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A B S T R A C T   

Pavement-surface characteristics should be considered during road maintenance for safe and comfortable 
driving. A detailed and up-to-date report of road-pavement network conditions is required to optimize a 
maintenance plan. However, manual road inspection methods, such as periodic visual surveys, are time- 
consuming and expensive. A common technology used to address this issue is SmartRoadSense, a collabora-
tive system for the automatic detection of road-surface characteristics using Global Positioning System receivers 
and triaxial accelerometers contained in mobile devices. In this study, the results of the SmartRoadSense surveys 
conducted on Provincial Road 2 (SP2) in Salerno, Italy, were compared with the Distress Cadastre data for the 
same province and the pavement condition indices of different sections of the SP2. Although the effectiveness of 
the crowdsensing-based SmartRoadSense was found to vary with the distress type, the system was confirmed to 
be very efficient for monitoring the most critical road failures.   

1. Introduction 

Since the late 1950s, several studies have demonstrated the influence 
of road-pavement surface conditions on driving safety and comfort. 
However, maintenance of such surfaces involves both direct costs (i.e., 
infrastructure maintenance) and indirect costs (i.e., services). 
Conversely, poorly maintained roads increase the fuel consumption and 
emissions of vehicles and adversely affect their suspension systems [1] 
and other mechanical components [2-4]. Different methods and tech-
nologies have recently been developed for the accurate measurement of 
road-surface characteristics, such as 3D texture morphologies [5] and 
smartphone-based near-infrared (NIR) molecular sensors [6], with the 
latter affording advanced characterization of asphalt concrete. 

Various studies have also been conducted for the automatic detection 
of specific road anomalies. For example, Wong [7] modeled the vertical 
profile of a road surface using impulsive functions, triangular waves, and 
sinusoidal signals. Gillespie [8] also modeled the vertical profiles of a 
road surfaces as sums of randomly generated sinusoidal signals and 
showed that the spectral power density of a road surface had a low-pass 
characteristic that decreased with increasing spatial frequency. Other 
stochastic models having low-pass characteristics have been used to 

describe the randomness of road profiles measured by non- 
homogeneous Gaussian processes [9]. 

Studies have also been conducted on the use of autonomous accel-
erometers and accelerometers incorporated in mobile devices for the 
detection and georeferencing of bumps, potholes, and other isolated 
road-surface anomalies. For example, an independent accelerometer 
was used to assess road surface conditions in a prior study [10]. Eriksson 
et al. [11] used one with a sampling frequency of 380 Hz (higher than 
the ones found in most current mobile devices) to detect potholes and 
bumps from moving vehicles. Some components of the latest models of 
mobile communication devices, such as accelerometers, microphones, 
Global System for Mobile communications radios, and Global Posi-
tioning System (GPS) receivers, have also been used to analyze road- 
surface conditions and traffic [12]. Data acquired by smartphone sen-
sors have likewise been used to detect potholes, bumps, vehicle braking, 
and horn sounds. Chen et al. [13] proposed a crowdsourcing-based 
surface monitoring system that could detect potholes and assess road 
roughness by means of temporary hardware installed on 100 taxi vehi-
cles in Shenzhen. A Gaussian mixture model was used to evaluate the 
international roughness index (IRI) via statistical calculation. 

Yi et al. [14] used mobile-device accelerometers to investigate road 
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anomalies, classifying them as artificial deceleration bumps, manholes, 
and deceleration stripe potholes. The vertical component of acceleration 
was calculated by averaging the acceleration caused by gravity. The 
oscillations of this vertical component of acceleration, caused by 
anomalies, were modeled using an oscillatory system without damping. 
The events were determined by comparing the vertical component of the 
acceleration with its normal standard deviation. 

In some recent studies [15-18], data acquired by mobile-device ac-
celerometers were used to formulate a roughness index for character-
izing the conditions of a road surface. The SmartRoadSense system [18] 
has been in use since 2013, and it is currently active in Italy, the UK, 
Romania, Greece, and Portugal. An outline of the system is provided as 
follows:  

• Mathematical models based on predictive algorithms are used to 
process data acquired by an accelerometer with GPS.  

• A mobile-resident application transmits the road-roughness data to a 
central server. 

• A server-side application receives, aggregates, and periodically up-
dates the incoming data.  

• Numerical data are released in an open format for road mapping and 
easy viewing. 

The accelerometer data are divided into 1-s windows, and, for each, a 
linear predictive coding (LPC) analysis is conducted on the signals to 
remove all predictable components. The signal components that vary 
slowly or periodically include acceleration caused by gravity, vehicle 
acceleration, centrifugal acceleration, rolling, pitching, yawing, and 
engine vibrations. The prediction residue of the LPC analysis retains the 
unpredictable acceleration components, which are mostly associated 
with the effects of the road surface on vehicle tires and suspension. The 
power of the prediction residue is then determined and used to estimate the 
road roughness index. The GPS coordinates, vehicle speed, and deter-
mined road roughness index are periodically transmitted to a remote 
data server. The data acquired from different mobile devices are 
aggregated with consideration of their different sensitivities [19]. The 
overall data are then stored in a geographical information system (GIS) 
that maps the weighted-average data for a given road. 

The SmartRoadSense application became fully operational on 
February 21, 2015. By December 31, 2015, it had covered 24,664.4 km 
(5.06%) of the Italian road network. The application database currently 
contains>3,000,000 road roughness indices. 

In a study conducted after the rollout of SmartRoadSense [20], an 
independent accelerometer connected to a laptop was used to acquire 
data, which was then analyzed in a laboratory. The analysis was largely 
based on the power of vertical acceleration, as proposed by Alessandroni 
et al. [18]. In another recent study [21], the unevenness of an unpaved 
road was evaluated based on the power spectral density (PSD) of the 
road-surface profile as measured by a stereoscopic camera. 

The pavement condition index (PCI) is used to quantify the pavement 
conditions of roads and parking lots through visual inspection. It was 
developed by the U.S. Army Corps of Engineers [22,23] as a numerical 
indicator of the surface condition of asphalt and concrete pavements 
with a value range of 0–100. The PCI does not reflect structural capacity, 
nor does it provide direct indications of skid resistance and roughness. 
However, it affords an objective basis for determining maintenance and 
repair requirements and priorities. Many studies on PCI and its appli-
cation have been conducted. For example, Sharaf et al. [24] presented a 
procedure for determining the best maintenance and repair alternatives 
at the road-network level and related costs for different pavement cat-
egories and PCI ranges. Shahnazari et al. [25] also developed an alter-
native approach for forecasting PCI using optimization techniques that 
included artificial neural networks and genetic programming. In [26], 
an overall PCI (OPCI) for urban road networks was presented. Four in-
dividual performance indices were defined (i.e., distress index (PCIDi-
stress), roughness index (PCIRoughness), structural-capacity index 

(PCIStructure), and skid-resistance index (PCISkid)), which were combined 
to derive the OPCI. 

In addition to existing consolidated technical methods, some Italian 
administrations have developed their own registers of pavement road 
deterioration that use subjective discriminations of types and intensities 
of distress based on visual inspection with manual thickness and length 
measurements. 

The purpose of the present study is to evaluate the effectiveness of 
recent mobile technologies for detecting different types of road 
pavement-surface distresses. Open data available on the crowdsensing- 
based SmartRoadSense system are compared with the results of two 
visual methods. The reference field is the asphalt–concrete pavement of 
Provincial Road 2 (SP2) in Salerno, Italy. The first comparison uses data 
recorded in the Distress Cadastre of the Province of Salerno. This 
Cadastre is a subjective registry established by the administrators of the 
Province. The second comparison uses the PCIs of SP2 sections as 
recorded by the present authors. Specifically, SmartRoadSense provides 
a roughness index more comparable to other surface characteristics 
indices (e.g., friction, IRI, and macro-/micro-textures) used in the 
practice of road-pavement analysis, whereas Cadastre and the PCI 
method provide global status indices. Comparisons are then made be-
tween the SmartRoadSense index and the Cadastre + PCI indices. The 
objective is to determine whether any of the currently used advanced 
monitoring technologies, known to be economically attractive, can be 
effectively used to replace visual road inspections for the detection of all 
types of pavement-surface distresses. 

2. Materials and methods 

Highway SP2 in Salerno, Italy is the focus of this study. The highway 
extends over 21.6 km, connecting highway SP3 with highway SS163 
(Fig. 1). It is divided into two branches: SP2a (11.6 km) and SP2b (10.0 
km). 

Previous studies have reported the poor asphalt maintenance of the 
SP2. There are widespread distresses in the upper surface layer, 
including cracking, patching, potholes, rutting, and raveling. The un-
derlying layers also contain distresses, such as depressions, bumps, and 

Fig. 1. Highway SP2.  
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sags [27]. 

2.1. Data collection and SmartRoadSense data 

The sensitivity and sampling frequencies of current smartphone ac-
celerometers are about 100–300 Hz, which enable the detection of vi-
brations transmitted from the road superstructure to a vehicle. Each 
mobile device connected to the SmartRoadSense system is mounted on a 
rigid support inside a car. Analysis of the signals acquired by the 
accelerometer and GPS navigator enables the location and classification 
of road-surface anomalies that cause various types of vibrations. The 
computing and communication power of current mobile devices facili-
tate real-time processing of the acquired data within the device itself. 
During processing, the condition of the road surface is described using a 
roughness index, and the georeferenced data is transmitted to a server. 
The roughness values are then averaged and weighted over time and 
space, stored in a GIS, and released in an open format. 

The SmartRoadSense mobile application leverages the power of the 
prediction residue of an autoregressive model. Basically, when the road 
surface is uniform, the accelerations detected by the mobile device are of 
the same nature and are predictable. The power of the prediction residue 
increases with increasing surface roughness, and when an anomaly is 
encountered on the road, the power of the prediction residue increases. 
The average power is used to estimate the road roughness index. 

Gillespie [8] showed that the typical PSD of the vertical profile of a 
road surface had a low-pass characteristic that decreased with 
increasing spatial frequency. Hence, the road surface could be described 
using white Gaussian noise (WGN) filtered through a first-order low-pass 
filter. In the frequency domain, the WGN is a constant determined by the 
power of the noise itself. The first-order low-pass filter introduces a pole. 
The statistical properties of the road surface are determined from the 
spectral power of the WGN and the pole of the low-pass filter. The PSD of 
the vertical profile of the road surface in the spatial domain, Srr(jΛ), is 
given by 

Srr(jΛ) = Sww(jΛ)|H(jΛ) |2 = q
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correlation function of the WGN, expressed as ρww = qδ(Λ), q is the 
amplitude of the PSD, δ(Λ) is the delta function of Dirac, Λ is the spatial 
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is the first-order low- 

pass filter with pole p. 
The properties of the vertical profile of the road surface can be fully 

statistically characterized when the parameters, q and p, are known. The 
PSD of the vertical profile in the time domain, Srr(jΩ), can be expressed 
as 
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where Ω is the angular frequency in radians per second, and v is the 
vehicle speed [7]. The PSD of the vertical acceleration of a material 
point that travels along the vertical profile of a road surface at a constant 
speed, v [18], is given by 
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When the material point matches an anomaly on the road surface, 
the power of the prediction residue of the vertical acceleration increases. 
However, the acceleration perceived by the mobile device inside the 
vehicle is not equal to that at the tire–pavement interface. The latter is 

filtered by the mechanical couplings between the tires and suspensions 
of the vehicle before reaching the mobile device. The objective is to 
relate the power detected by the accelerometer of the mobile device with 
the acceleration at the tire–pavement interface. This can be achieved by 
balancing the forces according to the quarter-car model [28,29] for a 
single suspension: 
[
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where M is the sprung mass, m is the unsprung mass, Z is the 
displacement of the sprung mass, Zu is the displacement of the unsprung 
mass, Zr is the displacement of the road surface, Cs is the suspension 
damping constant, Ks is the suspension stiffness, Kt is the tire stiffness, 
and Ż, Żu, Z̈, and Z̈u are respectively the first and second derivatives of 
the sprung and unsprung mass displacements with respect to time. The 
transfer function between the acceleration at the tire–pavement inter-
face and the residual acceleration inside the vehicle, Z̈/Z̈r, in the fre-
quency domain is 
Z̈(jΩ)

Z̈r(jΩ)
=

DjΩ + 1

A(jΩ)4 + B(jΩ)3 + C(jΩ)2 + DjΩ + 1
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Several values of Ks, Kc, Cs, M, and m have been suggested [8,30-35] 
for the determination of A, B, C, and D and the calculation of the fre-
quency response, Z̈(jΩ)

Z̈r(jΩ)
, of the quarter car model of Eq. (4). 

Finally, the power of vertical acceleration measured by the acceler-
ometer placed inside the vehicle [18] is given by 

P(v) =
1

2π

∫ +∞
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(jΩ)|S(jΩ) |2dΩ (6) 

where SAyAy(jΩ) is the PSD of the vertical acceleration measured on 
the road surface, calculated using Eq. (3), which depends on the speed, v. 
S(jΩ) is the frequency response of the suspensions given by Eq. (4). In its 
expanded form, 
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After the powers of the prediction residue have been calculated for 

the different components of the acceleration (i.e., PPEx, PPEy, and PPez), 
the average value (i.e., the average of the contributions of all the ac-
celeration components) can be determined as 
PPE = PPEx + PPEy + PPEz (8) 

Equation (8) represents the road-surface roughness. The roughness 
index is obtained by applying a 10th-order moving average to PPE. 

When setting up the mobile application, the user configures the 
vehicle type (e.g., motorcycle, car, or truck) and mounting position (e.g., 
non-slip pad on the dashboard, dashboard phone mount, or pocket/ 
other). Additionally, an accelerometric sensor calibration procedure is 
applied by keeping the smartphone in the hand as firmly as possible. 

The issue of the orientation of the devices inside the vehicles can be 
looked at from two different approaches [36,37]. The first approach 
involves the preprocessing of the collected data, which aims to reorient 
the sensor data values from a device coordinate system to a local-level 
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coordinate system using Euler angles. The second approach involves an 
orientation-independent featured, because the magnitude of the sensor 
data values on all three axes (see Eq. (8)) is considered instead of their 
individual values on three separate axes. It must also be noted that the 
mounting position of the device (non-slip pad on the dashboard, dash-
board phone mount, or pocket/other) affects the detection rates per-
formance [14,38,39]. 

The SmartRoadSense mobile application accesses the user’s 
geographical location by GPS. It uses the device accelerometer to esti-
mate the vehicle’s acceleration. Recorded data are timestamped, and the 
model name, manufacturer name, and other general technical metadata 
are provided by the device. Data are processed on the device before 
transmission of coarse data. Unique identifiers of recording sessions and 
other sensitive data are never transmitted to the online service, but are 
kept on the device. All data collected by SmartRoadSense are released in 
an aggregate form as open data under the Open Database License 
(http://opendatacommons.org/licenses/odbl/1.0/). The road-surface 
irregularity data are provided as data points. Each roughness value 
represents a 20-m section of the road and is the average of all obser-
vations from users of that section. In addition to the information on the 
degree of roughness, each row of the dataset contains geographic and 
accessory information. The columns of the table represent the following:  

• Latitude: The WGS84 latitude coordinate at the middle of the section 
corresponding to the measured roughness.  

• Longitude: The WGS84 longitude coordinate at the middle of the 
section corresponding to the measured roughness.  

• PPE: The average roughness value of the road section.  
• Osm_ID: Road identification.  
• Highway: Road category.  

• Updated_at: Time of the latest update. 

The aggregation process is performed every 6 hrs by means of all new 
individual user contributions. The main effect of crowdsourcing is that 
the aggregated roughness data points are computed considering con-
tributions from all. 

We used the dataset available online on April 29, 2019, in the form of 
an open_data.csv file consisting of 3,198,743 records (see Table 1). Fig. 2 
shows a map of the aggregated road-quality measures on SP2, with PPE 
divided into six levels (0.0–0.3, 0.3–0.5, 0.5–0.7, 0.7–1.0, 1.0–1.7, and 
> 1.7), where 0.0–0.3 indicates good quality, and > 0.7 indicates the 
presence of potholes and deep distresses. © SmartRoadSense. 
© OpenStreetMap. 

2.2. Data collection and distress Cadastre of Province of Salerno data 

Data were collected by the Traffic and Transport Office’s technicians 
of the Province of Salerno through in situ surveys. The technicians 
particularly focused on the following five types of road distresses. 

2.2.1. Potholes 
These are circular holes that may reach the deepest layers of the 

pavement. They often originate from crocodile skin-cracks, general 
cracks, or pavement breakthroughs that result in break ups and material 
removal (Fig. 3a). The classification of their geometric characteristics is 
based on thickness (t ≤ 3 cm or t > 3 cm) and width/length (e < 20 cm, 
20 cm ≤ e ≤ 40 cm, or e > 40 cm). 

2.2.2. Raveling/slippage cracking with detachment 
This involves detachment of the wearing course from the underlying 

layers with the surface of the bottom layer clearly visible. The detach-
ment involves only the wearing layer (Fig. 3b). The classification of the 
geometric characteristics is based on the thickness (t ≤ 3 cm or t > 3 cm) 
and width/length (e < 1.5 m, 1.5 m ≤ e ≤ 3.0 m, or e > 3.0 m). 

2.2.3. Depressions 
These are depressions of irregular or elliptical shape with extensions 

of a few meters to>20 m. There is possible cracking of the boundary 
areas (Fig. 3c). The classification of the geometric characteristics is 
based on the thickness (e.g., skin-deep or deep) and width/length (e <
1.5 m, 1.5 m ≤ e ≤ 3.0 m, or e > 3.0 m). 

2.2.4. Distresses caused by local underground utilities 
Hollows may appear because of improper installation of local un-

derground utilities, possibly with cracks on their edges (Fig. 3d). The 
classification of the geometric characteristics is based on the thickness (t 
≤ 3 cm or t > 3 cm) and width/length (e < 20 cm, 20 cm ≤ e ≤ 40 cm, e 
> 40 cm). 

2.2.5. Rutting/distress caused by linear underground utilities 
This is caused by the strain of the superstructure on the vehicle 

wheels, with lateral reflux of the pavement material. The depth of strain 
extends to the bituminous conglomerate layers or deeper to the foun-
dation and the subgrade (Fig. 3e). Hollows may appear because of 

Fig. 2. SP2 quality map obtained from SmartRoadSense.  

Table 1 
Excerpt from a SmartRoadSense dataset.   

Latitude Longitude PPE Osm_ID Highway Updated_at 
1 45.47775 9.631453 0.05414 1.25E + 08 Primary 2015–11-14 18:02:23.310118 
2 37.79954 12.42993 0.04048 71,174,815 Unclassified 2015–05-29 00:04:04.397805 
3 45.47773 9.6312 0.0498 1.25E + 08 Primary 2015–11-14 18:02:23.310118 
… … … … … … … 

1,048,574 40.43489 16.83697 0.050205 2.34E + 08 Tertiary 2015–08-06 18:08:55.344815 
1,048,575 40.43473 16.83683 0.04755 2.34E + 08 Tertiary 2015–08-06 18:08:55.344815 
1,048,576 40.43454 16.83673 0.04124 2.34E + 08 Tertiary 2015–08-06 18:08:55.344815 
… … … … … … …  
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improper restoration after the installation or repair of linear under-
ground utilities, possibly with cracks on their edges (Fig. 3f). The clas-
sification of the geometric characteristics is based on the thickness (t ≤ 3 
cm, t > 3 cm) and width/length (e < 5 m, 5 m ≤ e ≤ 20 m, or e > 20 m). 

The acquired data are recorded on survey sheets (Fig. 4) with the 
following weights assigned to the thickness and extension of the distress:  

• weightSKIN-DEEP THICKNESS = 1  
• weightDEEP THICKNESS = 2  
• weightSMALL EXTENSION = 1  
• weightMEDIUM EXTENSION = 3  
• weightLARGE EXTENSION = 5 

The relative severity of each distress, S, is evaluated as S =

weightthickness × weightextension. 
The relative severities are then categorized into three severity 

classes:  

• S ≤ 2 → low severity = 5;  
• S = 3 → medium severity = 10;  
• S ≥ 4 → high severity = 25. 

Fig. 5 shows the severity classification of the pothole-type distresses 
with varying thicknesses and extensions. 

Relative weights are assigned based on the geometric characteristics 
of the road in the sections where the distresses are detected, as follows:  

• Curved = 15; 

Fig. 3. Types of road distresses: a) pothole, b) raveling, c) depression, d) distress caused by local utility, e) rutting, and f) distress caused by linear utility.  
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• Mixed = 10;  
• Straight = 5. 

An additional relative weight is assigned for when the distress co-
incides with a major civil-engineering construction:  

• Viaduct or tunnel = 10. 

The total weight (TW) of a distress is within 0–50. Table 2 shows an 
excerpt from the dataset last updated on December 4, 2018, consisting of 
201 georeferenced WGS84 records. Fig. 6 shows a map of the same data 
divided into three criticality classes (low: 0–15, medium: 16–30, and 
high 31–50). 

2.3. Data collection and pavement condition index data 

The PCI is used to quantify both the structural and functional char-
acteristics of a surveyed pavement without directly measuring the 
structural capacity, roughness, or skid resistance. The acquisition of data 
on the various types of distresses enables timely identification of the 
main rehabilitation requirements and the development of an optimal 
maintenance process (Fig. 7). 

The infrastructure is first divided into several utility branches, and 
each branch is then divided into sections based on the pavement design, 
maintenance history, and condition. The PCI procedure is well docu-
mented in the ASTM Standard [27]. In the present study, for road 
pavements having a bituminous conglomerate surface, we focus on all 
20 possible types of distresses (see Table 3). 

We inspected the study area between January 12 and April 24, 2019, 
measuring the observed distresses. We specifically considered the 6.5-m 
wide central strip of the road. 12 sections were identified and geore-
ferenced at their start and end points (In Fig. 8, each point represents the 
end of a section and the start of the next). Each section of the considered 
strip was divided into 35-m long sample units, resulting in 23–82 sample 
units per section, 10–14 of which were inspected (Table 4). 

Fig. 4. Survey sheet for the Distress Cadastre of Province of Salerno.  

Fig. 5. Potholes severity classes.  
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3. Data analysis 

3.1. Comparison of SmartRoadSense and distress Cadastre of Province of 
Salerno data 

The SmartRoadSense system performs continuous sampling along 
the entire stretch of road, with the sampling aggregated every 20 m. 

Conversely, the Distress Cadastre of Province of Salerno contains the 
points where operators find distresses. In total, 849 points were aggre-
gated by SmartRoadSense along the SP2: one every 25.44 m on average. 
201 distresses were recorded in the Cadastre by the operators: one every 
107.5 m on average. To compare the SmartRoadSense data with that of 
the Distress Cadastre, we first matched the respective points at distances 
of ≤ 5 m, assuming that the points had a high probability of referring to 
the same distress. The maximum distance of 5 m takes into account the 
precision errors in the WGS84 coordinates, including the Smar-
tRoadSense coordinates at which a vehicle senses the beginning of a 
distress (based on its front wheels) and the end of the distress (based on 
its rear wheels), and the Distress Cadastre coordinates at which an 
operator finds an extensive spatial distress. The threshold distance for 
attributing a pair of points to the same distress depends on many vari-
ables (e.g., different vehicles, GPS frequencies and accuracy). Owing to 
the probabilistic character of such an attribution, the authors proceeded 
to set a first-attempt threshold at 5 m. The following equation was used 
for the matching procedure, performed using geographical information 
or a common spreadsheet: 
dist = arccos(cos(rad(90

◦

− lat1
◦

)) × cos(rad(90
◦

− lat2
◦

))+ sen(rad(90
◦

− lat1
◦

) × sen(rad(90
◦

− lat2
◦

)) × cos(rad(lon1
◦

− lon2
◦

))) × 6, 371

× 1, 000

(9) 
where lat1 is the latitude of the first point (dd), lat2 is the latitude of 

the second point (dd), lon1 is the longitude of the first point (dd), lon2 is 
the longitude of the second point (dd), and 6,371 is the average radius of 
the Earth in kilometers. The procedure returned 70 pairs of Smar-
tRoadSense–Cadastre points, five of which are presented in Table 5. 
Fig. 9 shows a map of the same points along the SP2, where the blue and 
red points respectively correspond to SmartRoadSense and Distress 
Cadastre data. The degree of matching of the Cadastre points with those 
of the SmartRoadSense was 34.8% (70/201 = 0.348). Increasing the 
distance threshold beyond 5 m would lead to a matching degree of 100% 
(201/201 = 1) but with a lower probabilistic significance. 

The six PPE levels (0.0–0.3, 0.3–0.5, 0.5–0.7, 0.7–1.0, 1.0–1.7, >1.7) 
were regrouped into three classes (0.0–0.49, 0.50–0.99, and > 1.00) for 
comparison with the three criticality classes of Distress Cadastre (low: 
0–15, medium 16–30, and high 31–50), as shown in the frequency his-
tograms of Fig. 10. 

Both histograms indicate lower frequencies in the low-criticality 
field and considerably higher frequencies in the medium- and high- 
criticality fields. The set of 70 pairs of matched points reflects a TW 
range for Distress Cadastre of TW ∊ [minTW = 10, maxTW = 40] and a PPE 
range for SmartRoadSense of PPE ∊ [minPPE = 0.09366868, maxPPE =
2.27316758]. Because the scales of TW and PPE differ, the values be-
tween their respective minima and maxima were normalized using Eq. 
(10): 
vari,norm = (vari − minvar)/(maxvar − minvar) (10) 

The normalized values, ordered according to the direction of travel 
along SP2 (i.e., north to south), are plotted in Fig. 11. 

On average, the PPEnorm values were lower than the TWnorm values 
within their value ranges. This is reasonable, considering that 

Fig. 6. SP2 quality map by the Cadastre of Province of Salerno.  

Table 2 
Excerpt from the Distress Cadastre of Province of Salerno dataset.   

Latitude Longitude OBJECTID Road name Frequency Thickness Extension Road profile Viaduct/tunnel TW 
1 40.717822◦ 14.613156◦ 5216 SP2a medium distressed section skin-deep large mixed no 35 
2 40.719925◦ 14.603620◦ 5218 SP2a long distressed section skin-deep large mixed no 35 
3 40.656813◦ 14.643025◦ 5219 SP2b medium distressed section skin-deep large mixed no 35 
… … … … … … … … … … … 

199 40.669233◦ 14.643834◦ 56,824 SP2a short distressed section deep medium tangent no 30 
200 40.719548◦ 14.599333◦ 56,826 SP2a short distressed section skin-deep small mixed no 15 
201 40.702025◦ 14.646823◦ 56,833 SP2a insulated skin-deep small curved no 20  

Fig. 7. PCI rating scale.  
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SmartRoadSense utilizes continuous detections along the entire road, 
whereas the points of Distress Cadastre are based on individually 
detected distresses. To evaluate the link between the two variables, x =
TWnorm and y = PPEnorm, the Bravais–Pearson correlation index was 
estimated for the 70 pairs of points, ((x,y) = (TWnorm,PPEnorm)), using Eq. 
(11): 

rxy =

∑n

i=1
(xi − x)(yi − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑

n

i=1

(xi − x)2
∑

n

i=1

(yi − y)2

√ = 0.46379 (11) 

A moderate direct correlation was observed, indicating that the 
PPEnorm values of SmartRoadSense increased with increasing TWnorm 
values of Distress Cadastre, and vice versa. 

To investigate the influence of the distance threshold on the point 
matching, the TW and PPE values can be weighted by their distance 
through multiplication by 1/disti (disti is given in the last column of 
Table 5). Thus, a greater weight is assigned to point pairs that are closer 
to each other. In fact, the aim is not to fix an optimal distance threshold, 
but to investigate the correlation between TW and PPE values. Fig. 12 
shows the weighted and normalized variables, TWw,norm and PPEw,norm: 

Fig. 12 reveals the disposition of the PPEw,norm values, which can be 
observed to be very superimposable on the TWw,norm values. The Brav-
ais–Pearson correlation index of the 70 point pairs ((x,y) = (TWw,norm, 
PPEw,norm)), determined by Eq. (12), indicate a strong direct correlation: 

rxy =

∑n

i=1
(xi − x)(yi − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑

n

i=1

(xi − x)2
∑

n

i=1

(yi − y)2

√ = 0.85306 (12)  

3.2. Comparison of SmartRoadSense and PCI data 

Table 6 compares the PCI and average PPE values for the 12 road 

Table 4 
SP2 Sections and sample units for PCI assessment.  

Branch Section Lati 
Latf 

Loni 
Lonf 

Length 
(m) 

Considered central 
width (m) 

Total sample 
units (n) 

Surveyed sample 
units (n) 

PCI sample units PCI 
section 

SP2b 1 40.739695 14.596867 1100 6.50 32 11 77, 69, 51, 80, 57, 59, 53, 70, 78, 
59, 67 

65 
40.732893 14.593756 

SP2b 2 40.732893 14.593756 2000 6.50 58 13 57, 51, 44, 62, 68, 55, 73, 59, 45, 
70, 47, 50, 55 

57 
40.719796 14.594530 

SP2b 3 40.719796 14.594530 1200 6.50 35 11 37, 53, 41, 34, 52, 29, 31, 29, 43, 
37, 58 

40 
40.728347 14.596525 

SP2b 4 40.728347 14.596525 2750 6.50 80 13 59, 41, 67, 47, 49, 45, 31, 37, 53, 
41, 36, 43, 58 

47 
40.723159 14.606220 

SP2b 5 40.723159 14.606220 1200 6.50 35 11 68, 62, 61, 73, 79, 66, 84, 70, 66, 
81, 58 

70 
40.718507 14.602880 

SP2b 6 40.718507 14.602880 1900 6.50 55 13 70, 81, 73, 59, 61, 57, 44, 49, 65, 
56, 48, 60, 54 

60 
40.718581 14.620187 

SP2a 7 40.718581 14.620187 2150 6.50 62 13 62, 58, 57, 68, 74, 62, 80, 66, 62, 
76, 54, 75, 51 

65 
40.713917 14.642621 

SP2a 8 40.713917 14.642621 1300 6.50 38 11 58, 64, 79, 56, 66, 60, 59, 71, 77, 
64, 82 

67 
40.704722 14.644602 

SP2a 9 40.704722 14.644602 2100 6.50 61 13 46, 49, 46, 59, 53, 72, 74, 57, 78, 
63, 65, 61, 53 

60 
40.690958 14.645862 

SP2a 10 40.690958 14.645862 2850 6.50 82 14 15, 39, 36, 35, 41, 44, 38, 47, 40, 
38, 46, 34, 23, 20 

35 
40.673873 14.646147 

SP2a 11 40.673873 14.646147 2250 6.50 65 13 39, 47, 27, 28, 41, 37, 28, 30, 51, 
55, 41, 45, 53 

40 
40.654349 14.642616 

SP2a 12 40.654349 14.642616 800 6.50 23 10 58, 64, 79, 56, 66, 60, 59, 71, 77, 
64, 82 

51 
40.647766 14.642140  

Table 3 
Types of distresses in bituminous conglomerate pavements.  

Types of pavement distress 
1 Alligator Cracking 2 Bleeding 3 Block Cracking 4 Bumps and sags 5 Corrugation 
6 Depression 7 Edge cracking 8 Joint reflection 

cracking 
9 Lane/shoulder drop- 

off 
10 Longitudinal and transverse 

cracking 
11 Patching and utility cut 

patching 
12 Polished 

aggregate 
13 Potholes 14 Railroad crossing 15 Rutting 

16 Shoving 17 Slippage cracking 18 Swell 19 Raveling 20 Weathering  

Fig. 8. Start and end points of the SP2 sections.  
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sections. 
The normalized PCI and values are plotted in Fig. 13. It reveals trends 

in some opposite directions for PCInorm and norm. Application of the 
Bravais–Pearson correlation index to the 12 point pairs, ((x,y) = (PCI-
norm, norm), produced rxy = -0.34189, whose negative sign confirms an 
inverse correlation. This is expected, considering that the PCI increases 
with improving pavement conditions, whereas the decreases. The de-
gree of correlation is moderate and is much lower than that obtained by 
the previous comparison of Cadastre and SmartRoadSense. This is be 
explained by the following:  

• The PCI is representative of a road section and is calculated based on 
individual distresses, whereas the value for the section is obtained by 
aggregating the Ppe values for the different 20-m segments of the 
section. The coefficients of variation (see CVPCI and CVcolumns in 
Table 6) indicate a higher degree of dispersion of the various PPE 
values around , as well as a greater number of groupings of the PCI 
values.  

• The surface distresses detected by SmartRoadSense are characterized 
by the acceleration of the vehicle wheels induced by the distress 
depth and transmitted to the mobile device inside the vehicle. 
However, among the 20 types of distresses, there are superficial ones 
(low-to-medium severity) that do not have an appreciable depth (e. 
g., alligator cracking, bleeding, block cracking, edge cracking, lon-
gitudinal and transverse cracking, polished aggregate, slippage 
cracking, raveling, and weathering). 

4. Conclusions 

The SmartRoadSense automatic and continuous road-monitoring 
system provides a regularly updated and detailed picture of the sur-
face conditions of road pavements based on a roughness index directly 
determined from vehicles traveling the roads. The open availability of 
SmartRoadSense data, both in numerical and map formats, are signifi-
cant resources for public managers of road infrastructures, offering an 
efficient and virtually cost-free means of monitoring the surface condi-
tions of road networks for maintenance planning. This work contributes 

Fig. 9. Five matched SmartRoadSense (blue) and Distress Cadastre (red) points.  

Fig. 10. Frequency histograms of the a) Distress Cadastre total weight and b) SmartRoadSense PPE.  

Table 5 
Excerpt from the matched SmartRoadSense–Distress Cadastre points.  

Nord-Sud objectid latC_SA lonC_SA weight latSRS lonSRS PPE dist (m) 
… … … … … … … … … 

32 5302 40.71692 14.63307 25 40.7169 14.63304 0.63881429 3.328 
33 51,340 40.71685 14.63369 35 40.71681 14.63368 1.14764446 4.145 
34 30,856 40.71685 14.63413 25 40.71684 14.63411 1.13441118 1.821 
35 5239 40.71685 14.6343 35 40.71686 14.63433 0.87730219 2.973 
36 51,375 40.71692 14.63563 30 40.71689 14.63562 0.61249943 2.823 
… … … … … … … … …  
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to the field by providing a comparative study of the results of crowd- 
sensing road-surface data and visual inspections. The study assessed 
whether any of the currently crowd-based monitoring technologies 
could be effectively used to replace visual road inspections. However, 
the comparison of this system with the two traditional road-survey 
methods showed that it was limited by an inability to specify the 
types of road distresses, because its data are based only on the dynamic 
parameter of acceleration. Thus, the distress must be of sufficient depth 
in order for the in-car mobile devices to capture appreciable acceleration 

metrics. Some types of low depth surface distresses, which also affect the 
safety and comfort of driving, may not be detected by the survey. 
Notably, when SmartRoadSense data are appropriately filtered, their 
indications are highly consistent with those of the Distress Cadastre of 
Province of Salerno [40], which focuses on five types of road distresses 
characterized by vertical thicknesses. However, the correlation is 
weaker when compared with PCI survey data, because nine of the 20 
types of the low-to-medium distresses identified by the latter do not 
induce significant acceleration on vehicle wheels. Nevertheless, the 

Fig. 11. Normalized values of TW (Distress Cadastre of Province of Salerno) and PPE (SmartRoadSense).  

Fig. 12. Weighted and normalized TW and PPE.  
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SmartRoadSense PPE roughness index database is a significant resource 
for monitoring critical road failures (e.g., bumps, sags, corrugations, 
depressions, joint reflection cracks, lane or shoulder drop-offs, patches, 
utility-cut patches, potholes, railroad crossings, ruts, shoving, and 
swelling [27]) using acceleration metrics gathered by sensors in the 
vehicles, thus providing an indicative framework. However, for the 
purposes of effective maintenance, further analysis is required, 
including timely visual surveys that are more effective for identifying 
and classifying individual distresses. However, such an effort will be 
more cost intensive. Additionally, toward the development of a more 
robust automatic road-monitoring system that can identify all types of 
road-surface failures, the integration of dynamic systems, such as 
SmartRoadSense, with other technology, such as laser scanning, should 
be further explored. 
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Fig. 13. Normalized PCI and values.  

Table 6 
Comparison of the PCI and values for the 12 road sections.  

Section PCI StDevPCI CVPCI  StDev CV 
1 65 10.27972 0.157051 0.2336752 0.15897 0.680306 
2 57 9.48278 0.167495 0.5681803 0.23958 0.421657 
3 40 10.11210 0.250525 0.6772121 0.21373 0.315599 
4 47 10.29874 0.220566 0.5202586 0.24450 0.469962 
5 70 8.55357 0.122512 0.5956024 0.19255 0.323281 
6 60 10.48136 0.175364 0.4727818 0.27856 0.589187 
7 65 9.10128 0.140020 0.5017948 0.23898 0.476258 
8 67 9.04936 0.135249 0.5198649 0.27441 0.527850 
9 60 10.48320 0.175621 0.4920706 0.19682 0.399989 
10 35 9.64536 0.272248 0.5090123 0.19063 0.374504 
11 40 9.82214 0.244613 0.7087259 0.20069 0.283164 
12 51 8.37722 0.161722 0.2721858 0.11057 0.406221  

F. Abbondati et al.                                                                                                                                                                                                                              



Measurement 171 (2021) 108763

12

References 
[1] C.H. Chin, S. Abdullah, S.S.K. Singh, A.K. Ariffin, D. Schramm, Durability 

assessment of suspension coil spring considering the multifractality of road 
excitations, Measurement 158 (2020), 107697, https://doi.org/10.1016/j. 
measurement.2020.107697. 

[2] Society of Automotive Engineers, Ride and Vibration Data Manual: SAE J6A: 
Report of Riding Comfort Research Committee Approved July 1946 and Last 
Revised by the Vehicle Dynamics Committee October 1965, 1965. 

[3] T. Dahlberg, Optimization criteria for vehicles travelling on a randomly profiled 
road–a survey, Vehicle Syst. Dyn. 8 (1979) 239–352, https://doi.org/10.1080/ 
00423117908968607. 

[4] Coopers and Lybrand, L.L.P., National Highway User Survey, National Quality 
Initiative Steering Committee, 1996. 

[5] Y. Liu, Y. Wang, X. Cai, X. Hu, The detection effect of pavement 3D texture 
morphology using improved binocular reconstruction algorithm with laser line 
constraint, Measurement 157 (2020), 107638, https://doi.org/10.1016/j. 
measurement.2020.107638. 

[6] K. Barri, B. Jahangiri, O. Davami, W.G. Buttlar, A.H. Alavi, Smartphone-based 
molecular sensing for advanced characterization of asphalt concrete materials, 
Measurement 151 (2020), 107212. 

[7] J.Y. Wong, Theory of Ground Vehicles, John Wiley & Sons, 2001. 
[8] T.D. Gillespie, Fundamentals of vehicle dynamics, Society of Automotive 

Engineers, 1992. 
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