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a b s t r a c t 

This paper investigates the problem of defining an optimal long-term investment strategy, 

where the investor can exit the investment before maturity without severe loss. Our set- 

ting is a multi-period one, where the aim is to make a plan for allocating all of wealth 

among the n assets within a time horizon of m periods. In addition, the investor can re- 

balance the portfolio at the beginning of each period. We develop a model in Markowitz 

context, based on a fused lasso approach. According to it, both wealth and its variation 

across periods are penalized using the l 1 norm, so to produce sparse portfolios, with lim- 

ited number of transactions. The model leads to a non-smooth constrained optimization 

problem, where the inequality constraints are aimed to guarantee at least a minimum 

level of expected wealth at each date. We solve it by using split Bregman method, that 

has proved to be efficient in the solution of this type of problems. Due to the additive 

structure of the objective function, the alternating split Bregman at each iteration yields 

to easier subproblems to be solved, which either admit closed form solutions or can be 

solved very quickly. Numerical results on data sets generated using real-world price values 

show the effectiveness of the proposed model. 

© 2020 Elsevier Inc. All rights reserved. 

 

 

 

 

 

1. Introduction 

We consider the regularized multi-period mean variance optimization problem and its solution using the split Bregman 

method. 

In recent years there has been a growing interest in the solution of fused lasso models [1] , that are linearly constrained

minimization of functions given as: 

E ( w ) = f ( w ) + τ1 ‖ w ‖ 1 + τ2 ‖ L w ‖ 1 , (1) 

where f : � 

n → � is a closed convex function at least twice continuously differentiable, and L is the difference operator.

The l 1 penalty in (1) promotes sparse solutions, and the term ‖ L w ‖ 1 is included to produce smooth solutions. Problems

described by fused lasso models arise, e.g., in image processing [2] , classification [3] , finance [4] . The nonsmoothness of the

l 1 -type regularization terms precludes the use of standard descent methods for smooth objective functions. Problems of this 

kind can be solved either by smoothing the l 1 terms, e.g., [5,6] , and applying optimization solvers for differentiable problems
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such as gradient methods [7–9] or by using directly optimization solvers for nondifferentiable problems, such as Bregman, 

proximal and ADMM methods [2,10–12] . Due to the additive structure in (1) , splitting methods have became popular because

they yield algorithms which consist at each iteration of subproblems that are easier to solve [13,14] . These subproblems

often either admit closed form solutions or can be solved very quickly with specialized methods. In this context, methods 

based on Split Bregman iteration have proved to be efficient in different fields [2,15–17] . At each iteration of the Bregman

method an l 1 regularized unconstrained optimization subproblem is solved. Auxiliary variables allow to separate the two 

l 1 regularization terms making the use of splitting methods an easy task. In the field of portfolio optimization, both in

the static and the dynamic case, Bregman iteration has been used to solve efficiently l 1 regularized models in Markowitz’s 

framework. The use of l 1 penalty terms in portfolio modelling has become popular for several reasons. Transaction costs 

are well described by the l 1 norm of the portfolio, especially in moderate size trades. The properties of this norm allow

one to obtain sparse solutions, that is, small portfolios. Small portfolios are often considered preferable to large ones. They 

are feasible to small investors, for the reduced holding cost. Moreover, it seems that the estimation errors for variances

and covariances are reduced in this case [18,19] . Finally, it has been observed that the application of l 1 regularization has

the effect of penalizing short positions [20,21] , forbidden in several markets. The structure of Bregman iteration has been

exploited both in the static and the dynamic case, to develop procedures which adaptively fix the value of the regularization

parameter; this value is chosen as one that provides solutions with certain financial properties, while preserving fidelity to 

data [21,22] . 

In [4] a model based on the fused lasso approach is presented in a multi-period setting. This seems to be very promising,

since the fusion term is a penalty on portfolio turnover, which produces strategies with low transaction cost by preserving 

the pattern of active position over time. The fused lasso model is also considered in this paper. The novelty is the focus

on strategies in which the investor can exit before the end without incurring severe loss; this is particularly significant to

protect investment from financial market crisis. At this purpose, control at intermediate periods on wealth is introduced 

in the model. According to the multi-period approach, the so called rebalancing dates are defined to divide the invest- 

ment period into subperiods; at these dates, the investment strategy is revised according to evolving information. We fix a 

minimum level of expected wealth at intermediate dates. From the mathematical point of view, this leads to a nonsmooth 

optimization problem with equality and inequality constraints. We reformulate the problem as one with equality constraints 

only and apply the alternating Split Bregman method for its solution. The resulting algorithm requires, at each iteration, the 

solution of unconstrained subproblems which are easily solved exactly. 

In order to test our model, we introduce some perfomance measures. In particular, we assess performance with respect to 

two benchmarks built on real market data; this task is usually referred to as the Enhanced Index Tracking problem [23,24] ,

where one aims at selecting a portfolio that outperforms a reference index. 

In Section 2 we describe the mathematical model. In Section 3 we present the procedure for the numerical solution of

the model, based on alternating Split Bregman iteration. In Section 4 we show results of our tests. 

2. Mathematical model 

In this section we extend the fused lasso model presented in [4] with the aim of guaranteeing the investor in the case of

early exit. The model refers to either a medium or long-term investment, in which the investor could exit before the term;

thus, at this purpose, the expected minimum wealth is fixed at each rebalancing date. 

Let m be the number of rebalancing dates, n the number of assets and ( w j ) i the portion of the investor’s total wealth

invested in security i at time j ; the vector 

w = [ w 

T 
1 , . . . , w 

T 
m 

] T ∈ � 

N , (2) 

with N = m · n, defines the portfolio. At each rebalancing date j = 1 , . . . , m, the wealth is thus given by w 

T 
j 
1 n , where 1 n is

the column vector with n elements, all equal to one. We assume that j = 1 is the starting date. We denote with r j ∈ � 

n the

expected return vector and with C j ∈ � 

n × n the covariance matrix, that we assume positive definite. The model is stated as

follows: 

min 

w 

∑ m 

j=1 

[
w 

T 
j 
C j w j + τ1 ‖ w j ‖ 1 

]
+ τ2 

∑ m −1 
j=1 ‖ w j+1 − w j ‖ 1 

s . t . w 

T 
1 1 n = ξinit 

w 

T 
j 
1 n = 

(
1 n + r j−1 

)T 
w j−1 , j = 2 , . . . , m 

w 

T 
j 
1 n ≥ ( w min ) j−1 , j = 2 , . . . , m 

( 1 n + r m 

) 
T w m 

≥ ( w min ) m 

(3) 

where ξ init is the initial wealth, w min is the vector of expected minimum wealth. 

The quadratic term in the objective function represents the portfolio risk. This is obtained by summing single-period 

variances. The successive terms are regularization ones introduced by fused lasso approach. The l 1 norm is well-known to 

promote sparsity. We apply it to w , weighted by τ 1 > 0, in order to have small portfolios. This improves the control on the

investment and reduces holding cost. Moreover, we have observed that it penalizes negative components, thus resulting in a 

penalty on shorting [21,22] . This turns out to be useful when short positions are not allowed, since one can obtain positive
2 
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weights by properly tuning τ 1 . The fusion term, that is the l 1 norm applied to the time variation �w , has a smoothing effect

on solution, preserving patterns of non-zero values across time. Its financial interpretation is a penalty on the portfolio 

turnover; it has then the effect of reducing transaction cost [4] . This term is weighted by τ 2 > 0. The values τ 1 , τ 2 are

referred to as the regularization parameters. 

Both equality and inequality constraints are imposed on wealth. The first wealth must be equal to the initial investment, 

as the first constraint establishes. Constraints from 2 to m state the self-financing property, that is, money is neither added

to the portfolio nor withdrawn from it for j > 1. Thus, at the end of each period the wealth is given by the revaluation

of the previous one. Inequality constraints state that a lower bound is defined on the portfolio wealth at the end of each

subperiod, that is, at all rebalancing dates. Finally, the last component ( w min ) m 

is the minimum wealth expected by the

overall investment. It is given by the revaluation of the last weight sequence produced by the investment strategy on the

last rebalancing date. For sake of notation simplicity, we formulate problem (3) in compact form. We introduce the matrix 

C ∈ � 

N × N as the m × m diagonal block matrix C = diag(C 1 , C 2 , . . . , C m 

) . The blocks are the covariance matrices estimated

at the beginning of each subperiod. The matrix C is symmetric positive definite (SPD) with 

(
1 − 1 

m 

)
% sparsity degree. Let

L ∈ � 

(N−n ) ×N be the discrete difference operator; it can be viewed as the (m − 1) × n upper bidiagonal block matrix, with

blocks of dimension n × n , defined by: 

diag ( L ) = ( −I , −I , . . . , −I ) 
supdiag ( L ) = ( I , I , . . . , I ) 

where I is the identity matrix of dimension n. L has 
(
1 − 2 

N 

)
% sparsity degree. The m × m lower bidiagonal block equality

constraint matrix A , with blocks of dimension 1 × n and 

(
1 − 2 

m 

)
% sparsity degree, is defined as follows: 

diag ( A ) = 

(
1 

T 
n , 1 

T 
n , . . . , 1 

T 
n 

)
subdiag ( A ) = 

(
−( 1 n + r 1 ) 

T 
, . . . , −( 1 n + r m −1 ) 

T 
)
. 

Finally, let G be the inequality constraint matrix; it is a m × m upper bidiagonal block matrix with blocks of dimension

1 × n and 

(
1 − 1 

N 

)
% sparsity degree where 

diag ( G ) = 

(
0 

T 
n , 0 

T 
n , . . . ., 0 

T 
n , ( 1 n + r m 

) 
T 
)
, 

supdiag ( G ) = 

(
1 

T 
n , 1 

T 
n , . . . ., 1 

T 
n 

)
. 

Then, problem (3) admits the following compact formulation: 

min 

w 

1 

2 

w 

T Cw + τ1 ‖ w ‖ 1 + τ2 ‖ L w ‖ 1 

s . t . A w = b 

G w ≥ w min 

(4) 

where b = (ξinit , 0 , 0 , . . . , 0) T ∈ � 

m . 

3. Split Bregman iteration 

We solve (4) using the split Bregman scheme. Therefore, we first provide a short description of it. It is based on Bregman

iteration method for convex optimization problems with equality constraints 

min 

u 
E ( u ) s . t . H ( u ) = 0 . (5) 

The main idea of Bregman iteration is to transform the problem into a sequence of easier ones which are constructed by

adding a ”cost-to-move” term to the original objective function [14] . This term penalizes the distance between two iterates 

defining the Bregman distance at point u , as: 

D 

p 
E 
(v , u ) = E(v ) − E(u ) − < p , v − u >, (6) 

where p ∈ ∂E ( u ) is a subgradient in the subdifferential of E . Note that if E is smooth, then (6) is the difference between E ( v )

and the first-order Taylor expansion of E at v . Bregman iteration applied to problem (5) produces the following scheme: {
u k +1 = argmin u D 

p k 
E 

(u , u k ) + λH(u ) , 

p k +1 = p k − λ∇H(u k +1 ) ∈ ∂E(u k +1 ) , 
(7) 

with λ > 0. The split Bregman method was introduced in [2] , where authors proposed to use an auxiliary variable d before

applying Bregman iteration to solve problem (5) . The introduction of d is aimed at replacing the original problem with an

equivalent one in which the smooth and nonsmooth portions of objective function are separated. Then, a further constraint 

is added, which forces the equality between d and the nonsmooth term. 

In order to apply split Bregman method to problem (4) the first step is to reformulate it in terms of equality constraints

only. We introduce the slack variable s ∈ � 

m in order to transform the inequality constraint in (4) into an equality one. We
3 
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rewrite the minimization problem using the indicator function I D (s ) to incorporate the non-negativity constraint on the 

slack variable into the objective function: 

min 

w , s 

1 

2 

w 

T Cw + τ1 ‖ w ‖ 1 + τ2 ‖ L w ‖ 1 + I D ( s ) 

s . t . A w = b 

G w − s = w min , 

(8) 

where 

D = { s ∈ � 

m : s ≥ 0 } . 
According to split Bregman method, we introduce the auxiliary variables d and z such that d = L w and z = w . Problem (8) is

then reformulated in the following way: 

min 

w , s , d , z 

1 

2 

w 

T Cw + τ1 ‖ z ‖ 1 + τ2 ‖ d ‖ 1 + I D ( s ) 

s.t. A w = b 

G w − s = w min 

L w = d 

w = z . (9) 

Alternating split Bregman method proposes to minimize the function in (9) with respect to the variables w, s, d and z alter-

nately. Note that this algorithm is equivalent to other well-known methods such as the Douglas-Rachford splitting and the 

alternating direction method of minimizers [14] . Due to linearity of constraints in (9) , a simplified version of split Bregman

iteration can be used. In this version, the Bregman vectors allow one to use the function E rather than its Bregman distance

[25] . This leads to the following simplified alternating minimization algorithm: 

w k +1 = argmin w 

Q ( w ; s k , d k , z k ) 

s k +1 = argmin s I D ( s ) + 

λ2 

2 

‖ s − G w k +1 − b 

s 
k ‖ 

2 

d k +1 = argmin d τ2 ‖ d ‖ 1 + 

λ3 

2 

‖ d − L w k +1 − b 

d 
k ‖ 

2 

z k +1 = argmin z τ1 ‖ z ‖ 1 + 

λ4 

2 

‖ z − w k +1 − b 

z 
k ‖ 

2 

b 

w 

k +1 = b 

w 

k + λ1 ( b − A w k +1 ) 

b 

s 
k +1 = b 

s 
k + λ2 ( G w k +1 − w min − s k +1 ) 

b 

d 
k +1 = b 

d 
k + λ3 ( L w k +1 − d k +1 ) 

b 

z 
k +1 = b 

z 
k + λ4 ( w k +1 − z k +1 ) . (10) 

with quadratic function Q defined as 

Q ( w ; s k , d k , z k ) = 

1 
2 

w 

T Cw + 

λ1 

2 
‖ A w − b 

w 

k 
‖ 

2 
2 + 

λ2 

2 
‖ s k − G w − b 

s 
k 
‖ 

2 
2 

+ 

λ3 

2 

‖ d k − L w − b 

d 
k ‖ 

2 
2 + 

λ4 

2 

‖ z k − w − b 

z 
k ‖ 

2 
2 . 

(11) 

Closed form solutions can be obtained for minimization with respect to s, d and z . Minimization with respect to d and z

can be done efficiently using soft thresholding operator, defined as: 

( S ( x , γ ) ) i = 

x i 

| x i | max ( | x i | − γ , 0 ) , 

where x is real vector and γ > 0, while the proximal mapping of the indicator function on a given set is the orthogonal

projection operator onto the same set. Regarding the quadratic minimization with respect to w , we note that at each step k

the optimal value can be obtained by solving the system 

Hw = rhs k , (12) 

with 

H = C + λ1 A 

T A + λ2 G 

T G + λ3 L 
T L + λ4 I (13) 

and 

rhs k = λ1 A 

T b 

w 

k + λ2 G 

T (s − b 

s 
k ) + λ3 L 

T (d − b 

d 
k ) + λ4 (z − b 

z 
k ) . (14)

We observe that the coefficient matrix defined in (13) does not depend on the iteration and it is SPD and sparse, as shown

in the next proposition. 
4 
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Proposition 1. Matrix H defined in (13) is a SPD, m × m tridiagonal block matrix with blocks of dimension n. 

Proof. H is the sum of C and I, that are SPD, and of other matrices that are semi-positive definite; then the first statement follows.

We analyze the structure of matrices in ( 13 ). L, A and G are bidiagonal block matrices with blocks of dimension 1 × n, then for

each of them the product of its transpose by the matrix itself is a tridiagonal block matrix with blocks of dimension n × n. It

follows that the sum has a block tridiagonal structure. �

In the next proposition we give bounds on the eigenvalues of H . 

Proposition 2. Let λ( H ) be the set of eigenvalues of matrix H; we have λ(H) ⊆ [ χ−, χ+ ] 
with 

χ− = λmin ( C ) + λ4 

χ+ = λmax ( C ) + λ1 λmax 

(
A 

T A 

)
+ λ2 λmax 

(
G 

T G 

)
+ λ3 λmax 

(
L T L 

)
+ λ4 . 

Proof. We recall that if A and B are real, symmetric matrices, then A + B has real eigenvalues, and the following inequalities

hold: 

λmin (A ) + λmin (B ) ≤ λmin (A + B ) ≤ λmax (A + B ) ≤ λmax (A ) + λmax (B ) . 

The matrix H is the sum of real and symmetrix matrices, then 

χ− ≤ λmin (H) ≤ λmax (H) ≤ χ+ , 

with 

χ− = λmin (C) + λ1 λmin (A 

T A ) + λ2 λmin (G 

T G ) + λ3 λmin (L T L ) + λ4 

χ+ = λmax (C) + λ1 λmax (A 

T A ) + λ2 λmax (G 

T G ) + λ3 λmax (L T L ) + λ4 . 

The matrices A, G and L have rank smaller then N, so, for each one of them, the product between the matrix and its transpose is

rank deficient. This completes the proof. �

Proposition 1 suggests to use sparse Cholesky factorization to solve the systems (12) . Sparse direct methods are a com-

bination of techniques from numerical linear algebra, graph theory, graph algorithms, permutations, and other topics in 

discrete mathematics. They exploit the sparsity of a matrix to solve problems much faster and using far less memory than

if all the entries of a matrix were stored and took part in explicit computations (see [26,27] and references therein). We

note that the factorization is computed only once, while at each step two triangular linear systems are solved. The resulting

method is outlined in Algorithm 1 . 

Algorithm 1 Alternating Split Bregman for Portfolio Optimization. 

Choose λ1 , λ2 , λ3 , λ4 > 0 ; 

Choose w 0 = 0 , s 0 = 0 , d 0 = 0 , z 0 = 0 

Choose b 

w 

0 
= 0 , b 

s 
0 

= 0 , b 

d 
0 

= 0 , b 

z 
0 

= 0 

Compute H according to(13) 

Compute Cholesky factorization of H 

for k = 0 , 1 , 2 , . . . do 

w k +1 = H 

−1 rhs k 
s k +1 = max (0 , G w k +1 + b 

s 
k 
) 

d k +1 = S(L w k +1 + b 

d 
k 
, τ2 /λ3 ) 

z k +1 = S(w k +1 + b 

z 
k 
, τ1 /λ4 ) 

Update b 

w 

k +1 
, b 

s 
k +1 

, b 

d 
k +1 

, b 

z 
k +1 

according to (10) 

end for 

4. Numerical experiments 

In this section, we show some results of tests that we perform on real market data. Algorithm 1 is applied to several

data sets generated using real-world price values provided in [28] . The datasets contain weekly return time series of as-

sets belonging to several major stock markets across the world, cleaned from errors as much as possible. We simulate 10

years investment strategies, where the investor revises decisions once a year. In Table 1 we summarise information on the

datasets. 

The problem requires an estimate of the covariance matrix. It is well known that the sample covariance matrix is affected

by estimation error; this is particularly severe when the number of stocks, which is the dimension of the matrix, is large

relative to the number of historical returns, that is the sample size. We thus apply the linear shrinkage estimator proposed

in [29] to C . This method acts on the eigenvalues of C , reducing their dispersion by shrinking them towards their grand
5 
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Table 1 

Some characteristics of the datasets. 

Data set Label # of assets Time interval 

1 Dow Jones Industrial DowJones 28 Feb1990-Apr2016 

2 NASDAQ 100 NASDAQ100 82 Nov2004-Apr2016 

3 FTSE 100 FTSE100 83 Jul2002-Apr2016 

4 S&P 500 SP500 442 Nov2004-Apr2016 

5 NASDAQ Composite NASDAQComp 1203 Feb2003-Apr2016 

6 Fama and French 49 FF49 49 Jul1969-Jul2015 

Table 2 

Condition number of matrix C : effect of the shrink- 

age. 

Data Set no shrinkage shrinkage 

DowJones 2 . 1053 E + 04 2 . 1431 E + 03 

NASDAQ100 7 . 0926 E + 20 1 . 0375 E + 04 

FTSE100 2 . 0993 E + 21 2 . 4305 E + 04 

SP500 2 . 4678 E + 23 3 . 6621 E + 05 

NASDAQComp 1 . 2587 E + 23 7 . 6804 E + 05 

FF49 3 . 5266 E + 07 6 . 3079 E + 04 

 

 

 

 

 

 

 

 

mean: as a consequence, it strongly improves the conditioning of the covariance matrix, as Table 2 shows. In this table we

report the condition number of the sample matrix and the condition number of its estimator. 

We compare optimal portfolios produced by the investment strategy with two benchmarks. The first one is the naive 

strategy, that extends the classical 1/ n [30] to the multi-period case. The investor splits the money evenly among available

assets, at the beginning of the investment as well as at rebalancing dates. Thus, at each rebalancing date we set as expected

minimum wealth the expected value produced by the recursive application of the 1/ n allocation strategy: 

( w min ) 1 = 

ξinit 

n 
1 

T 
n (1 + r 1 ) 

( w min ) i = 

( w min ) i −1 

n 
1 

T 
n (1 + r i −1 ) , i = 2 , . . . , m 

(15) 

Moreover, for datasets 1 − 5 in Table 1 also weekly return time series for the index are reported in [28] . So for this datasets

the market index is also used as benchmark. In this case the expected minimum wealth is the one of the market index: 

w min = r index (16) 

where r index ∈ R 

m is the index return. 

We introduce six performance measures to evaluate the goodness of results: 

M1 we estimate the risk reduction when the naive strategy is taken as benchmark, by means of the following quantity: 

RR = 

w 

T 
nai v e Cw nai v e 

w 

T 
opt Cw opt 

, 

where the numerator is the variance of the portfolio produced by the naive strategy, the denominator is the variance

of the optimal portfolio produced by Algorithm 1 ; 

M2 the number of nonzero elements in the solution (percentage), that gives an estimation of holding cost; 

M3 the transaction costs. In order to evaluate them we define the matrix V ∈ � 

n ×(m −1) , with: 

V i, j = 

{
0 if | (w j+1 ) i − (w j ) i ) | > 0 

1 otherwise 

for i = 1 , . . . , n and j = 1 , . . . , m − 1 . Note that, as in [4] , in order to discard variations not significant from the finan-

cial point of view, we neglet the differences below 10 −6 ∗ ξinit . The number of estimated transactions of the optimal

strategy is therefore: 

T opt = 

n ∑ 

i =1 

m −1 ∑ 

j=1 

V i, j . 

We then relate T opt to the maximum value that it can assume, that is, to the number of transactions of the portfolio

with full turnover, which is the size N of the portfolio: 

T = 

T opt ; (17) 

N 

6 
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Table 3 

Condition number of matrix H . 

Data Set H 

DowJones 4 . 4016 E + 02 

NASDAQ100 5 . 3936 E + 03 

FTSE100 2 . 0430 E + 03 

SP500 4 . 8893 E + 04 

NASDAQComp 7 . 0823 E + 05 

FF49 1 . 0054 E + 03 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M4 the excess return (ER) calculated in comparison to the benchmark: 

ER = 

w 

T 
m 

(1 n + r m 

) − ( w min ) m 

( w min ) m 

;

M5 the Sharpe Ratio (SR) [31] is the ratio between the average of the expected return of the portfolio and its standard

deviation. In the multi-period framework we compute the SR in the following way: 

SR = 

1 
m 

∑ m 

j=1 R j 

σ (R ) 
, 

where R = (R 1 , . . . .R m 

) , and 

R j = r T j 
w j 

w 

T 
j 
1 n 

, j = 1 , . . . , m ;

M6 the Information Ratio (IR) [32] is the average excess return per unit of volatility in excess return. We compute it as: 

IR = 

1 
m 

∑ m 

j=1 AER j 

σ ( AER ) 
, 

where AER = (AE R 1 , . . . , AE R m 

) , and 

AER j = 

w 

T 
j 
1 n − ( w min ) j 

( w min ) j 
, j = 1 , . . . , m. 

We assume that one unit of wealth is invested, so we fix ξinit = 1 . We set λi = 1 , ∀ i = 1 , . . . , 4 . The stopping criterion is

based on constraint violation, so the algorithm stops when all constraints are satisfied within T ol = 10 −6 . In Algorithm 1 we

set a lower bound on w min to guarantee the investment: 

w min = max ( ̄ξ , w min ) . (18) 

In our experiments we set ξ̄ = ξinit · 1 n , to preserve the initially invested amount. 

In Table 3 we report the condition number of H . We observe that in almost cases the conditioning of H is better with

respect to C . This is motivated by the shift of the spectrum to the right, according to Proposition 2 . 

Regularization parameters τ 1 and τ 2 are chosen in the set { 10 −4 , 10 −3 , 10 −2 } ; the combined choice of them depends on

the specific metric one focuses on. 

We start by analyzing the behaviour of the wealth produced by the optimum portfolio over time, and compare it with the

benchmarks. Figs. 1 and 2 show the values of wealth at rebalanging dates on datasets FTSE 100 and Dow Jones, but similar

results are observed also for the other datasets. The first row of figures refers to dataset FTSE 100, compared with the naive

strategy. The second row of the figure refers to dataset DowJones, compared with the index return. In Fig. 1 parameter τ 2 

has been set to 10 −3 while τ 1 values range in the set { 10 −4 , 10 −3 , 10 −2 } from left to right. According to the analysis in

[4] for both the datasets we have that increasing τ 1 results in a reduction of the number of short positions, from 102 to

0 for FTSE 100 and from 30 to 0 for Dow Jones, and the number of transactions, from 15% to 9% for FTSE 100 and from

the 23% to the 16% for Dow Jones. This is due to the reduced size of the portfolio, as result of the sparsification effect

of regularization on portfolio wealth. Focusing on wealth, Fig. 1 shows that the excess return is penalized as τ 1 increases.

Indeed, our model outperforms the benchmark, showing an expected wealth higher than the one of the index, in almost 

all cases, but the difference is higher for smaller values of τ 1 , while the gain in terms of cost reduction is valuable. All

experiments exhibit a breakdown in the benchmark at the fourth year of the simulation period. This is probably due to the

fact that t = 4 corresponds to year 2008, so the lower return can be ascribed to the Crisis. Thus, at this date the excess

return of the optimal portfolio is higher, as effect of (18) . 

In Fig. 2 the behaviour of wealth over time is shown for τ 1 equal to 10 −3 and for τ 2 varying in { 10 −4 , 10 −3 , 10 −2 } .
For both the datasets, we have, as expected, a reduction on the number of transactions, from 22% to 5% for FTSE 100 and

from 47% to 10% for Dow Jones. Limitation on transactions results in a slight increase in risk, and thus higher return at

intermediate periods is observed. 
7 
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Fig. 1. Behaviour of the wealth over time. First row: FTSE 100 compared with the naive strategy. Second row: DowJones compared with the index return. 

In all cases τ2 = 10 −3 , τ 1 ranges among 10 −4 (left), 10 −3 (center), 10 −2 (right). 

Fig. 2. Behaviour of the wealth over time. First row: FTSE 100 compared with the naive strategy. Second row: DowJones compared with the index return. 

τ1 = 10 −3 , τ 2 takes values 10 −4 (left), 10 −3 (center), 10 −2 (right). 

 

 

 

 

As already pointed out, financial targets of the investment and market conditions drive the choice of the regularization 

parameters. In the following tests τ 1 is chosen as the smallest number that guarantees the minimum number of short 

positions. This is an important issue as in some cases stock market regulators can impose bans on short-selling like in the

two European countries hardest hit by the Covid-19 in March 2020, Italy and Spain. Once fixed τ 1 , τ 2 is chosen so to have

a good trade-off among the other performance metrics. 

In Table 4 we report on all the datasets the comparison with the index in terms of excess return and Information Ratio.

However for completeness we report also the other metrics of the optimal portfolios, that are the amount of shorting, the
8 
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Table 4 

Comparison with the index. Columns contain in order: the test case label, parameters τ 1 

and τ 2 , the number of short positions, the percentage of active positions, the percentage 

of transactions, the Sharpe Ratio, the excess return and the Information Ratio. 

TEST τ 1 τ 2 short density T SR ER IR 

DJ 10 −2 10 −3 0 37% 16% 0.859 2% 0.302 

NASDAQ100 10 −2 10 −4 0 22% 16% 0.933 2% 0.301 

FTSE100 10 −2 10 −3 0 16% 6% 0.460 14% 0.301 

SP500 10 −3 10 −3 4 6% 2% 0.723 13% 0.453 

NASDAQComp 10 −2 10 −4 0 5% 2% 0.581 6% 0.301 

Table 5 

Comparison with the naive strategy. Columns contain in order: test case label, parameters τ 1 and 

τ 2 , the number of short positions, the percentage of active positions, the percentage of transactions, 

the Sharpe Ratio, the excess return, the Information Ratio and the risk reduction factor. 

TEST τ 1 τ 2 short density T SR ER IR RR 

DJ 10 −2 10 −2 0 46% 16% 1.032 8% 0.440 1.510 

NASDAQ100 10 −2 10 −2 0 20% 7% 1.278 9% 0.407 1.932 

FTSE100 10 −2 10 −3 0 23% 9% 0.609 10% 0.302 1.701 

SP500 10 −2 10 −3 0 6% 2% 0.821 17% 0.302 3.184 

NASDAQComp 10 −2 10 −2 0 4% 1% 0.740 13% 0.324 4.962 

FF49 10 −2 10 −4 0 17% 14% 0.806 16% 0.302 2.273 

 

 

 

 

 

 

 

 

 

 

 

 

 

percentage of active positions and of transactions, and the Sharpe Ratio. In all tests the optimal portfolio outperforms the 

benchmark. We achieve an excess return of about the 7% on the average, varying between the 2% and the 14%. The IR ranges

between 0.301 and 0.453; SP500 exhibits the highest value of IR, coherently with the observed value of the excess return.

On the other hand, FSTSE100 provides the highest excess return but its IR is slightly affected by the dispersion of excess

returns. 

In Table 5 we show comparisons with the naive strategy. In this case we furthermore report the value of RR defined in

M1 . The reduction of transaction costs is about the 90% on the average. Note that the naive portfolio is a full-turnover one,

thus the value of T represents the percentage of transactions made by the optimal strategy with respect to the benchmark.

We also observe an higher excess return, varying between the 8% and the 17%, with an average value of 12%. The IR ranges

between 0.302 and 0.440; DJ exhibits the highest value of IR, while the excess return is maximum for SP500 and FF49. We

note that the SR values are greater than the corresponding values obtained when the benchmark is the index. Finally, our

strategy produces optimal portfolios that outperform the benchmark in terms of final wealth with a lower risk, as shown 

by RR, that varies between 1.510 to 4.962. 

5. Conclusion 

In this work we use split Bregman method for the problem of defining an optimal long-term investment strategy, where 

the investor can exit the investment before maturity without severe loss. We propose a model in a multi-period Markowitz 

framework, which extends the fused lasso model proposed in [4] . The inequality constraints on expected minimum wealth 

at each rebalancing date are introduced to guarantee the investment throughout the period, especially during the unforeseen 

events such as market crisis. Alternating Split Bregman produces an algorithm that yields subproblems that are solved by 

fast methods. Numerical comparisons with respect different benchmarks on real databeses show the its effectiveness. 
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