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Abstract: This paper presents the results of several numerical analyses aimed at investigating the
in-plane resistance of masonry walls by means of two modelling approaches: a finite element
model (FEM) and a discrete macro-element model (DMEM). Non-linear analyses are developed, in
both cases, by changing the mechanical properties of masonry (compressive and tensile strengths,
fracture energy in compression and tension, shear strength) and the value of the vertical compression
stress applied on the walls. The reliability of both numerical models is firstly checked by means of
comparisons with experimental tests available in the literature. The analyses show that the numerical
results provided by the two modelling approaches are in good agreement, in terms of both failure
loads and modes, while some differences are observed in their load-displacement curves, especially
in the non-linear field. Finally, the numerical in-plane resistances are compared with the theoretical
formulations provided by the Italian building code for both flexural and shear failure modes and an
amendment for the shape factor ‘b’ introduced in the code formulation for squat walls is proposed.

Keywords: masonry walls; finite element model; discrete element model; in-plane behaviour; shear
resistance; flexural resistance; ductility; design formulations

1. Introduction

Unreinforced masonry structures are the most common existing constructions in the
Mediterranean area, thanks to a long history of natural stones as building materials, which
are highly availability and easy to use. Overall, historical masonry constructions are still
widely used throughout the world, often even as strategic buildings, and most of them
require adequate prevention against seismic actions. Masonry structures are outstanding
systems when subjected to compressive stresses, while, under lateral forces such as seismic
ones, the low tensile strength of these materials generally leads to local or global failure
modes, the latter related to shear or flexural mechanisms discussed in detail below.

In general, local failures mean the activation of out-of-plane mechanisms involving
masonry elements that are exposed to seismic actions orthogonally to their plane. Several
studies [1–10] and experiences from past earthquakes have shown that the vulnerability of
masonry buildings to out-of-plane mechanisms is emphasized by the lacking or weakness
of connections between elements (i.e., between walls or between walls and horizontal
diaphragms). On the other hand, global failure modes only occur in masonry buildings
when the in-plane strengths of their earthquake-resistant elements can be activated, i.e.,
when the connections are able to guarantee a ‘box’ behaviour for the whole building such
that seismic actions are, thus, mainly transferred to the walls parallel to each other.

The vulnerability of masonry elements subjected to in-plane actions depends on the
possible failure mechanisms, which are influenced by both their mechanical properties and
geometrical parameters. Flexural failures are due to compressive or tensile strength along
the end sections of the wall, while shear failures can occur differently, according to the type
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of masonry. In ‘regular’ masonry walls, indeed, shear failures are mainly related to sliding
phenomena along the mortar-unit interfaces, which can occur along crack lines following
horizontal joints or diagonally stepped lines involving both vertical and horizontal joints.
Conversely, in the case of irregular/rubble masonry walls, shear failures are, in general,
related to the tensile strength of the masonry along diagonal cracks, crossing both masonry
units and mortar joints. In the particular case of chaotic masonry, the interlocking between
the units avoids the activation of sliding phenomena along the mortar joints, since they are
not systematic or well organized, leading to diagonal shear failure. A detailed discussion
of the reliability of the literature and the code formulations surrounding the prediction of
the in-plane shear resistance of masonry walls can be found in [11].

The in-plane capacity of masonry walls has been investigated in several experimental
and numerical studies [11–23] that have analysed the influence of different parameters, such
as: (a) mechanical properties of masonry; (b) constraint conditions; (c) vertical compression
levels; (d) slenderness of the wall; and (e) masonry texture. Their mechanical properties
directly influence both the maximum capacity and ductility of masonry walls, while their
constraint conditions and slenderness drive their failure modes toward shear or flexural
mechanisms. In the case of low compression levels, a sliding shear failure is generally
favoured in regular masonry walls, while flexural and diagonal shear failures may occur
for medium–high levels of compression. Finally, as previously cited, masonry texture can
affect the type of shear failure (diagonal or sliding shear).

Several modelling strategies can be found in the literature regarding the most suitable
description of masonry behaviour [24]. Particularly for finite element models, the three
following approaches are mainly used: (1) detailed micro-modelling, (2) simplified micro-
modelling, and (3) macro-modelling. In the detailed micro-modelling approach, the units
and the mortar are modelled separately, while in the simplified micro-modelling approach
the mortar is not directly modelled, but rather interface elements are used to model
the interaction, i.e., the bond behaviour between mortar and units. Finally, the macro-
modelling approach assumes the masonry as a continuous, homogeneous and isotropic
material, without considering the real configuration of the units. Generally, the first two
approaches are used to identify, in detail, the behaviour of regular masonry walls, while
the third is more suitable for irregular/rubble masonry structures. Nevertheless, the macro-
modelling approach is the most-used modelling strategy in the literature to assess the
seismic behaviour of masonry structures, both when simulations regard whole structures
and local behaviours [7,25], because it requires the assessment of very few parameters.
Conversely, macro-modelling approaches based on the finite element method are not able
to predict failure modes related to sliding mechanisms along unit-mortar joints, which
need the use of the micro-modelling approach and the assessment of suitable interface-
constitutive constraints. Thus, despite the wide range of literature on this topic, there is
still some uncertainty about the applicability of macro-modelling approaches to predict the
actual failure modes of regular masonry walls, particularly the shear failure, and about
the main parameters involved. The current Italian code [26,27] indicates, indeed, that the
formulation for the diagonal shear failure of irregular masonry walls can be adopted in
favour of safety for regular masonry as well, but there is no literature highlighting to what
extent this is acceptable.

To fill such a gap of information, this paper presents several parametric analyses
aimed to identify the most influencing parameters on the in-plane response of slender and
squat regular masonry walls, also by means of comparisons with code formulations. Two
macro-modelling approaches are adopted: a finite element model (FEM), implemented in
the Diana FEA software [28], and a discrete macro-element model (DMEM), introduced in
the 3DMacro software [29]. The FEM simulates masonry as a homogenous material charac-
terized by a non-linear response, and uses a detailed mesh refinement [30]. Conversely, the
DMEM proposed by [31] considers masonry structures as assemblages of macro-elements
that collapse through different failure mechanisms; such a discretization approach allows
assessing the non-linear responses of masonry structures, with a limited computational
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effort and a low number of input parameters. Thus, the latter is also suitable for standard
engineering design practice or for massive structures, for which the computational effort
of a detailed FEM could become excessive.

The main advantage of the FE model is to provide detailed information on the evo-
lution of crack patterns in masonry panels during their loading process, thanks to the
reduced size of its mesh. This confirms that the choice of the FE model should be preferred
if the purpose is the investigation of the local behaviour (i.e., the stress-strain state into
a structural element), while the DME model is preferable for global-level analysis (i.e.,
for defining the capacity curves of structural elements or of whole structures). In fact,
the DMEM requires lower computational and modelling effort than FE, without losing
reliability in the results. Therefore, another purpose of this paper is to better emphasize the
differences in the results provided by the two approaches and to demonstrate the reliability
of the simpler DME model, which should be more convenient for practical applications.

Section 2 of this paper is devoted to summarising the theoretical formulations for the
in-plane capacities of masonry walls provided by the current Italian building code [26,27].

Section 3 describes, in detail, the differences between the two macro-modelling ap-
proaches used in the parametric analyses, mainly in terms of input parameters and the
modelling of materials, as well as the discretization method. Some experimental tests
available in the literature are assumed as benchmarks for calibrating the two numerical
models. As previously mentioned, this first calibration is aimed to check the possibility
of simulating, reliably, the experimental conditions, not only by means of a refined FE
model, but also by means of a simpler model (i.e., the DMEM), after a proper choice of
input parameters, based on the comparison with experimental and numerical data.

Section 4 presents the results of several non-linear static analyses carried out on
masonry walls by means of both FE and DME models and aiming to: (a) investigate the
influence of the compressive and tensile strengths of masonry and of the fracture energy in
compression and tensile of the masonry material on the whole behaviour of the masonry
walls, in terms of both strength and ductility; (b) check the differences in the results
provided by the FEM and DMEM as several parameter changes; (c) study the reliability of
the code formulations and compare their predictions with the numerical results; (d) plan a
suitable experimental program of shear-compression tests for masonry walls to check the
effects of the most meaningful investigated parameters.

In the end, Section 5 deals with a useful discussion on the shape factor value used in
the code formulations, based on the comparison between the numerical and theoretical
results of the parametric analyses.

2. Italian Code Formulations for the In-Plane Resistances of Masonry Walls

Several authors and codes have proposed different formulations to predict the in-
plane resistances of masonry walls, for both flexural and shear failure modes. An accurate
analysis of existing literature formulations is reported in Celano et al. [11], where the
reliability of these walls has also been investigated by means of comparisons with a wide
database of experimental results collected from the literature.

In order to highlight the most influencing parameters, and in view of the detailed
discussion reported in [11], only the theoretical formulations provided by the current
Italian building code [26,27] are introduced in the following. The effect of the influencing
parameters is then investigated in Section 4 by means of several parametric analyses
comparing the analytical results with the numerical models (FEM and DMEM).

2.1. In-Plane Strength Models for Irregular/Rubble Masonry Walls

Irregular/rubble masonry walls usually refers to walls made of irregular arrangements
of units and mortar. Such irregularities influence the in-plane shear resistance of the wall,
which can only occur for diagonal shear failure (Figure 1a), under the assumption of
modelling the masonry as a macroscopic homogeneous material. This capacity is provided
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by the following formulation, based on the Turnšek and Čačovič model [32] and involving
the tensile strength of masonry ft:

- diagonal shear failure (DS):

VDS = B·s· ft

b
·
√

1 +
σ0

ft
(1)
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Additionally, the flexural strength is provided by the following equation:

- flexural failure (F):

VF = B2s· σ0

2He f f
·
(

1− σ0

0.85 fc

)
(2)

Both formulations depend on the geometrical parameters of the walls, i.e., the base B,
the height H, and the thickness s, and on the vertical compressive stress σ0. Equation (1)
also depends on the shape factor b, which should represent the maximum-to-average shear
stress ratio along the middle cross-section of the wall. According to the Commentary to
the Italian code [27], b is herein assumed equal to the in-plane slenderness of the wall
b = λ = H/B but limited to the range 1.0–1.5. Equation (2) also depends on the compressive
strength of masonry fc, and on the effective height Heff, assumed as the shear length and,
thus, equal to 0.5 H in the case of double-fixed constraints.

The theoretical shear resistance is the minimum between the values provided by
Equations (1) and (2).

2.2. In-Plane Strength Models for Regular Masonry Walls

Regular masonry walls are made of regular arrangements of units bonded with
horizontal and vertical mortar joints. In addition to the flexural failure provided by
Equation (2), two types of shear failure can occur, both related to sliding mechanisms:
(a) sliding along aligned horizontal bed joints, namely horizontal sliding shear (HSS,
Figure 1b), and (b) sliding along diagonal stepped cracks, namely diagonal sliding shear
(DSS, Figure 1c). The following equations, both based on the well-known Mohr–Coulomb
criterion, are provided by the Italian building code [26,27]:

- horizontal sliding shear failure (HSS):

VHSS = B′s· fv0 + µσ0

γd
(3)

- diagonal sliding shear failure (DSS):

VDSS =
Bs
b
·
(

f ′v0 + µ′σ0
)
≤ Vt,lim (4)
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where:
f ′v0 =

fv0

1 + µϕ
; µ′ =

µ

1 + µϕ
; ϕ = 2hb/bb (5)

In Equation (3), µ is the friction coefficient and fv0 is the cohesion, defined as ‘local’
parameters, while in Equation (4) the so-called ‘global’ parameters f ′v0 and µ′ are used in
order to account for the interlocking between the units, which is expressed by means of the
parameter ϕ, which depends on the height hb and the length bb of the units (Equation (5)).
In both formulations, σ0 is the vertical compressive stress, while B′ is the reduced length
of the end sections of the walls, corresponding to the compressed part of the section and
intended to consider the cracks produced by the bending moment. Assuming a linear
distribution of the compressive stresses and neglecting the tensile strength of the mortar, it
is possible to calculate the reduced length B′ using the following formulation:

B′ = 3·(B
2
− e) (6)

where e is the eccentricity of the vertical load [33].
The Italian code also suggests the following upper bound for the shear capacity related

to the possible achievement of the tensile strength of the blocks fbt (TDC in Figure 1d):

- tensile diagonal cracking (TDC):

Vt,lim =
B·s· fbt
2.3·b ·

√
1 +

σ0

fbt
(7)

being b the same shape factor previously defined. Note that, lacking information on the
tensile strength of the units, the Italian code suggests for fbt using 10% compressive strength
of the unit, while Eurocode 6 [34] provides a lower percentage, i.e., about 3.2% compressive
strength, which seems to be more realistic [11].

For flexural failure, Equation (2) is valid for regular masonry walls as well.

2.3. Considerations of In-Plane Strength Models for Regular and Irregular Masonry Walls

It is important to underline that the identification of the right cross-section of the wall
is a fundamental point in the correct evaluation of its shear capacity, as discussed in [11].
In general, in the middle cross-section of a masonry wall, restrained in a double-fixed
condition and tested according to a shear-compression test, the bending moment is zero,
which means that the normal stresses are constant and equal to those applied on the top
end section and only due to the vertical load. On the other hand, if the wall is assumed as
a cantilever, the distribution of the normal stresses passes from a constant distribution at
the top end section to a linear distribution at the fixed base end section, due to the linearity
of the bending moment.

Furthermore, the type of masonry plays a fundamental role in the choice of the right
cross-section of the wall, due to the strength model assumed for calculating the shear
capacity. For irregular masonry walls, indeed, as discussed in Section 2.1, Equation (1) [32],
adopted by the Italian code, refers to the middle cross-section of the wall, since it has
been shown that cracking phenomena start from the centre of the wall where the bending
moment is negligible due to a double-fixed condition. On the contrary, for regular masonry
walls, Section 2.2 has shown that the shear capacity is strongly influenced by the distribution
of the normal stresses according to the Mohr–Coulomb criterion (Equations (3) and (4)). In
this case, the middle cross-section of the wall is used as a reference section for the diagonal
sliding shear failure (Equation (4)), while the base end section of the wall is assumed for
the horizontal sliding shear failure (Equation (3)).

In this paper, the code formulation provided for the diagonal shear failure (DS) of
irregular masonry walls will be adopted in favour of safety. In fact, as indicated by the
Commentary to the Italian code [27] and as investigated in [11], Equation (1), i.e., the
formulation suggested for the shear failure of irregular masonry walls, provides safe
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predictions for the shear failure of regular masonry walls as well. Moreover, the DS failure
and the flexural one can be well-simulated by macro-modelling approaches, such as those
used in this study, while the failure modes related to sliding phenomena can be properly
simulated by means of micro-modelling approaches or other discrete macro-models [16],
which are not examined in this paper.

It is worth noting that Equation (1) has the advantage of also being usable to address
the lack of information about the cohesion and friction angles required for regular masonry
walls to apply Equations (3) and (4), and it has been verified that a proper calibration of
the shape factor value b can assure the reliability of these formulations, even for regular
masonry walls [11].

3. Description and Calibration of the Numerical Models

Section 2 demonstrates that the models predicting the in-plane shear resistances of
masonry walls depend on a few mechanical properties of the masonry and geometrical
data of the walls. However, when the in-plane behaviour is investigated by means of
finite element models, several further mechanical parameters of masonry are required, and
their choice may influence the results. Therefore, the parametric analyses presented in the
following sections aim to both investigate the effect of the parameters considered by the
code formulations and to assess the influence of the unconsidered ones. Moreover, because
the reliability of non-linear FEMs requests a suitable assessment of the mechanical param-
eters of the masonry used—not always easily definable—as fracture energies, ultimate
tensile strain and tensile strength, simpler models based on the macro-modelling strategy
and adopting discrete macro-elements may be more convenient in terms of computational
efforts, especially for the global analysis of whole buildings [35]. Therefore, coupled with a
FE model implemented in the Diana FEA software [28], the parametric analyses are herein
also carried out by means of a DMEM introduced in the 3DMacro software [29].

The two numerical models used in the parametric analyses reported in Section 4 are
described in detail in the following.

3.1. Non-Linear FEM

A three-dimensional finite element model (FEM) has been implemented in the DIANA
FEA software in order to model masonry walls under a constant compression stress and
variable horizontal loads and to investigate, in detail, the in-plane behaviour. A macro-
mechanical approach is used in the FEM to simulate the masonry, which is, thus, assumed as
a continuous, homogeneous and isotropic material. The numerical analyses are performed
by adopting the total strain crack model, which is based on the smeared crack model.
In particular, a locally generalized crack is not modelled as a detachment between two
surfaces (discrete crack model), but, rather, the material is considered always homogeneous
and characterized by different mechanical properties after cracking. Moreover, in all
the numerical analyses, the orientation of the cracks is assumed to be variable (rotating
crack model).

The constitutive laws used for modelling the uniaxial behaviour of the homogenized
material are plotted in Figure 2a,b for the tension and the compression behaviours, re-
spectively. For tension, the linear behaviour until the tensile strength is followed by an
exponential softening branch, while a parabolic law is assumed in compression, both before
and after the peak strength. The mechanical properties required for the description of
the masonry material are the Young’s modulus E, the Poisson ratio ν, the compressive
strength of the masonry fc, the tensile strength ft, the fracture energies in compression
Gc and tension Gt, which have been initially evaluated through the application of the
following formulations provided in [36]:

Gc = (2.8− 0.1· fc)· fc (8)

Gt = 0.025·(2· ft)
0.7 (9)
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A three-dimensional element, CX60, is adopted for the discretization of the continuum;
it is a 20-node iso-parametric solid brick element based on a quadratic interpolation and
Gauss integration (Figure 2c). The (secant) quasi-Newton method is used as an integration
method, and normalized energy as a convergence criterion.

3.2. Non-Linear DMEM

In the discrete macro-element model (DMEM) implemented in the 3DMacro software,
the simulation of masonry elements is based on the definition of macro-elements. Each
macro-element is made of four hinges connecting four rigid one-dimensional elements
and two diagonal non-linear springs (Figure 3a) [31,37]. This approach catches the main
in-plane failure mechanisms of a masonry panel (flexural, diagonal shear and sliding shear
failures) by means of a reduced number of parameters. The activation of a flexural failure is
controlled by the orthogonal springs along the interface elements, while the diagonal shear
behaviour is governed by the non-linear diagonal springs and the sliding shear failure by
additional non-linear longitudinal springs along the interface elements (Figure 3a). Non-
linear springs are used to take into account the mechanical properties of masonry, and the
spacing among the springs at the interface elements is calibrated equal to 20 mm.
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Since different constitutive laws of masonry are used within the FEM and DMEM, it
is necessary to calibrate some parameters of the DMEM in order to compare the results
correctly. The elastic-perfectly plastic law for masonry used in the DMEM (Figure 3b)
requires the definition of the ductility of masonry both in terms of compression βc and
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tension βt and each is expressed as the ratio of the related ultimate strain (εcr or εtr) to the
limit elastic one (εce or εte). Specifically, the plastic phase area of the constitutive law plotted
in Figure 3b is matched to the fracture energy used in the FEM (Figure 2a,b), adopting the
following correlations:

εcr − εce =

(
Gc

d

)
/ fc for compression (10)

εtr − εte =

(
Gt

d

)
/ ft for tension (11)

where d is the diagonal of the mesh size adopted in the FEM, and fc and ft have the same
meaning and value adopted in the FEM.

The shear behaviour of masonry is defined by the elastic-plastic law plotted in Figure 3,
where the stiffness is defined through the shear modulus G, based on the values of E and ν
(Poisson’s ratio), the pure shear strength τ0 in absence of compression stress is calculated by
dividing the masonry tensile strength ft to 1.5, and the shear strain capacity γu is fixed equal
to 0.5% of the height of the macro-element in compliance with the Italian NTC 2018 [26].
For calculating the shear resistance, the Turnšek and Čačovič criterion [32] is adopted that
corresponds, thus, to assume a diagonal shear (DS) failure.

3.3. Calibration of the Numerical Models against Experimental Case Studies

Before carrying out parametric analyses, the reliability of both numerical models has
been checked by means of comparisons with the experimental tests of Anthoine et al. [22],
assumed as a benchmark. The experimental tests were executed on two masonry walls
made of clay bricks according to a ‘regular’ texture, characterized by two slenderness
ratios λ = H/B = 2 and 1.35 (Figure 4a,d), with heights H = 2000 mm and H = 1350 mm,
respectively, base B = 1000 mm, and thickness s = 250 mm. The computational models
corresponding to the two walls are illustrated in Figure 4b,e for FEM and in Figure 4c,d, for
DMEM. In our experimental set-up, the tested masonry walls were restrained according to
the double-fixed boundary condition.

The two slenderness ratios were originally chosen by the authors [22] in order to catch
two different failure mechanisms in the walls under the same vertical compression load,
i.e., a constant pre-compression stress σ0 = 0.6 MPa. The slender wall failed, indeed, for
flexure (F), while the squat wall attained a diagonal sliding shear (DSS) failure.

The values of the compressive and tensile strength of masonry provided by the au-
thors [22] were fc = 6.20 MPa and ft = 0.25 MPa, respectively. Lacking detailed experimental
information on the Young’s modulus E of masonry, this parameter has been assumed equal
to 1700 MPa, based on the best fitting between the experimental results and the numerical
load-displacement curves obtained by the previously described modelling approaches.

For the FEM, the fracture energies in compression and tension Gc and Gt are eval-
uated according to Equations (8) and (9), respectively, and are Gc = 10 N/mm and
Gt = 0.012 N/mm, based on the values of fc and ft. The Poisson’s ratio is assumed ν = 0.2.
An optimization process of the mesh has been carried out and the best mesh size, in terms
of reliability of result, and computational effort is identified in 50 mm × 50 mm, whose
diagonal d is used in Equations (10) and (11).

For the DMEM, further parameters need to be estimated through the equivalence
described above; in particular, the values of ductility in compression and tension are
βc = 4.6 and βt = 3.3, while the normal and the shear elastic moduli of masonry are
E = 1943 MPa and G = 816 MPa, respectively. The mesh size adopted in the DMEM is
1000 mm × 1000 mm, which, again, represent a good balance between the reliability of
results and the computational effort.
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The values of all the mechanical parameters of masonry adopted in the FEM and
DMEM are listed in Table 1. In both software, the numerical analyses are performed
under displacement control, with the aim of capturing the post-peak behaviour of the wall,
as well.

Table 1. Mechanical properties of masonry used in the DIANA FEM and 3DMacro DMEM.

Parameter FEM DMEM

Young’s modulus E [MPa] 1700 1943
Poisson’s ratio ν - 0.20 0.20

Compressive strength fc [MPa] 6.20 6.20
Tensile strength ft [MPa] 0.25 0.25

Compressive fracture energy Gc [N/mm] 10 -
Tensile fracture energy Gt [N/mm] 0.012 -
Compressive ductility βc - - 4.6

Tensile ductility βt - - 3.3
Shear modulus G [MPa] - 816
Shear strength τ0 [MPa] - 0.17

Shear strain capacity γu [%] - 0.5
Pre-compression stress σ0 [MPa] 0.6 0.6
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To validate the calibration of the two models, the numerical results are compared in
Figure 5 with the experimental ones presented in [22], with reference to both the slender
and the squat walls experimentally tested. In Figure 5, the analytical predictions given
by Equations (1) and (2) are reported as well. It is worth highlighting that, although the
experimentally tested walls are made of regular masonry, for their shear failures, only the
formulation for irregular masonry walls is herein adopted for the previously described
reasons: (1) Equation (1) can provide safe results for regular masonry walls as well; (2) the
local or global values of cohesion and friction angle are not provided; (3) in the FEM, the
homogenized approach used for masonry is not able to simulate sliding mechanisms along
the mortar joints, typical of regular masonry walls, but, rather, only the diagonal shear
failure analytically represented by Equation (1).
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In Table 2, the values of the analytical shear resistance provided by Equations (1)
and (2) are listed together with the numerical predictions and the experimental results. It
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can be observed that, for the slender wall, the flexural capacity given by Equation (2) is
lower than the shear one provided by Equation (1), confirming, thus, the experimental and
numerical failure mode due to bending; moreover, Equation (2) provides a capacity only
5% lower than the experimental one and in agreement with the numerical ones (difference
of about 3%). On the other hand, for the squat wall, the shear capacity given by Equation
(1) is lower than the flexural one, confirming also in this case the experimentally observed
failure mode, i.e., the shear one.

Table 2. Comparison between experimental, numerical and analytical values of the shear resistance.

Case
Experimental

[kN]

Numerical Shear Resistance
[kN] Theoretical Resistance [kN]

FEM DMEM Equation (1)
DS

Equation (2)
F

Slender wall 70.5 68.5 68.2 76.8 66.5

Squat wall 81.0 88.1 79.4 85.4 98.5
Underlined values: minimum analytical resistances.

Although the experimental failure was due to the horizontal sliding shear (HSS),
the analytical diagonal shear resistance (DS) given by Equation (1) overestimates the
experimental one by only 5%, confirming the good reliability of Equation (1) also for
regular masonry walls. Equation (1) is also in quite good agreement with both numerical
predictions, with differences ranging between −3% for the FEM and +7% for the DMEM.
Such agreement is justified by the fact that both the numerical models adopt the same
homogenized approach used in the strength model represented by Equation (1), which
is based on the tensile shear failure of masonry. In conclusion, the comparisons of the
numerical results with the experimental ones and the analytical ones do confirm the
soundness of the two modelling strategies.

The shear–displacement curves plotted in Figure 5 show, for the slender wall (Figure 5a),
a good agreement between the experimental and numerical curves provided by both
models. There is only a slight difference in terms of initial stiffness, which is lower than
that observed in the experimental curve for both numerical models.

For the squat wall (Figure 5b), the agreement between the numerical and experimental
curves is very good in terms of initial stiffness, while the numerical post-peak phases
are quite different from the experimental one and are different from each other. The
discrepancy between the two numerical models is due to the different constitutive laws
used for modelling the masonry wall and the different strategies for modelling the shear
behaviour. The FEM is able to better catch the experimental peak load, even if the softening
behaviour is characterized by a brittle reduction followed by a quasi-horizontal branch,
while the experimental one shows a less steep behaviour after the peak. Moreover, the
experimental curve shows a larger ductility in comparison with both numerical curves.
The differences between the numerical and the experimental curves can also be identified
in the homogenized approach used for masonry that, as previously evidenced, is not able
to simulate the sliding mechanism along the mortar joints, which is typical of regular
masonry and, indeed, also occurred in the examined experimental tests. This might be
also a reason of the higher ductility evidenced in the experimental curve since the sliding
mechanisms provide a less brittle failure in comparison with the diagonal shear one.

However, the good approximations attained by both the numerical results evidence
that they may provide reliable predictions for regular masonry walls, even if they are based
on failure mechanisms typical of irregular masonry walls. This allows the generalization
of the results provided by the FEM and DMEM to any type of masonry and confirms
indicating [27] the safe use of Equation (1) for any masonry type.

Figures 6 and 7 show the distributions of the principal tension stresses for the FEM,
called S1, and the normal forces in the springs for the DMEM, calculated for both models,
either at the end of the elastic linear branch and at the peak load step (see thresholds
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indicated in Figure 5). In particular, the end of the elastic phase corresponds to the dis-
placement of 1.1 mm for the squat wall and 1.8 mm for the slender wall. The displacement
of the peak load step, related to the squat masonry panel, is assumed equal to 2.5 mm and
3.9 for the FE and DME models, respectively. On the other hand, the peak load step for the
slender masonry panel corresponds for both models at the displacement of 12 mm where
the analyses have been interrupted as in the experimental tests.
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Figures 6a and 7a respectively show that, according to the FEM, the tension stress
distributions in the two walls are initially very similar because masonry behaves as elastic
in all regions of the walls, while they are significantly different when the maximum loads
are reached. In fact, at the peak load step, the stresses are mainly concentrated at the two
end sections in the slender panel (Figure 6c) due to the flexural failure (F) and along the
compressed diagonal in the squat panel (Figure 7c) due to the diagonal shear failure (DS),
where the cracking phenomena occur. Note that the value of 0.25 MPa in the legends for
the FEM corresponds to the tensile strength of masonry.
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On the other hand, the results of the DMEM are not directly comparable with the
those of the FEM, because of the different numerical approaches previously discussed.
However, some useful considerations can easily be derived in terms of the normal forces
acting in the non-linear springs of the DMEM.

Bearing in mind that the activation of the flexural failure for the DMEM is controlled
by the orthogonal springs along the interface elements, Figures 6b,d and 7b,d show the
normal forces acting in the springs at the constrained sections of the slender and squat
masonry panel, in the elastic field and at the peak load step, respectively. As expected,
since the slender wall (Figure 6b,d) failed in flexure, most of these springs are collapsed
(red colour) at the peak load step, while at the end of the elastic field almost all of them are
still in the elastic phase (grey colour). Moreover, it can be noted that the diagonal springs
remain in the elastic phase. Conversely, for the squat masonry, Figure 7b with Figure 7d
evidence a clear increasing of the normal forces in the two diagonal springs in comparison
with the slender wall (about +50%), because of the shear failure.

The representation of the internal stress distributions at the two load steps allows
understanding the evolution of the cracking phenomena inside the panels. For the slender
wall, the cracks start to develop at the end sections of the panel and continue increasing
mainly there during the loading process, while, for the squat wall, the cracking phenomena
start at the two edges of the diagonal in tension and then continue in the centre of the panel
due to a variation in the distribution of the stresses. This phenomenon can be explained by
considering that a strut and tie mechanism tends to develop inside the squat panel, with a
concentration of the maximum tensile stresses along the compressed diagonal (Figure 7c).

Another important aspect that can be derived from Figures 6 and 7 is the effect of the
constraints. In fact, at both the restrained ends of the wall, the supports tend to absorb
part of the tension that arises during the application of the horizontal load. As the load
increases, this restraint effect and the consequent cracking tend to reduce the compressed
zones of the cross-sections at both the ends of the wall due to the increase of the related
bending moments.

Figures 8 and 9 show the comparison between the numerical crack patterns (called
Ecw1 in the FEM) at the peak load, for the slender and the squat walls, respectively. The
slender wall exhibits a flexural failure, with the typical distribution of the cracks at the
two end sections of the wall restrained in a double-fixed condition, while the squat wall
shows a shear failure. The experimental crack patterns described by Anthoine et al. [22]
are similar to the numerical ones but developed in two directions, since a quasi-static cyclic
loading condition was applied.
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4. Parametric Analyses and Comparison with Theoretical Formulations

After the reliability of the FEM and DMEM has been checked by means of comparisons
with experimental results and code formulations, the two approaches are herein used for
carrying out sensitivity analyses on squat masonry walls subjected to the shear-compression
loading configuration changing several mechanical parameters. Squat walls are only
considered herein, to focus attention mostly on shear failures and, thus, their geometrical
dimensions, i.e., H = 1500 mm, B = 1500 mm, s = 250 mm, slenderness λ = H/B = 1, are
kept fixed in all the analyses (Figure 10a). As for the case study previously described, the
walls are supposed fixed at the two ends in order to reproduce the boundary condition of
masonry piers. Figure 10b,c show the mesh discretization adopted in the two models, FEM
and DMEM respectively, with the mesh size previously defined.
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4.1. Definition of Ranges of Variability for the Mechanical Parameters

The mechanical properties considered in the parametric analyses are gathered in four
groups in Table 3, each of which referred to a single variable parameter assumed as a
main one. Since the vertical compression significantly influences the in-plane response
of masonry walls under shear actions, the values of 0.3 MPa and 0.6 MPa are chosen as
representative of realistic compressive stress conditions in existing masonry buildings.
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Table 3. Mechanical properties used in the sensitivity analyses for Group A.

Group A

Case
σ0 ft fc E w Gt Gc τ0 εtr εcr

[MPa] [MPa] [MPa] [MPa] [kN/m3] [N/mm] [N/mm] [MPa] [%] [%]

1.1

0.30

0.05 1.50 1000

18

0.005 3.98 0.03 0.15 3.90
1.2 0.15 3.00 1500 0.011 7.50 0.10 0.11 3.74
1.3 0.23 4.50 1800 0.014 10.58 0.15 0.10 3.57
1.4 0.30 6.00 2400 0.017 13.20 0.20 0.09 3.36

1.5

0.60

0.05 1.50 1000

18

0.005 3.98 0.03 0.15 3.90
1.6 0.15 3.00 1500 0.011 7.50 0.10 0.11 3.74
1.7 0.23 4.50 1800 0.014 10.58 0.15 0.10 3.57
1.8 0.30 6.00 2400 0.017 13.20 0.20 0.09 3.36

σ0: pre-compression stress, ft: tensile strength, fc: compressive strength, E: Young’s modulus, w: specific weight, Gt: tensile fracture energy,
Gc: compressive fracture energy, τ0: shear strength, εtr: ultimate strains in tension, εcr: ultimate strains in compression. Bold values:
reference cases that are repeated in the tables of the other groups.

The four groups of analysis are:

• Group A (Table 3): refers to the choice of four types of masonry characterized by
different values of the compressive strength fc, assumed as main parameter and
variable in the range 1.5–6.0 MPa. All the remaining parameters vary according to fc,
as follows: ft is assumed as 5% of fc, τ0 is equal to ft/1.5, Gc and Gt are obtained by
applying Equations (8) and (9) based on the values of ft and fc;

• Group B (Table 4): refers to the variation of the tensile strength ft, which is assumed as
a main parameter and variable in the range 0.08–0.45 MPa; the related parameters (i.e.,
fracture energy in tension and ultimate strain in tension) are varied consequently for
two levels of σ0 and three values of fc;

• Group C (Table 5): refers to the variation of the fracture energy in compression Gc,
which changes in the range 2–10.6 N/mm and determines the consequent variation of
the ultimate strains in compression εcr for two levels of σ0 and two values of fc;

• Group D (Table 6): refers to the variation of the fracture energy in tension Gt, which
changes in the range 0.003–0.05 N/mm and determines the related variation of the
ultimate strains in tension εtr for two levels of σ0 and two values of fc.

Table 4. Mechanical properties used in the sensitivity analyses for Group B.

Group B

Case
σ0 ft fc E w Gt Gc τ0 εtr εcr

[MPa] [MPa] [MPa] [MPa] [kN/m3] [N/mm] [N/mm] [MPa] [%] [%]

2.1
0.30

0.08
3.0 1500 18

0.007
7.50

0.05 0.13
3.742.2 = 1.2 0.15 0.011 0.10 0.11

2.3 0.30 0.017 0.20 0.10

2.4
0.30

0.11
4.5 1800 18

0.009
10.6

0.075 0.12
3.572.5 = 1.3 0.23 0.014 0.15 0.10

2.6 0.45 0.023 0.30 0.10

2.7
0.60

0.11
4.5 1800 18

0.009
10.6

0.075 0.12
3.572.8 = 1.7 0.23 0.014 0.15 0.10

2.9 0.45 0.023 0.30 0.10

2.10
0.60

0.15
6.0 2400 18

0.011
13.2

0.10 0.11
3.362.11 =

1.8 0.30 0.017 0.20 0.09

2.12 0.45 0.023 0.30 0.09

σ0: pre-compression stress, ft: tensile strength, fc: compressive strength, E: Young’s modulus, w: specific weight, Gt: tensile fracture energy,
Gc: compressive fracture energy, τ0: shear strength, εtr: ultimate strains in tension, εcr: ultimate strains in compression. Bold values:
reference cases that are repeated in the tables of the other groups.
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Table 5. Mechanical properties used in the sensitivity analyses for Group C.

Group C

Case
σ0 ft fc E w Gt Gc τ0 εtr εcr

[MPa] [MPa] [MPa] [MPa] [kN/m3] [N/mm] [N/mm] [MPa] [%] [%]

3.1
0.30 0.15 3.00 1500 18 0.011

2.0
0.10 0.11

1.14
3.2 4.0 2.07

3.3 = 1.2 7.5 3.74

3.4
0.30 0.23 4.50 1800 18 0.014

4.0
0.15 0.10

1.50
3.5 7.5 2.61

3.6 = 1.3 10.6 3.57

3.7
0.60 0.23 4.50 1800 18 0.014

4.0
0.15 0.10

1.50
3.8 7.5 2.61

3.9 = 1.7 10.6 3.57

σ0: pre-compression stress, ft: tensile strength, fc: compressive strength, E: Young’s modulus, w: specific weight, Gt: tensile fracture energy,
Gc: compressive fracture energy, τ0: shear strength, εtr: ultimate strains in tension, εcr: ultimate strains in compression. Bold values:
reference cases that are repeated in the tables of the other groups.

Table 6. Mechanical properties used in the sensitivity analyses for Group D.

Group D

Case
σ0 ft fc E w Gt Gc τ0 εtr εcr

[MPa] [MPa] [MPa] [MPa] [kN/m3] [N/mm] [N/mm] [MPa] [%] [%]

4.1

0.30 0.15 3.00 1500 18.00

0.003

7.5 0.10

0.04

3.74
4.2 0.005 0.06

4.3 = 1.2 0.011 0.11
4.4 0.028 0.27

4.5

0.30 0.23 4.50 1800 18.00

0.005

10.6 0.15

0.04

3.57
4.6 = 1.3 0.014 0.10

4.7 0.028 0.19
4.8 0.050 0.33

4.9

0.60 0.23 4.50 1800 18.00

0.005

10.6 0.15

0.04

3.57
4.10 =

1.7 0.014 0.10

4.11 0.028 0.19
4.12 0.050 0.33

σ0: pre-compression stress, ft: tensile strength, fc: compressive strength, E: Young’s modulus, w: specific weight, Gt: tensile fracture energy,
Gc: compressive fracture energy, τ0: shear strength, εtr: ultimate strains in tension, εcr: ultimate strains in compression. Bold values:
reference cases that are repeated in the tables of the other groups.

The choice of the ranges of variation for the tensile and compressive strengths as well
as for the Young’s modulus is based on the nominal values provided by the Commentary
to the Italian code [27] for existing masonry buildings. Note that the cases of Group A
highlighted in bold are also contained in the other groups and, thus, their results are
reported more than once.

In the following, four subsections are presented, one for each group of analysis. In
each subsection, the numerical shear resistances provided by the FEM and DMEM and the
corresponding failure modes predicted by each model are compared between them and
with the theoretical results given by Equations (1) and (2), i.e., VDS and VF.

In order to investigate the effect of the variation of the main parameters, for each
numerical model, the percentage variation, ∆V, is reported with respect to the case with
the lowest value of the main varied parameter in each subgroup.

Additionally, to check the difference in the results provided by the two numerical
models, for each examined case, the percentage variation of the predicted capacities is
evaluated as follows:

∆Vnum =
VDMEM −VFEM

VFEM
(12)
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where VFEM and VDMEM are the numerical resistances provided by the FEM and
DMEM, respectively.

Finally, in order to compare the results of the two numerical models with the theoretical
predictions, the percentage difference of the theoretical capacity Vth, corresponding to the
failure mode predicted by the numerical models is evaluated as follows:

∆Vth =
Vth −VNUM

VNUM
(13)

where VNUM is VFEM or VDMEM in turn and Vth is VDS or VF, depending on the numerical
failure mode.

Successively, the numerical load-displacement curves provided by the FEM and
DMEM are plotted in Figures 11–14.
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Figure 11. Capacity curves for Group A: (a) σ0 = 0.3 MPa, (b) σ0 = 0.6 MPa. 
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Figure 12. Capacity curves for Group B: (a) σ0 = 0.3 MPa and fc = 3.0 MPa, (b) σ0 = 0.3 MPa and fc = 
4.5 MPa, (c) σ0 = 0.6 MPa and fc = 4.5 MPa, (d) σ0 = 0.6 MPa and fc = 6.0 MPa. 
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and 4.5 MPa. In Group C, indeed, for fc = 3 MPa it is assumed σ0 = 0.3 MPa and Gc variable 
(i.e., lower values respect to those provided by Equation (8)), while for fc = 4.5 MPa it is 
assumed σ0 = 0.3 MPa and 0.6 MPa with and Gc variable with the same trend. 

As expected, and shown in Table 9, the fracture energy in compression impacts only 
for the FEM, though small, but has no influence for the DMEM and clearly for the theo-
retical formulations (Equations (1) and (2)), since it is not a parameter included in these 
strength models. This is a confirmation that Gc is not relevant when the shear failures are 
related to the achievement of the tensile strength of masonry along diagonal cracks. The 
failure loads and modes of the examined cases only depend on the compressive and ten-
sile strengths, as well as on the pre-compression level assumed in the analysis. 

Table 9. Shear resistances of Group C. 

Case σ0 
[MPa] 

Gc 
[N/mm] 

fc 
[MPa] 

ft 
[MPa] 

FEM DMEM 
DMEM 
vs. FEM Theor. Resistance 

Theor. 
vs. FEM 

Theor. vs. 
DMEM 

V FM ΔV V FM ΔV ΔVnum 
VF. 

Eq. (2) 
VDS 

Eq. (1) ΔVth ΔVth 

[kN] [%] [kN] [%] [%] [kN] [kN] [%] [%] 
3.1 

0.30 
2.0 

3.0 0.15 80.7 
DS - 

82.1 
DS - +1.8 

99.3 97.4 +20.7 +18.6 3.2 4.0 DS 0 DS 0 +1.8 
3.3 7.5 DS 0 DS 0 +1.8 
3.4 

0.30 
4.0 

4.5 0.23 
106.5 DS - 

99.3 
DS - −6.7 

103.7 128.9 
+21.0 

+30.0 3.5 7.5 106.4 DS 0 DS 0 −6.7 +21.0 
3.6 10.6 106.2 DS 0 DS 0 −6.5 +21.3 
3.7 

0.60 
4.0 

4.5 0.23 
135.9 DS - 

138.7 
DS - +2.1 

189.7 161.6 
+18.9 

+16.5 3.8 7.5 139.7 DS +3 DS 0 −0.7 +15.7 
3.9 10.6 134.8 DS −1 DS 0 +2.9 +19.8 

DS = diagonal shear failure, F = flexural failure. Underlined values: minimum value between VF and VDS. 
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Figure 14. Capacity curves for Group D: (a) σ0 = 0.3 MPa and fc = 3.0 MPa, (b) σ0 = 0.3 MPa and fc = 
4.5 MPa, (c) σ0 = 0.6 MPa and fc = 4.5 MPa. 

5. Discussion on the Shape Factor b Value by Comparing Numerical and Theoretical 
Shear Capacities 

The results reported in Section 4 show that, in most cases, the analytical shear re-
sistances provided by Equation (1) overestimate the predictions given by both the numer-
ical models. One possible reason is the choice of the shape factor b that is assumed equal 
to 1 in this equation, i.e., equal to the examined wall ratio λ = B/H = 1, as suggested by the 
Commentary to the Italian code [27]. 

To better investigate the effect of this factor on the in-plane wall response, the nu-
merical shear capacities provided by the FEM are compared, in Figure 15, with the pre-
dictions given by Equation (1) for two values of b: (1) b = 1 as herein assumed, and (2) the 
value of b that best fits the numerical results, i.e., b = 1.17, which allows the arranging of 
the analytical and numerical results along the bisector. 

The choice of a value other than one for b, for squat walls is justified both by the 
literature [38,39], which individuate values of b ranging in 1.15–1.50 even for squat walls, 
and by the real shear stress distribution observable in the FEM along the middle cross-
section of the wall. This distribution, plotted in Figure 16 for the case 1.6 of Group A (fc = 
3 MPa, ft = 0.15 MPa, σ 0 = 0.6 MPa), shows, indeed, a parabolic trend for any load step 
(LS), corresponding to a maximum-to-average stress ratio of about 1.5, independently on 
the compression stress and on the level of horizontal force. This means that not only at 
failure is the distribution of shear stress has a parabolic trend, but also that, in general, the 
assumption of constant shear stresses in the squat wall is not realistic and, thus, the as-
sumption of b = 1 in Equation (1) could lead to unsafe predictions. On the contrary, as-
suming b = 1.5, exactly equal to the maximum-to-average stress ratio, could lead to over 
conservative predictions of the numerical capacity, since the best fitting is obtained in the 
case of b = 1.17. 

Clearly, further numerical inquires, also adopting a micro-modelling approach, and 
experimental tests focussed on this topic are still required to assess a reliable value of the 
shape factor b. However, it can be concluded that the shear resistance provided by Equa-
tion (1) for squat walls can be, thus, considered reliable into predicting good numerical 
results if the coefficient b is assumed greater than 1. Note that both models assume a ho-
mogenized approach for masonry, which is only able to catch the diagonal shear failure 
and not the sliding shear failure that is typical of regular masonry walls. However, as 
suggested by the Commentary to the Italian code and confirmed by previous studies [11], 

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6

Ba
se

 S
he

ar
 [

kN
]

Top displacement [mm]
4.9-FEM (Gft = 0.005 N/mm) 4.9-DMEM (Gft = 0.005 N/mm)
4.10-FEM (Gft = 0.014 N/mm) 4.10-DMEM (Gft = 0.014 N/mm)
4.11-FEM (Gft = 0.028 N/mm) 4.11-DMEM (Gft = 0.028 N/mm)
4.12-FEM (Gft = 0.050 N/mm) 4.12-DMEM (Gft = 0.050 N/mm)

Figure 14. Capacity curves for Group D: (a) σ0 = 0.3 MPa and fc = 3.0 MPa, (b) σ0 = 0.3 MPa and
fc = 4.5 MPa, (c) σ0 = 0.6 MPa and fc = 4.5 MPa.

The capacity curves obtained with numerical models are limited in all cases to the
displacement of 6 mm, which, for the examined geometry, corresponds to a drift of 0.4%, in
order to make the graphs clear and comparable, if any failure can be predicted before with
a capacity decreasing higher than 30%. Note that the maximum drift provided by in case
of shear failure is 0.5%. Nevertheless, it is worth noting that in both software programs,
the pushover curves are mostly interrupted earlier, due to numerical convergence issues.

Also, it is important to highlight that the crack patterns referred to the single cases
described in the following are similar to those already reported and discussed in Section 3,
i.e., those for the flexural failure (F) in Figure 8 and those for the diagonal shear failure
(DS) in Figure 9. For this reason, it has been decided not to report the stress/deformation
distributions for the numerical analyses presented in the following sections.

4.2. Group A: Compression Strength fc Variable

A first comparison can be obtained by varying the compressive strength fc, as reported
in Table 7. The two numerical models give the same failure modes and very similar results
in terms of loads, with the differences ∆Vnum varying from −9.0% to +13.4%.

Table 7. Shear resistances of Group A.

Case
σ0

[MPa]
fc

[MPa]
ft

[MPa]

FEM DMEM DMEM
vs. FEM Theor. Resistance

Theor.
vs.

FEM

Theor.
vs.

DMEM

V
FM

∆V V
FM

∆V ∆Vnum

VF
Equation

(2)

VDS
Equation

(1)
∆Vth ∆Vth

[kN] [%] [kN] [%] [%] [kN] [kN] [%] [%]

1.1

0.30

1.50 0.05 48.9 DS - 46.6 DS - −4.7 86.0 46.7 −4.5 +0.3
1.2 3.00 0.15 80.7 DS +65.0 82.1 DS +76.3 1.8 99.3 97.4 +20.7 +18.6
1.3 4.50 0.23 106.2 F +117.2 99.3 F +113.2 −6.5 103.7 128.9 −2.4 +4.4
1.4 6.00 0.30 108.1 F +121.0 122.6 F +163.1 13.4 105.9 159.1 −2.0 −13.6

1.5

0.60

1.50 0.05 71.8 DS - 65.3 DS - −9.0 119.1 63.9 −11.0 −2.2
1.6 3.00 0.15 111.5 DS +55.4 117.6 DS +80.1 5.5 172.1 125.8 +12.8 +6.9
1.7 4.50 0.23 134.8 DS +87.9 138.7 DS +112.4 2.9 189.7 161.6 +19.8 +16.5
1.8 6.00 0.30 162.8 DS +126.9 176.3 DS +170.0 8.3 198.5 194.9 +19.7 +10.5

DS = diagonal shear failure, F = flexural failure. Underlined values: minimum value between VF and VDS.

Most walls fail in shear and only two cases, 1.3 and 1.4, are characterized by the
highest compressive strengths and the lowest level of pre-compression, fail in flexure, in
perfect agreement with the theoretical predictions, i.e., Equation (2). In most cases of shear
failure, Equation (1) tends to overestimate the capacities provided by the numerical models,
with a slightly higher overestimation with reference to the FEM (∆Vth varying in the range
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13–21%). Only for the two cases, i.e., 1.1 and 1.5, characterized by the lowest compressive
and tensile strengths of masonry, Equation (1) provides slightly lower predictions than the
numerical ones.

As expected, increasing the strength in compression the wall capacity also increases,
but less than proportionally. For instance, according to the FEM, the values of ∆V listed in
Table 7 shows that the capacity of the walls increases from +65% to +121% for σ0 = 0.3 MPa
and from +55% to +127% for σ0 = 0.6 MPa, while the compressive strength is between two
and four times higher than the minimum value adopted in this set of analysis, i.e., 1.5 MPa.
A similar trend of ∆V is detected for the DMEM as well.

Again, according to the FEM, for the same values of compressive strength, the in-
crease of σ0 from 0.3 to 0.6 MPa determines the increases of the wall resistances by +47%,
+38% + 27% and +51% for fc = 1.5 MPa, 3.0 MPa, 4.5 MPa and 6 MPa, respectively. This
means that the compression stresses acting in the walls may significantly improve the
shear strength.

Figure 11a,b show the capacity curves provided by the two software for the case
σ0 = 0.3 MPa and 0.6 MPa, respectively. In addition to the good agreement, in terms of
capacity, commented upon above, there is a very good correspondence along the elastic
branches in terms of stiffness, while some differences occur when the non-linear behaviour
is attained, especially for the higher compressive strengths. For the cases with fc = 6.0 MPa
(1.4 and 1.8), there is, indeed, the maximum difference in terms of resistance provided by
the two models (∆Vnum= 13.4% and 8.3%, respectively).

It can be observed that for the cases 1.6 and 1.7 in the FEM, the shear suddenly
decreases at a displacement of about 1 mm, due to the development of a shear crack.
However, being a reduction lower than 30%, it does not prevent the curve from running.

4.3. Group B: Tensile Strength ft Variable

The effects of the variation of the tensile strength ft on the in-plane resistance and the
non-linear behaviour of the wall are reported in Table 8. Firstly, it can be noted that the
failure modes predicted by the FEM and DMEM are always the same and, in most cases,
also coincide with the theoretical ones. The only exception is the case 2.5, for which the
theoretical flexural strength, given by Equation (2), is lower than the shear one, given by
Equation (1), contrarily to what predicted by the numerical models.

Table 8. Shear resistances of Group B.

Case σ0
[MPa]

ft
[MPa]

fc
[MPa]

FEM DMEM DMEM
vs. FEM Theor. Resistance

Theor.
vs.

FEM

Theor.
vs.

DMEM

V
FM

∆V V
FM

∆V ∆Vnum

VF
Equation

(2)

VDS
Equation

(1)
∆Vth ∆Vth

[kN] [%] [kN] [%] [%] [kN] [kN] [%] [%]

2.1
0.30

0.08
3.0

72.4 DS - 61.3 DS - −15.4 99.3 62.9 −13.2 +2.6
2.2 0.15 80.7 DS +11.4 82.1 DS +34.0 +1.8 99.3 97.3 +20.6 +18.5
2.3 0.30 102.9 F +42.1 114.1 F +86.2 +10.9 99.3 159.1 −3.5 −13.0

2.4
0.30

0.11
4.5

78.5 DS - 72.3 DS - −7.8 103.7 80.8 +3.0 +11.7
2.5 0.23 106.2 DS +35.4 99.3 DS +37.3 −6.5 103.7 128.9 −2.4 +4.4
2.6 0.45 108.8 F +38.7 144.6 F +99.9 +32.9 103.7 217.9 −4.7 −28.3

2.7
0.60

0.11
4.5

116.4 DS - 100.7 DS - −13.6 189.7 106.2 −8.8 +5.5
2.8 0.23 134.8 DS +15.8 138.7 DS +37.8 +2.9 189.7 161.6 +19.8 +16.5
2.9 0.45 190.8 F +63.8 188.1 F +86.9 −1.4 189.7 257.8 −0.6 +0.9

2.10
0.60

0.15
6.0

125.2 DS - 117.6 DS - −6.1 198.5 125.8 +0.5 +7.0
2.11 0.30 162.8 DS +30.0 176.3 DS +50.0 +8.3 198.5 194.9 +19.7 +10.5
2.12 0.45 201.3 F +60.7 188.1 F +60.0 −6.5 198.5 257.8 −1.4 +5.6

DS = diagonal shear failure, F = flexural failure. Underlined values: minimum value between VF and VDS.

In the cases of flexural failure, the values of ∆Vth for the FEM predictions are lower
than −5%, while, for the DMEM, the differences are more variable (∆Vth varies from −28%
to +6%).
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On the other hand, in the cases of shear failure, Equation (1) provides more scattered
values of capacity in comparison with the FEM predictions (both higher and lower values
are, indeed, provided with ∆Vth variable from −13% to +21%). Conversely, Equation (1)
gives differences with the DMEM predictions varying from +3% to +19%, being overesti-
mations in all the cases. It is interesting to note that this overestimation of Equation (1) is
higher for the higher values of ft, meaning that its dependence on the tensile strength is not
exactly the same as that provided by the DMEM.

Actually, in both numerical models the shear capacity increases with the tensile
strength according to a less than proportional trend. With reference to the results of the
FEM, indeed, in the case of σ0 = 0.3 MPa, the wall resistance increases by 42% and 39%
for fc = 3.0 MPa and 4.5 MPa, respectively, when ft increases about 4 times. For σ0 = 0.6
MPa, the wall resistance increasing is further higher, i.e., 64% and 61% for fc = 4.5 MPa and
6.0 MPa, respectively, when ft increases about four-fold. It can also be observed that the
variations ∆V with ft are less significant than those derived with fc in Table 7.

Finally, it can be noted that the two numerical models give similar results, with
differences ∆Vnum that vary from −15% to +11%. Only for the case 2.6 is there a relevant
discrepancy of the results (+33% of DMEM vs. FEM), probably due to an anomalous peak
in the DMEM capacity curve for a displacement of about 3 mm.

Figure 12 shows all the shear-displacement curves obtained for the cases listed in
Table 8. It can be observed that, in most cases and for both models, the increasing of ft also
increases the ultimate displacement of the wall and makes the capacity curves less stepped.
While the elastic branches are coincident for all the cases, some differences in the capacity
curves provided by the two models can be detected.

4.4. Group C: Fracture Energy in Compression Gc Variable

In this group of analysis, the fracture energy in compression, Gc, is assumed to be
variable with respect to the values calculated by means of Equation (8) for fc equal to 3.0
and 4.5 MPa. In Group C, indeed, for fc = 3 MPa it is assumed σ0 = 0.3 MPa and Gc variable
(i.e., lower values respect to those provided by Equation (8)), while for fc = 4.5 MPa it is
assumed σ0 = 0.3 MPa and 0.6 MPa with and Gc variable with the same trend.

As expected, and shown in Table 9, the fracture energy in compression impacts only for
the FEM, though small, but has no influence for the DMEM and clearly for the theoretical
formulations (Equations (1) and (2)), since it is not a parameter included in these strength
models. This is a confirmation that Gc is not relevant when the shear failures are related to
the achievement of the tensile strength of masonry along diagonal cracks. The failure loads
and modes of the examined cases only depend on the compressive and tensile strengths, as
well as on the pre-compression level assumed in the analysis.

Table 9. Shear resistances of Group C.

Case σ0
[MPa]

Gc
[N/mm]

fc
[MPa]

ft
[MPa]

FEM DMEM DMEM
vs. FEM Theor. Resistance

Theor.
vs.

FEM

Theor.
vs.

DMEM

V
FM

∆V V
FM

∆V ∆Vnum

VF.
Equation

(2)

VDS
Equation

(1)
∆Vth ∆Vth

[kN] [%] [kN] [%] [%] [kN] [kN] [%] [%]

3.1
0.30

2.0
3.0 0.15 80.7

DS -
82.1

DS - +1.8
99.3 97.4 +20.7 +18.63.2 4.0 DS 0 DS 0 +1.8

3.3 7.5 DS 0 DS 0 +1.8

3.4
0.30

4.0
4.5 0.23

106.5 DS -
99.3

DS - −6.7
103.7 128.9

+21.0
+30.03.5 7.5 106.4 DS 0 DS 0 −6.7 +21.0

3.6 10.6 106.2 DS 0 DS 0 −6.5 +21.3

3.7
0.60

4.0
4.5 0.23

135.9 DS -
138.7

DS - +2.1
189.7 161.6

+18.9
+16.53.8 7.5 139.7 DS +3 DS 0 −0.7 +15.7

3.9 10.6 134.8 DS −1 DS 0 +2.9 +19.8

DS = diagonal shear failure, F = flexural failure. Underlined values: minimum value between VF and VDS.
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For both numerical models, the shear failure mode is always attained with very
similar results (i.e., ∆Vnum varies from −7% to +3%). Equation (1) always overestimates
the numerical shear capacities with values of ∆Vth in the range of 16–21% when the
theoretical shear capacity is lower than the flexural one. When VDS is greater than VF, the
overestimation of the numerical values provided by Equation (1) is further higher (between
+21 and +30%).

Figure 13 shows the capacity curves provided by the two software for the case
σ0 = 0.3 MPa (Figure 13a,b) and 0.6 MPa (Figure 13c). For the DMEM there is no influence
of Gc on the capacity curve, while for the FEM it slightly affects the ultimate displacement.
Both programs provide the same trends in the elastic branches, while some differences
occur when the non-linear behaviour is attained.

4.5. Group D: Fracture Energy in Tension Gt Variable

The fourth group of analyses evaluates the effect of the variation of the fracture energy
in tension, Gt, by assuming values different from that provided by Equation (9) for ft equal
to 0.15 and 0.23 MPa. In Group D, for ft = 0.15 MPa, it is assumed σ0 = 0.3 MPa and Gt
variable, while, for ft = 0.23 MPa, it is assumed σ0 = 0.3 MPa and 0.6 MPa with Gt variable.
In all cases, lower and higher values of Gt with respect to those provided by Equation (9)
are considered.

Table 10 shows that for both models, the variation of Gt does not significantly modify
the shear capacity of the walls. In fact, the capacity increases until 12% according to the
DMEM for the cases with σ0 = 0.3 MPa and fc = 3.0 MPa and until 15% according to the
FEM for the cases with σ0 = 0.6 MPa and fc = 4.5 MPa. In most cases, the shear resistances
provided by the two models are in good agreement, with a maximum variation ∆Vnum
equal to about 9%. The failure modes predicted by the two approaches are always the
same, i.e., the shear failure in all cases with exception of case 4.8 characterized by a flexural
failure. The shear failure is also predicted by Equations (1) and (2) in most cases, with
exception of cases from 4.5 to 4.8 where Equation (2) gives lower values of strength and,
thus, a flexural failure is predicted.

Table 10. Shear resistances of Group D.

Case σ0
[MPa]

Gt
[N/mm]

fc
[MPa]

ft
[MPa]

FEM DMEM DMEM
vs. FEM Theor. Resistance

Theor.
vs.

FEM

Theor.
vs.

DMEM

V
FM

∆V V
FM

∆V ∆Vnum

VF
Equation

(2)

VDS
Equation

(1)
∆Vth ∆Vth

[kN] [%] [kN] [%] [%] [kN] [kN] [%] [%]

4.1

0.30

0.003

3.0 0.15

73.2 DS - 79.7 DS - +8.8

99.3 97.4

+33.0 +22.2
4.2 0.005 76.1 DS +3.9 80.9 DS +1.5 +6.4 +28.1 +20.4
4.3 0.011 80.7 DS +10.2 82.1 DS +3.1 +1.8 +20.7 +18.6
4.4 0.028 80.9 DS +10.5 85.5 DS +7.3 +5.6 +20.3 +13.9

4.5

0.30

0.005

4.5 0.23

102.3 DS - 95.6 DS - −6.5

103.7 128.9

+26.0 +34.8
4.6 0.014 106.2 DS +3.8 99.3 DS +3.8 −6.5 +21.3 +29.8
4.7 0.028 111.0 DS +8.5 101.8 DS +6.5 −8.3 +16.1 +26.6
4.8 0.050 111.2 F +8.7 106.7 F +11.6 −4.1 −6.8 −2.8

4.9

0.60

0.005

4.5 0.23

126.8 DS - 135.5 DS - +6.9

189.7 161.6

+27.4 +19.2
4.10 0.014 134.8 DS +6.3 138.7 DS +2.4 +2.9 +19.8 +16.5
4.11 0.028 145.1 DS +14.5 141.7 DS +4.6 −2.4 +11.3 +14.0
4.12 0.050 146.1 DS +15.2 143.4 DS +5.8 −1.9 +10.6 +12.7

DS = diagonal shear failure, F = flexural failure. Underlined values: minimum value between VF and VDS.

In the cases of shear failure provided by both numerical models and Equations (1) and (2),
Equation (1) overestimates the numerical results; the differences ∆Vth between the FEM
results and Equation (1) range, indeed, from about +11% to +33%, with the lower values
attained for the cases of higher pre-compression levels and higher fc (i.e., the last subgroup
in Table 10). For the DMEM, the difference on average is slightly lower, being ∆Vth variable
from +13% to +22%. When the failure modes do not correspond, i.e., cases 4.5, 4.6 and
4.7, the shear resistance given by Equation (1) still overestimates the numerical ones with
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differences variable from +16.1% to +26.0% for the FEM and from +26.6% to +34.8% for
the DMEM.

Finally, for the only case of flexural failure predicted by all models (case 4.8), the
agreement of both FEM and DMEM predictions with Equation (2) is very good (∆Vth is
only −7% for the FEM and −3% for the DMEM).

Figure 14 shows the capacity curves provided by the two software for the case σ0 = 0.3
MPa (Figure 14a,b) and 0.6 MPa (Figure 14c). Once again, there is a perfect correspondence
between the two approaches in terms of stiffness in the elastic branches. It is worth noting
(especially in Figure 14b) that, when the fracture energy in tension increases, the capacity
curves of the FEM are able to attain higher ultimate displacements. Conversely, a lower
influence of Gt on the ultimate displacement is observed for the DMEM. More in general,
Figure 14 highlights that, for most cases, the FEM evaluates a larger ductility in comparison
with the DMEM.

5. Discussion on the Shape Factor b Value by Comparing Numerical and Theoretical
Shear Capacities

The results reported in Section 4 show that, in most cases, the analytical shear resis-
tances provided by Equation (1) overestimate the predictions given by both the numerical
models. One possible reason is the choice of the shape factor b that is assumed equal to 1
in this equation, i.e., equal to the examined wall ratio λ = B/H = 1, as suggested by the
Commentary to the Italian code [27].

To better investigate the effect of this factor on the in-plane wall response, the numeri-
cal shear capacities provided by the FEM are compared, in Figure 15, with the predictions
given by Equation (1) for two values of b: (1) b = 1 as herein assumed, and (2) the value of b
that best fits the numerical results, i.e., b = 1.17, which allows the arranging of the analytical
and numerical results along the bisector.
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Figure 15. Theoretical predictions of the shear resistance provided by Equation (1) vs. FEM numeri-
cal values.

The choice of a value other than one for b, for squat walls is justified both by the
literature [38,39], which individuate values of b ranging in 1.15–1.50 even for squat walls,
and by the real shear stress distribution observable in the FEM along the middle cross-
section of the wall. This distribution, plotted in Figure 16 for the case 1.6 of Group A
(fc = 3 MPa, ft = 0.15 MPa, σ0 = 0.6 MPa), shows, indeed, a parabolic trend for any load
step (LS), corresponding to a maximum-to-average stress ratio of about 1.5, independently
on the compression stress and on the level of horizontal force. This means that not only
at failure is the distribution of shear stress has a parabolic trend, but also that, in general,
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the assumption of constant shear stresses in the squat wall is not realistic and, thus, the
assumption of b = 1 in Equation (1) could lead to unsafe predictions. On the contrary,
assuming b = 1.5, exactly equal to the maximum-to-average stress ratio, could lead to over
conservative predictions of the numerical capacity, since the best fitting is obtained in the
case of b = 1.17.
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Figure 16. Shear stress distribution along the middle cross-section of the wall for the case 1.6 at
different load steps (LS).

Clearly, further numerical inquires, also adopting a micro-modelling approach, and
experimental tests focussed on this topic are still required to assess a reliable value of
the shape factor b. However, it can be concluded that the shear resistance provided
by Equation (1) for squat walls can be, thus, considered reliable into predicting good
numerical results if the coefficient b is assumed greater than 1. Note that both models
assume a homogenized approach for masonry, which is only able to catch the diagonal
shear failure and not the sliding shear failure that is typical of regular masonry walls.
However, as suggested by the Commentary to the Italian code and confirmed by previous
studies [11], Equation (1) can provide reliable predictions of experimental results also for
regular masonry walls.

6. Conclusions

Global failure modes generally occur in masonry buildings when the in-plane shear
capacity of the resistant elements is reached. The vulnerability of masonry elements to
different in-plane failures depends on the achievable mechanisms, which are influenced by
both their mechanical properties and geometrical parameters.

In this paper, the in-plane resistance of masonry walls was investigated in several
numerical analyses by taking into account the mechanical properties of masonry (com-
pressive and tensile strengths, fracture energy in compression and tension, shear strength)
and two different levels of vertical compression. The numerical analyses were carried out
by means of a finite element model (FEM) and a discrete macro-element model (DMEM),
implemented in the software DIANA FEA and 3DMacro, respectively. Firstly, the reliability
of both numerical models was checked by means of comparisons with some experimental
tests available in the literature and assumed as benchmarks.

The numerical results provided by the two modelling approaches are in good agree-
ment in terms of failure loads and modes, while some differences can be observed in the
load-displacement curves, especially in the non-linear field. In fact, for most cases, the
FEM evaluates a larger ductility in comparison with the DMEM.
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The numerical results also show that both the compressive and tensile strengths of
masonry have a significant influence on the in-plane resistance of the walls, with a higher
effect provided by the compression strength. In particular, as the compression strength
increases the wall capacity also increases, but less than proportionally. According to the
FEM, the shear strength increases, indeed, from +55% to +127%, when the compressive
strength is between two and four times higher than the minimum value adopted in the
analysis. The shear capacity also increases with the tensile strength according to a less-than-
proportional trend and less significantly than that observed with fc. According to the FEM,
in the case of σ0 = 0.3 MPa, the shear strength increases by about 40% when ft increases
about four-fold, while for higher compression stress, i.e., σ0 = 0.6 MPa, the strength increase
is higher, i.e., about 62% for the same variation of ft. Moreover, in most examined cases
and for both models, the increasing of ft also increases the ultimate displacement of the
wall and makes the capacity curves less stepped.

The numerical analyses also prove an effect of the fracture energy in tension on the
wall ductility, while a slight influence is observed in terms of shear capacity. In fact, when
the fracture energy in tension varies in the fixed range, the strength capacity increases only
until 15%, according to the FEM. Finally, the fracture energy in compression does not imply
any influence on the behaviour of the masonry walls in terms of both strength and ductility.

Additionally, the numerical resistances obtained by means of the FEM and DMEM are
compared with the theoretical formulations proposed by the Italian Code for both flexural
and shear failure modes. Regarding the latter one, only the formulation usually provided
for irregular/rubble masonry walls was investigated, since it seems more suitable to be
compared with the numerical models that are both based on a homogenized approach.
Despite the simplification of the theoretical formulations, the comparisons are very good
in most cases and it can be noted that the theoretical shear capacity is, on average, greater
than the numerical one by approximately 20%. Such a discrepancy can be ascribable to the
choice of the shape factor value b, suggested by the code formulation, which is related to the
shape ratio of the wall. To reduce this discrepancy, the factor b should be assumed greater
than one, even for squat walls, as also highlighted by other studies. Thus, a proposal for
the value of the factor b based on the numerical results is done, even if further numerical
inquires, also adopting a micro-modelling approach, and experimental tests focussed on
this topic are required to confirm the reliability of such a proposal.

Finally, the good agreement attained by the numerical results with the experimental
ones, related to tests on walls made of regular masonry, demonstrate that the used macro-
modelling approaches can also provide reliable predictions for these types of walls, though
these models are only able to predict the diagonal shear (DS) failure, which, nonetheless, is
typical of irregular masonry walls. This allows the generalization the results provided by
the FEM and DMEM to any type of masonry.

Future works will be focused on the investigation of the behaviour of masonry walls
characterized by varying slenderness and on the use of micro-modelling approaches to
catch differences between the macro-models proposed in this paper.
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