
SPATIO-TEMPORAL GRAPH-BASED
INTERPOLATION FOR MOBILE SENSING

NETWORKS

Bachelor’s Degree in Computer Science

Bachelor’s Degree in Telecommunications Engineering

May, 2022

By

Adrià Guinovart Plana

Director: Dr. Antonio Ortega

Co-director: Dr. Montse Pardàs Feliu

ACKNOWLEDGMENTS

This thesis is the result of eight months of research at the Ming Hsieh Department of Elec-

trical and Computer Engineering at USC Viterbi, developed as the final bachelor thesis

of my Computer Science and Telecommunications Engineering Degrees at CFIS-UPC.

I wish to extend my special thanks to my tutor Dr. Antonio Ortega, who has super-

vised this research project through all of its stages, providing me with essential guidelines

and enriching this project. His immense knowledge and plentiful experience have encour-

aged me in all the time of my academic research and daily life. I would also like to thank

Dr. Montse Pardàs Feliu for her valuable insights, support and feedback during the de-

velopment of this thesis. To my school at CFIS-UPC, for giving me the opportunity and

support to dedicate a semester of my bachelor’s program at USC.

Finally, I would like to express my gratitude to my parents and friends for their

encouragement and support all through my studies.

ii

ABSTRACT

Mobile sensor networks are attracting a lot of interest in the research community, since

they allow to exploit mobility and cover larger areas than conventional fixed sensor net-

works. This thesis approaches the main issues that arise in these mobile sensor frame-

works, such as irregular sampling in both space and time or low spatio-temporal resolution,

from a Graph Signal Processing (GSP) perspective. We present a tree graph-based inter-

polation method for mobile sensing networks as a solution to increase the spatio-temporal

resolution that these sensor networks provide. The proposed tree graph method param-

eters are optimized for an air quality dataset gathering ozone levels in an urban area in

Zurich, Switzerland. We found that our solution is able to adapt to local changes and

outperform classical spatial interpolation techniques such as Kriging and Inverse Distance

Weighting (IDW).

Keywords

Graph signal processing, interpolation, mobile sensor networks, spatio-temporal resolu-

tion.

iii

RESUMEN

Las redes de sensores móviles están atrayendo mucho interés en la comunidad investi-

gadora, ya que permiten explotar la movilidad y cubrir áreas más grandes que las redes

de sensores fijas convencionales. Esta tesis aborda los principales problemas que surgen

en los escenarios con sensores móviles, como el muestreo irregular tanto en espacio como

tiempo o la baja resolución espacio-temporal, desde una perspectiva de procesado de señal

mediante grafos (GSP). Presentamos un método de interpolación basado en grafos con

topoloǵıa de árbol para redes de sensores móviles como solución para aumentar la res-

olución espacio-temporal que proporcionan estas redes de sensores. Los parámetros del

método basado en grafos con la topoloǵıa de árbol propuesto están optimizados para una

base de datos de calidad del aire que recopila los niveles de ozono en un área urbana de

Zúrich, Suiza. Descubrimos que nuestra solución puede adaptarse a los cambios locales

y superar las técnicas clásicas de interpolación espacial como Kriging e Inverse Distance

Weighting (IDW).

Palabras clave

Procesado de señal mediante grafos, interpolación, redes de sensores móviles, resolución

espacio-temporal.

iv

RESUM

Les xarxes de sensors mòbils estan atraient molt interès a la comunitat investigadora, ja

que permeten explotar la mobilitat i cobreixen àrees més grans que les xarxes de sensors

fixes. Aquesta tesi aborda les principals qüestions que sorgeixen en aquests marcs de

sensors mòbils, com ara el mostreig irregular tant en l’espai com en el temps o la baixa

resolució espai-temporal, des d’una perspectiva de processament de senyal mitjançant

grafs (GSP). Presentem un mètode d’interpolació basat en grafs amb topologia d’arbre

per a xarxes de detecció mòbil com a solució per augmentar la resolució espai-temporal

que proporcionen aquestes xarxes de sensors. Els paràmetres del mètode de basat en grafs

amb topologia d’arbre proposat estan optimitzats per a una base de dades de qualitat de

l’aire que recull els nivells d’ozó en una àrea urbana de Zuric, Süıssa. Hem trobat que

la nostra solució és capaç d’adaptar-se als canvis locals i superar les tècniques clàssiques

d’interpolació espacial com ara Kriging i Inverse Distance Weighting (IDW).

Paraules clau

Processat de senyal mitjançant grafs, interpolació, xarxes de sensors mòbils, resolució

espai-temporal.

v

Table of Contents

Acknowledgments ii

Abstract iii

Resumen iv

Resum v

Table of Contents vi

List of Figures x

Chapter 1:

Introduction 1

1.1 State of the art and related work . 2

1.2 Outline and main contributions . 3

Chapter 2:

Graph Signal Processing Fundamentals 5

2.1 Graphs . 5

2.1.1 Basic definitions . 5

2.1.2 Algebraic representation of graphs 7

2.2 Graph signals . 7

2.3 Tree graphs . 8

vii

2.3.1 Maximum spanning tree . 8

Chapter 3:

Problem definition 10

3.1 Air quality dataset . 12

Chapter 4:

Proposed solution 14

4.1 Data pre-processing . 14

4.1.1 Timestamp reference . 15

4.1.2 Coordinates to distance conversion 15

4.2 Graph learning . 16

4.2.1 Topology inference . 17

4.2.2 Weight estimation . 18

4.2.3 Graph learning algorithm . 24

4.3 Interpolation . 26

4.4 Solution optimization . 28

4.4.1 Temporal complexity analysis . 28

4.4.2 Removal of candidate nodes without samples 29

4.4.3 Maximum edge distance . 30

Chapter 5:

Experiments and results 33

5.1 Tree model validation . 33

5.1.1 Performance metrics . 33

5.1.2 Cross-validation . 35

5.2 Hyper-parameter tuning . 37

5.2.1 Hyper-parameter tuning: ∆t . 37

5.2.2 Hyper-parameter tuning: ∆s . 42

viii

5.2.3 Hyper-parameter tuning: α . 45

5.2.4 Hyper-parameter tuning: maximum edge distance 47

5.3 Comparison with state of the art interpolation methods 49

5.3.1 Inverse Distance Weighting . 50

5.3.2 Kriging . 51

5.3.3 Results . 55

Chapter 6:

Conclusions 60

6.1 Conclusions . 60

6.2 Future Work . 61

References 62

Appendix A: Implementation 67

ix

List of Figures

4.1 Spatial distribution of the air quality data. 17

4.2 Illustrative example of every possible combination of squared differences. . 22

4.3 Illustrative example of missing observations approach. 24

4.4 Simple graph used to exemplify the tree interpolation scheme. 27

4.5 Node distribution and frequency of observations with ∆s = 100m. 31

4.6 Example of tree graph obtained with ∆t = 30min, ∆s = 150m, α = 0.1. . 32

5.1 Illustrative example of k-fold cross-validation with k = 5. 36

5.2 Nested cross-validation scheme. 36

5.3 Temporal autocorrelation plots for different time periods. 39

5.4 RMSE as a function of ∆t. 41

5.5 Spatial autocorrelation. 43

5.6 RMSE as a function of ∆s. 45

5.7 RMSE as a function of α. 47

5.8 RMSE as a function of the maximum edge distance. 48

5.9 Weights computation time as a function of the maximum edge distance. . 49

5.10 Example of different Kriging variogram models. 53

5.11 RMSE for different interpolation methods as a function of ∆t. 56

5.12 RMSE for different interpolation methods as a function of ∆t. 56

5.13 MSE with error bars for different interpolation methods. 57

5.14 Edge weights in the tree graph as a function of edge distance. 58

5.15 Execution time for different interpolation methods as a function of ∆t. . . 59

x

Chapter 1

Introduction

Large amounts of data and information are surrounding us. Almost every part of hu-

man existence is being recorded and gathered as information by analysts, governments

and companies: our own information through applications, monetary and banking infor-

mation, our social networks, mobility patterns, advertising inclinations and more. All

this information that is gathered needs to be processed to be valuable for its purpose.

The complexity of these networks and interactions implies that the information dwells on

irregular and complex structures that do not lend themselves to standard tools [1].

To confront this issue, graphs are being utilized to address the construction of infor-

mation domains in different applications. For example, on account of social networks,

individual users lay out associations with one another and interact producing a lot of

information. In a graph representation, users can be represented by nodes and social

interactions or connections between users can be represented by graph edges. The in-

formation on these graphs can be envisioned as a finite set of samples with one sample

at each graph node. This arrangement could be utilized, for instance, to deduce the

structure of a community by its relations through game theoretic models [2], evaluate the

connectedness of the world or study the significance or impact of specific users [3].

The emerging field of Graph Signal Processing (GSP) merges graph theory concepts

with signal processing in order to process all the data generated and structured as a

complex network, which will be represented by a graph signal. An important area of

research in GSP is the interpolation problem in graph structured data. This arises in

different forms, such as in semi-supervised learning of categorical data, ranking problems,

1

and missing value prediction such as matrix completion problems [4]. One of the main

sources of data and information are sensor networks. The conventional approach consists

on deploying fixed sensor networks, where sensors are installed in certain locations or

monitoring stations [5]. These sensor networks usually require a significant amount of

nodes to cover the area of interest with a high spatial resolution, which is desired in many

applications such as the development of hydraulic models [6]. Nevertheless, mobile sensor

networks have gained importance among the research community over the last few years.

These sensor deployments are very appealing because the sensor nodes capturing the data

are mobile so that they can cover wider areas. However, modeling the data captured from

mobile sensing networks can be complex for multiple reasons, including for example the

inherent irregularity of their spatio-temporal sampling [7].

The main purpose of this research is to develop a graph-based interpolation method

that is capable of modeling the data captured by mobile sensor networks and making

predictions. For example, this method enables providing estimated values at sensed loca-

tions at times when sensors in those locations are not active, so that the spatio-temporal

resolution of the data can be increased.

1.1 State of the art and related work

In recent years, a lot of work has been done in Graph Signal Processing (GSP). Although

GSP is a very broad area of study, we will mainly focus on the part that is most related

to the use of graphs for signal interpolation. We will also present some relevant work on

mobile sensor networks and interpolation techniques not related to graphs.

In GSP, graph learning from data is a crucial problem. There exist many ways in which

we can obtain a graph from data samples, but what we really want to accomplish is to learn

a graph that represents the information in the data through meaningful connections. As

an example, a signal smoothness-based technique together with Laplacian interpolation

2

has been proposed in air pollution monitoring [8].

In some cases, when working within a GSP framework, research has shown that fixing

the graph topology before learning the graph can yield an optimal graph construction for

that particular topology. In other words, the best graph of a given topology can be found

optimally. Research presented in [9] introduces an optimal graph learning process when

the graph topology is fixed beforehand to a tree topology, i.e., a graph without any cycles.

In the spatial interpolation field, there exist a lot of interpolation techniques. The

most commonly used interpolation methods are distance-weighting methods, interpolat-

ing polynomials and kriging, which is a well-known geostatistical estimator [10]. Some

research combines these classic data-driven models adopting a random forest algorithm

to adaptively choose the more accurate models in order to achieve an error reduction [11].

1.2 Outline and main contributions

This thesis has been structured in six parts. This Introduction to the topic of Graph

Signal Processing together with the state of the art and the outline of this thesis is the

content presented in Chapter 1.

In Chapter 2 we present the framework in which GSP is developed, stating some basic

definitions in the field of graph theory. Then, we introduce how signals are represented

in a graph environment as well as the representation of time-varying graph signals. We

also dive into tree graphs, which will be of extreme importance in the proposed solution.

Chapter 3 describes the problem to be solved and the actual motivation of the research:

how to increase the spatio-temporal resolution of a signal from a GSP perspective. Also,

the data with which we worked during this research is presented and the main aspects of

this data captured in a mobile sensing network are highlighted.

In Chapter 4 we present our proposed solution to perform interpolation in mobile

sensing networks. Some existing theory in the tree graph learning from [9] is presented in

3

more detail. Then, we discuss the issues that arise when using this approach in a mobile

sensing environment and propose a solution for each of them so we can adapt the method

to the kind of data that is captured by mobile sensor networks, which is very irregular.

In Chapter 5 we describe the performance metrics and the cross-validation techniques

used to tune the model hyper-parameters. Moreover, we compare the proposed tree graph-

based interpolation method with state of the art interpolation methods such as Inverse

Distance Weighting (IDW) and Kriging.

Finally, Chapter 6 presents the conclusions and describes future work to be done re-

lated to the research presented in this thesis. Appendix A describes the GitHub repository

where the code used to implement the presented techniques can be found.

4

Chapter 2

Graph Signal Processing

This chapter covers the fundamentals of Graph Signal Processing and presents the nec-

essary graph theory concepts and definitions that are essential to understand the devel-

opment of this research.

2.1 Graphs

2.1.1 Basic definitions

In this section, some basic definitions related to basic graph theory are provided.

Definition 2.1. A graph G(V,E) is a set of nodes V (also called vertices) and edges

E ⊆ {(i, j) | (i, j) ∈ V 2}, where an edge eij represents a connection between the node i

and the node j.

Definition 2.2. A graph G(V,E) is weighted if any edge eij ∈ E, has a defined real

positive weight wij, or unweighted, if the weight for all its edges is equal to 1.

If an edge between two nodes does not exist it can be represented by a weight equal

to zero, both in weighted and unweighted graphs.

Definition 2.3. A graph G(V,E) is undirected if for every edge eij ∈ E, it holds that

eji ∈ E and wij = wji. Conversely, a graph is directed if there exists any edge eij ∈ E

such that eji /∈ E or eji ∈ E and wij ̸= wji.

5

In other words, edges in an undirected graph do not have a direction or can be traversed

in both directions. On the other hand, a directed graph has edges with direction that

indicate a one-way connection.

Definition 2.4. A graph G ′(V ′, E ′) is a subgraph of G(V,E) if V ′ ⊆ V and E ′ ⊆ E.

Definition 2.5. Given an undirected graph G(V,E), the node degree is defined as the

sum of the weights of its edges:

di =
∑
∀j∈V

wij

In the case of directed graphs, the in-degree and out-degree are defined as follows:

dini =
∑
∀j∈V

wij, douti =
∑
∀ȷ∈V

wji

Definition 2.6. A regular graph is a graph where each node has the same number of

neighbors.

Definition 2.7. A complete graph is a particular case of regular graph in which every

pair of distinct nodes is connected by an edge.

The number of edges of a complete graph with N nodes is N(N−1)
2

.

Definition 2.8. A graph is said to be strongly connected if every node is reachable

from every other node.

The strongly connected components of a graph form a partition into subgraphs that

are themselves strongly connected.

Definition 2.9. A graph is said to be dense if the number of edges is close to the maximal

number of edges. Conversely, a graph is sparse if the number of edges is close to the

minimal number of edges.

6

2.1.2 Algebraic representation of graphs

Definition 2.10. Given a graph G(V,E) with |V | = N nodes, the adjacency matrix A

is an N ×N square matrix where the entry corresponding to the i-th row and j-th column

is aij = wij.

Note that for undirected graphs, the adjacency matrix will be symmetric, given that

aij = aji, ∀ i, j ∈ V . Moreover, if there are no self-loops, aii = 0, ∀ i ∈ V , i.e. all the

elements in the diagonal will be zero.

Definition 2.11. For any undirected graph with adjacency matrix A we can define an

upper triangular matrix U containing all the weight values as:

uij =


aij if i ≤ j

0 otherwise

Note that for an undirected graph, the upper triangular partU of the adjacency matrix

A contains all the graph information, since A is symmetric. Thus, it is only required to

visit U to traverse the adjacency matrix of an undirected graph (which is twice as fast

computationally than traversing the entire matrix).

2.2 Graph signals

Now that the basic graph theory concepts have been defined, let us present signals on

graphs.

Definition 2.12. A graph signal is a real vector x ∈ RN , where the entry xi is the real

scalar corresponding to the node i.

Definition 2.13. A time-varying graph signal can be represented as a real matrix

X ∈ RN×M , where N is the number of nodes and M the number of observations in time.

7

2.3 Tree graphs

Definition 2.14. A graph G(V,E) is a tree if it is an undirected graph in which any

two vertices are connected by exactly one path. Equivalently, a tree is a connected acyclic

undirected graph [12].

The number of edges in a tree graph is |E| = |V | − 1.

2.3.1 Maximum spanning tree

Definition 2.15. Given a weighted undirected graph G(V,E), a spanning tree T is a

subgraph of G that forms a tree and includes all of the vertices of G.

A maximum spanning tree is a spanning tree with the maximum total edge weight.

Note that for a given graph there may be several spanning trees but, in general, there

is a unique maximum spanning tree. There exist different algorithms to find the maxi-

mum spanning tree. Among them, the most popular ones are Prim’s algorithm [13] and

Kruskal’s algorithm [14], presented next.

2.3.1.1 Prim’s algorithm

Prim’s algorithm can be used to find the maximum spanning tree of a graph. It can be

described as performing the following steps:

1. Initialize a tree with any single node from the graph.

2. Grow the tree by one edge by finding, among the edges that connect the tree to

vertices not yet in the tree, the maximum-weight edge and adding it to the tree.

3. Repeat step 2 until all vertices are in the tree.

Prim’s algorithm has O(|V |2) time complexity, with |V | being the number of vertices

or nodes in the graph.

8

2.3.1.2 Kruskal’s algorithm

Kruskal’s algorithm is an alternative method that can be used to find the maximum

spanning tree of a graph. The steps are:

1. Sort all edges in decreasing order of their edge weights.

2. Pick the maximum-weight edge and check if it creates a cycle in the maximum

spanning tree. If it does not form a cycle, then include that edge in maximum

spanning tree. Otherwise, discard it.

3. Repeat step 2 until the spanning tree includes |V | − 1 edges.

Kruskal’s algorithm time complexity is O(|E| log |V |), with |E| the number of edges

and |V | the number of vertices or nodes in the graph. Note that, for dense graphs, Prim’s

algorithm is faster than Kruskal’s. Conversely, Kruskal’s algorithm is faster for sparse

graphs, where the number of edges |E| is smaller.

9

Chapter 3

Problem definition

A mobile sensor network is a sensor network in which the sensor nodes capturing the

data are mobile, that is, they do not remain in a fixed location. For instance, sensor

nodes installed on vehicles such as buses, trains or taxis can be part of a mobile sensor

network. Over the last few years, mobile sensor networks are attracting a lot of interest

in the research community due to advances in hardware design, communication protocols

and resource efficiency [15]. Economics, environmental or seismic monitoring, healthcare

applications and inventory tracking are some of the main applications of mobile sensor

networks [16].

The research community is becoming interested in exploiting mobility in a wireless

environment, rather than considering it as a sort of disturbance. In order to take ad-

vantage of mobility, three main types of mobility have been defined: random, controlled

and predictable. In the random mobility category, mobile sensors are supposed to move

according to a random mobility pattern. A drone that moves over space following a ran-

dom pattern is an example of this mobility type. Random mobility can be challenging to

work with and often can be seen as a source of problems rather than providing advantages

over forms of mobility. Controlled mobility consists of mobile sensors introduced in the

sensing network and moving to specific destinations with defined mobility patterns for

specific objectives. For instance, taxis can be an example of controlled mobility, since

they move to specific destinations but the paths they follow are not necessarily always

the same. Lastly, a sensor node mounted on a means of public transportation that moves

with a periodic schedule represents a case of predictable mobility. Trains or buses are

10

examples of predictable mobility, specially if they are on time, because then it is much

easier to predict their position at any given time. Predictable mobility makes it easier to

program and accomplish specific desired target tasks [17].

Mobile sensor networks are much more versatile than static sensor networks as the

sensor nodes can be deployed in any scenario and quickly provide observations in different

locations [18]. Moreover, the coverage area of the sensors can be significantly larger in a

mobile sensor network compared to a fixed one. Consequently, if the goal is to cover a

certain area, a mobile sensor network will require fewer sensor nodes to be deployed than

a static one. Given two systems with the same number of sensors, a mobile sensor network

will generally provide a much better coverage in space, i.e., a better spatial resolution,

than a conventional fixed sensor network.

The main disadvantage of mobile sensor networks is that simultaneous measurements

at different locations are unlikely. Instead, the data gathered by a mobile sensor network

usually contains observations that are not simultaneous and are not evenly spaced over

time at different spatial locations. As an example, let us consider a mobile sensor network

deployed in an urban environment whose purpose is air quality monitoring. As stated

above, it is expected to cover all the urban area with a few sensor nodes, but one of the

issues that may come up is that at any given time, each sensor will be located in a certain

position, so that the sensors will not cover all the target area at that time. Thus, it will be

necessary to wait until additional measurements are made in order to achieve the desired

coverage. This leads to a low spatio-temporal resolution, that is, the sensor network

does not provide a high temporal resolution for every location in the urban area. A high

spatio-temporal resolution is critical for real-time sensing and monitoring applications.

This issue gives rise to the problem we address in this thesis, namely, developing a graph-

based model to increase spatio-temporal resolution using sample interpolation.

11

3.1 Air quality dataset

This section describes the air quality dataset that will be used to train the graph based

model and evaluate the performance of the proposed solution. The dataset, produced by

the OpenSense project, contains mobile air quality measurements for the city of Zurich

[19]. Mobile sensor boxes are installed on top of trams across the city, in order to provide

high spatial resolution, and measure ozone (O3) and carbon monoxide (CO) levels [20].

Even though this is a specific dataset, it is important to note that it is representative

of data being captured on rail systems. Thus, the work in this thesis aims to provide a

generalized solution for this type of data, rather than limiting the proposed methods to

the field of air quality. Table 3.1 includes a few samples of collected data.

Table 3.1: Example of raw data captured by ozone sensors.

timestamp (ms) ozone (ppb) temp. (ºC) humidity (%) latitude longitude

1318583686494 14.145374 10 64 4724.22833 832.88198
1318583746777 14.523555 10 64 4724.01861 832.61155
1318583766726 14.603173 10 66 4724.01839 832.61003
1318583826330 14.742503 10 66 4723.85901 832.50465
1318583846355 14.603173 10 66 4723.85936 832.50535

Each sample in Table 3.1 includes the following data:

• Timestamp: timestamp in milliseconds in the Unix timestamp format. This count

starts at the Unix Epoch on January 1st, 1970 at UTC. Note that data observations

are ordered by increasing timestamp and that measurements are not evenly spaced

over time.

• Ozone ppb: level of ozone (O3) measured in ppb (parts per billion).

• Temperature: temperature in degrees Celsius (ºC).

• Humidity: percentage of humidity.

12

• Latitude: latitude in the WGS84 format ddmm.sssss, which would be equivalent

to dd◦ mm′ (60 · 0.sssss)′′. As an example, the latitude for the first observation

in Table 3.1 would be 47◦ 24′ 13.6998′′ (note that the decimal part of the latitude

needs to be multiplied by 60 to get the number of seconds).

• Longitude: longitude in the WGS84 format dmm.sssss, which would be equivalent

to d◦ mm′ (60 · 0.sssss)′′. As an example, the longitude for the first observation in

Table 3.1 would be 8◦ 32′ 52.918′′.

A common aspect of most datasets providing obtained from mobile sensor networks

is that they measure a certain quantity at a given position in space and time. That is,

time and position information are captured for each sensor observation. The particular

dataset used in this thesis collects ozone ppb data and contains approximately 200 000

observations taken over the course of three months.

13

Chapter 4

Proposed solution

This chapter presents and explains in detail the proposed solution. It also explains the

data pre-processing required to obtain the desired input for the solution, as well as some

possible optimizations to improve its time complexity. The proposed solution can be

divided into two parts. The first part is related to the graph construction or graph

learning method, while the second one is about the interpolation method used once the

graph is constructed.

4.1 Data pre-processing

This section intends to go through the data pre-processing needed in the particular case

of the air quality dataset, but it also serves as an example to describe the input required

by the solution that we propose. Note that, for the specific case of air quality sensors,

it may be possible to improve data interpolation by considering related environmental

factors, such as temperature or humidity. However, our goal is to study the general

problem of increasing spatio-temporal resolution of sensed data, including cases where

other environmental variables may not be relevant. For this reason we only consider

interpolation in time and space of the measured variable (ozone concentration in this

particular case). Only this information will be used to construct the graph and interpolate

the data.

14

4.1.1 Timestamp reference

As can be seen in Table 3.1, timestamps are such a large number, since they represent the

amount of milliseconds from January 1st, 1970 UTC. Let us say that a given timestamp

t can be expressed as t = t0 + t′, where t0 is the smallest timestamp in the dataset,

i.e., the reference timestamp. Therefore, if all timestamps are recomputed such that

the new timestamp is now t′, we get rid of the offset t0 that is present in every single

timestamp and it does not provide any useful information once the reference timestamp

is known. Moreover, all timestamps will be converted from milliseconds to seconds for

convenience. The high temporal resolution provided by the sensors is not useful given that

measurements are not evenly spaced over time and the average time between samples is

close to 40 seconds.

4.1.2 Coordinates to distance conversion

The geographic coordinates system is very useful to represent any point on Earth’s surface

as accurately as the measurement technique allows, but when it comes to computing

distances between points, some complex and time-consuming arithmetic calculations are

encountered. This is the main reason why it is convenient to transform the positions

expressed as latitude and longitude to a projected coordinate system on a Cartesian

plane. In order to do so, a rectangular space will be defined such that it is the smallest

rectangle containing all the observations available. Then, a reference point (0, 0) is set

as the observation with the lowest latitude and longitude in the data. From this, all

coordinates in the plane representing an observation can be transformed to Cartesian

coordinates (x, y) using the Haversine formula, which determines the great-circle distance

between two points on a sphere given their longitudes and latitudes:

d = 2R · sin−1

(√
sin2

(ϕ2 − ϕ1

2

)
+ sin2

(λ2 − λ1

2

)
cos(ϕ1) cos(ϕ2)

)
, (4.1)

15

where R is the Earth’s radius, ϕ1, ϕ2 are the latitudes and λ1, λ2 the longitudes of points

1 and 2 respectively, and d is the distance between these points.

This translates to an additional two columns in the data, which will be called x and y

and will represent the location where the measurement is taken in Cartesian coordinates

with respect to the reference point (ϕmin, λmin). Moreover, to make the understanding

of latitudes and longitudes easier, they will be converted from the degrees, minutes and

seconds format to decimal degrees. The table below shows the transformations applied

to the data in table 3.1:.

Table 4.1: Example of pre-processed data transformation.

timestamp (s) ozone (ppb) latitude (º) longitude (º) x (m) y (m)

0 14.1454 47.4038 8.54803 4329.23 5949.06
60 14.5236 47.4003 8.54353 3989.22 5560.01
80 14.6032 47.4003 8.54350 3987.33 5559.63
140 14.7425 47.3976 8.54174 3854.84 5263.90
160 14.6032 47.3977 8.54176 3855.85 5264.64

4.2 Graph learning

The way to obtain a graph from data is a fundamental problem in graph signal processing

known as graph learning or graph construction [21]. There exist many graph learning

techniques, but none of them suits the type of data collected by a mobile sensor network.

As a first step, it can be interesting to observe the data distribution across space. The data

spatial distribution for the air quality dataset can be observed in Figure 4.1, where each

dot represents an observation. Note that a similar spatial distribution of the data can be

expected in other mobile sensor networks that are part of a predictable mobility system.

In other words, when the sensor goes from point A to point B and the path is mostly

determined, measurements along the path will appear forming a line. This is not the case

for random mobility, because there is no such thing as origin or destination. Therefore,

16

in predictable mobility environments (e.g., buses or trains), it might be interesting to

construct a tree graph from the data, since it seems an appropriate representation given

the spatial distribution observed.

Figure 4.1: Spatial distribution of the air quality data.

Graph learning usually involves two stages: topology inference and weight estimation.

Topology inference aims to identify which pairs of nodes should be connected, while weight

estimation aims to assign weight values to the edges of a graph given its topology.

4.2.1 Topology inference

In some scenarios, graphs with certain structures are required, such as trees [22] or bi-

partite graphs [23], and solving the optimal topology can involve solving NP-hard com-

17

binatorial problems. We will focus on the case where a tree graph is desire, as motivated

above, but before diving into weight estimation it is necessary to define more precisely

what each graph node represents. Clearly, each node represents a certain location or

position in space, but given the sparse and irregular nature of the measurements this has

to be defined more carefully.

Some research in graph signal processing has shown that the use of the Voronoi cell area

of vertices leads to a more sensible definition of graph signal energy even when sampling

is highly irregular [24]. This highlights the fact that we can consider that graph nodes

represent an area, and not just a specific point. Thus, we propose to divide the rectangular

area where all measurements are located into a grid formed by squares, where each square

in the rectangular grid will be represented by a node. This way, each observation within

the data set can be mapped to a node, namely, the node corresponding to the square region

the measurement belongs to. Since there is no ideal way to define the grid partition, a

parameter ∆s (“delta space”) is introduced. From now on, ∆s will represent the distance,

in meters, of the side of each square in the grid. As a clarifying example: if the lower left

corner of the rectangular area containing all observations corresponds to the coordinates

(0, 0), and the upper right corner to the coordinates (xmax, ymax), the grid will contain⌈
xmax

∆s

⌉
×

⌈
ymax

∆s

⌉
squares/nodes.

4.2.2 Weight estimation

Research on weight estimation has been focused on, given the empirical covariance matrix

S =
1

N

N∑
i=1

xix
⊤
i

from N data samples xi, estimating the combinatorial graph Laplacian (CGL) as formu-

lated in [25]:

min
L∈L(E)

− log |L|† + trace(LS) + α∥L∥1,off, (4.2)

18

where L(E) is the set of CGLs with edge set E , and ∥L∥1,off is the absolute sum of

all off-diagonal elements of L. Note that the pseudodeterminant (product of nonzero

eigenvalues) |L|† is required here because CGL matrices are singular. (4.2) describes a

MAP (maximum a posteriori) parameter estimation of a Gaussian Markov Random Field

(GMRF), x ∼ N (0,Σ = L†) [9].

In this thesis, we take as a starting point the work in [9], where a closed form solution

in terms of the empirical covariance matrix of the problem formulated in (4.2) is given,

for the case where the target graph topology is known and it does not contain any cycles,

i.e., it is a tree. Given S and defining

K = S+ α(I− 11⊤)

the resulting weights can be found as follows:

wr,s =
[
(er − es)

⊤K(er − es)
]−1

= (kr,r + ks,s − 2kr,s)
−1, (4.3)

or

wr,s =

[
1

N

N∑
i=1

(xi(r)− xi(s))
2 + 2α

]−1

, for (r, s) ∈ E , (4.4)

where ei is the i-th vector of the standard basis, that is, ei(i) = 1 and ei(j) = 0, j ̸= i.

Note that α > 0 is necessary in order to have positive non-infinite weights and, defining

δr,s =
1

N

N∑
i=1

(xi(r)− xi(s))
2,

we can see that δr,s is the mean-square-difference between the r-th and the s-th elements

over all realizations xi.

To obtain the tree topology we can run a maximum weight spanning tree algorithm

on the complete graph with weights wr,s given by (4.3). Thus, the procedure to obtain it

consists on the following two steps:

19

1. Compute the weights using (4.3) or (4.4) for all (r, s) ∈ V × V , and construct a

complete graph with those weights.

2. Apply a maximum weight spanning tree algorithm, such as Kruskal’s algorithm [14]

or Prim’s algorithm [13], to the complete graph.

Note that the closed expressions to compute weights described in (4.3) and (4.4) cor-

respond to an ideal case where each pair of nodes s and t have the same number of

observations (N), which will not be the case in most mobile wireless sensor networks.

What will actually happen is that some nodes will have more observations than others

and these observations will not be simultaneous. In other words, since the weight ex-

pression from (4.4) pairs realizations and compares their values, for the estimates to be

accurate it will be desirable that those realizations that are being compared be taken

either simultaneously or within a small interval of time. Otherwise, the weights may be

inaccurate, leading to a graph with no meaningful information, since the differences in

(4.4) will correspond to different times and the spatial correlation that leads to estimates

in (4.4) will be affected by the lack of temporal consistency (observations at different

times). Note that this issue arises because the method in [9] considered simultaneous

observations in time.

To take into account the different times at which samples are captured, we need to

define time intervals such that all realizations that go into one of the squared difference

term in (4.4) belong to the same time interval. Effectively, this means that we need to

define a temporal resolution, defined by a time interval ∆t (“delta time”). Consequently,

when classifying the data to create the graph, each observation will be assigned to the

corresponding node according to the position where it is taken, and will also belong to

the interval
⌊

t
∆t

⌋
, where t is the timestamp at which the observation is taken. The num-

ber of temporal intervals considered will be T =
⌈
tmax

∆t

⌉
, with tmax being the maximum

timestamp observed in the data. Then, when all the realizations are classified to their

corresponding nodes and temporal intervals, the weights can be estimated using the ap-

20

proach proposed in [9], but using in (4.4) all those pairs of observations that belong to the

same temporal interval. Thus, a modified expression to compute weights will be given as:

wr,s =

[
1

N

T∑
t=1

Nt∑
i=1

(xt,i(r)− xt,i(s))
2 + 2α

]−1

, for (r, s) ∈ E (4.5)

where T is the number of time intervals, Nt is the number of realizations being compared

at time interval t, xt,i(r) is the i-th realization from node r at time interval t and N =∑T
t=1 Nt, the total number of pairs of realizations compared along all the time intervals.

In other words, (4.5) computes squared differences of realizations within the same time

interval and uses all time intervals to estimate the weight between two nodes.

Nevertheless, some nodes will still have more realizations than others at a given time

interval, that is, Nt,r (number of realizations at time interval t and node r) does not have

to be the equal to Nt,s (number of realizations at time interval t and node s). This leads

to the need of addressing this issue, since every node requires to have the same number of

realizations as the node with which is being compared at every time interval [9]. To do so,

we consider two approaches: (i) completing the covariance matrix as if there were missing

observations (Nt = max(Nt,r, Nt,s)) and (ii) computing all the possible combinations of

squared differences (Nt = Nt,r ×Nt,s).

4.2.2.1 Computation of every combination of squared differences

The computation of every combination of squared differences is based on the interpretation

of (4.5), which leads to computing squared differences corresponding to all pairs of nodes.

For a given choice of temporal resolution, ∆t, squared differences are only computed

within observations in the same interval. Thus, if during a certain time interval t a pair of

nodes r, s have different number of realizations Nt,r ̸= Nt,s, the proposed method consists

of using all the (Nt,r × Nt,s) possible squared differences to estimate the weight. Thus,

(4.5) can be rewritten as:

21

wr,s =

[
1

N

T∑
t=1

Nt,r∑
i=1

Nt,s∑
j=1

(xt,i(r)− xt,j(s))
2 + 2α

]−1

, for (r, s) ∈ E (4.6)

Figure 4.2: Illustrative example of every possible combination of squared differences.

The diagram in Figure 4.2 shows an example of the comparisons that are being made

when using this sample removal/ignoring approach according to (4.6). Red arrows repre-

sent the realizations that are being compared within the same time interval when graph

nodes have different number of observations. Note that, strictly speaking, all weights

between each pair of nodes need to be computed, but to keep the figure simple the com-

parisons needed to compute the weights between nodes 1 and 3 are not shown in Figure

4.2. From this example, it is clear that this approach takes into consideration the maxi-

mum possible number of samples at each weight computation between any pair of nodes.

This fact makes it flexible and it can be adapted to any data distribution.

4.2.2.2 Covariance matrix estimation with missing observations

Amethod to perform a covariance matrix estimation with missing observations is proposed

in [26]. Assume that the complete data set is represented by the n×N matrix X, with i-th

22

row and k-th column given by the vectors xi and x(k) respectively. The n × N matrices

Y and ∆ denote the observation and missing data patterns respectively. ∆ has entries in

{0, 1}. The k-th columns of Y and ∆ are denoted by the vectors y(k) and δ(k) respectively.

These quantities are related through:

y(k) = δ(k) ⊙ x(k)

where ⊙ is the entry-wise product (also known as Hadamard or Schur product) and is

defined by (A⊙B)ij = aijbij. When the j-th entry of δ(k) is equal to 0, the correspond-

ing entry of x(k) is missing. Considering a realistic scenario in which the observation

probabilities are unknown and have to be estimated from data, the matrix of empirical

observation probability is defined as

P̂ =
1

N

N∑
k=1

δ(k)δ(k)
⊤
, (4.7)

and its entries are denoted by p̂ij. The quantity p̂ij is equal to zero when the i-th and

j-th variables are not observed together. Since we can only estimate the entries of the

covariance matrix for which there are observations, we define the set E = {(i, j) : p̂ij ̸= 0}.

Let ΣE be a matrix whose entries in E coincide with the population covariance, and are

zero otherwise. Let Γ̂ = (γ̂ij) be the Hadamard inverse of max(Γ̂, 1
N
11⊤), which satisfies

γ̂ij p̂ij = 1 if (i, j) ∈ E , and γ̂ij p̂ij = 0 otherwise. An unbiased estimator for ΣE is given by

Σ̂ =
1

N

N∑
k=1

y(k)y(k)⊤ ⊙ Γ̂. (4.8)

Even though this approach is very appropriate from the theoretical point of view, there is

a major drawback that comes up when using it. This method fails to adapt to situations

that occur frequently in our problem and in particular to the case the number of samples

observed during a given time interval is very different from node to node.

An illustrative example of this issue is shown in Figure 4.3, where the node with the

23

Figure 4.3: Illustrative example of missing observations approach.

highest number of observations in each time interval determines the number of missing

observations in the other nodes. In this example there are only four nodes which means

that, if we considered the missing observations approach explained, 45% of the samples

would be considered to be missing. If this is extended to a more realistic scenario, where

there are hundreds of nodes, it is easy to see that the vast majority of samples will be

considered as missing and estimated data will outnumber actual observations. Intuitively

this makes this approach not very desirable. Indeed, an experimental comparison between

the computation of all possible squared differences method and the covariance matrix

estimation method showed that the former outperforms the latter. Therefore, from now

on, the method used to solve the issue of weight computing will be the one described in

Section 4.2.2.1.

4.2.3 Graph learning algorithm

Up to this point we have introduced the topology inference and weight estimation used for

graph construction. The complete graph learning algorithm using the concepts explained

in the previous sections is summarized in Algorithm 1.

24

Algorithm 1 Tree graph construction algorithm
Input:

data: observations in the dataset
∆t: delta time parameter
∆s: delta space parameter
α: alpha parameter (weight computation)

Output:
A: tree graph adjacency matrix
W: complete graph adjacency matrix

1: procedure GraphLearning

2: T ←
⌊
tmax

∆t
+ 1

⌋
, M ←

⌈
xmax

∆s

⌉
, N ←

⌈
ymax

∆s

⌉
3: for each obs ∈ data do

4: t← obst
∆t

, m← obsx
∆s

, n← obsy
∆s

5: graph data[N ·m+ n][t].add(obs)

6: for each v1 ∈ {1, . . . ,M ·N} do
7: for each v2 ∈ {v1 + 1, . . . ,M ·N} do
8: wv1,v2 ← 0

9: k ← 0

10: for each t ∈ {1, . . . , T} do
11: for each i ∈ {1, . . . ,length(graph data[v1][t])} do
12: for each j ∈ {1, . . . ,length(graph data[v2][t])} do
13: wv1,v2 ← wv1,v2+ (graph data[v1][t][i]− graph data[v2][t][j])

2

14: k ← k + 1

15: if k ̸= 0 then

16: wv1,v2 ←
(wv1,v2

k
+ 2α

)−1

17: A← maximum spanning tree(W)

From Algorithm 1, note that the maximum spanning tree algorithm used to obtain

A, the adjacency matrix of the learned tree graph, is not specified. Considering that W,

the adjacency matrix with the weights for each pair of nodes corresponds to a complete

graph, using Prim’s algorithm to find the maximum spanning tree is faster, as explained

in Chapter 2. The main reason is that, for dense graphs, Prim’s algorithm is faster than

Kruskal’s algorithm. If the initial graph was sparse, then Kruskal’s algorithm would be

faster.

25

4.3 Interpolation

We now describe the method used to interpolate samples at desired target locations once

the tree graph has been constructed. The interpolation schemes specifically for tree graphs

are much simpler than those for more general graph structured data [4][27]. The main

reason for this is that the graph structure is simpler, and the number of edges is the

minimum possible to connect all the graph vertices: |E| = |V | − 1.

In order to interpolate a sample, we first need to know the location and time corre-

sponding to the sample to be predicted. For the given location representing a point in

space, we first find the square on the grid that contains the point and the resulting square

corresponds to the graph node to which that sample is assigned. This graph node will

be referred to as vk, while the time interval is denoted tk. The interpolation scheme will

use observations from the sensor network captured within the same time interval and in

different locations and the tree graph that needs to be previously constructed as explained

in Section 4.2. Given Ovi = {ovi1 , . . . , oviNi
}, the realizations observed in the node vi and

within the time interval tk, and A the adjacency matrix of the tree graph model with en-

tries aij, the interpolated value xk at the node vk in the time interval tk will be computed

as follows:

xk =

∑M
i=1

∑Ni

j=1 avk,vi · ovij∑M
i=1 avk,vi ·Ni

(4.9)

where {v1, . . . , vM} = {vi | aik ̸= 0}, that is, all the 1-step neighbors of vk. Note that

(4.9) produces the interpolated value as the weighted mean of the neighbor nodes of vk.

It might happen that there are no observations available for any of the neighbor nodes

of vk in the time interval tk. In that case, the 2-step neighbors will be considered next.

If there are no available samples, the step will be increased by 1 unit until neighboring

samples are found and the interpolation can be performed.

The overall edge weight considered in the case when interpolation comes from an n-

step neighbor is the inverse of the sum of the reciprocals. This can be seen by considering

26

the case of a path graph with nodes 1, 2, 3, ..., n, with corresponding edge weights are

a12, a23, . . . a(n−1)n. Then, noting that the edge weights correspond to similarity (larger

weight means greater similarity), so that greater similarity indicates shorter distance, we

can see that the similarity of the end nodes along the path is the inverse of the sum of

the reciprocals. This can be written as:

1

a1n
=

1

a12
+

1

a23
+ . . .+

1

a(n−1)n

, (4.10)

where we can see that the distances along the path are additive. The expression in (4.10)

is equivalent to that the of the sum of resistances in an electric circuit, where similarity

corresponds to conductance, while inverse similarity corresponds to resistance.

Figure 4.4: Simple graph used to exemplify the tree interpolation scheme.

Figure 4.4 shows a simple tree graph as an example of the interpolation that is per-

formed. Suppose that we want to interpolate a sample in the node v2 at the time interval

t1. To do so, observations from nodes v1, v3 and v4 will be used, and weighted according

to the respective edge weights w12, w23 and w24 (the auxiliar observations from these

nodes must belong to the same time interval t1). If there are no any observations in any

of these nodes, then we would use the observations from node v5, with weight w25 defined

by 1
w25

= 1
w24

+ 1
w45

, the inverse of the sum of the reciprocals of the traversed edges to go

from v2 to v5.

27

It is important to note that this tree based interpolation method has a constraint,

which is that interpolation of samples can only be performed in locations that the tree

graph model constructed represents with its nodes. Additional areas can only be incor-

porated into the model if the mobile sensors visit those areas at some point.

4.4 Solution optimization

The graph learning method and interpolation scheme have been presented in the previous

sections. In this section we present optimizations that can reduce the computational

complexity, especially that of the graph learning part, which is the most computationally

expensive. Optimizing the solution is important to make its implementation efficient and

it can be very helpful to tune the tree model hyper-parameters.

4.4.1 Temporal complexity analysis

The temporal complexity of the algorithm is given by the following expression:

Θ(|O|+ |V |2 · T + |V |2), (4.11)

where |O| is the number of observations, |V | the number of nodes and T the number of

time intervals defined. The first term in (4.11) corresponds to the cost of classifying all

the data, which has a complexity of Θ(|O|), proportional to the number of observations

in the dataset. The second term in (4.11) is the weight estimation complexity, Θ(|V |2 ·T),

because for each pair of vertices v1, v2, the weight of the edge that connects them is

computed iterating all the time intervals ti, i ∈ {1, . . . , T}. Lastly, the third term in

(4.11) corresponds to the maximum spanning tree implementation using Prim’s algorithm,

whose temporal cost is O(|V |2). Note that since the time complexity can vary depending

on the scenario, we provide an upper bound that reflects the complexity of the worst case

scenario.

28

It is important to note that the magnitude |V | is quite large if divide a rectangular

region into a grid and assign each squared cell area to a node. The number of nodes will

be

|V | =

⌈
xmax

∆s

⌉
·

⌈
ymax

∆s

⌉
,

where ∆s is the graph learning parameter defined in Section 4.2.1 and (xmax, ymax) are

the coordinates of the right upper corner of the rectangular area, the point that is the

most distant from the origin or reference point. As an example, consider the particular

case of the air quality dataset gathered in the urban area of Zurich. For this case, we

have that xmax = 9000m, ymax = 12 000m. Considering a ∆s = 100m, that is, each node

covers a squared area of 100m × 100m (a reasonable choice according to [28]), so that

the number of nodes will be |V | = 10 800 nodes. We can see that the number of nodes

can increase rapidly in scenarios where the coverage area is large or the desired spatial

resolution is high (small ∆s).

4.4.2 Removal of candidate nodes without samples

From the temporal complexity analysis we learn that the factor that affects temporal

complexity the most is the number of nodes. Therefore, if we can reduce the number

of considered nodes, the overall complexity will be significantly improved according to

Amdahl’s law [29].

A first idea to reduce complexity comes from considering the spatial distribution of the

data. The coverage area is defined as a rectangular area for simplicity and convenience but

in practice some areas within the rectangular region will not be covered by mobile sensors.

Thus, nodes (square areas) without any realizations can be removed from the node list.

To account for that we will differentiate between candidate nodes and the actual nodes

that contain measurements. Candidate nodes are named like this due to the possibility

of being nodes of the tree graph model obtained from the graph learning method. But it

29

is not realistic to think that all candidate nodes will be part of the final graph, especially

in a predictable or mobility environment.

As an example, in the Zurich air quality dataset, with xmax = 9000m, ymax = 12 000m

and ∆s = 100m, there are 10 800 candidate nodes. If all the realizations contained in the

dataset are classified to their corresponding nodes, we can see how the data is distributed

over the candidate nodes and how many nodes actually contain data. Figure 4.5 shows

the node distribution and the frequency of observations in the described example and

demonstrates that the actual nodes containing observations are a small subset of the

candidate nodes. In this particular example, only 557 nodes contain samples, representing

a 5.16% of the candidate nodes. Therefore, dropping all the nodes without realizations

beforehand will contribute to a much faster weight computing, data processing and graph

learning.

4.4.3 Maximum edge distance

Temporal complexity analysis from Section 4.4.1 shows that the most computationally

expensive part of the algorithm is the weight estimation, with a cost of Θ(|V |2 · T). In

Figure 4.6 we show the graph constructed with our algorithm for the Zurich air quality

dataset with the following tree model hyper-parameters: ∆t = 30min, ∆s = 150m,

α = 0.1. Note that the weights are not displayed for convenience, but the graph is still

an undirected weighted graph. Also note that the value of α is not relevant, since it only

affects the value of the weights according to (4.3) and (4.4), but does not affect the order

in which edges are selected to find the maximum spanning tree.

An important observation from Figure 4.6, is that there aren’t any edges connecting

nodes that are very far from each other. Since distant nodes are not connected, an

optimization of the graph learning algorithm can be introduced, which consists in omitting

the weights estimation for those pairs of nodes that are further than a certain threshold.

This introduces a new parameter to the graph learning model, but it can potentially

30

Figure 4.5: Node distribution and frequency of observations with ∆s = 100m.

reduce the computational cost of weights estimation significantly, specially in cases where

the area of coverage is very large or there are a lot of nodes. This new parameter will

be called “maximum edge distance”. As the name suggests, it represents the maximum

distance considered between two nodes before estimating the weight of the edge that

connects them. In other words, if two nodes are separated by more than the maximum

edge distance, no edge is considered to be connecting these two nodes. This can reduce

the execution time of the training algorithm significantly, because the weights estimation

method needs to compute the weight between each pair of nodes in the graph. If the

graph has |V | nodes, then |E| = |V |(|V |−1)
2

is the number of edges of the complete graph.

31

Figure 4.6: Example of tree graph obtained with ∆t = 30min, ∆s = 150m, α = 0.1.

Reducing the number of candidate edges also represents a considerable improvement in

memory and time when finding the maximum spanning tree.

A possible drawback of using a maximum edge distance is that a good choice is likely

to be application dependent. The above example only shows that this approach works

well for an air quality application, but we do not know if the same would happen with

other types of data. Thus, in general, the value of this parameter will have to be found

experimentally. The main condition that we need to guarantee is that we want the same

tree graph as a result of the graph learning algorithm whether the max edge distance

parameter is being used or not. Therefore, the optimal value for this parameter should

be the minimum for which the graph obtained remains unchanged if the parameter is

increased. In the worst case scenario, i.e., when nodes separated by a great distance

are connected in the tree graph, the introduction of this parameter does not worsen the

performance of the learning method. The introduction of this parameter to the model is

exclusively meant to reduce the computational cost of all the candidate edges.

32

Chapter 5

Experiments and results

This chapter presents the experiments that have been designed and implemented to have

a better understanding of the data, to optimize the tree model and tune its hyper-

parameters and to fairly compare the performance of the proposed method with other

state of the art interpolation methods.

5.1 Tree model validation

This section introduces the key concepts needed to perform the designed tree model

validation, including the metrics used to evaluate the interpolation performance and the

cross-validation techniques used to tune the model hyper-parameters and analyze their

effect on the interpolation system designed.

5.1.1 Performance metrics

Interpolation methods have been widely used in many disciplines, and the literature intro-

duces a broad variety of performance metrics used to evaluate interpolation methods. An

extensive list of measurements used to assess the performance of interpolation methods is

provided in [30] and [31], which present metrics for spatial interpolation and time series

interpolation, respectively. Since the interpolation that we are performing is both in space

and time, metrics that are commonly applied in both cases will be used here.

The output of the interpolation will consist of two vectors p = {p1, . . . , pN} and

o = {o1, . . . , oN}, representing the predicted values and the observations or samples,

33

respectively. A common performance metric used in interpolation is the mean squared

error (MSE), which provides a measure of the variance of the residuals (prediction errors).

The MSE is computed as follows:

MSE =
1

N

N∑
i=1

(pi − oi)
2, (5.1)

where N is the number of observations or samples, oi are the observed values and pi are

the predicted or estimated values. Since the error is squared, a more common performance

metric used in interpolation is the root mean squared error (RMSE), which provides a

measure of the standard deviation of the residuals (prediction errors) [32]. RMSE is

computed as:

RMSE =

√√√√ 1

N

N∑
i=1

(pi − oi)2. (5.2)

RMSE is more commonly used than MSE because RMSE is measured in the same

units as the data being interpolated, while MSE is measured in squared units of the

response variable. Nevertheless, in this case we also want to quantify the variability of

the interpolation error. This can be done computing the variance of the squared error:

σ2
e =

1

N

N∑
i=1

(ei − ē)2, (5.3)

where ei = (pi − oi)
2 is the squared error and ē = MSE, computed as in (5.1). From

this variance of squared error, we can get the standard deviation of the squared error by

just applying the square root: σe =
√

σ2
e , with σe representing the standard deviation

of the squared error. This is useful to compare in terms of MSE the different state of

the art interpolation techniques to the one presented in Chapter 4, because it allows

us to introduce error bars that represent the squared error standard deviation of each

interpolation method. Given the metrics presented in this section, we will be able to

tune the tree graph model hyper-parameters, evaluate different interpolation methods

34

and compare their performances.

5.1.2 Cross-validation

Cross-validation is a set of model validation techniques for assessing how the results of

a statistical analysis will generalize to an independent data set [33]. Basically, cross-

validation is a resampling method that utilizes different subsets of the data to train and

test a model on multiple iterations. It is mostly used when predicting and estimating how

accurately a model will perform in practice [34].

As part of cross-validation, data samples are divided into complementary subsets,

analysis is performed first on one subset (known as the training set) and validation is

carried out on the other subset (known as the validation set or testing set). In most

methods, cross-validation is performed several times using different partitions, and the

results of the tests are combined (e.g., averaged) over the rounds to estimate the model’s

predictive performance. To summarize, cross-validation combines (averages) measures of

fitness in prediction to derive a better estimation of model performance [35].

5.1.2.1 k-fold cross-validation

In k-fold cross-validation, the data is partitioned into k equal sized folds. Of the k folds,

a single fold is retained as the validation data for testing the model, and the remaining

k − 1 folds are used as training data. The cross-validation process is then repeated k

times, with each of the k folds used exactly once as the validation data [36].

Figure 5.1 shows the scheme of k-fold cross-validation for k = 5. The main advantages

of using a k-fold cross-validation approach to evaluate a model performance are that

training data is separated from the test data, which prevents the problem of overfitting

[37], and that all the data is used for testing purposes through the different iterations

involving this process, as it is depicted in Figure 5.1.

35

Figure 5.1: Illustrative example of k-fold cross-validation with k = 5.

5.1.2.2 k-fold nested cross-validation

When cross-validation is used simultaneously for selection of the best set of hyper-parameters

and for error estimation, a nested cross-validation is required.

Figure 5.2: Nested cross-validation scheme.

Figure 5.2 shows the nested cross-validation scheme. Nested cross-validation is a gen-

eralization of the Train-Validation-Test protocol, where training is performed on the Train

set for all hyper-parameter values, the combination of parameters that provide the best

performance on Validation is selected and used to train a single model on Train+Validation

whose performance is estimated on the Test set. Since the Test set is used only once by

a single model, performance estimation has no bias due to the model selection process.

36

The final model is trained on all data using the best found values for the set of hyper-

parameters considered. Nested cross-validation generalizes this protocol to cross-validate

every step of this procedure: for each Test set, all folds serve as Validation, and this

process is repeated for each fold serving as Test [38]. As shown in Figure 5.2, nested

cross-validation is formed by an inner loop which follows a cross-validation scheme to

obtain the error (RMSE) for each combination of hyper-parameters, and then the outer

loop consists on learning a model using Training+Validation and the set of parameters

that yielded to the best performance (lowest error) in the inner loop, and using the Test

fold to evaluate the performance.

5.2 Hyper-parameter tuning

This section covers the hyper-parameter tuning of the tree model, which has been done

using a k-fold nested cross-validation with k = 10 (see Section 5.1.2.2).

5.2.1 Hyper-parameter tuning: ∆t

Data analysis is extremely important in order to understand how the data behaves and

it can be very useful to extract some features that can be taken into consideration when

optimizing the proposed solution hyper-parameters. Therefore, since the tree model con-

siders time intervals of length ∆t, the signal temporal autocorrelation will be analyzed in

order to estimate a range of values for ∆t to consider.

5.2.1.1 Temporal autocorrelation

Autocorrelation in time series is widely used to analyze the behavior of a signal over time.

It can be used as a measure of how much influence past values of a signal have on its

future values, e.g., to measure the influence of past air quality data to present air quality

data. The formula used to compute the autocorrelation given a discrete signal s[n] is:

37

r[k] =
+∞∑

n=−∞

s[n+ k] · s∗[n] (5.4)

where r[k] is the autocorrelation function and s∗[n] is the conjugate of s[n], which in

the case being s∗[n] = s[n] ∀n, due to the fact that s[n] is a real signal.

Before proceeding to compute the autocorrelation of the data as a function of time, it is

important to state how the signal s[n] is defined from the data. Given that the observations

are not evenly spaced over time, it does not make sense to use s[n] = {o1, o2, ..., oN}, with

oi being the i-th observation and N the number of observations. A more reasonable

option to define s[n] is to select evenly spaced time intervals and compute the average of

all the observations available within that time interval. This time interval needs to be

short enough to obtain a high resolution autocorrelation, but at the same time it needs

to be long enough to avoid having a lot of samples missing in s[n]. For convenience, for

the dataset used in this thesis, the time interval is set to 1 hour.

o[n] = {(t1, o1), ..., (tN , oN)} −→ o′[n] = {(t′1, o1), ..., (t′N , oN)}, t′i =

⌈
ti
T

⌉

s[n] = {s1, s2, ..., sM}, where sj = ōj [n] and oj [n] = {(t′j, o1), (t′j, o2), . . . , (t′j, oNi
)},

where T is the time interval defined, o[n] is the vector of observations, M = t′N is the

number of samples of s[n] and oj[n] is the vector containing all the observations in the

time interval t′j.

38

(a) Temporal autocorrelation for a 90 days period.

(b) Temporal autocorrelation for a 30 days period.

(c) Temporal autocorrelation for a 7 days period.

Figure 5.3: Temporal autocorrelation plots for different time periods.

39

The temporal autocorrelation for different time windows is shown in Figure 5.3. In

Figure 5.3a, corresponding to the time period of 90 days, we can clearly see how the

temporal autocorrelation decays over time. If we take a look at Figure 5.3b, corresponding

to a time period of 30 days, we can appreciate multiple peaks in the correlation plot, but

the overall analysis period is still too long to extract any relevant conclusions. Finally,

if we compute the temporal autocorrelation for a 7 days period, as shown in Figure

5.3c, we can appreciate that these peaks previously spotted have a 24 hours periodicity.

Moreover, it is quite relevant to notice that the temporal autocorrelation of the observed

signal decays rapidly within the first few hours, reaching a relative minimum at around

12 hours. Therefore, this allows us to shorten the candidate values for the ∆t hyper-

parameter in that temporal interval. Also, this observed periodicity could be a factor to

take into consideration towards future work.

5.2.1.2 Hyper-parameter selection and stability: ∆t

Hyper-parameter selection is done using the k-fold nested cross-validation approach ex-

plained with k = 10. The candidate values for the ∆t hyper-parameter are the following:

c∆t[n] = {0.5, 1, 1.5, 2, 3, 4, 6, 8, 12}

where c∆t[n] refers to the vector that contains the candidate values for ∆t expressed

in hours. The upper bound of 12 hours is set because of the temporal autocorrelation

analysis. The lower bound of 0.5 hours is found experimentally, because it is the lowest

value for ∆t that allows a valid tree graph construction. In other words, when the hyper-

parameter is set to lower values, the algorithm fails to build a tree graph that consists of

only one connected component.

The results for the nested cross-validation technique show that the optimal value for

the hyper-parameter ∆t is 0.5 hours. Moreover, this optimal value is also found to be

40

stable, meaning that it is always selected as the optimal value along all the iterations of the

nested cross-validation process. This result is consistent with the temporal autocorrelation

plots from Figure 5.3, in which it can be seen how the autocorrelation is greater at shorter

time intervals. Thus, we would expect a lower optimal value for ∆t if we had a higher

data frequency, that is, more frequent measurements. This fact is also coherent with the

expectation that, in the ideal case, we would be using simultaneous measurements to

perform the graph learning and interpolation, as done in [9], which would be equivalent

to setting ∆t to a value very close to zero.

Aside from the nested cross-validation performed to select the optimal value for the

hyper-parameter ∆t, a k-fold cross-validation with k = 10 is performed for the different

values of ∆t contained in c∆t[n]. The main objective of this is observing how the perfor-

mance varies as a function of this hyper-parameter. The other model hyper-parameters

remain fixed and set to the optimal values found. These optimal values will be presented

later, because they are not relevant to observe the RMSE as a function of ∆t. The results

obtained with this experiment are shown in Figure 5.4.

Figure 5.4: RMSE as a function of ∆t.

As can be concluded from Figure 5.4, the lower the ∆t, the lower the RMSE. Also, it

is noticeable that the RMSE increases very rapidly with the value of ∆t and then it levels

41

out. The evolution trend is comparable to a logarithmic trend.

5.2.2 Hyper-parameter tuning: ∆s

Similarly to the ∆t hyper-parameter, in order to tune ∆s it is convenient to analyze the

spatial autocorrelation in order to learn some features of the observed signal. Then, the

selection of optimal values will be covered as well as the variation of the RMSE as a

function of ∆s.

5.2.2.1 Spatial autocorrelation

Spatial autocorrelation can be very useful to analyze the behavior of a signal over space

and how it changes depending on the distance. It can be used as a measure of how much

influence nearby values of a signal have on the actual signal at a certain location. The

formula used to compute the autocorrelation given a discrete signal s[n] is the same as

that in (5.4), which we used to compute the temporal autocorrelation. The only difference

lies on the definition of s[n]. In this case, instead of classifying the observations per time

intervals, they are classified according to the distance to the reference point. Each position

of the s[n] will represent a 1 meter interval.

o[n] = {(d1, o1), ..., (dN , oN)} −→ o′[n] = {(d′1, o1), ..., (d′N , oN)}, d′i = round(di)

s[n] = {s1, s2, ..., sM}, where sj = ōj[n] and oj[n] = {(d′j, o1), (d′j, o2), . . . , (d′j, oNi
)},

where o[n] is the vector of observations, di is the distance of the i-th observation with

respect to the origin, M = max(d′i) ∀i ∈ {1, . . . , N} is the number of samples of s[n] and

oj[n] is the vector containing all the observations in the distance interval d′j.

The spatial autocorrelation of the air quality dataset is shown in Figure 5.5, which has

been created using samples taken within a 3 months period. There are a few interesting

facts that we can deduce from Figure 5.5. Firstly, we notice the instant drop of the

42

Figure 5.5: Spatial autocorrelation.

ACF (autocorrelation function) at zero. This allows us to conclude that the spatial

autocorrelation is not as strong as the temporal one. Recall that the autocorrelation

function always finds its maximum at zero displacement, irrespective of the input signal

[39]. Despite the fact that the correlation is weaker, we can still observe a decaying

correlation as the distance is increased. Also, this drop is smoother than in the temporal

autocorrelation, which can be an indicator of certain flexibility when tuning and selecting

the hyper-parameter ∆s. Nevertheless, we can expect from these observed results that

the optimal value for ∆s will be small. From this, we can probably set the upper bound

for ∆s to 500 meters, since the signal autocorrelation starts to decrease more rapidly and

we still want to keep a high spatial resolution.

5.2.2.2 Hyper-parameter selection and stability: ∆s

The candidate values for the ∆s hyper-parameter introduced as input in the nested cross-

validation evaluation are the following:

c∆s[n] = {50, 75, 100, 125, 150, 175, 200, 250, 300, 400, 500},

43

where c∆s[n] refers to the vector that contains the candidate values for ∆s expressed in

meters. The upper bound of 500 meters is set according to the reasoning presented in

the previous section, that is, the spatial autocorrelation is higher between points that are

closer in space and we want to preserve a high spatial resolution. The lower bound is set

to 50 meters. This value is found experimentally, because it is the lowest value for ∆s

that permits a valid tree graph construction. Similarly to what happened with ∆t, there

is a limit beyond which is not possible to learn a one connected component tree graph

due to the frequency of observations not being high enough. This limit is the lower bound

defined for ∆s.

The results for the nested cross-validation technique show that the optimal value for

the hyper-parameter ∆s is either 75 or 150 meters. This means that in some iterations

of the nested cross-validation ∆s = 75 meters leads to the lowest RMSE and in other

iterations ∆s = 150 meters performs better. Therefore, we can say that this hyper-

parameter is not completely stable, even though it shows a high stability, since only two

candidates are selected through the evaluation process and having a total of 11 candidate

values.

Aside from the nested cross-validation performed to select the optimal values for the

hyper-parameter ∆s, a k-fold cross-validation with k = 10 is performed for the different

values of ∆s contained in c∆s[n] to observe how the performance varies as a function of

this hyper-parameter. Similarly to what has been done for ∆t, the other model hyper-

parameters remain fixed and set to the optimal values found (∆t = 0.5 hours, as presented

in previous sections). The results obtained with this experiment are shown in Figure 5.6.

As can be concluded from Figure 5.6, the lowest RMSE is obtained with ∆s = 150

meters, followed by ∆s = 75 meters (both RMSE values are very close). This is consistent

with the results obtained from the nested cross-validation approach, which found that a

combination of these two values is optimal. Nevertheless, if we had to pick just one value

for ∆s, the decision would depend on different aspects. On the one hand, if we pick

44

Figure 5.6: RMSE as a function of ∆s.

∆s = 150 meters, we can say that the RMSE is slightly smaller but, more importantly,

the time complexity is lower. This is because with a higher ∆s value, the number of both

candidate nodes and actual nodes in the graph is smaller, which reduces the number of

edges and consequently the weights estimation and maximum spanning tree algorithm

are faster. On the other hand, selecting ∆s = 75 meters will provide a higher spatial

resolution, at the expense of higher computational complexity.

5.2.3 Hyper-parameter tuning: α

Hyper-parameter α is a bit different compared to ∆t and ∆s, since it does not represent a

physical magnitude such as time or space. It is a factor in the weights estimation formula

expressed in 4.6. Recall that α > 0 needs to be fulfilled. The main role of this hyper-

parameter is to allow modeling the distribution of weights, in such a way that a small

value of α will result in greater variability of the estimated weights than a very large value

of α, which will predominate in the weights estimation formula and, consequently, this

will cause all weights to be similar. Note that the value assigned to α does not affect the

learnt tree graph edges, it only affects the value of its weights. In other words, the edges

forming the final tree graph will be the same regardless of α. In addition, α prevents

45

edge weights to become infinite (or very large). Given that literature does not provide an

optimal value nor a range of values for α, the candidates considered will be the following:

cα[n] = {0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.5, 1, 5, 10, 50, 100},

where cα[n] refers to the vector that contains the candidate values for α. The candidates

for this hyper-parameter cover a wide range of possibilities and focus mainly on the order

of magnitude.

The results for the nested cross-validation technique show that the optimal value for

the hyper-parameter is α = 0.1. Moreover, this optimal value is also found to be stable,

i.e. it is always selected as the optimal value along all the iterations of the nested cross-

validation process.

Aside from the nested cross-validation performed to select the optimal value for the

hyper-parameter α, a k-fold cross-validation with k = 10 is performed for the different

values of α contained in cα[n] to observe how the performance varies as a function of this

hyper-parameter. Similarly to what has been done in previous sections, the other model

hyper-parameters remain fixed and set to the optimal values found (∆t = 0.5 hours,

∆s = 150 meters). The results obtained with this experiment are shown in Figure 5.7.

Note that the x-axis in Figure 5.7 is in a logarithmic scale. It shows a very interesting

result. On one side, we can see the consistency with the optimal value selection, with

α = 0.1 as the optimal value. Nevertheless, we can also appreciate that the RMSE is very

similar for smaller values of α. Then, RMSE increases drastically when 0.1 < α ≤ 0.5

and remains more or less constant after that. This result, which might seem surprising

at first glance, actually make sense. If we think about the role of α in (4.6), we can see

that as α increases, it starts to dominate in the formula. When this happens, all weights

are similar and the graph becomes more similar to an unweighted graph, which contains

less information than a weighted graph and, therefore, a worse interpolation is expected.

46

Figure 5.7: RMSE as a function of α.

This leads to a higher RMSE overall.

5.2.4 Hyper-parameter tuning: maximum edge distance

Finally, the last hyper-parameter to tune is the maximum edge distance. Recall that

this parameter is introduced with the purpose of reducing the computational cost of the

weights estimations rather than to improve the interpolation performance. The candidates

for this hyper parameter are the following:

cmax edge[n] = {700, 800, 900, 1000, 1500, 2000, 3000, 4000, 5000, 7500, 10000},

where cmax edge[n] refers to the vector that contains the candidate values for the maximum

edge distance expressed in meters. The upper bound of 10 km is set because it represents

the maximum distance present in the data. Thus, it is equivalent to the nonexistence of

the maximum edge distance hyper-parameter. The lower bound of 700 meters is found

experimentally, because it is the lowest value that allows a valid tree construction. When

the hyper-parameter is set to lower values, the maximum edge distance considered is not

enough to build the desired tree graph that consists of only one connected component.

47

The results for the nested cross-validation technique show that the optimal value for

the hyper-parameter maximum edge distance is 1 km. Moreover, this optimal value is also

found to be stable, meaning that it is always selected as the optimal value along all the

iterations of the nested cross-validation process. In this case, it is relevant to note that,

by definition, the optimal value for maximum edge distance is the lowest that provides

the same performance than in the case where such hyper-parameter is not considered.

Aside from the nested cross-validation performed to select the optimal value for the

hyper-parameter maximum edge distance, a k-fold cross-validation with k = 10 is per-

formed for the different values contained in cmax edge[n]. The results obtained with this

experiment are shown in Figure 5.8.

Figure 5.8: RMSE as a function of the maximum edge distance.

As can be seen in Figure 5.8, the RMSE remains constant once the threshold of

maximum edge distance equal to 1 km is crossed. This is what we were expecting by the

definition of this hyper-parameter. This fact is not as interesting as analyzing the edge

weights computation time. Figure 5.9 shows the weights computation time as a function

of the maximum edge distance.

Results in Figure 5.9 show that the execution time of the weights computation varies

significantly depending on this hyper-parameter. In fact, we can conclude that intro-

48

Figure 5.9: Weights computation time as a function of the maximum edge distance.

ducing this hyper-parameter provided a speed-up of 10.5 (10.5x faster) to the weights

computation part of the algorithm, which is the heaviest part computationally speaking.

Even though this improvement can be data or application dependent, the maximum edge

distance is still a hyper-parameter to consider if the graph model is complex.

5.3 Comparison with state of the art interpolation

methods

Once the tree graph method hyper-parameters have been tuned and their effect on the out-

put prediction error has been analyzed, comparing it to more conventional and well-known

interpolation methods can give a measure of how good this approach for interpolation is.

We will compare it to inverse distance weighting (IDW) and Kriging [40]. Moreover, we

also want to see if the trained models are consistent over time and not only when used in

the same time period as the training data. Therefore, the experiment in which these inter-

polation methods will be compared will consist of training a model per each interpolation

method with data captured during two weeks, and testing the interpolation performance

49

over the data captured during the next two weeks. The next sections introduce the basic

concepts regarding these interpolation methods and, afterwards, the results are presented.

5.3.1 Inverse Distance Weighting

Inverse distance weighting (IDW) interpolation uses observations to interpolate a sample

located in any position in space. As its name indicates, the predicted value will be the

weighted mean of the observed samples, where the weights are the inverse of the distance

between the point where we want to interpolate and the point where each observed sample

is located. Mathematically, the interpolation is expressed as

xp =

∑N
i=1 xi · wp,i∑N

i=1wp,i

, with wp,i =
1

dist(xp, xi)
,

where xp is the predicted sample, xi is the i-th sample in the vector of observations and

wp,i is the weight given to the i-th observed sample when interpolating xp. This weight

is computed as the inverse of the distance between the location of xp and the location of

the i-th observed sample.

It is important to note that, in fact, IDW interpolation does not require any training

and the computations involved are quite simple. Thus, it can be useful when we do not

have enough data to train a tree graph or a Kriging model. As a drawback, its simplicity

usually makes it not as good as other interpolation methods in terms of prediction error

[41][42].

Besides that, we need to define how to select the set of observed samples used to

interpolate. Since we are performing a spatio-temporal interpolation, we need to include

the time variable to the interpolation method, while making it a fair comparison to the

tree graph method presented. The best way to do so is by adding the constraint that the

observed samples xi used must belong to the same time interval tj of length ∆t that the

sample that we want to interpolate xp. Since there is a strong temporal autocorrelation

50

in the data, if the observed samples are not from the same time interval, the interpolation

error would increase significantly.

5.3.2 Kriging

Kriging interpolation is a widely used interpolation method in the domain of spatial

analysis and geostatistics. Kriging is similar to IDW in the sense that two points that

are at the same distance from the prediction location are given the same weight. This is

because isotropy is assumed, which means that there is uniformity in every direction. But

instead of just taking the inverse of the distance, Kriging trains a variogram model that

is fit using training data. Then, this variogram model is used to compute the weights and

perform the interpolation [43].

The variogram can be estimated from sample data with the following formula:

γ̂(h) =
1

2N(h)

N(h)∑
i=1

(z(xi)− z(xi + h))2, (5.5)

where z(xi) is the value of some property z (ozone ppb) at position xi and z(xi + h) is

the value at (xi + h). Then, h is referred to as the lag, and N(h) is the number of pairs

of observations separated by the lag h. Note that this experimental variogram consists

of some points that express a relation between a lag or distance h and the semivariance

γ̂(h). At this point, we need to find a theoretical expression for this variogram, i.e., fit a

curve to these obtained points. Some of the most common variogram models that provide

a better fit are Gaussian, exponential and spherical models [44]. The expressions for this

variogram models are the following:

• Gaussian model:

p ·
(
1− e

− d2

(4r/7)2

)
+ n

• Exponential model:

p ·
(
1− e−

d
r/3

)
+ n

51

• Spherical model: 
p ·

(
3d
2r
− d3

2r3

)
+ n d ≤ r

p+ n d > r

where p is the partial-sill, n is the nugget, r is the range and d is the distance. These are

the well-known variogram parameters (except for the distance, which is the variogram’s

x-axis) and they are defined as follows:

• Nugget (n): semivariance value at which the variogram begins (at d = 0).

• Sill (s): ceiling of the variogram, where the variogram can no longer get higher than

a certain value. The partial-sill (p) is defined as p = s− n.

• Range (r): distance in which the variogram first hits the sill.

Examples of Kriging variograms for Gaussian, exponential and spherical models are

shown in Figure 5.10. In these variogram plots, red triangles represent the semivariance

points computed from the data according to 5.5, the dark blue line is the theoretical

variogram found according to each model equation and the three Kriging variogram pa-

rameters are displayed in discontinuous light blue lines for clarity. In the particular case

of the air quality dataset, the spherical variogram model provides the best fit, yielding

to the lowest RMSE when interpolating, so it is the variogram model that is going to be

used to compare to the other interpolation methods.

52

(a) Gaussian model.

(b) Exponential model.

(c) Spherical model.

Figure 5.10: Example of different Kriging variogram models.

53

Once the training is done and the variogram is learned, interpolation of the sample xp

can be performed using observed samples xi with weights wi. The idea of Kriging is that

the estimator is unbiased (i) and the estimation variance is minimized (ii):

(i): For this to happen,
∑

∀i wi = 1 and the mean is stationary

(ii): σ2
ε = E[xp − x̂p]

2 = Var(xp − x̂p)

For the mean to be stationary in a time-varying signal, we need to define time intervals

in which this assumption holds. Once again, we introduce the time intervals of length ∆t

and we will use observed samples that belong to the same time window as the sample

that we want to interpolate. Also, in order to minimize σ2
ε , Lagrange multiplier method

can be used to find the weights such that

L = Var(xp − x̂p) + 2λ(
∑
∀i

wi − 1),

where L is the Lagrange function, λ is the Lagrange multiplier and 2λ(
∑

∀i wi − 1) is the

part that guarantees
∑

∀i wi = 1 [45].

The only problem of this Kriging approach is that, if we do not consider time while

training the variogram, we will be comparing pairs of observations very distant in time

according to (5.5), which just takes into consideration the lag or distance between pairs of

observations. Moreover, if we are assuming stationary mean, we also want this assump-

tion to hold during training and, the only way to accomplish that is introducing the ∆t

parameter into the variogram learning process. Rearranging the variogram equation to

consider time, we now have that:

γ̂(h) =
1

2N(h)

N(h)∑
i=1

(z(xi, ti)− z(xi + h, ti ± tε))
2, (5.6)

where ti is the timestamp corresponding to the observation z(xi) and tε ∈ [−∆t,+∆t].

In other words, we define a temporal sliding window of length ∆t and we compare pairs

of observations that are separated at most ∆t.

54

5.3.3 Results

We now want to analyze the performance of IDW and Kriging interpolation and compare

them to the tree graph method that is proposed in this thesis. Since the parameter ∆t is

introduced into all of the interpolation methods, all the performance results will be shown

with respect to this temporal parameter. On the other hand, each interpolation model

has been optimized on its own: the tree graph model hyper-parameter optimization was

previously presented in Section 5.2, IDW does not require optimizations since the only

parameter it has is ∆t, and Kriging is optimal when selecting a spherical variogram

model and the optimal variogram parameters (nugget, partial-sill and range) are found

when fitting the curve expression to the variogram points following a minimum RMSE

criterion.

Figure 5.11 shows the comparison of the three interpolation methods described in

terms of the RMSE as a function of ∆t in hours. This is the error obtained in the 2

weeks training and interpolation on the 2 following weeks experiment. We see that the

lowest error is obtained by the designed tree graph method. We also see that Kriging

performs better than IDW, which makes sense if we take into account that there is no

training involved in the IDW method. What is also relevant from this plot is that, the

lower values of ∆t, the smaller the RMSE. We can see that, in general, as we increase ∆t,

the predictions are worse, so we are more interested in the performance when using lower

values of ∆t.

Figure 5.12 focuses on a range of smaller values of ∆t. It shows the comparison

between the three interpolation methods in terms of RMSE for values of ∆t in the range

between 30 minutes and 2 hours. It is also created with more points so we can actually

appreciate the evolution of the estimation error. We still see that the tree graph is the

one that performs the best, followed by Kriging. Actually, for ∆t = 30 minutes, Kriging

is quite close to the Tree graph method, but as ∆t increases, the error difference between

55

Figure 5.11: RMSE for different interpolation methods as a function of ∆t.

Kriging and the tree approach also increases.

Figure 5.12: RMSE for different interpolation methods as a function of ∆t.

Figure 5.13 presents the same comparison but in terms of MSE and it introduces the

error bars that indicate the variance of the prediction error. On the one hand, we can

observe that, the lower the ∆t, the lower the variance of the prediction error, which is

obvious considering that the magnitude of the error is also smaller. But what is more

important is that the tree graph method shows almost no variance in the prediction error

56

compared to the other two interpolation methods. This fact could be seen as evidence

that the tree graph interpolation is able to adapt to local changes while Kriging and the

IDW methods fail to adapt locally.

Figure 5.13: MSE with error bars for different interpolation methods.

To prove this point and to try to understand why the tree graph method performs

better, we can look at the edge weights as a function the edge distance. Figure 5.14 shows

the tree graph edge weights as a function of distance for both ∆s = 75m and ∆s = 150m.

What we actually see in these plots is that, given a certain edge distance, there is a wide

variety of edge weights, which indicates that the tree graph approach is adapting to local

changes. On the other hand, it is important to recall that Kriging and IDW provide the

exact same weight if the distance is the same (isotropy). Thus, they do not adapt to local

changes and this is very likely to make them perform slightly worse than the tree graph.

57

(a) ∆s = 75m

(b) ∆s = 150m

Figure 5.14: Edge weights in the tree graph as a function of edge distance.

Finally, Figure 5.15 shows the comparison between the execution time of the different

interpolation methods as a function of ∆t. We can notice that the execution time for

IDW is more or less constant because it requires no training. Then, as ∆t increases, the

execution time for the tree graph reduces, while it increases for Kriging.

58

Figure 5.15: Execution time for different interpolation methods as a function of ∆t.

59

Chapter 6

Conclusions

6.1 Conclusions

Several conclusions can be extracted from the work that this thesis presents. Firstly,

the proposed graph-based spatio-temporal interpolation method outperformed Kriging

and IDW interpolation techniques in terms of predictions error (RMSE), providing better

estimations for observations. The graph edge weights are capable of capturing local

information in space while Kriging or IDW approaches do not because they work under the

assumption of isotropy, that is, uniformity in every direction. Nevertheless, a drawback

of the graph interpolation method designed is that it only considers interpolation in

locations represented by graph nodes. Besides that, the proposed tree graph method is

more complex than Kriging and IDW, since it has more parameters and varying edge

weights.

With respect to the tree graph model hyper-parameter values that are found to be

optimal, we can conclude that the fact that ∆t is found to be optimal for the lowest values

is very consistent with the data analysis and the strong signal autocorrelation in time. In

addition, the optimal values for ∆s are also consistent with the order of magnitude that

other investigations have found to be relevant in the field of air quality [46][47].

60

6.2 Future Work

Still, this is a novel approach and a lot of research can be done in the topic of mobile

sensing networks from the graph signal processing perspective.

One question to be answered would be how can we incorporate interpolation at any

location in space regardless of whether or not the location where we want to interpolate

is represented by a node in the graph. Furthermore, studying the effect of environment

variables with respect to the interpolated value and how to effectively integrate them to

the tree graph model could be interesting. As an example, in the study of air quality,

temperature, humidity, precipitations or wind speed can affect the measurements captured

[48]. Additionally, the daily temporal autocorrelation periodicity found could be exploited

to obtain better graph models or interpolation auxiliar samples. Moreover, extending this

research to other applications or datasets captured as a part of a mobile wireless sensor

network is necessary.

Besides that, other graph topologies different from a tree topology can be explored, as

well as other graph interpolation techniques. The proposed tree graph model could also be

improved by studying different definition of nodes as an alternative to the squares of side

∆s considered in this research. For instance, nodes could represent circular areas in space

with overlapping surfaces. Then, the observations located in the intersection between two

nodes would be part of both nodes for training and learning the graph weights, and even

for interpolation. In this case, it would be necessary to define a classification criterion

for the observations located in the intersection area when computing the weights between

two adjacent nodes. This approach could be useful to deal with very irregular datasets

such as the one presented in this thesis, since it introduces more flexibility and it could

help increase the number of samples per node and the spatio-temporal resolution as well.

61

References

[1] A. Ortega, P. Frossard, J. Kovačević, J. M. Moura, and P. Vandergheynst, “Graph
signal processing: Overview, challenges, and applications,” Proceedings of the IEEE,
vol. 106, no. 5, pp. 808–828, 2018.

[2] M. O. Jackson, “Social and economic networks,” in Social and Economic Networks,
Princeton university press, 2010.

[3] A. Sandryhaila and J. M. Moura, “Discrete signal processing on graphs,” IEEE
transactions on signal processing, vol. 61, no. 7, pp. 1644–1656, 2013.

[4] S. K. Narang, A. Gadde, and A. Ortega, “Signal processing techniques for interpola-
tion in graph structured data,” in 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing, IEEE, 2013, pp. 5445–5449.

[5] M. J. Menne, I. Durre, R. S. Vose, B. E. Gleason, and T. G. Houston, “An overview
of the global historical climatology network-daily database,” Journal of atmospheric
and oceanic technology, vol. 29, no. 7, pp. 897–910, 2012.

[6] R. Hardy, P. Bates, and M. Anderson, “The importance of spatial resolution in
hydraulic models for floodplain environments,” Journal of Hydrology, vol. 216, no. 1-
2, pp. 124–136, 1999.

[7] J. Rezazadeh, “Mobile wireles sensor networks overview,” International Journal of
Computer Communications and Networks (IJCCN), vol. 2, no. 1, 2012.

[8] P. Ferrer-Cid, J. M. Barcelo-Ordinas, and J. Garcia-Vidal, “Graph learning tech-
niques using structured data for iot air pollution monitoring platforms,” IEEE In-
ternet of Things Journal, vol. 8, no. 17, pp. 13 652–13 663, 2021.

[9] K.-S. Lu, E. Pavez, and A. Ortega, “On learning laplacians of tree structured
graphs,” in 2018 IEEE Data Science Workshop (DSW), IEEE, 2018, pp. 205–209.

[10] N. S.-N. Lam, “Spatial interpolation methods: A review,” The American Cartogra-
pher, vol. 10, no. 2, pp. 129–150, 1983.

[11] M. Wu, J. Huang, N. Liu, R. Ma, Y. Wang, and L. Zhang, “A hybrid air pollution
reconstruction by adaptive interpolation method,” in Proceedings of the 16th ACM
conference on embedded networked sensor systems, 2018, pp. 408–409.

[12] E. A. Bender and S. G. Williamson, Lists, decisions and graphs. S. Gill Williamson,
2010.

62

[13] R. C. Prim, “Shortest connection networks and some generalizations,” The Bell
System Technical Journal, vol. 36, no. 6, pp. 1389–1401, 1957.

[14] J. B. Kruskal, “On the shortest spanning subtree of a graph and the traveling
salesman problem,” Proceedings of the American Mathematical society, vol. 7, no. 1,
pp. 48–50, 1956.

[15] I. Amundson and X. D. Koutsoukos, “A survey on localization for mobile wire-
less sensor networks,” in International workshop on mobile entity localization and
tracking in GPS-less environments, Springer, 2009, pp. 235–254.

[16] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on sensor
networks,” IEEE Communications magazine, vol. 40, no. 8, pp. 102–114, 2002.

[17] E. Natalizio and V. Loscŕı, “Controlled mobility in mobile sensor networks: Advan-
tages, issues and challenges,” Telecommunication Systems, vol. 52, no. 4, pp. 2411–
2418, 2013.

[18] V. Ramasamy, “Mobile wireless sensor networks: An overview,” Wireless Sensor
Networks—Insights and Innovations, 2017.

[19] B. Maag, D. Hasenfratz, O. Saukh, et al., Ultrafine Particle Dataset Collected by
the OpenSense Zurich Mobile Sensor Network, Sep. 2018. doi: 10.5281/zenodo.
3298842. [Online]. Available: https://doi.org/10.5281/zenodo.3298842.

[20] J. J. Li, B. Faltings, O. Saukh, D. Hasenfratz, and J. Beutel, “Sensing the air
we breathe—the opensense zurich dataset,” in Twenty-Sixth AAAI Conference on
Artificial Intelligence, 2012.

[21] A. Ortega, Introduction to Graph Signal Processing. Cambridge University Press,
2022. doi: 10.1017/9781108552349.

[22] G. Shen and A. Ortega, “Tree-based wavelets for image coding: Orthogonalization
and tree selection,” in 2009 Picture Coding Symposium, IEEE, 2009, pp. 1–4.

[23] S. K. Narang and A. Ortega, “Perfect reconstruction two-channel wavelet filter
banks for graph structured data,” IEEE Transactions on Signal Processing, vol. 60,
no. 6, pp. 2786–2799, 2012.

[24] B. Girault, A. Ortega, and S. S. Narayanan, “Irregularity-aware graph fourier trans-
forms,” IEEE Transactions on Signal Processing, vol. 66, no. 21, pp. 5746–5761,
2018.

[25] B. Lake and J. Tenenbaum, “Discovering structure by learning sparse graphs,” 2010.

63

https://doi.org/10.5281/zenodo.3298842
https://doi.org/10.5281/zenodo.3298842
https://doi.org/10.5281/zenodo.3298842
https://doi.org/10.1017/9781108552349

[26] E. Pavez and A. Ortega, “Covariance matrix estimation with non uniform and
data dependent missing observations,” IEEE Transactions on Information Theory,
vol. 67, no. 2, pp. 1201–1215, 2020.

[27] P. Ferrer-Cid, J. M. Barcelo-Ordinas, and J. Garcia-Vidal, “Graph signal recon-
struction techniques for iot air pollution monitoring platforms,” arXiv preprint
arXiv:2201.00378, 2022.

[28] D. Hasenfratz, O. Saukh, C. Walser, C. Hueglin, M. Fierz, and L. Thiele, “Pushing
the spatio-temporal resolution limit of urban air pollution maps,” in 2014 IEEE
International Conference on Pervasive Computing and Communications (PerCom),
2014, pp. 69–77. doi: 10.1109/PerCom.2014.6813946.

[29] G. M. Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” in Proceedings of the April 18-20, 1967, spring joint com-
puter conference, 1967, pp. 483–485.

[30] J. Li and A. D. Heap, “A review of comparative studies of spatial interpolation
methods in environmental sciences: Performance and impact factors,” Ecological
Informatics, vol. 6, no. 3-4, pp. 228–241, 2011.

[31] M. Lepot, J.-B. Aubin, and F. H. Clemens, “Interpolation in time series: An in-
troductive overview of existing methods, their performance criteria and uncertainty
assessment,” Water, vol. 9, no. 10, p. 796, 2017.

[32] A. G. Barnston, “Correspondence among the correlation, rmse, and heidke forecast
verification measures; refinement of the heidke score,” Weather and Forecasting,
vol. 7, no. 4, pp. 699–709, 1992.

[33] M. Stone, “Cross-validatory choice and assessment of statistical predictions,” Jour-
nal of the royal statistical society: Series B (Methodological), vol. 36, no. 2, pp. 111–
133, 1974.

[34] R. Kohavi et al., “A study of cross-validation and bootstrap for accuracy estimation
and model selection,” in Ijcai, Montreal, Canada, vol. 14, 1995, pp. 1137–1145.

[35] G. Seni and J. F. Elder, “Ensemble methods in data mining: Improving accuracy
through combining predictions,” Synthesis lectures on data mining and knowledge
discovery, vol. 2, no. 1, pp. 1–126, 2010.

[36] P. Refaeilzadeh, L. Tang, and H. Liu, “Cross-validation.,” Encyclopedia of database
systems, vol. 5, pp. 532–538, 2009.

[37] D. M. Hawkins, “The problem of overfitting,” Journal of chemical information and
computer sciences, vol. 44, no. 1, pp. 1–12, 2004.

64

https://doi.org/10.1109/PerCom.2014.6813946

[38] I. Tsamardinos, A. Rakhshani, and V. Lagani, “Performance-estimation properties
of cross-validation-based protocols with simultaneous hyper-parameter optimiza-
tion,” INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE TOOLS,
vol. 24, Oct. 2015. doi: 10.1142/S0218213015400230.

[39] R. P. Heilbronner, “The autocorrelation function: An image processing tool for
fabric analysis,” Tectonophysics, vol. 212, no. 3-4, pp. 351–370, 1992.

[40] A. Appice, A. Ciampi, F. Fumarola, and D. Malerba, “Missing sensor data inter-
polation,” in Data Mining Techniques in Sensor Networks, Springer, 2014, pp. 49–
71.

[41] G. Q. Tabios III and J. D. Salas, “A comparative analysis of techniques for spatial
interpolation of precipitation 1,” JAWRA Journal of the American Water Resources
Association, vol. 21, no. 3, pp. 365–380, 1985.

[42] A. Kravchenko and D. G. Bullock, “A comparative study of interpolation methods
for mapping soil properties,” Agronomy journal, vol. 91, no. 3, pp. 393–400, 1999.

[43] M. A. Oliver and R. Webster, “Kriging: A method of interpolation for geographical
information systems,” International Journal of Geographical Information System,
vol. 4, no. 3, pp. 313–332, 1990.

[44] P. K. Kitanidis, Introduction to geostatistics: applications in hydrogeology. Cam-
bridge university press, 1997.

[45] D. P. Bertsekas, Constrained optimization and Lagrange multiplier methods. Aca-
demic press, 2014.

[46] D. Hasenfratz, O. Saukh, C. Walser, et al., “Deriving high-resolution urban air pol-
lution maps using mobile sensor nodes,” Pervasive and Mobile Computing, vol. 16,
pp. 268–285, 2015.

[47] C. Gariazzo, G. Carlino, C. Silibello, et al., “Impact of different exposure models and
spatial resolution on the long-term effects of air pollution,” Environmental Research,
vol. 192, p. 110 351, 2021.

[48] R. Ooka, M. Khiem, H. Hayami, H. Yoshikado, H. Huang, and Y. Kawamoto, “In-
fluence of meteorological conditions on summer ozone levels in the central kanto
area of japan,” Procedia Environmental Sciences, vol. 4, pp. 138–150, 2011.

[49] B. Murphy, S. Müller, and R. Yurchak, Geostat-framework/pykrige: V1.6.1, ver-
sion v1.6.1, Sep. 2021. doi: 10.5281/zenodo.5380342. [Online]. Available: https:
//doi.org/10.5281/zenodo.5380342.

65

https://doi.org/10.1142/S0218213015400230
https://doi.org/10.5281/zenodo.5380342
https://doi.org/10.5281/zenodo.5380342
https://doi.org/10.5281/zenodo.5380342

[50] A. Hagberg, P. Swart, and D. S Chult, “Exploring network structure, dynamics,
and function using networkx,” Los Alamos National Lab.(LANL), Los Alamos, NM
(United States), Tech. Rep., 2008.

66

Appendix A

Implementation

The implementation of the presented algorithms and the programs encapsulating them

can be found on this GitHub project: https://github.com/adriaguinovart/TFG. The

main files and their content are described next:

• src/CrossValidation.cpp: program containing the implementation of the cross

validation used to evaluate the performance for each parameter combination in the

tree graph model.

• src/NestedCrossValidation.cpp: program containing the implementation of the

nested cross validation used to select the best tree graph model hyper-parameters.

• src/KrigingForecast.py: implementation of the Kriging variant presented in this

thesis. This file includes code from the python library PyKrige [49], which was par-

tially modified so that the implemented Kriging behaves as expected. It corresponds

to the two weeks training and two weeks interpolation experiment (forecast).

• src/InverseDistanceWeighting.cpp: program containing the implementation of

the inverse distance weighting interpolation method.

• src/TreeForecast.cpp: program containing the implementation of the tree fore-

cast experiment (two weeks training and two weeks interpolation).

• src/PlotNetwork.py: program used to plot the graphs using the python library

NetworkX [50].

67

https://github.com/adriaguinovart/TFG

• src/PlotResults.py: program used to create the results plots with the data ob-

tained in the experiments.

• src/utils/utils.h: header file that defines some auxiliar methods used in different

programs.

• data/processedData.csv: file gathering the processed data used to learn the in-

terpolation models.

68

	Title Page
	Acknowledgments
	Abstract
	Resumen
	Resum
	Table of Contents
	List of Figures
	Introduction
	State of the art and related work
	Outline and main contributions

	Graph Signal Processing Fundamentals
	Graphs
	Basic definitions
	Algebraic representation of graphs

	Graph signals
	Tree graphs
	Maximum spanning tree

	Problem definition
	Air quality dataset

	Proposed solution
	Data pre-processing
	Timestamp reference
	Coordinates to distance conversion

	Graph learning
	Topology inference
	Weight estimation
	Graph learning algorithm

	Interpolation
	Solution optimization
	Temporal complexity analysis
	Removal of candidate nodes without samples
	Maximum edge distance

	Experiments and results
	Tree model validation
	Performance metrics
	Cross-validation

	Hyper-parameter tuning
	Hyper-parameter tuning: t
	Hyper-parameter tuning: s
	Hyper-parameter tuning:
	Hyper-parameter tuning: maximum edge distance

	Comparison with state of the art interpolation methods
	Inverse Distance Weighting
	Kriging
	Results

	Conclusions
	Conclusions
	Future Work

	References
	Implementation

