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SGXTuner : Performance Enhancement of Intel
SGX Applications via Stochastic Optimization

Giovanni Mazzeo, Sergei Arnautov, Christof Fetzer, and Luigi Romano

Abstract—Intel SGX has started to be widely adopted. Cloud providers (Microsoft Azure, IBM Cloud, Alibaba Cloud) are offering new
solutions, implementing data-in-use protection via SGX. A major challenge faced by both academia and industry is providing
transparent SGX support to legacy applications. The approach with the highest consensus is linking the target software with
SGX-extended libc libraries. Unfortunately, the increased security entails a dramatic performance penalty, which is mainly due to the
intrinsic overhead of context switches, and the limited size of protected memory. Performance optimization is non-trivial since it
depends on key parameters whose manual tuning is a very long process. We present the architecture of an automated tool, called
SGXTuner, which is able to find the best setting of SGX-extended libc library parameters, by iteratively adjusting such parameters
based on continuous monitoring of performance data. The tool is — to a large extent — algorithm agnostic. We decided to base the
current implementation on a particular type of stochastic optimization algorithm, specifically Simulated Annealing. A massive
experimental campaign was conducted on a relevant case study. Three client-server applications — Memcached, Redis, and Apache
— were compiled with SCONE’s sgx-musl and tuned for best performance. Results demonstrate the effectiveness of SGXTuner.

Index Terms—Cloud Security, Intel SGX, Stochastic Optimization, Simulated Annealing
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1 INTRODUCTION

THE Software Guard eXtension of Intel’s CPUs (SGX)
is possibly the Trusted Execution (TE) paradigm

which has the widest consensus of developers, software
vendors, OEM, and software ecosystem partners. What
makes SGX attractive is its capability of providing
integrity and confidentiality protection of data-in-use even
against super-privileged software and users. SGX is an
application-layer Trusted Execution Environment (TEE)
designed for security-aware developers, who can partition
their application into processor-hardened enclaves or
protected areas of execution in memory. The assumption
is that only a small fraction of the application code runs
in the TEE, which is called secure enclave. Consequently,
the amount of protected memory that is made available
to the secure enclave is small (128MB). Also notably, there
are some functional limitations, and in particular it is
not possible to issue system calls from within the secure
enclave. Due to these limitations, the vast majority of legacy
programs cannot use Intel SGX security features, unless
(substantial) refactoring of the code is done. Given the
tremendous potential of SGX, the research community —
both in academia and industry — has engaged in a quest
for solutions to overcome SGX design limitations, with
the ultimate goal of making its superior security available
to existing software in a transparent manner. SCONE [1],
Graphene-SGX [2], SGX-LKL [3], Haven [4], EleOS [5], Ryoan
[6] and Panoply [7] are remarkable examples of research
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endeavours that delivered effective solutions for transparent
SGX support. These solutions were validated with respect to
substantial case studies (e.g., Memcached, Redis, Apache,
NGINX). We are also witnessing the release of the first
commercial offerings of SGX-enabled cloud solutions for
transparent data-in-use protection, notably: Microsoft Azure
Confidential Computing [8], IBM Cloud [9], and Alibaba
Cloud [10].
The approaches taken in the aforementioned solutions
ultimately rely on some form of system-level support, that is,
applications are loaded in the secure enclave and statically
or dynamically linked with SGX-extended POSIX functions.
By doing so, the gap between SGX-native and standard OS
abstractions is bridged. Some differences exist, with respect
to implementation aspects. A first degree of freedom is the
specific libc library that is extended (e.g., musl [11], glibc
[12], eglibc [6]). A second variant is the type of system call
support (i.e., internal to SGX or external using dedicated
shields). In all cases, the higher security comes at the cost
of a dramatic performance penalty. This is primarily due to
two intrinsic sources of overhead, specifically: i) the context
switch between the secure and the insecure world, and ii)
the paging activity when the size of the protected memory
is exceeded. The performance penalty is even higher if
the OS has been patched against the most recent types of
side-channel attacks, namely spectre and meltdown. These
attacks exploit a bug in the speculative execution of CPUs
(i.e., a technique used by modern processors to speed up
performance). The microcode update currently released by
Intel to fix the bug disables speculative execution. As a
consequence, it has a significant impact on performance (up
to 25% [13] [14]).
Performance optimization of applications running on SGX
is thus of paramount importance, but unfortunately it
is a complex activity. The main difficulty is that the
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optimum is only achieved when all the key parameters
of the SGX-extended libc libraries are properly set. The
parameter set governs fundamental aspects with a direct
impact on performance, including: compiler optimization,
dynamic memory allocation, and synchronization between
enclave and non-enclave threads. The number of possible
configurations is vast. The evaluation of all combinations is
so time consuming that manual optimization is not a viable
option, since it could take years (even when it is performed
by a domain expert). As an example, in our case study on
SCONE [1], based on our detailed knowledge of internal
mechanisms and the results of preliminary performance
experiments (e.g., micro-benchmarks), we were able to
simplify the optimization problem by defining boundaries
and setting the step of variation of Integer parameters.
Even so, we had to start from an initial problem space
of 2.37 × 106 possible configurations, which was further
reduced to 1.58 × 106 by stripping off combinations which
we knew would have poor performance (again, based on
detailed knowledge of internal mechanisms and results
of preliminary experiments). Assuming 10 repeated tests
with a duration of 20s each, the evaluation of the reduced
space would still have taken ≈ 10 years of work, which is
unacceptable. It is evident that an automated approach is the
only option, and supporting tools are very much needed.

In this paper, we present the architecture and describe
the operation of an automated tool, called SGXTuner, which
can find the best setting of SGX-extended libc libraries,
by iteratively adjusting parameters based on continuous
monitoring of performance data. The tool is — to a large
extent — algorithm agnostic. We decided to base the
current implementation on a particular type of stochastic
optimization, specifically the Simulated Annealing (SA) [15]
algorithm. The main reason behind this decision is that
SA — unlike other optimization algorithms such as hill
climbing, genetic algorithms, gradient descent — has the
advantage of avoiding being stuck in local optima, provided
that the initial parameter values are properly set. In this
work, the SA temperature and the related cooling function,
controlling the convergence to the optimum, were chosen
accordingly to Nourani et al. [16] based on a trade-off
between convergence and searching time. To reduce the
intrusiveness of the tool (i.e., to limit the impact of the
tool on the target application’s behavior), we developed
SGXTuner as a lightweight distributed application. The
current implementation of SGXTuner is written in Rust
lang and is open source. It follows the microservice
architectural pattern and is designed on a multi-container
basis. It is composed of a Core microservice which houses
the intelligence, and of a variable number of Target and
Benchmark microservices executing — on separate physical
nodes — the SGX application to be tuned and the
benchmark tool, respectively.
SGXTuner was validated and evaluated with respect to a
substantial case study, i.e., the extended version of the musl
lightweight libc library, namely sgx-musl used in SCONE [1]
and SGX-LKL [3]. Applications built with such a library
may exhibit high performance variations, depending on the
configuration of six key parameters.
To verify the effectiveness of our work, three widespread
client-server applications built with sgx-musl were tested:

two in-memory storage systems, i.e., Memcached and Redis,
which are multi-threaded and single-threaded, respectively,
and the HTTP multi-threaded Apache web server. Different
versions of SA were compared to demonstrate the flexibility
of the tool with respect to the specific algorithm chosen.
We compared the sequential SA with three parallel
implementations of SA. The benefit from parallel SA is
twofold: i) it drastically cuts the searching time; ii) it allows
the adoption of more extreme SA settings that could increase
the probability of reaching the global optimum (e.g., high
temperature and slow cooling function) while maintaining
a reasonable searching time.
Results of the experimental campaign demonstrate
the effectiveness of the proposed approach. There is
a substantial improvement of throughput-latency for
Memcached, which can vary from ≈ 11-12% respectively (if
optimization is done starting from an initial pre-optimized
configuration, defined by a domain expert) up to ≈ 45-39%
(if the initial configuration is chosen in a random fashion).
Similarly, Apache reported a performance improvement,
which ranged from ≈ 14-37% up to ≈ 38-51%. Regarding
Redis, instead, the gain is slighter (from ≈ 7%-5% to ≈
13%-10%). The margin for improvement of single-threaded
applications is narrower.
Overall, this paper provides the following contributions to
the wide community of SGX architects and users:

• First, it proposes a general method for performance
enhancement of applications secured with one
of the most prominent techniques for providing
transparent SGX support.

• Second, it shows the applicability of the solution in a
representative case study, i.e., sgx-musl at the base of
SCONE and SGX-LKL.

• Last but not least, it provides recommendations on
how to define initial settings when single- or multi-
threaded applications have to be secured. It does
so by identifying weights and specific combinations
of parameters with relevant impact on performance,
using the SGXTuner datasets of optimal solutions.

The remainder of this work is organized as follows.
Section 2 provides background on Intel SGX. Section 3
overviews current approaches of SGX transparent support
for legacy applications and the parameters that could affect
the overall performance. Section 4 states both problem
and goals. Section 5 describes the design of SGXTuner.
Then, Section 6 overviews the selected Simulated Annealing
stochastic algorithms used in SGXTuner. Section 7 reports
the conducted experimental evaluation. Section 8 gives an
insight into related work. Finally, Section 9 concludes the
document.

2 BACKGROUND ON INTEL SGX
The 7th generation of Intel’s CPUs is equipped with
an innovative secure extension to the Instruction Set
Architecture (ISA), namely Software Guard eXtension (SGX)
[17]: a TEE based on a mechanism of “reverse sandbox”
in which sensitive processes’ address space is protected
— at the CPU level — from the OS. The idea behind
is to protect selected code and data from disclosure or
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modification through the use of secure enclaves, i.e., address
regions whose content is protected — via encryption and
hashing — from any software outside the enclave, included
privileged ones. Only the enclave code can access any part
of the address space, except those areas belonging to other
enclaves. The boundary between enclave and non-enclave
sections is governed by the processor that blocks any
access attempt from unauthorized processes. An interface —
defined in a domain-specific C language — is declared by
the programmer to establish entry points, i.e., calls to/from
an enclave (namely ECALLS and OCALLS).

The strong security guarantees ensured by SGX do
not come free of costs. First, the performance overhead
is non-negligible. In particular, the execution time highly
suffers from the context switch between enclave and
non-enclave areas. This includes several computational
intensive operation such as: monitoring the SGX boundary
to prevent enclave memory from being read or modified
by non-enclave code within the CPU (in SRAM),
saving/restoring thread context, and invalidating the
hardware Translation Look-aside Buffer. Furthermore, the
memory encryption and integrity verification mechanisms
made by SGX increase the probability of last level cache
misses while reading enclave pages. This could entail an
additional overhead on applications’ performance.
Second, the physical memory that stores the Enclave Page
Cache (EPC) — i.e., the data structure containing the
protected code and data — is limited to the size of the
Processor Reserved Memory (PRM) (128MB) instantiated by
the BIOS at boot-time. Nevertheless, the PRM size limit can
be extended (via software) up to 4GB on Linux OS since its
driver supports paging. Hence, the hardware PRM size is
always 128MB and the OS swaps the different pages of the
protected enclave memory. This highly impacts the overall
performance due to the costly encryption and decryption of
enclave pages to be moved in untrusted memory.
Third, system calls instructions are forbidden inside the
enclave. In fact, with Intel SGX, a compromised operating
system is within the threat model. The execution of a
system call needs to be enabled by the SGX developer that
implements dedicated OCALLs for this purpose. In case
of I/O-intensive applications, this SGX limitation causes a
dramatic performance penalty since the program flow is
continuously moved in and out of the enclave entailing the
execution of several context switches.

3 TRANSPARENT SGX SUPPORT:
SOLUTIONS AND TUNABLE PARAMETERS

The adoption of SGX as-is imposes to security engineers
a dedicated partitioning of applications in secure and
non-secure sections whose crossing functions must be
defined and regulated via the enclave interface. There is
always a trade-off to be faced between what to put inside
and what outside. In this typical situation the developer
needs the source code of the software to be secured and
a proper knowledge of its architecture for the specific
code refactoring. The transparent provision of SGX security
features to legacy applications is made difficult by SGX’s
design principles and limitations, i.e., the limited amount
of protected memory resources available to SGX and the

impossibility of issuing system calls from the secure enclave.
The research community, first, and the industrial sector,
later, have proposed solutions enabling the usage of
Intel SGX for large and complex workloads — such as
enterprise-level services or even public cloud applications
— in a transparent manner. In this sense, SCONE [1],
Graphene-SGX [2], SGX-LKL [3], Haven [4], EleOS [5], Panoply
[7], Ryoan [6] represent significant research solutions, whose
validation was realized via well-known web services
(e.g., Memcached, Redis, Apache, NGINX). At the same
time, first examples of commercial products have been
recently released by Microsoft with its Azure Confidential
Computing [8] that transparently secure data processing in
the cloud, or by IBM Cloud [9] and Alibaba Cloud [10]
that just recently announced the adoption of the Fortanix
Runtime Encryption [18] based on SGX for data-in-use
shielding. Clearly, we cannot be sure about architectural
choices of commercial products as their details are unknown
to the public. However, we can imagine that research paved
the way to industrial solutions as in the case of Microsoft,
whose research department published Haven [4], which
provides system-level SGX support to unmodified legacy
Windows applications. In all cases, the approach pursued
for transparent SGX security is essentially the same and
consists in providing a system-level support [19] (Figure
1). That is, applications are loaded in the secure enclave
and statically or dynamically linked with SGX-extended libc
libraries (i.e., the core standard C libraries of Linux systems)
to perform system calls (i.e., the service requests made to
the operating system kernel). However, the current solutions
present some differences on the implementation side.
First, the extended libc library. SCONE and SGX-LKL use
the lightweight musl [11], Graphene-SGX adopts glibc [12],
EleOS leverages glibc as well, Ryoan uses eglibc, Panoply
excludes libc from its TCB, to fit into the range of automated
formal verification, as they shield at the libc interface.
Second, the type of system call support, i.e., i) running
shielded external syscalls totally outside the SGX enclave via
the SGX-extended libc, like in the case of SCONE, Ryoan,
EleOS, and Panoply ii) or executing a subset of syscalls inside
via a Library OS and keep issuing the unsupported ones
externally via the SGX-extended libc library. This approach
is pursued, e.g., by Graphene-SGX, SGX-LKL, Haven.
Regardless of these differences, most of the solutions
(SCONE, Panoply, EleOS, Graphene-SGX, SGX-LKL) share a
similar approach to reduce the SGX context switches when
system call must be issued. That is, they enforce a M :N
threading model in which M application threads inside
the enclave are mapped to N OS threads. Several threads
running outside in non-enclave mode are maintained to
relay syscalls on behalf of enclave threads. In this way,
the enclave thread initiating the syscall does not have to
leave the enclave. Enclave and syscall threads typically use
queues or buffers to communicate. An enclave thread adds
a system call to the request queue. System call threads
periodically poll the queue and execute system calls if there
are outstanding requests. Results of system calls are pushed
to the response queue and consumed by enclave threads.
Depending on the synchronous or asynchronous mode, while
a system call is being executed by the OS, an enclave thread
could switch to another application thread to avoid busy
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Fig. 1: Parameters affecting performance of SGX applications

waiting for the result.
As reported in Figure 1, there are many parameters —

configurable at compilation- or run- time — whose impact
on the overall performance of the SGX-enabled application
can be significant. Some of these are independent on the
chosen solution. In this sense, there are often parameters
to be set on the specific legacy software to be secured. For
example, NGINX and MySQL allow the configuration of
buffer/cache sizes that — if properly set — could avoid the
heavy SGX memory paging.

NGINX Parameters
client_body_buffer_size
client_header_buffer_size
client_max_body_size
large_client_header_buffers
open_file_cache
open_file_cache_valid

MySQL Parameters
innodb_buffer_pool_size
innodb_log_file_size
innodb_log_buffer_size
innodb_file_per_table
query_cache_size

Other parameters regulate optimization options of the
specific compiler, which could help to reduce code size and
execution time at the cost of slower building time.

Compiler Optimization Parameters
-O -O2 -O0
-O1 -O3 -Os

There are then parameters, which have slightly different
effects on: i) the memory management of SGX enclave
pages, ii) the number of threads, the sleep time, and
the queue sizes of the M :N threading model. In the
rest of this section, we provide more details on specific
transparent SGX solutions and their parameters. We first
report details on our case study, SCONE. Then, we describe
some additional example of works whose implementation
details are available to the public.

3.1 SCONE Parameters
SCONE [1] proposes a SGX-enabled secure container
solution to protect sensitive unmodified applications. The

idea behind SCONE is to expose a C standard library
interface to container processes, which is implemented
by statically linking against a libc library within the SGX
enclave. System calls are executed outside the enclave, but
they are shielded by transparently encrypting/decrypting
application data: files stored outside the enclave are
therefore encrypted, and network communication is
protected by transport layer security (TLS).
At the core of SCONE there is the convenient C standard
library with SGX support, namely sgx-musl. Instead of
leaving the enclave to perform a system call — sgx-musl,
as described in [1] — supports a synchronous and
asynchronous system call mechanism based on the M :N
model of message exchange between the code running
inside and outside enclaves.
In this regard, sgx-musl comes with six parameters
configurable at run-time via as many environment
variables, which can highly affect the overall performance
of applications compiled with the SGX-aware C library.
SCONE allows the user to specify: i) ETHREADS and
STHREADS, i.e., the number of OS threads that run inside
of the enclave as well as the number of system call threads
that run outside; ii) ESPINS and SSPINS, i.e., the number
of attempts that threads make to dequeue an element from
request or response queues; iii) ESLEEP and SSLEEP, i.e.,
the sleep time of enclave and non-enclave threads when the
specified number of attempts has been made and the thread
did not succeed to dequeue an element and thus it enters in
a sleep condition to prevent wasting CPU cycles.

SCONE Parameters
ETHREADS ESPINS ESLEEP
STHREADS SSPINS SSLEEP

3.2 SGX-LKL Parameters
SGX-LKL [3] is an additional solution for transparent SGX
support, whose approach is to execute syscalls directly
inside the SGX enclave via a Library OS (LibOS). That is, a
new paradigm trend where kernel functions are available to
user space (ring3) programs in a form of a library. SGX-LKL
leverages a particular implementation of a LibOS, namely
Linux Kernel Library (LKL) [20], which allows to port all
syscalls in the enclave except for I/O-related ones. For
this kind of kernel functions, instead, SGX-LKL makes
requests to the outside world via sgx-musl. In practice,
syscalls are carried out within the enclave using LKL only
when possible, otherwise the same M :N asynchronous
system call mechanism adopted in SCONE is used for the
subset of system calls that require direct access to external
resources and are therefore processed by the host OS. The
main advantage of this approach is the reduced exposure of
data to the untrusted world, although this comes at the cost
of a larger TCB size.
Even in this case, there are parameters affecting the overall
performance of the SGX-secured application. Some of
them correspond to the sgx-musl parameters we saw
before, which are also configurable at run-time. Other
settings, instead, are specific of the SGX-LKL library: i)
SGXLKL_MAX_USER_THREADS to define the maximum
number of LKL user-level threads inside the enclave; ii)
SGXLKL_HEAP to set the total heap size available in the
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enclave; iii) SGXLKL_STACK_SIZE to assign the stack
size of in-enclave and user-level LKL threads; iv) and
SGXLKL_SHMEM_SIZE to define the size of the shared
memory to be used between the enclave and the outside
world.

SGX-LKL Parameters
SGXLKL_ETHREADS SGXLKL_SSPINS
SGXLKL_STHREADS SGXLKL_ESLEEP
SGXLKL_ESPINS SGXLKL_SSLEEP
SGXLKL_MAX_USER_THREADS SGXLKL_HEAP
SGXLKL_REAL_TIME_PRIO SGXLKL_STACK_SIZE
SGXLKL_SHMEM_SIZE

3.3 EleOS Parameters
EleOS [5] is a runtime system that aims at transparently
providing OS services in the enclave without exiting the
TEE. In this solution, syscalls and user managed virtual
memory — namely Secure User-managed Virtual Memory
(SUVM) — are performed in the enclave. As for previous
approaches, an important goal is to reduce the overhead
due to the SGX context switches. System calls are delegated
to a remote procedure call (RPC) service running in another
application thread, without exiting the enclave. An M :N
threading model is used to decouple threads internal
and external to the enclave. The virtual memory, instead,
is managed in the enclave by equipping SGX with a
software-based paging system for C++ based programs. A
key abstraction of the EleOS design are spointers, a specific
instance of smart pointers that can determine if referenced
data is inside or outside the EPC. As a consequence data
can be paged into the enclave without mode transitions.
The idea is that “users allocate buffers in SUVM via a
special allocator and obtains the special spointer, which can
then be used as a regular pointer in the application”. The
spointer accessing evicted SUVM pages triggers a software
page fault, which is handled entirely inside the enclave.
EleOS is highly configurable. Currently, configurations are
determined at compile-time. Authors claim that support
for runtime configurations will come soon. Parameters can
be tuned for both components implemented in EleOS, i.e.,
the RPC system and the SUVM mechanism. A boolean
parameter establishes which ocalls use the RPC system.
Like in SCONE, the RPC threads communicate with the
enclave threads through queues. Integer parameters are
used to control the queue size (QUEUE_SIZE) and the
number of active RPC threads (EXTERNAL_THREADS,
INTERNAL_THREADS), together with their sleep time
(SLEEP_TIME).

EleOS Parameters
QUEUE_SIZE PAGE_CACHE
EXTERNAL_THREADS PAGE_CACHE_SIZE
INTERNAL_THREADS PAGE_SIZE
SLEEP_TIME

Moreover, an integer parameter can control the
size of pages allocated in memory (PAGE_SIZE).
Another integer parameter defines the page cache size
(PAGE_CACHE_SIZE). The “backing store” (i.e., the
untrusted memory) size is also tunable through an integer
setting. Finally, a boolean parameter tells to EleOS if the
page cache (PAGE_CACHE) has to be used, thus enabling the
so-called “direct access to the backing store”.

4 PROBLEM AND GOAL STATEMENT

This paper covers the following parameter tuning problem.
Given:

• A legacy target application A, SGX-enabled with one
of the system-level solutions presented before.

• Parameters p1, ..., pn configurable at either
compilation- or run- time, whose typology varies
depending on their set of values, namely: i)
Categorical, i.e., parameters having a finite, unordered
set of discrete values; ii) Boolean, i.e., parameters
with only two possible logic values; iii) Integer, i.e.,
parameters whose domains of values are discrete
and ordered.

• A space C of configurations (or parameter settings),
where each configuration c ∈ C specifies values for
A’s parameters such that A’s behavior on a given
problem instance is specified.

• A set of problem instances I
• A performance metric m measuring the performance

of A, on instance set I for a given configuration c.

The goal can be stated as follows: find in a limited amount
of time a configuration c∗ ∈ C that results in optimal
performance of A on I according to metric m. The number
of parameters and their typology determine the nature of
the configuration space C and have profound implications
on the approach to pursue.

The majority of parameters seen in section 3 are of
Integer type, thus their space C is extremely vast. However,
relying on an extensive domain expertise could significantly
reduce the space of configurations. The user could make
assumptions on the type of parameters (e.g., Integer,
Boolean) and their values. This could result in significant
performance improvements. Preliminary experiments could
be also executed to make preliminary estimates. For
example, in the case of SCONE and its sgx-musl, our domain
knowledge and initial evaluations led us to define values’
boundaries and step of variation reported in Table 1. The
following considerations were made.

If the target is a multi-threaded application, the
number of ETHREADS must be near the number of
processor cores, while for single-threaded software
≤ 2. Regarding STHREADS, it must be larger than
ETHREADS to ensure a service rate higher than the
arrival rate on queues. We observed that it also
depends on the number of target application’s threads.
For each application thread it is required at least
one STHREAD, otherwise the target application could
lock up. This could happen if all available STHREADS
are performing blocking syscalls, and an application
thread that does not have a corresponding STHREAD
would not be able to make progress until some of
them are unblocked. Having more STHREADS than
the number of target application’s threads allows to
shorten the time between a syscall being added to the
syscall queue and consumed by an THREADS. On the
other hand, having too many STHREADS could lead
to very high contention on the queues, thus reducing
application performance. In general, we noticed that
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values greater than 20 and lower than 70 seemed to
produce better performance. Then, setting SSPINS and
ESPINS to low values in the order of 10 and 1000,
respectively, would drastically reduce the performance
while too high values would force threads to busy-wait
for system call requests and responses, thus increasing
the usage of system resources. We also discovered
that enclave threads should have sleep times (ESLEEP)
substantially higher than system call threads (SSLEEP)
otherwise the overhead on I/O operations diverges.

Under such assumptions the space C reaches 2.37 ×
106 configurations. From such a space, we take out the
worst ones that would make no sense to evaluate. As
an example, we noticed from preliminary evaluations
that combinations of parameters used in multi-threaded
applications where ESPINS=3400 and ETHREADS=1 highly
increase the overhead in terms of latency within the enclave.
At the end, we created a subspace Cs composed by 1.58 ×
106 configurations.
The majority of target applications (A) to be secured with
SGX are client-server web services, whose throughput
and latency (i.e., metrics m) are typically evaluated with
benchmarks that for each run (i.e., instance I) take on
average 20s. Considering that at least 10 instances I must
be repeated for the same configuration C to produce reliable
results, the time required to evaluate the entire subspace Cs

would be ≈ 10 years.

Parameters Lower Bound Upper Bound Step of Variation
STHREADS 20 70 5
ETHREADS 1 10 1
SSLEEP 2,8k 4,2k 100
ESLEEP 12k 20k 1k
SSPINS 50 140 10
ESPINS 3,4k 6,4k 200

TABLE 1: Configuration Space of sgx-musl

Hence, even in the best conditions — i.e., considering
the sole sgx-musl related parameters, making initial
assumptions based on domain knowledge, and reducing
the initial space C — the time required to evaluate Cs is
unpractical.

5 SGXTuner DESIGN

We propose the SGXTuner approach to find optimal
configurations in an extremely low time. SGXTuner does
this by taking advantage of Stochastic Optimization (SO),
i.e., a method for minimizing or maximizing an objective
function in the presence of randomness. SO is widely
used in a variety of disciplines where finding precise
problem solutions through deterministic methods would be
practically impossible. In the rest of this section, we describe
the design of SGXTuner. We present the architecture and the
typical sequence of actions during a tuning activity. Then, in
the following section, we introduce the particular stochastic
algorithm adopted in our solution.
SGXTuner is a tool for automatically tuning system-level
solutions supporting SGX-enabled applications. It is able
to search for an optimal configuration in either sequential
or parallel execution. The tool is — to a large extent

— algorithm agnostic. Figure 2 shows the architecture
of SGXTuner with its main components organized in
three layers: i) the Control hosting the intelligence of the
system; ii) the Application, which comprises the actual
Target application to be evaluated and the related Workload
generator; iii) the Infrastructure layer including the physical
nodes of the infrastructure used for the deployment of
testing units.

Control Layer

Application Layer

Infrastructure Layer

Workload
Generator

Target
Application

Target
Microservice

Workload
Microservice

ZeroMQ

Core
Microservice

Stochastic Solver

Target 
SGX Nodes

Workload 
Nodes

Pool

PoolPool

Pool

Manager
Node

Fig. 2: SGXTuner Architecture

The Control layer is where decisions are taken about
the specific job, and in particular on: i) configurations
of parameters to be tested, ii) the assignment of a
selected configuration to a Target application to be executed
in a specific SGX Node taken from the pool, iii) the
dispatch of a Workload generator to a specific node for
the execution against the previously-chosen SGX node.
From an implementation point of view, the Control layer is
based on microservices, which exchange control messages
through the ZeroMQ (ZMQ) channel, a high-performance
asynchronous messaging library used in distributed or
concurrent applications. The Control layer includes three
type of microservices. The Core microservice runs the
stochastic algorithm and decide the parameters to evaluate.
This microservice keeps track of the applications’ status
in two pools and assigns jobs to the first available ones.
The Target microservice receives from Core the values of the
configuration parameters, their type (e.g., integer, boolean,
string), and the configuration level (i.e., compile- or run-
time). These are then used to launch the Target application.
Finally, the Workload microservice receives from Core the
IP address of the chosen Target application, the metric of
interest to be returned (i.e., latency or throughput), and
other information regarding the specific benchmark tool to
be used. At the end of each run, results are returned to the
core microservice, which will use them within the stochastic
algorithm for taking decisions on the next configuration
parameters to evaluate.

The Application layer, instead, encloses the applications
driven by the Control layer to perform the tuning activity.
More precisely, these are: i) the sensitive Target application
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(e.g., NGINX, Apache, Memcached, or MySQL) — hardened
with the particular system-level SGX solution — whose
performance needs to be improved, ii) and the Workload
generator such as a benchmarking tool (e.g., wrk, memaslap,
or twemperf) that is chosen based on the target application.

Finally, the Infrastructure layer is used for the
deployment of the Target and Workload applications on the
physical machine nodes. A first category of machines must
include the SGX hardware extension. A second category
is needed for the execution of the Workload generator
and does not require SGX. An additional machine, the
Manager node, may be used for the execution of the core
microservice to avoid that performance results are altered
when the stochastic algorithm is too much intrusive. In
order to increase the efficiency of SGXTuner, both Target
and Workload nodes are organized in pools. It must be
noticed that a one-to-one correspondence between nodes
and applications should be preferred. In case of a reduced
number of machines, it may be possible to execute both the
Target and Workload applications on a single node. Or even,
deploying the stochastic solver and the Workload generator
on one powerful machine. In short, there could be degrees
of freedom for what concerns the allocation of application’s
units. However, it is important to avoid situations causing
interference in the performance measurements, which could
lead to wrong application settings.

6 STOCHASTIC OPTIMIZATION:
SIMULATED ANNEALING

Among the available stochastic optimization algorithms
— such as hill climbing, genetic algorithms, or gradient
descent — in our SGXTuner prototype we used Simulated
Annealing (SA). This has the strength of avoiding to stuck in
local optima, i.e., solutions that are better than any others
nearby, but are not the very best. SA was proposed by Van
Laarhoven et al. [15] as a simulation of the metallurgical
annealing process. It finds the optimal global Energy
by gradually decreasing a parameter named Temperature.
Initially, the temperature is high, and several transitions
occur for both low-energy and high-energy solutions. This
makes possible the identification of the global optimum by
searching a wide solution space. As the temperature cools,
the frequency of transitions to worse states decreases, and
the system tends to move in better states more frequently. It
is important to notice that the temperature must go down at
a reasonable rate allowing the method to search thoroughly
at each temperature.
In the following, we report fundamentals of SA, and then
also explore parallel implementations of such stochastic
algorithm.

6.1 Fundamentals and Settings of Simulated Annealing

The SA tuning algorithm can be defined as a 6-tuple
〈A, S,Ω, T,Ψ,Φ〉, whereA represents the target application,
S the parameters state space, Ω the objective function, T the
initial process Temperature, Ψ the Cooling Strategy, and Φ the
Termination Criterion.
At the beginning, SA evaluates an initial predefined state
s0 ∈ S to determine the first candidate solution with an

associated Energy E(s). Then, the stochastic process iterates
as follows:

(1) A new state s′ — extracted from the set of possible
Neighborhoods N (s′) ⊂ S — is evaluated. The
resultant energy E′(s′) is then used to calculate the
∆ difference with the current selected best energy
E(s): ∆E = E(s)− E′(s′)

(2) If the objective function is a maximum function
evaluation (max(Ω)), the transition from s to s′, at
step k, is done if the Boltzmann Criterion is verified:

R(0, 1) ≤
{

1, if ∆Ek ≤ 0

e−∆Ek/Tk , otherwise
(1)

Where R(0, 1) is a random number in [0, 1], and
e−∆E/T is the Metropolis function. The probability
of moving from one state to another depends on:
1) ∆E, i.e., when new states with better energies
are encountered; 2) T , in fact if T tends to zero,
the probability R also tends to zero. Hence, the
algorithm allows the possibility that even worse
solutions can be accepted. This ensures the search
process does not hang in local optima.

(3) Temperature T is decreased using a predetermined
Ψ cooling schedule→ Tk+1 = Ψ(Tk)

(4) The termination criterion Φ is checked. If this is not
satisfied, the algorithm keeps iterating

Some settings of SA need to be defined a priori. The
convergence time and the goodness of the final result
highly depend from such a configuration. In this work, the
following choices have been taken:

Initial Temperature (T0) - The definition of T0 is
fundamental as, on the one hand, setting too high values
could mean a slow convergence to the optimum. On the
other hand, the usage of too low values implies the risk
of being stuck in local optima. A general solution does not
exist. It highly depends on the problem under study. In this
work, the algorithm has been executed for a limited number
of iterations to estimate the average ∆E. Afterwards, T was
set such that the acceptance ratio of bad moves is equal to:

e−∆E/T = 0.98 =⇒ T =
∆E

−ln(0.98)
(2)

In this way, most of the solutions are accepted during the
first steps of the tuning process.

Cooling Strategy - Even the choice on the cooling strategy
is important. Nourani et al. [16] report and analyse a wide
set of annealing schedule. Lowering T in the wrong way
could mean that SA does not reach the global optimum state
but freezes into one of the local optima. A particular form
of an exponential cooling strategy is used in this work:

T ′ = T0e
−ln(

T0
Tn

) k
kmax (3)

The temperature decrease is computed using the ratio
of initial (T0) and (Tn) final temperatures, the algorithm
progress status evaluated through the ratio of current SA
step k, and the maximum number of steps kmax.

Termination Criterion At a certain point, the algorithm
needs to determine a stopping condition. The SA process
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terminates either if a convergence to an optimum is reached
or if the number of steps performed is equal to the
predetermined maximum steps kmax. In this paper, the
upper bound of iterations is set to a high value, that is,
kmax = 10000. The movement of solution, instead, is used
as a convergence condition. If the objective function does
not improve after 3% steps of kmax, then, the optimum is
assumed to be reached.

6.2 Parallel Simulated Annealing

SA is inherently sequential, thus leading to long
computation time, especially in case the stochastic algorithm
is applied to problems with large search spaces, with high
temperatures, and slow cooling strategies. The efficient way
to speed up the SA algorithm, and make it more attractive
for the optimization problem covered in this work, is to
add parallelism. The usage of parallel SA could also enable
the adoption of algorithm settings, which could increase the
probability that the global optimum gets reached (i.e., high
temperature and slow cooling function) while maintaining
a reasonable searching time. It is therefore of interest
to evaluate the impact of parallel SA algorithms in our
SGXTuner, thus evaluating the optimum they produce.
Several parallel SA algorithms have been proposed over
the years [21] [22] [23]. According to the classification
made by Greening et al. [24], there exist three categories
of parallel SA: 1) Serial-like algorithms that maintain the
same characteristics of sequential ones [22]; 2) Altered
algorithms [21] [23], which modify the procedure by, e.g.,
changing the state generation. 3) Asynchronous algorithms
that try to reduce idle time and communication by
calculating costs with outdated information. One of the
most accepted example of altered algorithms is the Parallel
Recombinative Simulated Annealing (PRSA) proposed by
Mahfoud et al. [21]. The rationale behind PRSA is merging
parallelism and convergence properties of Genetic Algorithms
(GA) [25] and simulated annealing, respectively. The hybrid
PRSA iteratively generates and analyzes a population of
individuals (or states) of a certain size. The population
evaluation consists in extracting two individuals (known
as parents) and applying genetic recombination (crossover)
and mutation to create two new individuals (children). New
populations are constructed by selection from old and new
individuals. The selection strategy between parents and
children states is based on the SA Boltzmann. In contrast to
normal genetic algorithms, therefore, the selection process
is controlled by the SA temperature. Selections are mostly
random when the temperature is high; then, when the
temperature starts reducing, the selection of an individual
depends increasingly on its fitness just as in a GA.
Olenšek et al. [23] investigate an asynchronous parallel SA
algorithm. They propose a hybrid method that combines
SA and Differential Evolution (DE). “The random sampling
and the Metropolis criterion from SA are combined with
the population of points and the sampling mechanism from
DE to balance global and local search”. The new method
is called Parallel Simulated Annealing Differential Evolution
(PSADE). “To reduce the optimization time, the method is
designed as an asynchronous master-slave parallel system”.
An example of a Serial-like algorithm is the Multiple

Independent Run (MIR) proposed by Lee et al. [22]. Authors
propose a trivial but, at the same time, effective solution,
i.e., running parallel independent SA with their initial
state and temperature. Therefore, workers will not need
to communicate anymore for state moves or solutions
information. The best solution found is then chosen as the
final result. The rationale behind MIR is that the goodness
of the final solution often highly depends on the initial
state. Hence, starting from many different states increases
the probability of obtaining a result as close as possible to
the optimum.

In this work, we want to demonstrate that even
time-efficient SA algorithms using parallelism can be
leveraged to optimize SGX-enabled applications. Hence, we
decided to leverage both PRSA and MIR solutions within
our SGXTuner that further prove the effectiveness of the
proposed approach.

6.3 The SPISA Algorithm

The nature of the optimization problem covered by
SGXTuner led us to design a dedicated parallel SA
algorithm, which maintain high parallelism efficiency and
at the same time do not upset the state generation, i.e.,
preserve the convergence properties.
The Simultaneous Periodically Interacting Simulated Annealing
(SPISA) algorithm is positioned in the middle between
serial-like and altered-generation procedures. SPISA aims at
keeping unaltered the SA properties by making small
variations to the original flow. It evaluates in parallel,
and without any communication, a neighborhood space N
composed of one-exchange states parameters. That is, the
set of all states (or parameters) generated from the current
selected best one s through the modification of one single
parameter value at a time. When the N set runs out, SPISA
synchronizes results obtained from workers by comparing
the current best master s with the sw having the best energy
among all workers.
The three boxes reported below describe the algorithm
carried out by both master and workers. The function receives
in input the space state S, the initial state s0, the temperature
T0, the cooling strategy Ψ, the maximum number of steps
to execute kmax, the maximum value of subsequent rejected
improvements of the best energy rejmax, and the number
of worker instances nw to launch.

SPISA Algorithm - Master
1: Evaluate E of initial s and define shared temperature T
2: Iterate until convergence or the maximum number of execution

steps is reached:
a) Initialize a pool of neighbourhood N (s)
b) Spawn nw workers
c) Send T and N (s) to workers
d) Receive nw workers’ best states siw
e) Verify Boltzman criterion between s and best sw
f) Update T

After the initialization of s, T , and E(s), a shared pool of
N (s) states is created (line 5). Each worker — as soon as it
gets free — extracts from the pool a random state to perform
its evaluation. In this way, the processing rate is always kept
high and the worker idle time is significantly low.
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SPISA Algorithm - Worker
1: Extract random state sw from N (s) and evaluate Ew

2: Iterate until N (s) 6= ∅
a) Extract random s′w from N (s) and evaluate E′w
b) Verify Boltzman criterion between sw and s′w
c) Update T

3: Return sw to the Master

SPISA Algorithm Procedure
1: function SPISA(S, s0, T0,Ψ, kmax, rejmax, nw)
2: s← s0;T ← T0

3: E(s)← Eval(s)
4: while k ≤ kmax ∧ rej ≤ rejmax do
5: init Pool(N (s))
6: SpawnWorkers(nw)
7:
8: sw ← Pool(N (s)).pop();
9: Ew(sw) = Eval(sw)

10: while |Pool(N (s))| > 0 do
11: s′w = Pool(N (s)).pop()
12: E′w(s′w) = Eval(s′w)
13: ∆Ew = Ew(sw)− E′w(s′w)
14: if ∆Ew ≤ 0 ∨R(0, 1) ≤ e−∆Ew/T then
15: (sw, E(sw))← (s′w, E′w(s′w))
16: if ∆Ew ≤ 0 then
17: rej ← 0
18: end if
19: else
20: rej ← rej + 1
21: end if
22: T ← Ψ(T, k)
23: k ← k + 1
24: end while
25:
26: s′ ← sw : E(sw) = max(Êw)

27: E′(s′)← max(Êw)
28: ∆E = E(s)− E′(s′)
29: if ∆E ≤ 0 ∨R(0, 1) ≤ e−∆E/T then
30: (s, E(s))← (s′, E′(s′))
31: end if
32: end while
33: return s
34: end function

Then, nw workers are spawned. Line 8 to 24 are executed
in parallel by each of them. State s′w is evaluated and
then used with sw to verify the Boltzmann criterion. In case
∆Ew > 0 the number of subsequent rejected states rej is
increased. Otherwise, if ∆Ew ≤ 0, rej is reset to 0. In a
nutshell, if better energies are found, rej is reset. If not, it is
incremented.
Afterwards, in line 22-23, the temperature and step counter
are updated. It is important to notice that rej, T , and k are
shared variables between workers. This allows to maintain
the parallel flow as much as possible near to the sequential
one.
When the pool becomes empty, i.e., the neighborhood
exploration is terminated, the master takes control again.
At this point, the sw having maximum energy among nw

workers is chosen to be compared with best state s. Hence,
an additional verification of Boltzmann criterion is enforced
between s and sw.
SPISA keeps iterating until the number of maximum steps
kmax or the maximum subsequent rejected states rejmax

are not reached. The latter case would mean that SPISA
converged to an optimum before exhausting the number of
allowed steps.

The critical aspect of sequential SA, which makes difficult
its parallelization, is the exploration of the neighborhood
space. At every iteration, a new state contains specific
modifications — defined by the chosen neighborhood
structure — to the previous one. Therefore, in parallel
algorithms, it is important to guarantee that neighborhoods
explored by a i-th worker are also neighborhoods for
the other workers, and that they can be independently
analysed. The rationale behind SPISA is to build a limited
neighborhood space, in which all the elements are neighbor
between them, and leaving to workers the exploration of
states belonging to. At the end of their task, the master
compares solutions temporarily selected as optimal by
workers.
What is important in SPISA is the definition of
neighborhood and the independence analysis of its
elements. Let Pi be the i-th configuration parameter having
a varying number of values V , and NP the number of
possible parameters. A state s, at any point of the tuning
process, is composed of a combination of NP parameter
values. The space state S, instead, is the vector containing
all the possible combinations of the NP parameter values,

having size |S| =
NP∏
i=1
|Pi|. We say that s is neighbor of s′ if s

differs for at most two parameters from s′. Thus, we create
from s a space N (s) built with one-exchange parameters,
which is therefore a subset of the whole s neighborhood

space and has cardinality: |N | =
NP∑
i=1

(|Pi| − 1). It can be

proven that N (s) contains states, which at most differ for
two parameters. Therefore, the |N | states belonging toN (s)
are all neighborhood between them.

7 EVALUATION

A massive evaluation activity has been conducted on three
applications widely used in commercial solutions: we found
optimal configurations of sgx-musl using Memcached, Redis,
and Apache. The objective function (Ω) is the maximization
of throughput, and the Energy (E) refers to the number of
operations per unit time (Kops/s). We compared results
coming from the sequential variant (SEQSA) and the three
parallel SA algorithms described in section 6, i.e., SPISA,
MIR, and PRSA. In the rest of this section, we first introduce
the experimental testbed, then we present the baseline used
as a reference for results comparison, and finally we show
and discuss the outcomes of the experimental campaign
in terms of performance gain, parameters weight, and
convergence properties.

7.1 Testbed

The evaluation was realized with three Target applications
built with sgx-musl, i.e., Memcached, Redis, and Apache.
These represent two different typologies of distributed
client-server applications. The first two are in-memory
key/value storage systems with a multi-thread and
single-thread architecture, respectively. The third one is a
multi-threaded HTTP web server. Besides the Target, an
additional choice relates to the Benchmarking tools used
as Workload generator to be adopted for conducting the
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experiments. In this regard, we solicit Memcached, Redis,
and Apache with three widely-accepted benchmarking tools:
Memaslap1, Memtier 2, and WRK3.
Figure 3 shows the experimental set up. Each Target executes
on a separate physical SGX Node. This choice has been
driven by the need of having undisturbed performance
measurements. In fact, running nw parallel procedures on
a single multi-core machine means executing nw instances
of Memchached/Redis/Apache. This entails a significant
overhead causing altered measurements. Therefore, to
reduce interferences we decided to use nw different servers.

SA Solver (SPISA, MIR, SEQSA, PRSA)
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Fig. 3: Testbed used for the evaluation activity

The nw correspondent benchmarking tools, instead, run on a
single Manager-Workload Machine. In this case, the mutual
disturbance they generate between each other is negligible
as the server on which they run is highly performing.
The different microservices are deployed within Docker
containers and are clustered through Docker Swarm.

Three identical machines — having the Intel SGX
extension — have been employed. These are composed of
an Intel Xeon E3-1270 v5 CPU with 4 cores at 3.6 GHz, 8
hyper-threads (2 per core), and 8 MB cache. The server has
64 GB of memory and runs Ubuntu 14.04.4 LTS with Linux
kernel version 4.2. The Manager-Workload Node, instead,
has two 14-core Intel Xeon E5-2683 v3 CPUs at 2 GHz with
112 GB of RAM and Ubuntu 15.10. Each machine has a 10
Gb Ethernet NIC connected to a dedicated switch.

7.2 Baseline Configuration
The baseline configuration of sgx-musl — needed as a
reference for measuring the performance improvement of
Memcached, Redis, and Apache — was defined using our
detailed knowledge of internal mechanisms of sgx-musl
and on the results of preliminary micro-benchmarks.
More precisely, for each application we performed a set
of experiments using the two execution modes of SGX,
i.e., simulation and normal modes. In simulation mode,
the application uses untrusted and unprotected memory,
as opposed to EPC memory, which is confidentiality
and integrity protected by the hardware. Experiments

1. http://docs.libmemcached.org/bin/memaslap.html
2. https://github.com/RedisLabs/memtier benchmark
3. https://github.com/wg/wrk

performed using simulation mode allowed us to eliminate
the overhead caused by the memory protection mechanism
and assess performance of the sgx-musl syscall interface
in isolation. We manually performed experiments and
measured both throughput and latency to define satisfactory
values. We slightly modified the parameters and observed
how the new values affect the performance. This procedure
was repeated several times until a reasonably good
configuration was obtained.
Both Memcached and Apache are multi-threaded applications,
thus, according to the considerations made in section 4,
we initially chose to the number of ETHREADS to exactly
half of the number of Intel’s CPU hyper-cores (= 4).
The number of STHREADS was chosen to be multiple of
application-level threads (around 30). Redis, instead, is
single-threaded. Hence, in this case ETHREADS is set to 1,
while we kept STHREADS to the minimum as we noticed
better performance for such low values. We also observed
a good trend when ESPINS and ESLEEP are low for
single-threaded and high for multi-threaded software. This
seems reasonable as fewer threads should sleep less time.
The selected baseline values are presented below.

Baseline Parameters (Single/Multi)
ETHREADS=1/4 ESPINS=3,5k/4,8k ESLEEP=15k/18k
STHREADS=20/35 SSPINS=80/80 SSLEEP=3,4k/3,4k

7.3 Performance Gain
Overall, both Memcached and Apache built with sgx-musl
showed a substantial performance gain, when optimal
configurations produced by SGXTuner were used. Redis,
instead, reported a minor gain (see Figures 4). For
each parameter setting that the different stochastic
algorithms found, we report the overall throughput and
the per-request latency for increasing workloads. In fact,
we want to demonstrate that the benefit of SGXTuner
optimization to the sgx-musl overhead is significant for
both metrics, regardless of the selected objective function
(i.e., minimization/maximization of latency/throughput).
Memcached and Redis were solicited for 20s with [32, 512]
concurrent key/value requests characterized by 16 parallel
threads. Apache, instead, received for 20s [5, 50] HTTP
concurrent GET requests characterized by 8 parallel threads.
Both applications were evaluated 10 times and the results
averaged through a 25% trimmed mean, which produces
robust estimates. The reported graphs are normalized to
the best — meaning highest and lowest, respectively —
observed values of throughput and latency.

Regarding Memcached (Figure 4a), best results of
throughput are reached with SEQSA and SPISA parameters
using 512 concurrent requests, which also represent
the saturation point reached by Memcached with such
configurations. In fact, among the different top-right marks
reported in the graph for 512 requests, SEQSA and SPISA
are the rightmost and lowest ones. In such a case, SEQSA
provided a rate of 331k.ops/s and a latency of 1.52ms.
The throughput-latency performance gain of SPISA is of
11.05-12.13% with respect to the baseline configuration
defined by a domain expert, while it is of 45.41-39.36% if the
reference taken as baseline is a worse configuration, which
could be selected randomly by a non-expert user. The graph
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Fig. 4: Throughput vs Latency using SGXTuner optimal parameters

also demonstrates that even MIR and PRSA parameters
are able to improve the performance of the SGX-enabled
Memcached, even though the gain of throughput-latency
is slighter, e.g., 5.21%-4.46% using PRSA with respect to
the good Initial setting. Furthermore, unlike SEQSA and
SPISA, the saturation point with these two configurations
is reached at 320 concurrent requests, after which the
throughput decreases and therefore the trend line moves
towards the left direction.
For what concerns Apache (Figure 4b) a different behavior
was observed. First of all, we can notice larger differences
in terms of latency. In fact, the graph shows that markers
of the Inital baseline configuration are always quite higher
than markers of the configurations found by SGXTuner. For
all of them, the saturation point is the same, i.e., 40 HTTP
concurrent GET requests sent to the web server. After that
value, the throughput tends to decrease as demonstrated
in the graph from all lines going towards the left direction.
The best outcomes were obtained when configurations
found by SGXTuner with MIR and SPISA are used. In
the case of MIR, the gain in terms of throughput-latency
is of 14.31% − 37.14% with respect to the good Initial
configuration, while it is of 38.77% − 51.25% compared to
a random configuration of sgx-musl. It must be noticed that
the improvement in terms of throughput is lower than the
one obtained for latencies but it is still significant. SPISA
instead yielded performance results, which represent a
gain of 9.79%-23.28% with respect to good and random
baselines 27.47-35.91%.
Redis, instead, reported a slighter performance
enhancement, which in the best case (i.e., MIR) ranges
from ≈ 7%-5% to ≈ 13%-10%. As shown in Figure 4c,
differences in graphs’ trends are much less evident than in
previous cases. This leads us to assume that applications
with single-threaded architectures have narrower margins
of improvement.
Outcomes obtained during this experimental evaluation
demonstrate that our approach is always useful to
reduce the overhead introduced on Target applications
by system-level SGX solutions. Regardless of the chosen
stochastic algorithm, there is always an improvement of
both throughput and latency. We noticed that the specific
choice on the objective function does not influence the
improvement of the particular metric. Rather, in some cases
(e.g., Apache) even if the maximization of throughput was
selected in SGXTuner, better latencies were observed.

7.4 Convergence of SGXTuner

In this subsection, we analyze the way SGXTuner converges
to the final optimal solution as time grows. Figures 5 and
6 report the smoothed trend of Target’s throughput (or
Energy) for increasing exploration time, when parameters
temporarily selected as optimal are used. For simplicity, we
only show the trend of Memcached and Apache.
In general, we can immediately notice that the time required
to reach the optimal sgx-musl parameters was very short
compared to the time needed to test the whole subspace
of configurations presented in section 4. The sequential SA
(SEQSA) took more time (≈ 28Hrs for Memcached and
≈ 22Hrs for Apache) than the parallel heuristics. The
speed-up of using three SGX Nodes was mainly linear
(2.97 to the best) and super-linear in only few cases (e.g.,
3.15 during the SPISA run for Memcached). A separate
discussion is needed for MIR. This, in fact, has a time of
completion similar to SEQSA. This is not surprising since
MIR spawns multiple independent sequential SA jobs, and
the tuning process time depends on the slowest worker.
Therefore, in terms of absolute time MIR spends an amount
of time near to the sequential one. However, the usage
of nw parallel workers has the potential of finding better
performing solutions with the same number of tuning steps.
This is due to the higher heterogeneity of the state space
searched by the parallel jobs. The PRSA algorithm, instead,
was more time-consuming (≈ 12Hrs) than SPISA. This was
expected as PRSA — unlike SPISA and MIR — alters the
native SA algorithm, which entails different convergence
properties.
As expected, SGXTuner starts selecting bad configurations
with low throughput and shrink to better solutions after
≈ 1/3 of execution time. In fact, SA has a significant
probability of accepting a downhill move during the early
steps. It is worth to observe that, in a few cases (e.g., Fig. 5a),
optimal parameters yielded at the end of tuning activities
have a throughput, which is lower than others obtained
during the state space exploration. This in principle should
not happen as SGXTuner is meant to find the global
optimum. However, it is not surprising since we set the
SA settings (i.e., initial temperature T0, the cooling strategy,
and the termination criterion) with the goal of finding the
best trade-off between the quality of the solution and the
convergence time. It is the consequence of the stochastic
nature of SA, where randomness is involved. Ideally, in
larger time windows, with high temperatures, an extremely
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Fig. 5: Memcached - Throughput of configurations selected as optimal - SEQSA (5a), SPISA (5b), MIR (5c), and PRSA (5d).
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Fig. 6: Apache - Throughput of configurations selected as optimal - SEQSA (6a), SPISA (6b), MIR (6c), and PRSA (6d).

Parameters SEQSA SPISA PRSA MIR
M R A M R A M R A M R A

STHREADS 60 40 45 50 70 50 50 25 50 55 65 50
ETHREADS 4 1 3 3 1 3 4 1 3 3 1 3
SSLEEP 4k 4k 3,3k 3,7k 4k 3,9k 3,5k 3,8k 3,2k 3,3k 4k 3,7k
ESLEEP 16k 18k 17k 16k 18k 16k 17k 20k 16k 16k 19k 18k
SSPINS 90 110 140 120 100 130 100 100 130 140 110 120
ESPINS 4,6k 5,6 5,2K 4,6k 5,6 5,1k 4,5k 5,6 4,9k 4,3k 5,4 5,2k

TABLE 2: Parameters of Memcached (M), Redis (R), Apache (A)

slow temperature cooling, and a favorable termination
criterion, this behavior should not occur. We believe that
sacrificing the convergence properties to obtain lower
execution time is acceptable for the type of optimization
problems managed by SGXTuner.

7.5 Parameters Analysis and Hints

Table 2 reports the optimal sgx-musl parameters, which were
obtained for the three applications tuned with the different
stochastic algorithms. Results confirm that SGXTuner has
global exploration abilities. In fact, for each specific Target,
the combination of parameters’ values are very similar
between each other. There are only small-scale variations,
which we think are caused by the intrinsic variance in Target
software performance. Slightly different configurations have
a limited impact on applications’ throughput. We can notice
that the optimal configuration of sgx-musl depends on the
type Target application. In fact, SGXTuner produced different
solutions for Memcached, Redis, and Apache.
Regarding Memcached and Apache, we can notice that
SSLEEP and SSPINS are in a larger range of values.
This could lead to suppose that these parameters should
not affect the overall performance. However, we can

observe that high values of SSPINS entail low values of
SSLEEP, and vice-versa. Thus, their combined configuration
should be of significance. Contrariwise, the ETHREADS and
STHREADS parameters reported very similar values for
the two multi-threaded applications. Regarding Redis, a
remarkable observation is that our assumptions of using
low values for STHREADS was wrong as all the optimal
parameters produced by the different algorithms are much
higher (≈ 70). While, for all the SA algorithms, ETHREADS
is equal to 1, as expected. Unexpectedly, we obtained
higher values of ESPINS and ESLEEP when used in
single-threaded software.
To better understand the impact of each parameter on
the overall performance, we performed a feature selection
for regression using the dataset of optimal solutions
obtained from the search space exploration made by
SGXTuner. Parameters’ weights are learned by a diagonal
adaptation of Neighborhood Component Analysis (NCA)
with regularization. Figure 7 shows the classification for the
three Target applications. Parameters used in Single- and
Multi- threaded software have different weights. Results
shows that SSLEEP and SSPINS have lower weight when
used with multi-threaded applications. The bar graph also
shows that ESLEEP and ESPINS have significant impact
on Memcached and Apache performance while they have
less weight in the case of Redis. Moreover, ETHREADS has
the highest impact when used with the single-threaded
Redis. In fact, using values 6= 1 could drastically reduce
the throughput. Finally, STHREADS resulted in the most
important parameter for Apache’s performance.



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 13

ETHREADS

STHREADS

ESPINS

SSPINS

ESLE
EP

SSLE
EP

0

5

10

15

20

W
ei

gh
t o

f P
ar

am
et

er
s

Apache
Redis
Memcached

Fig. 7: Weights of parameters

8 RELATED WORK

To the best of our knowledge, there are no research
works proposing a generic approach for performance
improvement of system-level solutions enabling transparent
SGX support. Stochastic optimization is adopted in a
number of engineering fields for parameters tuning, but
not for the type of problems covered in this work. Three
investigations are close to our paper. On a more generic
level, Zhong et al. [26] proposed a tool called AcovSA, which
finds optimized compiler options with SA to improve the
performance of applications compiled with GCC. Authors
tuned ≈ 60 GCC options belonging to the four levels of
OOS, i.e., O1, O2, O3. Experimental results showed the
efficiency and effectiveness of the proposed tuning tool.
In this work, compiler-related parameters represent only
a subset of those that could be taken into account by
SGXTuner. Zhao et al. [27] made a basic evaluation of
SGX runtime performance by identifying the sources of
overhead when different execution modes and parameters
are used. Authors compared the performance of the most
important libc functions when executed inside and outside
the enclave. SGXTuner — unlike this paper — is a solution
that supports the performance enhancement. Finally, even
Weichbrodt et al. [28] identified critical overhead factors
of SGX via a tool called sgx-perf, whose main goal is
to obtain a fined-grained profiling of performance events
in enclaves. Authors propose also a way for optimizing
the enclave performance which produced a low increase
(≈ 2%). SGXTuner — unlike sgx-perf — provides a targeted
solution for system-level SGX approaches, the most used
ones by research and industrial communities. Moreover,
SGXTuner reported higher performance improvement.

9 CONCLUDING REMARKS

This paper provides a valuable contribution to Intel
SGX ecosystems. It demonstrates the effectiveness of
a general approach to optimize the performance of
applications secured with the current state-of-the-art of
system-level solutions for transparent SGX support, whose
key feature is the use of a SGX-extended libc library. We
proposed SGXTuner, a convenient solution for reducing
the configuration time of SGX-extended libc libraries,
which are tunable with many parameters essential for
the overall performance. SGXTuner does so by availing
itself of stochastic optimization. A thorough experimental

campaign was conducted on a particular implementation of
SGXTuner using sequential and parallel variants of Simulated
Annealing.
The tool found settings of sgx-musl, which enabled
high-performance of the SGX-extended libc library. This
directly impacts a large fraction of applications using
SGX transparent support, since libc is at the base of
the widely-accepted SCONE and SGX-LKL system-level
approaches. Three commercial web applications — i.e.,
Memcached, Redis, and Apache — were used for the
experimental evaluation. Among different SA algorithms,
the parallel SPISA scheme reported the best trade off
between rate of convergence and performance results.
The outcomes of our experiments corroborate the
contribution of this work. It was proved that SGXTuner
is able to significantly improve the performance of
applications secured with system-level SGX solutions.
Multi-threaded software such as Memcached and Apache
reported substantial gain, while single-threaded ones
such as Redis showed a slighter improvement. It was
demonstrated that SGXTuner can support the identification
of parameter combinations that would not have been
visible with manual tuning. We showed that some of
the assumptions we made during initial tests turned
out to be wrong. We analyzed parameters’ weight
for each type of application. We discovered that
some combinations of parameters are important for
single-threaded software, while others have more impact
when used for multi-threaded applications. The statistical
analysis conducted on the optimal parameters dataset
obtained by SGXTuner showed that the performance of
the single-threaded Redis is more dependent on the values
of ETHREADS, STHREADS, and SSPINS. While, for the
multi-threaded Memcached and Apache, STHREADS, ESLEEP
and ESPINS have higher impact.

In practical terms, the findings of this paper come
handy to the large community of SGX users/developers.
They can tune any of the different available system-level
SGX solutions to harden their application of interest while
also ensuring high levels of performance. The community
could adopt the proposed method, or the SGXTuner tool
itself, which moreover is open source on GitHub4. They
could leverage findings from the parameters analysis to set
much better initial configurations or use them as definitive
ones, especially if the application is single-threaded thus
it has fewer margins for improvement. We explicitly
emphasize that even larger improvements can be achieved
by simply extending our approach to application-related
or compiler-related parameters (discussed in Section 3).
This can be done by including these parameters in the
tuning process. The potential improvement is particularly
significant in the case of single-threaded applications, where
parameters external to the enclave have been demonstrated
to have a direct impact on performance. In our experimental
activities we considered those related to the specific
SGX-extended libc library (i.e., sgx-musl), and the gain of
throughput-latency has been significant: 11-12%, 14-37%,
7%-5% for Memcached, Apache, and Redis, respectively.

4. https://github.com/dzobbe/sgxtuner
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