowed [5]. In this paper we only comment the ones closely

related with the precedences proposal. For additional de-
tails concerning alternative formats as well as implementa-
tion issues, please refer to this publication.

GROUPS(ngroups,weight)

In this case, the user specifies the number of groups
(ngroups) and an integer vector (weight) indicating the
relative weight of the computation that each group has to
perform. From this information and the number of threads
available in the team, the runtime is in charge of computing
the two previous vectors (masters andhowmany). This
eases the use of groups because the programmer is relieved
from the task of determining their exact composition.

The most general format allows the specification of three
parameters in the group definition: the number of groups,
the identifiers of the threads that participate in the execution
of the parallel region, and the number of threads composing
each group:

GROUPS(ngroups, masters, howmany)

The first argument (ngroups) specifies the number of
groups to be defined and consequently the number of
threads in the team that is going to execute the parallel con-
struct. The second argument (masters) is an integer vec-
tor with the identifiers (using the active numeration in the
current team) of the threads that will compose the new team.
Finally, the third argument (howmany) is an integer vec-
tor whose elements indicate the number of threads that will
compose each group. The vectors have to be allocated in
the memory space of the application and their content and
correctness have to be guaranteed by the programmer.3.2 Extension 2: Precedence Relations
Next we present an extension to the OpenMP programming
model that allows the specification of precedence relations
among the threads that participate in the execution of a par-
allel construct. The proposal is divided in two parts. The
first one consists in the definition of a name space for the
tasks generated by the OpenMP work–sharing constructs.
The second one consists in the definition of precedence re-
lations among those named tasks.

3.2.1 The NAME clause

TheNAME clause is used to provide a name to a task that
comes out of a work–sharing construct. In aSECTIONS
work–sharing construct, theNAME directive is used to iden-
tify eachSECTION:

C$OMP SECTIONS
C$OMP SECTION NAME(name_ident)
...
C$OMP SECTION NAME(name_ident)
...
C$OMP END SECTIONS



Thename ident identifier is supplied by the programmer
and follows the same rules that are used to define variable
and constant identifiers.

In aDO work–sharing construct, the NAME clause only
provides a name to the whole loop:

C$OMP DO NAME(name_ident)
...
C$OMP END DO

The number of tasks associated to aDO work–sharing con-
struct is not determined until the associateddo statement is
going to be executed. Depending on the number of avail-
able threads and the chunk size applied in the loop schedul-
ing, the loop is broken into a different number of parallel
tasks. We propose to identify each iteration of the paral-
lelized loop by the identifier supplied in theNAME clause
plus the value of the loop induction variable for that itera-
tion. This means that the name space for a parallel loop will
be big enough to name each of the iterations of the loop.
The programmer simply defines the precedences at the it-
eration level. These precedences are then translated to task
precedences, depending on theSCHEDULE strategy speci-
fied to distribute iterations to tasks.

3.2.2 The PRED and SUCC clauses and directives

Once a name space has been created, the programmer is able
to specify a precedence relation between two tasks using
their names. This is done by the use of thePRED andSUCC
clauses or directives:

[C$OMP] PRED(task_id[,task_id]*) [IF(exp)]
[C$OMP] SUCC(task_id[,task_id]*) [IF(exp)]

PRED is used to list all the tasks names that must complete
their execution before executing the one affected by it. The
SUCC directive is used to define all those tasks that, at this
point, may continue their execution. TheIF clause is used
like the already existent clause in the OpenMP program-
ming model. Expressionexp is evaluated at run–time in
order to obtain a boolean value that determines if the asso-
ciatedPRED or SUCC clause applies.

As clauses,PRED andSUCC apply at the beginning and
end of a task (because they appear as part of the definition of
the work–sharing itself), respectively. The same keywords
can also be used as directives, in which case they specify
the point in the source program where the precedence rela-
tionship has to be fulfilled. Code before aPRED directive
can be executed without waiting for the predecessor tasks.
Code after aSUCC directive can be executed in parallel with
the successor tasks.

ThePRED andSUCC constructs always apply inside the
nearest work–sharing construct where they appear. Any
work–sharing construct affected by a precedence clause or
directive has to be named with aNAME clause.

Thetask id identifier is used to identify the parallel
task affected by a precedence definition or release. De-
pending on the work–sharing construct where the parallel
task was coming out from, thetask id identifier presents
three different formats:

task_id = (name_ident) |
(name_ident,expr) |
(name_ident,expr,expr)

When thetask id is only composed of aname ident
identifier, the parallel task corresponds to a task coming out
from a SECTIONS work–sharing construct. In this case,
thename ident corresponds to an identifier supplied in a
NAME clause that annotates aSECTION construct. When
thename ident is followed by one expression, the par-
allel task corresponds to a chunk of iterations coming from
a parallelized loop. The expression must include the loop
induction variable and its evaluation must result in an inte-
ger value identifying a specific iteration of the loop. The
precedence relation is defined with the chunk of iterations
containing the iteration indicated byexpr. When two ex-
pressions are supplied, thetask id syntax allows the pro-
grammer to specify a list of predecessor chunks. The first
expression indicates the number of parallel tasks that the
programmer wants to name. The second expression sup-
plies a pointer reference pointing to a vector containing dif-
ferent values of the iteration space of the loop from where
the parallel tasks are coming out. In order to identify the
tasks, each value is translated to the loop chunk executing
the iteration corresponding to it.

Figure 3 shows a code fragment in which a precedence
relation between aSECTION and aDO work–sharing con-
struct is established. In particular, the precedence relation
only involves one iteration of the loop, as indicated with the
IF clause in thePRED directive. In this case, all iterations
can proceed in parallel with the code in sectionA except for
iterationiter. CODE 5 in this iteration will have to wait
for the completion ofCODE 1 in named sectionA. Notice
that in thePRED clause, the user specifies the successor task
using the name of the loop and the specific iteration.

!$OMP PARALLEL
!$OMP SECTIONS
!$OMP SECTION NAME (A)

CODE_1
!$OMP SUCC(loop, iter)

CODE_2
!$OMP SECTION

CODE_3
!$OMP END SECTIONS NOWAIT
!$OMP DO NAME (loop)

do i = 1, N
CODE_4

!$OMP PRED (A) IF(i.eq.iter)
CODE_5

enddo
!$OMP END PARALLELFigure 3. Precedence between SECTIONS and DO.



Line 23 in Figure 1 shows the specification of prece-
dences for the multi-block kernel. In this case the pro-
grammer uses the most complex format for clausesPRED
andSUCC: an expression that evaluates to the number of
precedences for the block (in this casenumpred(ib) or
numsucc(ib), respectively) and a pointer to the list of
predecessors or successors for the block. As shown in the
Figure, the composition of these lists can be computed at
runtime.

4 The Run-Time support

In this section we describe the support required from the
runtime system to efficiently implement the language exten-
sions to specify precedence relations. The runtime systems
usually offer mechanisms to guarantee exclusive execution
(critical regions), ordered executions (ticketing) and global
synchronizations (barriers). The proposal in this paper re-
quires explicit point–to–point synchronization mechanisms.
The description of the runtime support for multiple levels of
parallelism and thread groups is not included in this paper
and can be found elsewhere [5].

Two main aspects have to be considered to provide sup-
port to the programming model defined in section 3. First,
the runtime has to provide a mechanism to synchronize two
threads according to the precedences introduced by the pro-
grammer. Second, there must be a translation mechanism
that allows to dynamically identify the thread executing a
chunk of iterations in a parallel loop; this means that the
runtime has to be able to identify which thread is executing
which iteration of the loop.4.1 Thread Synchronization

Our approach is based on the definition of an address
space where threads involved in a precedence relation syn-
chronize. For each pair of named tasks related with prece-
dences, a memory location is allocated. Threads execut-
ing these tasks will use this memory location to communi-
cate. This memory location is considered as a dependence
counter. The definition of a precedence at runtime implies
an increment of this counter. The release of a precedence
implies a decrement of the same counter. When a thread
checks if a precedence has been released, it spins until the
counter reaches zero. This counter is contained in what we
name the precedence descriptor (described later).

Two routines are provided to define/release precedences
at runtime:nthf def prec andnthf free prec, re-
spectively. The main argument for these routines is a prece-
dence descriptor. For eachPRED directive/clause, the com-
piler injects a call to routinenthf def prec. This rou-
tine increments the counter contained in the precedence de-
scriptor and spins until the counter reaches zero. For each

SUCC directive/clause, the compiler injects a call to rou-
tine nthf free prec. This routine mainly decrements
the counter contained in the precedence descriptor.

Figure 4 shows the code generated by the compiler for
the OpenMP fragment shown in Figure 3. Notice that
function name A encapsulating the code for named sec-
tion A performs a call to routinenthf free prec in or-
der to decrement the associated counter. Similarly, routine
loop invokesnthf def prec in order to increment the
counter. The thread invoking this routine will wait until the
counter reaches zero. Both routines receive as an argument
the precedence descriptor that contains the counter.

When the precedence relation involves threads executing
tasks (chunks) of aDO work–sharing construct, the num-
ber of counters is determined at runtime. In particular, as
many counters as pairs consumer/producer need to be allo-
cated. For instance, the code shown in Figure 3 establishes
a precedence between aSECTION and aDO work–sharing
construct; in this case, as many counters as the number of
threads participating in the loop execution are allocated in
the precedence descriptor. These counters are used to syn-
chronize the thread executing the section with each possible
thread executing a chunk of theDO loop. In addition to that,
the compiler needs to insert code to perform a translation
from the iteration space to the thread space. This translation
(explained later in this section) determines which thread ex-
ecutes a particular iteration of the loop.

In the general case, the precedence relation may involve
tasks (chunks) generated from twoDO work–sharing con-
structs. In this case, a matrix of counters is allocated (with
as many rows and columns as the number of threads) in the
precedence descriptor.

A routinenthf init prec is offered by the runtime
to allocate and define the precedence descriptor for each of
the above mentioned situations.4.2 Iteration{Thread Translation

In this section we describe the basic data structure and
service available to perform the translation between itera-
tion number and thread executing the iteration. We will fo-
cus on the information that is needed at run–time and how
this information is used to compute the translation. For each
parallelized loop involved in a precedence relation, a loop
descriptor is created with the following information: lower
and upper bound for the induction variable, iteration step,
the scheduling applied and the number of threads currently
executing the loop. This loop descriptor is allocated in the
application address space. Once the master thread of the
group reaches a particular loop, its loop descriptor is initial-
ized with all the information mentioned above.

Routinenthf index to thread is in charge of the
translation. The main arguments of this routine are a loop



subroutine name_A(prec_A_loop, ..., loop_desc, ...)
CODE_1
nth_id = nthf_index_to_thread(loop_desc, iter, ...)
call nthf_free_prec(prec_A_loop, nth_id, ...)
CODE_2
end

a)

subroutine loop(prec_A_loop, iter, ...)
nth_whoami = ...
nth_min = ...
nth_max = ...
do i = nth_min, nth_max

CODE_4
if (i.eq.iter) then

call nthf_def_prec(prec_A_loop, nth_whoami,...)
end if
CODE_5

enddo
end

b)Figure 4. Code generated for the example in Figure 3
descriptor and an iteration index. The output of the routine
is the identifier of the thread executing the iteration, which
is computed according to the information contained in the
loop descriptor.

For example, Figure 4 shows the code generated by the
compiler for the example in Figure 3. In the code gen-
erated for sectionname A, the compiler injects a call to
routine nthf index to thread in order to know the
identifier of the thread executing iterationiter. After
that, the thread invokesnthf free prec over the cor-
responding element of the precedence descriptor. For the
threads executing the loop, notice that the call to routine
nth def prec will be done by the thread executing iter-
ationiter. The invocation tonthf free prec is done
with the identifiernth whoami of the thread executing
that iteration.

5 Experimental evaluation

In this section we evaluate the behavior of four paral-
lel versions of the motivating example in Section 2. The
experiments have been performed on a Silicon Graphics
Origin2000 system [11] with 64 R10k processors, run-
ning at 250 MHz with 4 Mb of secondary cache each.
For all compilations we use the NanosCompiler to trans-
late from extended OpenMP Fortran77 to plain Fortran77
with calls to the supporting runtime library NthLib. We
use the nativef77 compiler to generate code for the Ori-
gin system. The flags are set to-64 -Ofast=ip27
-LNO:prefetch ahead=1:auto dist=on.

The four parallel versions analyzed are:1L–inner, 2–
levels, 2L–groupsand2L–precedences. The1L–innerver-
sion exploits a single level parallelization. In this version
the intra–block parallelism is exploited (i.e. the compu-
tation of the different blocks is serialized). The2–levels
version exploits both levels of parallelism. This version
is fully compatible with the current definition of OpenMP

(i.e. does not use any of the extensions proposed in Sec-
tion 3). The2L–groupsversion also exploits the two levels
of parallelism but includes the definition of thread groups.
These two versions assume that no precedence relations ex-
ist among blocks. They are useful to observe the improve-
ment due to the use of the thread groups extension. Finally,
the2L–precedencesversion is equivalent to2L–groupsbut
taking into account the precedence relations among blocks.
Eight blocks compose the input of the different versions.
Two large blocks (large blocks are 8 times larger than small
blocks) and six small blocks. When precedences are speci-
fied, two independent branches, each composed of the serial
execution of one large and three small blocks, are defined.

Figure 5 shows the speed–up of the four parallel versions
with respect to the original sequential version. The follow-
ing conclusions are drawn from this figure:� 1L–inner is not able to efficiently use more than 16

processors. The parallelization overheads are not com-
pensated for the smallest groups, causing a degradation
in the parallelization efficiency.� 2–levelsimproves the behavior with respect to1L–
innerbut the efficiency of the parallelization also falls
down above 32 processors. Notice that this version
suffers from the same problem than1L–inner: large
parallelization overheads compared to the amount of
work per processor. The improvement is mainly due to
an effective reduction of the time threads spent wait-
ing on barrier synchronizations. In the1L–innerver-
sion, threads must wait until all of them finish the com-
putation of a block (implicit barrier at the end of the
PARALLEL construct). After that, the master thread
generates the parallelism for the next block. However,
in the2–levelsthe master thread initially generates the
parallelism for the outer level. This means that threads
(8 in this case) start executing the computation in a
block and find the inner level of parallelism. Then they
simultaneously generate the work for all the available
threads. So notice that at this point (before starting the
computation inside the main loop in functionsolve),
all the work has been generated. Therefore, when a
thread finishes with the computation of a chunk of it-
erations from a block, it enters the barrier but immedi-
ately finds more work to execute and delays the execu-
tion of the barrier.� 2L–groupsperforms better when more than 8 proces-
sors are available. In this version the work in the inner
level of parallelism is distributed following the groups
specification. Eight processors are devoted to the ex-
ploitation of the outer level of parallelism. The rest of
processors are evenly distributed to exploit the inner
level of parallelism. Notice that the number of proces-
sors devoted to execute a block is proportional to the
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Figure 5. Four multi-block kernel versions (speed{up).
size of block, so that small blocks are executed with
less processors. This improves the efficiency of the
parallelization and results in noticeable reductions in
the total execution time.� The2L–precedencesversion should be only compared
with the1L–innerversion; the2Levelsand2L–groups
versions the outer level of parallelism is assumed to be
free of dependences. Notice that this version outper-
forms1L–innerwhen more that 8 processors are used.
In this case, the combination of thread groups and the
execution of blocks following the precedence relations
expressed by the user results in a noticeable reduction
in the execution time. This version is always worse
than2L–groupsbecause of the limited parallelism in-
herently available at the outer level.

6 Conclusions

In this paper we have presented a set of extensions to the
OpenMP programming model oriented towards the specifi-
cation of complex pipelined computations in the context of
multilevel parallelism exploitation. The proposal relieves
the programmer from the burden of defining complex syn-
chronization data structures and the insertion of explicit
synchronization actions in the program that make the pro-
gram difficult to understand and maintain. This work is
transparently done by the compiler with the support of the
OpenMP runtime library. Although the majority of the cur-
rent systems only support the exploitation of single–level
parallelism around loops, we believe that multi–level paral-
lelism will play an important role in future systems. In order
to exploit multiple levels of parallelism, several program-
ming models can be combined (e.g. message passing and
OpenMP). We believe that a single programming paradigm
should be used and should provide similar performance.

The extensions have been implemented in the
NanosCompiler and runtime library NthLib. We have

coded a multi–block application using these extensions
and analyzed the performance on a Origin2000 platform.
The results show that when the number of processors is
high, exploiting multiple levels of parallelism with thread
groups results in better work distribution strategies and
thus higher speed–up than both the single level version and
the multilevel version without groups. When precedences
are taken into consideration, the mechanism proposed at
the language level and its implementation in the runtime
library are powerful enough to express a variety of scientific
applications.
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[7] X. Martorell, E. Ayguadé, J.I. Navarro, J. Corbalán, M. González and
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