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Abstract

The position analysis problem is a fundamental issue that underlies many problems in Robotics
such as the inverse kinematics of serial robots, the forward kinematics of parallel robots, the
coordinated manipulation of objects, the generation of valid grasps, the constraint-based object
positioning, the simultaneous localization and map building, and the analysis of complex de-
ployable structures. It also arises in other fields, such as in computer aided design, when the
location of objects in a design is given in terms of geometric constrains, or in the conformational
analysis of biomolecules. The ubiquity of this problem, has motivated an intense quest for meth-
ods able of tackling it. Up to now, efficient algorithms for the general problem have remained
elusive and they are only available for particular cases. Moreover, the complexity of the problem
has typically led to methods difficult to be implemented.

Position analysis can be decomposed into two equally important steps: obtaining a set of
closure equations, and solving them. This thesis deals with both of them to obtain a general,
simple, and yet efficient solution method that we call the trapezoid method. The first step is
addressed relying on dual quaternions. Although it has not been properly highlighted in the
past, the use of dual quaternions permits expressing the closure condition of a kinematic loop
involving only lower pairs as a system of multi-affine equations. In this thesis, this property is
leveraged to introduce an interval-based method specially tailored for solving multi-affine sys-
tems. The proposed method is objectively simpler (in the sense that it is easier to understand
and to implement) than previous methods based on general techniques such as interval Newton
methods, conversions to Bernstein basis, or linear relaxations. Moreover, it relies on two simple
operations, namely, linear interpolations and projections on coordinate planes, which can be
executed with a high performance. The result is a method that accurately and efficiently bounds
the valid solutions of the problem at hand. To further improve the accuracy, we propose the use
of redundant, multi-affine equations that are derived from the minimal set of equations describ-
ing the problem. To improve the efficiency, we introduce a variable elimination methodology
that preserves the multi-affinity of the system of equations. The generality and the performance
of the proposed trapezoid method are extensively evaluated on different kind of mechanisms,
including spherical mechanisms, generic 6R and 7R loops, over-constrained systems, and multi-
loop mechanisms. The proposed method is, in all cases, significantly faster than state of the art
alternatives.





Resum

El problema d’anàlisi de posició és una qüestió fonamental que subjau en molts problemes de
la robòtica, com ara la cinemàtica inversa dels robots en sèrie, la cinemàtica directa dels robots
paral·lels, la manipulació coordinada d’objectes, la generació de prensions vàlides amb mans
robòtiques, el posicionament d’objectes basat en restriccions, la localització i la creació de mapes
de forma simultània, i l’anàlisi d’estructures desplegables complexes. També sorgeix en altres
camps, com en el disseny assistit per ordinador, quan la ubicació dels objectes en un disseny es
dóna en termes de restriccions geomètriques o en l’anàlisi conformacional de biomolècules. La
omnipresència d’aquest problema ha motivat una intensa recerca de mètodes capaços d’afrontar-
lo. Fins al moment, els algoritmes eficients per al problema general han estat esquius i només
estan disponibles per a casos particulars. A més, la complexitat del problema sol conduir a
mètodes difícils d’implementar.

L’anàlisi de posició es pot descompondre en dos passos igualment importants: l’obtenció
d’un sistema d’equacions de tancament i la resolució d’aquest sistema. Aquesta tesi afronta tots
dos passos per obtenir un mètode de solució general, senzill i, tot i així, eficient, que anomenem
el mètode del trapezoide. El primer pas s’aborda utilitzant quaternions duals. Tot i que no ha
estat suficientment destacat en el passat, l’ús de quaternions duals permet expressar la condi-
ció de tancament d’un bucle cinemàtic que inclogui només parells inferiors com a un sistema
d’equacions multi-afins. En aquesta tesi, s’aprofita aquesta propietat per introduir un mètode
especialment dissenyat per resoldre sistemes multi-afins. El mètode proposat és objectivament
més senzill (en el sentit que és més fàcil d’entendre i d’implementar) que els mètodes ante-
riors que utilitzen tècniques generals com ara els mètodes de Newton basats en intervals, les
conversions a la base de Bernstein o les relaxacions lineals. A més, el mètode es basa en dues
operacions simples, a saber, les interpolacions lineals i les projeccions en plans de coordenades,
que es poden executar de forma molt eficient. El resultat és un mètode que acota amb precisió
i eficiència les solucions vàlides del problema. Per millorar encara més la precisió, proposem
l’ús d’equacions multi-afins redundants derivades del conjunt mínim d’equacions que descriuen
el problema. Per altra banda, per millorar l’eficiència, introduïm una metodologia d’eliminació
de variables que preserva la multi-afinitat del sistema d’equacions. La generalitat i el rendiment
del mètode del trapezoide s’avaluen extensivament en diferents tipus de mecanismes, inclosos
mecanismes esfèrics, bucles 6R i 7R genèrics, sistemes sobre-restringits i mecanismes de múlti-
ples bucles. El mètode proposat és, en tots els casos, significativament més ràpid que els mètodes
alternatius descrits en la literatura fins al moment.
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1
Introduction

This initial chapter poses the problem addressed in this work and reviews

the related literature to highlight the novelty and the advantages of the

proposed approach. At the end of the chapter, we remark the contribu-

tions of the work and the outline of the rest of the document.

1.1 Motivation and problem statement

Mechanisms are sets of links connected to each other via joints. From a pure kinematics point

of view, they can be translated into geometric elements pairwise constrained in their motion.

Characterizing all the possible configurations of the resulting constrained system is an impor-

tant branch of kinematics usually called position analysis [35, 57, 169]. The position analysis

problem is a fundamental issue that underlies many problems in Robotics such as the inverse

kinematics of serial robots [184], the forward kinematics of parallel robots [121], the coordi-

nated manipulation of objects [197], the generation of valid grasps [144, 145], the constraint-

based object positioning [140], the simultaneous localization and map building [129], and the

analysis of complex deployable structures [89]. It also arises in other fields, such as in computer

aided design (CAD), when the location of objects in a design is given in terms of geometric

constrains [120], or in the conformational analysis of biomolecules [83,130,190].

This thesis proposes a new method to solve position analysis problems. Despite the proposed

method could in principle be useful in all the aforementioned fields, the focus on this thesis will

be on problems in Robotics.

Position analysis can be decomposed into two equally important steps: obtaining a set of

closure equations, and solving them. This thesis deals with both of them to obtain a general,

simple and yet efficient solution method. In the dominant approach in kinematics, the first



2 Introduction

step is usually addressed by fixing suitable reference frames to each link, then obtaining the

transformation between neighboring links as a function of the corresponding joint variables and,

finally, composing the transformations along a set of independent closed loops. This procedure

is rather straightforward but, as the complexity of the mechanism increases, the need for the

most compact possible formulation becomes an issue of paramount importance. An alternative

is to abandon the standard loop-based paradigm and use, for instance, distance-based closure

conditions whose complexity is not directly related to the number of loops of the mechanism, but

to what is known as its coupling number [142]. Distance-based formulations provide important

simplifications when the analyzed mechanisms only contain revolute joints in planar mechanism

or spherical joints in spatial ones [134, 174]. Unfortunately, deciding beforehand when these

formulations are superior to the standard loop-based formulations is still an open problem.

Moreover, while formulations based on distance equations are advantageous to obtain closure

polynomials [133, 143], their superiority in front of the formulations based on loop equations

is not clear when the problem consists in obtaining numerical approximations of the attainable

configurations. Therefore, in this thesis the loop-based formalization is adopted. Yet, if one

adheres to this approach, a given loop equation can be expressed in many different ways [35].

The different alternatives are proposed with the aim of reducing the complexity of the resulting

equations. In this context, the use of dual quaternions emerged as an elegant alternative because

its use permits encapsulating both translations and rotations in a very compact way [12, 199].

Moreover, contrary to what happens with other formulations, the use of dual quaternions allows

the derivation of a minimal set of multi-affine equations in the joint variables. This property has

far reaching consequences in the way these systems of equations can be solved and the main

goal of this thesis is to exploit such consequences to its fully extend.
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1.2 State of the art

Since finding solutions of systems of nonlinear equations is an ubiquitous problem arising in

many fields, ranging from engineering to computer-aided design, and to molecular biology [109,

182], many approaches have been proposed and they can be classified as global or local. While

global approaches guarantee to find all possible solutions, local methods, such as those based on

the Newton-Raphson algorithm, only find one particular solution, which depends on the initial

guess. Here we focus on global methods which can be classified in methods based on elimination

theory, methods using continuation techniques, and interval-based methods [75,133,148].

1.2.1 Elimination theory

Most algebraic methods to solve systems of polynomial equations rely on elimination theory [34,

45, 94, 95, 101, 138]. The idea behind these methods is to reduce the number of equation and

variables transforming the initial set of equations into a minimum degree polynomial in a single

variable. The degree of this polynomial is a bound in the number of solutions of the initial

system of equations. The most relevant algebraic methods are:

1. Gröbner bases. They were introduced in 1966 by Bruno Buchberger in his doctoral the-

sis [18]. The basic idea of the method is to eliminate the highest-ordered terms in a given

set of polynomial equations by adding multiples of the other equations in the set, this

process is known as reduction [118]. As a result, the system of polynomial equations

f1 = 0, f2 = 0, . . . , fn = 0 in the variables x1, x2, . . . , xn is written as a triangular form

gn(xn) = 0, gn−1(xn, xn−1) = 0, . . . , g1(x1, x2, . . . , xn), called a Gröbner basis [107]. The

process can be applied to any set of polynomial equations and generalizes three familiar

techniques: Gaussian elimination for solving linear systems of equations, the Euclidean

algorithm for computing the greatest common divisor of two univariate polynomials, and

the simplex algorithm for linear programming [148,167,168].

2. Sylvester resultant. For systems of two polynomials, it is defined as the determinant of

a (α1 + α2) × (α1 + α2) matrix, with α1 and α2 the degree of the variable to eliminate

in the polynomials. In the matrix, the block of coefficients of the equations are arranged

row-wise and they are shifted one column to the right at each block [192].

3. Macaulay resultant. It is also called the multivariate resultant or the multipolynomial

resultant. It is a generalization of the homogeneous resultant to n homogeneous poly-

nomials in n variables. Let T denote the set of all terms of degree dm in the variables

x1, x2, . . . xn, that is, T = xα1

1 xα2

2 . . . xαn

n such that α1 + α2 + . . . + αn = dm. Now, let T (i)
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the terms of degree dm− di that are not divisible by xd11 , xd22 , . . . , x
di−1

i−1 . Then, the multipli-

cation of terms in T (i) by fi(X) forms the Macaulay matrix, whose determinant give the

sought resultant [200]. For n = 2 the Macaulay resultant reduces to the Sylvester one.

4. Dixon resultant. It is generated from the following expression:

∆(xi, x̄j) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f1(x1, x2, · · · , xm) . . . fm(x1, x2, · · · , xm)

f1(x̄1, x2, · · · , xm) . . . fm(x̄1, x2, · · · , xm)

f1(x̄1, x̄2, · · · , xm) . . . fm(x̄1, x̄2, · · · , xm)
...

f1(x̄1, x̄2, · · · , x̄m−1, xm) . . . fm(x̄1, x̄2, · · · , x̄m−1, xm)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(x1 − x̄1) . . . (xm−1 − x̄m−1)
, (1.1)

which is a polynomial in xm, where x̄i is a new variable used to replace xi, whenever used.

This resultant exploits the sparsity of the equations and, thus, it is in general more efficient

than alternative methods [75]. The Dixon resultant has been used to produce outstanding

results in the position analysis of manipulators [202]. However, as in all methods gen-

erating the resultant from the determinant of a matrix, in the Dixon method non-generic

equations generate singularities. Therefore, techniques to avoid them by extracting non-

trivial projection operators are necessary.

Despite the results obtained using elimination-based methods, in general, such methods

often require intuition-guided steps and are unsuitable for large problems.

1.2.2 Continuation

Polynomial continuation methods [165] start from a system of equations with known solutions

and gradually transform it into the system whose solutions are sought. During this transfor-

mation, the solutions are tracked using prediction-correction methods so that at the end of the

process the sought after solutions of the input system are obtained.

This technique was known as early as 1930 and first used in kinematics by Roth and Freuden-

stein [146]. Subsequent work by Garcia and Li [53], Garcia and Zangwill [54], Morgan [111],

and Li et al. [96], among others, led the procedure into its current highly-developed state [189].

This method has been responsible for the first solutions of many long-standing problems in kine-

matics. For example, using them, Tsai and Morgan first showed that the inverse kinematics of

the general 6R manipulator has sixteen solutions [180] and Raghavan showed that the direct

kinematics of the general Stewart-Gough platform can have forty solutions [180]. It was also

used in some recent works for the geometric design of serial manipulators [93], to solve the for-
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ward kinematic of a 3-UPU parallel robot [182], the inverse kinematic of a 4P3R spatial robot

manipulator [196], and to find singular configurations of manipulators [148].

Although solutions with small imaginary parts may give information about configuration

which will be almost but not quite valid [188], in general computing the imaginary solutions

substantially slows down the approaches based on continuation, particularly on problems with

a small fraction of real solutions.

1.2.3 Interval methods

Interval-based methods [117] apply a branch-and-prune approach. Therefore, they reduce a

given initial box defined from the valid ranges of the joints by ruling out regions that are proven

to contain no solution. If the resulting box is not small enough to be considered as a solution,

it is split into two sub-boxes and the reduce and split procedures are recursively applied to the

two of them. The result is a set of boxes that necessarily contains all the solutions to the system

within the initial box. The key element of these methods is how to reduce the boxes, for which

different techniques have been proposed.

Interval Newton methods, described in detail in [80, 117], have been applied to solve the

position analysis of serial [23, 24] and parallel [106] robots. These methods require the inver-

sion of an interval Jacobian matrix. This is a complex operation, only feasible for systems where

the Jacobian is full-rank all over the considered domain.

Expressing the polynomial system in Bernstein basis permits avoiding interval Jacobian in-

versions [13, 159]. Under this approach, the problem is fully represented in terms of the so-

called control points whose convex hull necessarily contains the sought solutions. As a result,

the resolution process has an elegant and simple geometric interpretation. Unfortunately, the

size of the linear programs used to implicitly define the convex hull rapidly grows with the

number of variables in the problem.

To address this issue one can resort to the use of linear relaxations [82, 92, 105, 131, 198]

which, instead of relying on control points, directly bound the the considered polynomials in

the space of their defining variables. This defines smaller linear programs which can be solved

significantly faster, but require the input polynomials to include only linear, bilinear, or quadratic

monomials. The transformations to reduce any polynomial system to this simplified form intro-

duce many extra variables, reducing the efficiency of the method.

In this thesis, we introduce a remarkably simple branch-and-prune method to solve a multi-

affine system of closure equations obtained using dual quaternions. The simplicity arises from

the fact that the conversion to Bernstein basis becomes unnecessary as the evaluation of each

function at the corners of an orthotope in the space defined by the variables directly leads to

control points. The result is a simple-to-implement and yet efficient algorithm than can be easily
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parallelized at different levels. In this thesis, we apply the approach both to the position analysis

of spherical and to general spatial mechanisms, including cases with positive-dimensional solu-

tion sets or multi-loop mechanisms. This allows us to obtain the coupler curves of complicated

spatial mechanisms, or even a discretization of the self-motion manifold of a reconfigurable

mechanism, in a remarkably simple way.

The multi-affine property in the closure equations of a spatial closed-loop mechanism was

identified for the first time in [113] where this property was exploited to reduce the resolution of

the equations to a generalized eigenproblem. Unfortunately, many conjectures were introduced,

and, therefore, this work received little attention despite its relevance. From the available lit-

erature, it can actually be said that most kinematicians are not well aware of the multi-affine

property of the closure equations of multi-loop spatial mechanisms when formulated using dual

quaternions. Thus, it is the objective of this work to highlight this property and show the advan-

tages derived from it.

1.3 Overview of contributions and outline of the text

The main objective of this thesis is to develop the trapezoid method, a simple, general, and yet

efficient method for the position analysis of mechanisms which relies on formulating the problem

as a multi-affine algebraic system of equations. The interest of this kind of formulations is due

to the fact that they can be solved using a simple branch-and-prune numerical method. This

method can isolate all the solutions to the desired resolution level, irrespective of the dimension

of the solution set. The combination of the proposed formulation and resolution methods will

have the following interesting properties:

1. General. The use of a set of kinematic loop equations is general and can be easily autom-

atized using standard algorithms developed in graph theory.

2. Algebraic. The formulation is fully algebraic, it does not involve any mathematical oper-

ations other than additions, subtractions, multiplications, and divisions [191].

3. Simple. Although the theory that leads to it cannot be classified as simple, the method is

easily implementable.

The introduction of the new proposed methodology for the resolution of position analysis

problems is based on the following contributions:

- The formulation of position analysis problems using dual quaternions to obtain a multi-

affine formulation.
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- A fast branch-and-prune solver for multi-affine systems of equations which we call the

trapezoid solver. Multi-affine systems exhibit a set of properties similar to those of systems

expressed in Berstein basis. The most important of them being the interpolation and the

convex hull properties. Exploiting them would lead to a very fast and efficient branch-

and-prune method for solving systems of multi-affine systems.

- A methodology to generate redundant multi-affine equations that can be leveraged to

significantly improve the quality in the output of the solver.

- A variable elimination procedure that reduces the complexity of the equations and signifi-

cantly speeds up the proposed solver.

- Parallelization of the resolution of position analysis problems. Previous schemes for the

resolution of position analysis problems cannot easily parallelized. In the proposed branch-

and-prune method, different levels of parallelization naturally arise.

The method presented in this work is applicable to the position analysis of challenging mech-

anisms. As testbeds, we use:

1. Spherical mechanisms. In a spherical mechanism, the axes of revolution intersect at a

single point, which constraints the motion of the end-effector to a sphere centered at this

point. Spherical mechanisms are used, for instance, in automotive differential or in robotic

wrist and, thus, characterizing their motions has relevant practical applications.

2. General 6R serial robots. The inverse kinematics problem of a serial robot consists in

finding the values of its joint variables given the position and orientation of its end-effector,

relative to the base, and the values of all of the geometric link parameters [162]. This

problem can be seen to be equivalent to determine the feasible configurations of a single-

loop kinematic chain.

3. Overconstrained mechanisms. An overconstrained mechanism is a linkage that has more

degrees of freedom than is predicted by the Grübler-Kutzbach mobility formula [90]. Many

overconstrained mechanisms have been described and several of them have relevant prac-

tical applications [11, 152]. One of the fundamental problems in this context is to derive

the input-output relations for arbitrary overconstrained mechanism. The analytical deriva-

tion of such relations is done case by case and it is a complex process in general. Thus, the

availability of an efficient solver to numerically derive them is a tool of capital relevance

in this field.
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4. Mobile mechanisms. We consider kinematic loops with 7 joints, which in general have a

one-degree of freedom solution set although kinematotropic linkages can have a variable

number degrees of freedom, depending on the configuration. Both cases are considered

herein to evaluate the performance of the proposed method.

5. Multi-loop mechanisms. These problems appear, for instance, in parallel robots and are

used to illustrate the generality of the proposed solver.

The rest of this thesis is organized as follows. Chapter 2 describes in detail the multi-

affine formulation used in this work. The formulation is first introduced for spherical mech-

anisms, where only quaternions are necessary and then extended to spatial mechanism using

dual quaternions. Chapter 3 characterizes the properties of multi-affine maps and presents the

trapezoid method, an interval-based solver relying on them. Chapter 4 analyses the perfor-

mance of this basic solver on different testbeds, including spherical mechanisms, generic 6R

loops, overcontrained systems, mobile kinematic loops, and multi-loop mechanisms. Chapters 5

and 6 present extensions on the basic solver relying, respectively, on the generation of redundant

equations and on the elimination of variables. We will show that these extensions significantly

improve both the accuracy and the performance of the solver. Finally, Chapter 7 summarizes the

contributions of this work and points to directions deserving further attention.



2
A multi-affine formulation

In this chapter we describe basic tools on quaternions and dual quater-

nions and then we use them to define multi-affine formulations both for

spherical and spatial mechanisms.

2.1 Basics on quaternions and dual quaternions

We next include some basic facts on quaternions needed in our analysis. A complete treatment

of the subject can be found, for example, in [156].

Quaternions are numbers, first introduced by Hamilton in 1843 [60], that can written as

a+ ib+ jc+ kd where i2 = j2 = k2 = ijk = −1. They can be seen as a generalization of complex

numbers. It was rapidly realized that quaternion algebra yields more efficient algorithms than

matrix algebra for applications involving rigid-body transformations. Nowadays, quaternions

play a fundamental role in the representation of spatial rotations [150]. The idea after the in-

vention of quaternions was to represent a rotation in R
3 as it was done in R

2 using complex

numbers. Cayley solved the problem in R
3 and he also showed that a rotation in R

4 can also

be described by means of quaternions [71, 173]. Afterward, Clifford introduced the concept of

double quaternion, q1 + e q2, and dual quaternion, q1 + ε q2, where q1 and q2 are ordinary

quaternions and e2 = 1 and ε2 = 0. While double quaternions found direct application to rep-

resent rotations in R
4, dual quaternions found application to encapsulate both translations and

rotations in R
3 into a unified representation. It has been found that spatial displacements can be

approximated by rotations in R
4 [173]. In other words, a dual quaternion can be approximated

by a double quaternion.

The use of quaternions in kinematics has attracted the attention of many researchers due

to its compactness and robustness. It actually can be considered as the primary singularity-
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free representation of rotations in R
3 [203]. Its use for formulating loop equations in spherical

mechanism was already treated in detail in [164]. Yang and Freudenstein introduced the use

of dual quaternions for representing spatial displacements [199] and, recently, they have been

used to obtain the closure polynomial of the general 6R serial robot [202]. The use of dual

quaternions has been proven advantageous with respect to alternative representations in several

comparative studies [7,49,151,158].

Different variations and notations of dual quaternions can be found in the literature [51,

55, 85, 97, 156, 173]. Some authors use unit dual quaternions, in whose case terms in the sine

and cosine in each joint angle appear in the formulation [51]. The natural exponential function

substitution is then used to avoid treating such expressions as independent terms, which would

duplicate the number of variables in the problem [87]. Moreover, this substitution introduces

extraneous roots and the new variables must be considered in the complex domain. As an

alternative, the normalization of the real term of the dual quaternions to one greatly simplifies

the formulation [65], but it suffers from the drawback associated with the tangent half-angle

substitution (it is singular for joint angles equal to π). Nevertheless, as we will show later, when

using a branch-and-prune resolution method this drawback can be elegantly overcome.

Using quaternions, a rotation through an angle θ about the axis defined by the unit vector

p = (px, py, pz)
T can be expressed as

rp(θ) = cos

(

θ

2

)

+ sin

(

θ

2

)

p̂. (2.1)

where p̂ = pxi + pyj + pzk. Since rp(θ) and r−p(−θ) represent the same rotation, we can pro-

jectivize this representation so that a rotation is identified with a point in the three dimensional

projective space. Thus, the rotation represented by the quaternion in Eq. (2.1) can also be

represented by the following non-unit quaternion

rp(t) = 1 + t p̂, (2.2)

where t = tan(θ/2). This representation is singular at θ = π.

A translation d in the direction also given by p can be seen as a rotation in the dual magnitude

ε d, where ε2 = 0 [48]. That is,

tp(d) = cos

(

ε
d

2

)

+ sin

(

ε
d

2

)

p̂. (2.3)
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Then, expanding the trigonometric functions using Maclaurin series, we have that

tp(d) = 1 + ε
d

2
p̂. (2.4)

With the above representation for rotations and translations, we have the essential building

blocks to derive loop equations. Nevertheless, it is interesting to consider the screw displacement

consisting of a rotation through an angle θ about the axis defined by p and a translation d in the

direction also given by p. This displacement can be expressed as:

sp(t, d) = rp(t) tp(d) = 1 + t p̂+ ε
d

2
(−t+ p̂) . (2.5)

Notice that this does not represent a general screw displacement as the rotation axis passes

through the origin. The general form can be found, for example, in [157,173].

A general dual quaternion can be written as g = q1 + ε q2, where q1 and q2 are ordinary

quaternions. When using unit dual quaternions to represent spatial displacements, it is not

difficult to prove that

‖q1‖ = 1 (2.6)

and

q1 · q2 = 0. (2.7)

Nevertheless, in our case, while Eq. (2.7) is satisfied, Eq. (2.6) is not because q1 is not neces-

sarily a unit quaternion. As a consequence, in our case, gg∗ with g∗ = q̄1 + ε q̄2 and q̄i the

quaternion conjugate, is a pure real magnitude not necessarily equal to 1. In this way, rigid-

body displacements are simply identified with points in the six-dimensional quadric defined by

Eq. (2.7), called the Study quadric after his discoverer [166].

2.2 Closure equations for spherical mechanisms using

quaternions

An spherical kinematic loop equation can always be formulated in terms of products of unit

quaternions

rp1
(t1) · rp2

(t1) . . . rpr
(tr) = c, (2.8)

where c is a real scalar and where each quaternion has the form

rpi
(ti) = 1 + ti (pix i + piy j + piz k), (2.9)
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t = 0

t = 0.5

t = 1

t = 2

t = 3

t = −1

∞

Figure 2.1: The Weierstrass substitution maps the interval [−π, π] onto the interval (−∞,∞).
Numerical problems arise as we approach ±π.

where pi = (pix, piy, piz)
T is a unit vector representing the rotation axis and ti = tan

(

θi
2

)

, θi
being the rotated angle about the vector. The angle θi can be constant or variable.

The expansion of Eq. (2.8) leads to the following four scalar equations

f0(t1, . . . , tn) =
√

(t21 + 1) · · · (t2n + 1),

fj(t1, . . . , tn) = 0, j = 1, 2, 3.
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These four equations are not independent because they correspond to the components of a unit

quaternion. While fj , j = 1, 2, 3, are affine polynomials in each variable, f0, after clearing the

radical, leads to a quadratic polynomial. For obvious simplicity reasons, in what follows, we

will take fj , j = 1, 2, 3, as the set of three independent equations. Therefore, if our problem

can be described in terms of n independent loop equations, we will have a set of 3n multi-affine

polynomial equations.

A word of caution should be added here. Sometimes, in an abuse of language, a system

of equations like the one given by fj , j = 1, 2, 3, is called multi-linear. Strictly speaking, it is

multi-affine. Indeed, fj can be expressed as a function of ti as fj = ajti + bj which is not linear

in ti, but affine.

2.2.1 Reducing numerical issues by shifting rotations

The procedure just described solves the position analysis of the studied mechanism provided that

we exclude those configurations in which at least one of the revolute joint angles is π. From the

geometric point of view, the change of variable ti = tan
(

θi
2

)

can be seen as the stereographic

projection of the unit circle, from x = −1, to the line y = 0 (see Fig. 2.1). Thus, if θi=π, ti
goes to infinity. Then, numerical problems will occur when identifying valid configurations of

the mechanisms in the case in which at least one of its revolute joint angles is π. Moreover, if we

want to apply a branch-and-prune method to obtain the solutions of our system of equations, it is

not a good decision to start with a domain ranging from−∞ to +∞ in all variables. One possible

solution to this situation is to split the problem in two: one for θ+i ∈ [0, π], and another one for

θ−i ∈ [−π, 0], where θ+i = θi + π/2 and θ−i = θi − π/2 which can be accomplished by shifting

the origin ±π/2. This operation can be done for all the rotational variables whose valid range

includes π. In other words, if our problem has n of such rotation variables, we will decompose

it into 2n problems where, for each problem, the domain for all rotational variables is [−1, 1].
Note that using small ranges for the variables increases the numerical stability of the algorithm

and that the 2n sub-problems generated are independent between them and, consequently, they

can be solved in parallel.

2.3 Closure equations for spatial mechanisms using dual

quaternions

Using the Denavit-Hartenberg (DH) convention, the reference frame of link i can be obtained

from that of link i − 1 by first rotating about its axis z with angle θi and translating di along

the same axis, and then rotating the new reference frame about its axis x with angle αi and
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translating it ai along the same axis. The 4-tuples (θi, di, αi, ai) are defined as the Denavit-

Hartenberg parameters (DH parameters, for short) of link i. Using Eq. (2.5), and denoting

ui = tan αi

2 , this displacement can be compactly expressed as

sz(ti, di) sx(ui, ai) =

(

1 + ti k + ε
di
2
(−ti + k)

)

(

1 + ui i + ε
ai
2
(−ui + i)

)

. (2.10)

Since we do not adhere to the unity condition, the above expression is simpler than those used,

for example, in [51,202].

By composing terms of the form given in Eq. (2.10), we can derive the closure equations

for any closed-loop mechanism expressed in terms of DH parameters. This composition leads to

expressions of the form

sz(t1, d1) sx(u1, a1) · · · sz(tn, dn) sx(un, an) = c, (2.11)

where c is a real scalar. This means that the components in i, j, k, ε, εi, εj, and εk resulting

from expanding the left hand side of Eq. (2.11) necessarily vanish. As a result, we obtain seven

scalar equations from which only six are independent due to the constraint in Eq. (2.7). In what

follows, we simply discard the one corresponding to the term in ε, as it is done, for example,

in [85]. The relevance of these equations is that they are multi-affine in terms of ti and di,

i = 1, . . . , n. This is better understood through an example.

2.3.1 Formulation example

Let us consider the Bricard’s 6R mechanism depicted in Fig. 2.2 [193]. According to Grübler-

Kutzbach formula, it should be rigid, but it is mobile because of the special choice of their

design parameters. This kind of exceptional mechanisms are called overconstrained (see, for

example, [124] and the references therein for details on these kind of 6R mechanisms). In

general, 6R closed-loop mechanisms can have up to 16 possible rigid configurations [136],

but this exceptional mechanism has a 1-dimensional configuration space, which is technically

referred to as a 1-dimensional self-motion manifold.
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θ1
θ2

θ3

θ4

θ5

θ6

θi di αi ai
θ1 0 π/2 1
θ2 0 −π/2 1
θ3 0 π/2 1
θ4 0 −π/2 1
θ5 0 π/2 1
θ6 0 −π/2 1

Figure 2.2: Bricard’s overconstrained 6R closed-loop mechanism and its DH parameters. All
joint angles, θi, in the shown mechanism configuration are π/2.
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The closure equation of this mechanism can be expressed as:

(1 + t1 k)(1 + i + ε (−1 + i)/2)

(1 + t2 k)(1− i + ε (−1 + i)/2)

(1 + t3 k)(1 + i + ε (−1 + i)/2)

(1 + t4 k)(1− i + ε (−1 + i)/2)

(1 + t5 k)(1 + i + ε (−1 + i)/2)

(1 + t6 k)(1− i + ε (−1 + i)/2) = c. (2.12)

Therefore, after expanding the left hand side in Eq. (2.12) and grouping the terms in i, j, and k,

we obtain the following three equations:

t2t3 − t1t4 − t1t2 − t1t6 + t2t5 − t3t4−
t3t6 + t4t5 − t5t6 + t1t2t3t5 + t1t2t4t6−
t1t3t4t5 + t1t3t5t6 − t2t3t4t6 + t2t4t5t6+

t1t2t3t4t5t6 = 0, (2.13)

−t4 − t6 − t2 + t1t3t4 − t1t2t3 − t1t2t5+

t1t3t6 − t1t4t5 + t2t3t5 + t1t5t6+

t2t4t6 − t3t4t5 + t3t5t6 + t1t2t3t4t6−
t1t2t4t5t6 + t2t3t4t5t6 = 0, (2.14)

−t3 − t5 − t1 + t1t2t4 + t1t2t6 + t1t3t5−
t2t3t4 + t1t4t6 − t2t3t6 + t2t4t5 − t2t5t6+

t3t4t6 − t4t5t6 + t1t2t3t4t5 − t1t2t3t5t6+

t1t3t4t5t6 = 0. (2.15)

Likewise, repeating the same process for the terms multiplying εi, εj, and εk, we obtain the

following equations:

t1t3 − t1t5 + t2t4 − t2t6 + t3t5 + t4t6+

t1t2t3t4 − t1t2t3t6 − t1t2t4t5 + t1t2t5t6+

t1t3t4t6 + t2t3t4t5 − t1t4t5t6 − t2t3t5t6+

t3t4t5t6 − 3 = 0, (2.16)
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t5 − t3 − 3t1 + t1t2t4 − t1t2t6 + t1t3t5−
t2t3t4 + t1t4t6 + t2t3t6 + t2t4t5 − t2t5t6−
t3t4t6 + t4t5t6 + t1t2t3t4t5 − t1t2t3t5t6+

t1t3t4t5t6 = 0, (2.17)

t2 − t6 + t1t2t3 − t1t3t4 + t1t4t5 − t1t5t6 = 0. (2.18)

Equations (2.13)-(2.15) actually correspond to the closure conditions for the spherical indicatrix

of the mechanism, and equations Eqs. (2.16)-(2.18) can be seen as a condition in the tangent

space of the configuration space of this spherical indicatrix [172]. It can be easily checked

that all these equations are multi-affine. In next Chapter, we investigate the properties of such

type of equations, which will be later exploited to come up with an efficient branch-and-prune

algorithm to solve them.





3
A solver for multi-affine formulations

In this chapter we describe two fundamental properties of multi-affine

maps (namely, the interpolation and convex hull properties) and then we

exploit these properties to define and efficient and highly parallelizable

solver for position analysis problems which we call the trapezoid method.

3.1 Properties of affine maps

A multivariate polynomial f(x) is usually expressed in terms of monomials as

f(x) =
m
∑

p=0

ap xp, (3.1)

where the sum expands over the multi-index combination up to m = (m1, . . . ,mn), i.e., all

p = (p1, . . . , pn) such that 0 ≤ pi ≤ mi for i ∈ {1, . . . , n} and where x = (x1, . . . , xn) and xp

denotes the product xp11 . . . xpnn . For our purposes, however, it is more convenient to express the

polynomial using the multivariate Bernstein basis [47],

Bp,m(x) = bp1,m1
(x1) . . . bpn,mn

(xn), (3.2)

where

bpi,mi
(xi) =

(

mi

pi

)

xpii (1− xi)
mi−pi . (3.3)

Using this basis

f(x) =
m
∑

p=0

cp Bp,m(x), (3.4)
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where

cp =

p
∑

j=0

(

p
j

)

(

m
j

) aj (3.5)

are the so-called control points and where

(

p

j

)

=

(

p1
j1

)

. . .

(

pn
jn

)

(3.6)

and
(

m

j

)

=

(

m1

j1

)

. . .

(

mn

jn

)

. (3.7)

Since the formulation for the kinematic constraints derived in the previous section involves

only multi-affine equations, we are only interested in the case where m = (1, . . . , 1). In this

case, the Bernstein-based representation reduces to

bpi,1(xk) =







(1− xi) pi = 0

xi pi = 1
(3.8)

and it can be seen that the control points simplify to

cp = f(p), (3.9)

which correspond to the evaluation of f on the corners of the unitary box

B1 = [0, 1]1 × [0, 1]2 × · · · × [0, 1]n. (3.10)

Using Eqs. (3.8) and (3.9), f can be expressed as

f(x) =

(1,...,1)
∑

p=0

f(p)
n
∏

i=1

bpi,1(xi). (3.11)

This result can be generalized to any axis-aligned n−rectangle B in R
n (also known as an ortho-

tope) defined as

B = [xl1, x
u
1 ]× [xl2, x

u
2 ]× · · · × [xln, x

u
n], (3.12)

where xli, x
u
i ∈ R, xli ≤ xui . The set of 2n vertices of B is

V =
{

(v1, . . . , vn) ∈ R
n | vi ∈

{

xli, x
u
i

}}

. (3.13)
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Then, it can be seen that

f(x) =

(1,...,1)
∑

p=0

f(vp)
n
∏

i=1

bpi,1(s(xi)), (3.14)

where vp is the element of V with vi = xli if pi = 0, and vi = xui otherwise, and where

s(xi) =
xi − xli
xui − xli

is a variable change so that Bernstein polynomials are still evaluated in the [0, 1] interval.

Two important properties of multi-affine maps directly follow from the previous considera-

tions (alternative presentations can be found in [10,139,171]). The first one is the interpolation

property. Equation (3.14) can be expressed, using Eq. (3.8), as the following linear interpolation

between two functions of n− 1 variables

f(x) = (1− s(x1)) fl(x2, . . . , xn) + s(x1) fu(x2, . . . , xn) (3.15)

where

fl(x2, . . . , xn) =

(0,1,...,1)
∑

p=(0,0,...,0)

f(vp)
n
∏

i=2

bpi,1(s(xi)),

and

fu(x2, . . . , xn) =

(1,1,...,1)
∑

p=(1,0,...,0)

f(vp)
n
∏

i=2

bpi,1(s(xi)).

The same decomposition can be applied recursively to fl and fu until the resulting functions

only involve one variable. Therefore, the evaluation of f can be merely computed by the linear

interpolation of its control points. Actually this can be seen as a specialization for multi-affine

polynomials of the De Casteljau’s algorithm [47], which is a robust and efficient way to evaluate

polynomials in Bernstein form.

The second property of multi-affine maps is the convex hull property. Although it also applies

to f , this property is more useful when applied to

g(x) = (x, f(x)), (3.16)

which defines a function in R
n+1. Finding the roots of f is equivalent to determining the points
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in the form (x, 0)T in the graph of g. This function is represented in Bernstein form as

g(x) =

(1,...,1)
∑

p=0

dp

n
∏

i=1

bpi,1(s(xi)), (3.17)

where dp is the element of

D = {(v, f(v)) ∈ R
n+1|v ∈ V}, (3.18)

corresponding to vp.

Since the values of the Bernstein polynomials in the range [0, 1] are non-negative and form a

partition of the unity [47], Eq. (3.17) is a particular convex combination of the points in D for

each x. Thus, the value of g in x ∈ B is fully included in the convex hull of the points in D:

H =







(1,...,1)
∑

p=0

dp λp |
∑

λp = 1, 0 ≤ λp ≤ 1







. (3.19)

Summarizing the two properties, the evaluation of a multi-affine function at a point within a

box can be expressed by interpolation of the values of the function evaluated at the box corners.

As a result, these evaluations are always inside the convex region defined by the evaluations at

these box corners. Next, these properties are leveraged to come up with an efficient algorithm

for solving systems of multi-affine equations.

3.2 A Branch-and-prune solver for multi-affine systems

Let us define the system of equations

F(x) = 0, (3.20)

where F = (f1(x), . . . , fm(x)), and each function fj is a multi-affine polynomial in the unknowns

x = (x1, . . . , xn).

The proposed method, summarized in Algorithm 3.1, identifies arbitrarily small boxes con-

taining solution candidates of Eq. (3.20) within a given search box Bs ⊂ R
n using a branch-and-

prune scheme that iterates two operations, box reduction and box bisection. Using box reduction

(line 6 of Algorithm 3.1), portions of a given box B ⊆ Bs containing no solution are ruled out

by narrowing some of its defining intervals. Using this process (a) the box is reduced to an

empty set, in which case it contains no solution and it can be safely discarded (line 7), or (b) the

longest side of the box (denote by SIZE(B)) is under a specified threshold σ (line 8), in which

case it is considered a solution box candidate, either verified to include a solution point (line 10)
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Algorithm 3.1: The trapezoid method.

TRAPEZOID(Bs,F , ρ, σ)
Input : Bs: The initial search box.

F : The evaluation of the functions defining the
system of equations at the corners of Bs.

ρ, σ: Two scalar parameters.
Output: V : A set of verified solution boxes.

S: The rest of solution boxes.

1 L← {Bs}
2 V ← ∅
3 S ← ∅
4 while L 6= ∅ do

5 B ← EXTRACTFIRST(L)
6 (B, v)← REDUCEBOX(Bs,F ,B, ρ, σ)
7 if not EMPTY(B) then

8 if SIZE(B) < σ then

9 if v then

10 V ← V ∪ {B}
11 else

12 S ← S ∪ {B}

13 else

14 (B1,B2)← BISECTBOX(B)
15 L← L ∪ {B1,B2}

16 RETURN(V, S)

or not (line 12), or (c) the box is still larger than σ, in which case it is bisected along its largest

side into two equal sub-boxes (line 14). If the later occurs, the two resulting boxes are added

to the list of boxes to be processed in subsequent iterations (line 15). If there is only a finite

number of solution points in Bs, this method returns (line 16) a collection of boxes, with all their

side lengths below σ, containing all the solutions. If the solution space is an algebraic variety of

dimension greater than zero, the returned boxes contain the portions of this variety in Bs. The

method is thus complete, in the sense that no solution is missed, and conservative, in the sense

that some boxes might contain no solution.

Since the box bisection operation is trivial, we next focus on the description of a couple of

box reduction procedures. While the first one is already described in [132], the second can be

seen as a simplification of a method presented in [159]. The simplification is possible thanks to

the multi-affinity of the closure equations derived using dual quaternions.



24 A solver for multi-affine formulations

3.2.1 Pruning using linear programming

As already mentioned, finding the values for which fi(x) = 0 is equivalent to determining

the region Ri including the points of the form (x, 0) for the function gi defined from fi as in

Eq. (3.16). The solution of the system of equations is, thus, the set R = ∩mi=1Ri. Each Ri can

be bounded by the n + 2 linear constraints derived from the convex hull property described in

Section 3.1, i.e.,

∑

v∈V

div λi
v = (x1, . . . , xn, 0)

T , (3.21)

∑

v∈V

λi
v = 1, (3.22)

with {div} the set of control points of fi, and λi
v, 0 ≤ λi

v ≤ 1, the corresponding linear interpola-

tion parameters. The collection of such constraints for all the equations form a linear program

whose feasible set is a convex bound of R. Lower (upper) bounds for this set can be obtained

minimizing (maximizing) the value of each variable, xi, subject to all the previous constraints. If

the linear program is unfeasible, the considered box can be eliminated as it includes no solution.

The linear program to be solved has nr =
∑m

i=0(ni+2) rows and nc = n+
∑m

i=0 2
ni columns,

where ni ≤ n is the number of variables in the i-th equation and, according to [77], the compu-

tational cost of solving a linear program is at least O(n3.5
r ). This high cost dominates the whole

solving process using this procedure.

3.2.2 Pruning using projections: The trapezoid method

For the sake of clarity, we first describe the procedure when (3.20) consists of just one equation

in two variables and then show how it also applies to the general case.

Assume that we want to find all solutions of a multi-affine equation f(x) = 0, for x = (x1, x2)

in B = [xl1, x
u
1 ] × [xl2, x

u
2 ] ∈ R

2 (Fig. 3.1). Since (x, f(x)) must lie within the convex hull H of

the 22 points {(x, f(x))| x ∈ {xl1, xu1} × {xl2, xu2}} of R3, we simply project H onto each xi-f(x)

coordinate plane, as depicted in the bottom part of Fig. 3.1 (left and right for the planes x1-f(x)

and x2-f(x), respectively). Each projection defines a trapezoid whose vertices are given by xli

and xui with i ∈ {1, 2} in the horizontal axis and by

f l
i (B) = min{f(v)|v ∈ V(B), xi = xli}, (3.23)

f l
i (B) = max{f(v)|v ∈ V(B), xi = xli}, (3.24)

fu
i (B) = min{f(v)|v ∈ V(B), xi = xui }, (3.25)

fu
i (B) = max{f(v)|v ∈ V(B), xi = xui }, (3.26)
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Figure 3.1: The image of the points in the box [xl1, x
u
1 ] × [xl2, x

u
2 ] (shown in red) for any multi-

affine function f(x1, x2) necessarily lies inside a tetrahedron. The vertices of the tetrahedron
(shown in green) are obtained by evaluating f in the corners of the box. Then, from the projec-
tions of the tetrahedron onto the coordinate planes (shown in blue), the initial ranges for the
variables can be reduced to the regions where these projections intersect the line f = 0. The
reduction in both x1 and x2 defines a new box (shown in black) better bounding the sought-after
solution set.
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Algorithm 3.2: The REDUCEBOX procedure.

REDUCEBOX(Bs,F ,B, ρ, σ)
Input : Bs: The initial search box.

F : The evaluation of the functions defining the
system of equations at the corners of Bs.

B: The box to be reduced.
ρ, σ: Two scalar parameters.

Output: B: A reduced or empty box.
v: The verification state of the box.

1 v ← FALSE // TRUE if the box includes a solution
2 repeat
3 ν1 ← VOLUME(B)
4 m← TRUE // TRUE if the box passes Miranda’s test
5 foreach fj ∈ F do
6 f ← INTERPOLATE(Bs, fj ,B)
7 foreach i ∈ {1, . . . , n} do

8 (f l
i , f

l
i , f

u
i , f

u
i )← TRAPEZOID(f, i)

9 m← m and [ (f l
i > 0 and fu

i < 0) or (f l
i < 0 and fu

i > 0) ]

10 Bi ← CLIPPING(Bi, f l
i , f

l
i , f

u
i , f

u
i )

11 v ← v or m

12 until EMPTY(B) or SIZE(B) < σ or VOLUME(B)/ν1 > ρ

13 RETURN(B, v or NEWTON(Bs, F , CENTER(B)) ∈ B)

in the vertical one. Clearly, we can prune the values of xi for which the corresponding trapezoid

does not intersect the line defined by f(x) = 0. If the trapezoid and the line do not intersect

at all, the considered box includes no solution and it is discarded. Otherwise, the trapezoid-line

clippings usually reduce the ranges of some variables defining a box that bounds the sought-after

solution set more tightly.

Algorithm 3.2 describes the box reduction procedure for a system of multi-affine equations in

n>2 variables. The procedure iterates for all the equations in the system (line 5). For all of them

(line 6), the values of the function at the corners of the considered box, B, are computed from

the values, fj , of the function at the corners of the initial box, Bs, using the interpolation rule in

Eq. (3.15). Then (line 8), these values are projected to the different coordinate planes xi− fj to

define a trapezoid whose extremes are given in Eqs. (3.23)-(3.26). This trapezoid is clipped with

the line fj = 0 to eventually reduce Bi, the i-th range of B (line 10). If the resulting box is not

empty, nor small enough, and the reduction for all ranges is significant, i.e., if the volume of the

box reduces below a given threshold ρ, the whole process is repeated to obtain tighter bounds

for the solution set (line 12). As we will show in Chapter 4, although this strategy produces

less pruning than alternative methods, it results advantageous due to its low computational
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cost. This computational cost can be further reduced parallelizing the algorithm’s operations,

for instance, processing the different sub-problems defined in Section 2.2.1 independently. The

method can also be parallelized at other levels, for instance, when processing the different boxes

in the main loop of Algorithm 3.1 or even when processing the different equations and variables

(lines 5 or 7 in Algorithm 3.2). Finally, the basic operations of the method, the interpolation

(line 6 in Algorithm 3.2) and the projection on coordinate planes (line 8 in Algorithm 3.2), can

also be parallelized in single instruction, multiple data (SIMD) architectures.

The computational cost of the trapezoid pruning procedure is O(m n 2n) with m and n the

number of equations and variables in the system, respectively. This is so since the procedure

iterates over all equations (line 5 and variables in Algorithm 3.2) and applies two operations,

interpolation and projection, which iterate over a set of 2n control points.

The clustering effect

One undesired feature of the projection method is that it leads to the so-called clustering effect.

This is a well-know effect of branch-and-prune methods that apply one necessary condition at a

time instead of a set of necessary and sufficient conditions at once. In the former case, a solution

may be returned as a cluster of boxes instead of a single box containing it [112]. Increasing

the resolution, i.e., reducing the value of the parameter σ bounding the size of the returned

boxes, does not eliminate the clustering effect because it is reproduced just with smaller boxes.

Clustering is exacerbated when the solution varieties of at least two equations in the considered

system of equations are close to be tangent. In practice, the size of the cluster gives an idea of

the loss of rigidity of the mechanism in the corresponding configuration. Indeed, if the effect of

manufacturing inaccuracies and/or slight elasticities in the kinematic chain were incorporated

as ranges in the coefficients of the closure conditions, clustering-free branch-and-prune methods

would also reproduce these clusters. Thus, although from the pure mathematical point of view

clusters of boxes might be seen as a problem, from a mechanical point of view their presence

provides qualitative information on which configurations of the mechanism might lead to a loss

of rigidity. Having said that, we next explain ways of mitigating the clustering effect and in

Chapter 5 we will see how redundancy can also be used to reduce this effect.

3.3 Certification of solutions

The clustering effect would be avoided if necessary and sufficient conditions were available

to determine whether a given box contains a solution. Unfortunately, such conditions are not

available in general. However, a variety of sufficient conditions exist.
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3.3.1 Certification of isolated solutions

The theorems by Kantorovich [74, 119], Moore [109] or Smale [163] are particularly tailored

for interval Newton methods. In some cases they can not only prove the existence of a solution

in a given box, but also guarantee the uniqueness of such solution. However, in practice such

theorems only hold on small boxes with low probability of including more than one solution.

Moreover, all these theorems rely on the Jacobian of the system of equations, which may be

problematic, specially when it is necessary to invert it on a given range for the input variables.

In contrast, Miranda’s theorem [108] relies only on the values of the function on the different

faces of the analyzed box. It can be stated as follows:

Let F : S ⊂ R
n → R

n and assume that B = {[xl1, xu1 ], . . . , [xln, xun]} is a box included in S. Let

Li = {x ∈ B|xi = xli} and Ui = {x ∈ B|xi = xui } with i ∈ {1, . . . , n} be the n pairs of opposite

faces of B. If F(x) · F(y) ≤ 0 for all x ∈ Li, y ∈ Ui, i ∈ {1, . . . , n}, then F has at least one root

in B.

Miranda’s theorem can be proved relying on Brouwer’s fix point theorem [16]. Observe that

if Miranda’s theorem holds, the box reduction operation based on the trapezoid-line intersection

described in Section 3.2.2 will result in a new box contracted in all dimensions. In this case,

if F is continuous and the box reduction procedure is adequately interpreted as a mapping,

Brouwer’s fix point theorem ensures that the considered box includes a fixed point which is a

solution of the considered system.

It has been proven that there is a hierarchy in terms of generality between the different

existence theorems [2]. In this hierarchy, Moore’s theorem is more general than Kantorovich’s

theorem which in turn is more general than Smale’s theorem [3]. However, Miranda’s theorem

is more general than all of them meaning that if any of them holds Miranda’s theorem also

holds. Only Borsuk’s theorem is more general than Miranda’s theorem for arbitrary norms, but

if the norm ball is a box, as it is our case, they are equivalent. Thus, it makes sense to consider

Miranda’s test as the best option.

Miranda’s test can be readily incorporated in the box reduction strategy based on the projec-

tion clipping with a negligible computational cost: if for a given box all the trapezoids resulting

from the projection of the control points on the different xi-fj coordinate planes have their lower

and upper extremes on opposites sides of the fj = 0 line, then the theorem holds and, conse-

quently, the box is guaranteed to include at least one solution. This check can be introduced in

the box projection-based box reduction procedure with a single line of code using results already

computed for the trapezoid-line clipping (see line 9 in Algorithm 3.2).



3.3 Certification of solutions 29

3.3.2 Certification of higher-dimensional solution sets

None of the existence tests available in the literature apply to problems with higher-dimensional

solution sets. For 1-dimensional solution sets, one can still use Miranda’s test on the faces of the

boxes returned by the algorithm. If any of them can be certified to include an isolated solution,

the box can be guaranteed to include part of the sought-after solution variety. For solution

sets of dimension two or higher, one should check lower-dimensional components defining the

boundary of the analyzed box.

A simpler alternative strategy that will be used in this work, and that is valid for any dimen-

sion, is to initiate a Newton-Raphson process in a point in the box potentially including part of

the solution and check whether it converges inside the box. In this regard, note that the control

points can also be used to efficiently evaluate the derivatives of a multi-affine function. For

instance, using Eq. (3.15) the derivative of f with respect to x1 is

∂f

∂x1
=

fu(x2, . . . , xn)− fl(x2, . . . , xn)

xu1 − xl1
, (3.27)

where, as mentioned, fl and fu are computed by linear interpolation of the control points. This

Newton-based general verification test can be easily included in the box reduction procedure

(see line 13 in Algorithm 3.2).





4
Evaluation of the trapezoid solver

In this chapter we evaluate the solver presented in the previous chapter,

which we call the trapezoid method, in different problems, namely, spher-

ical mechanisms, 6R loops, overconstrained systems, mobile kinematic

loops, and parallel platforms. The results obtained in such a diversity of

problems show the generality and the efficiency of the proposed solver.

The solver described in Chapter 3 has been implemented in C and evaluated on different

test-cases, including simple and multi-loop spherical mechanisms (Section 4.1), general 6R

loops (Section 4.2), overconstrained 6R loops (Section 4.3), kinematotropic mechanisms (Sec-

tion 4.4), and spatial parallel mechanisms, which define multi-loop systems (Section 4.5).

In all test-cases, we will examine the performance of the method described in Section 3.2.2

based on the trapezoid-line clipping, which we will refer to as the trapezoid method. This

method is compared with the two alternative methods described, respectively, in Sections 3.2.1

and in [131]. The first one is based on linear programming directly using the convex hull

defined in Eq. (3.19) (it will be denoted as the LP method), and the second one also uses

linear programming, but on smaller linear program derived using the linear relaxations of the

equations (it will be denoted as the LR method). This method reduces the complexity of the

problems by formulating them with simple polynomial equations which are directly bounded by

hyperplanes defined on the space of their input variables. Thus, while the trapezoid and the LP

methods are defined in the same space, the LR method uses a different formalization in terms

of variables and equations and, thus, the outputs of the latter cannot be directly compared with

the results of the two other methods. The LP approach does not include any box verification

procedure, but the LR one incorporates a procedure based on the Brouwer’s fix point theorem.

In both the LP and LR methods, the linear programs are solved relying in the CoinOR linear

programming library [32]. In contrast, and due to the simplicity of the used operations, the
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trapezoid method does not rely on any external library and it can be implemented in few lines

of code.

All the reported results have been obtained with a computer equipped with 32Gb of RAM and

an i7 processor with 4 cores running at 4.2 GHz, where two concurrent threads can be executed

at each core. These capacities are used to execute each one of the sub-problems defined in

Section 2.2.1 in a separate thread. We use ρ = 0.5 and either σ = 10−4, for the problems with

zero-dimensional solution sets, or σ = 10−2, for the problems with positive-dimensional solution

sets. The actual implementation and the input files for the test-cases are available for download

at [88].

4.1 Position analysis of spherical mechanisms

Three different spherical mechanisms of increasing complexity have been used to evaluate the

trapezoid solver (see Fig. 4.1). The first one is a simple spherical wrist whose inverse kinematics

involves a single kinematic loop. The second is a 3-RRR orienting robot, also known as the

agile eye [86], whose forward kinematics includes two independent kinematic loops, which is

commonly used to evaluate approaches dealing with spherical robots [13, 25], The third one is

a spherical mechanism with four independent kinematic loops [14].

The inverse kinematics of the spherical wrist in Fig. 4.1(top) consists in obtaining the values

of ti = tan
(

θi
2

)

, i = 1, 2, 3, which satisfy the following equation:

1
√

(t21 + 1)(t22 + 1)(t23 + 1)
(1 + t1 k)(1 + t2 i)(1 + t3 k)q

−1
o = 1, (4.1)

where q0 is the desired orientation for the end-effector. If we set q−1
0 = e0 + e1 i + e2 j + e3 k, we

derive a set of three multi-affine equations which can be expressed in matrix form as:









e1 −e2 e0 −e2 e3 −e1 −e3 e0

e2 e1 −e3 e1 e0 −e2 −e0 −e3
e3 e0 e2 e0 −e1 −e3 e1 e2
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= 0 (4.2)

The problem of solving the forward kinematics of the 3-RRR spherical parallel manipulator
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Figure 4.1: The three test cases used to validate the branch-and-prune algorithm presented in
this thesis on spherical mechanisms. Top: A spherical wrist. Center: 3-RRR parallel spherical
manipulator. Bottom: A four loop spherical mechanism.
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shown in Fig. 4.1(center) consist in locating the triangle P7P8P9 with respect to the base P1P2P3

as a function of the motor angles θ1, θ2, and θ3. This mechanism has two independent kinematic

loops, which, when formulated in terms of quaternions as described in Section 2.2, give six

multi-affine equations in six unknowns.

Finally, the four-loop mechanism in Fig. 4.1(bottom) can be formulated, once represented

using quaternions, in terms of 12 multi-affine equations in 12 unknowns.

LP LR Trapezoid

Processed boxes 20 39 28
Box reductions 34 40 44
Bisected boxes 6 19 10
Empty boxes 12 18 16
Solution boxes 2 2 2
Verified - 0 2
Execution time [s] 0.004 0.06 0.00009

Table 4.1: Summary of the results for the wrist example.

LP LR Trapezoid

Processed boxes 584 17 1342
Box reductions 1050 26 2309
Bisected boxes 260 8 639
Empty boxes 320 5 680
Solution boxes 4 4 23
Verified - 2 4
Execution time [s] 0.38 0.05 0.001

Table 4.2: Summary of the results for the 3-RRR parallel spherical manipulator.

LP LR Trapezoid

Processed boxes 88228 9001 372180
Box reductions 161568 14517 571147
Bisected boxes 42066 4500 184042
Empty boxes 46142 4481 187077
Solution boxes 20 20 1061
Verified - 7 20
Execution time [s] 190 115 0.32

Table 4.3: Summary of the results for the four loop spherical mechanism.

Tables 4.1, 4.2, and 4.3 summarize the performance of the algorithm described in Section 3.2

for the three considered testbeds. For each case, the table gives the number of processed boxes,

the number of box reduction operations applied (i.e., the number of times lines 3 to 11 in
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Algorithm 3.2 are executed), the number of bisected boxes, the number of empty boxes, the

number of solution boxes, the number such boxes that can be certified to include a solution,

and the execution time in seconds. In the case of the trapezoid method, the certification of

solutions is performed combining the Miranda and Newton procedures described respectively in

Section 3.3.1 and 3.3.2. The time taken by these certification procedures is included in the given

execution time. As it can be seen in the tables of results, the trapezoid method is significantly

more efficient that the two other methods in all cases. Although it might return the solutions as

a cluster of boxes, the boxes actually including a solution have been readily identified in these

test cases.

4.2 The inverse kinematics of general 6R loops

The general inverse kinematics of 6R robots, or equivalently the position analysis of 6R closed

loops, is a decades-old problem which still stands as a challenging test-case in Robotics [63,72,

137]. The problem consist in determining the possible combinations of the joint angles that

yield a specific pose for the end effector. This problem is particularly relevant since, in principle,

a 6R chain can attain arbitrary positions and orientations inside its workspace by adequately

fixing the position of their joints. Thus, a 6R robot has the maximum possible dexterity without

redundant actuators. The inverse kinematic problem can be posed as a system of non-linear

equations in six variables (one per degree of freedom in the loop).

The problem can be solved in closed-form for decoupled manipulators, i.e., those where the

last three rotations intersect at a common point. This includes most of the industrial manipu-

lators, which can have up to 8 solutions. The first solution for this kind of manipulators was

proposed in [128]. However, a method able to solve the problem for the general case is desir-

able. First, such a method will increase the design options for a particular task. For instance, if

the robot is to move a high payload, a decoupled design may not reach the task requirements.

Moreover, anthropomorphic designs, common in the emerging field of human-robot interaction,

often use offset wrists. These cases cannot be solved in closed form.

Numerical algorithms based on variants of the Newton method can be applied to the inverse

kinematics of general 6R loops [176]. However, such methods would only identify one of the

solutions. The identified solution as well as the computational time of these methods heavily

depend their initialization. Continuation methods have also been successfully applied to this

problem [180], but their high computational times prevent them to be used in settings with real

time requirements.

The most efficient methods up to date are based on elimination theory. The first general

methods following this approach can be traced back to [1] and [44] which respectively derived
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resultant polynomials of degree 48 and 32. At that time, the maximum number of solutions

known to be 32 [147] and, thus, the resultant of degree 48 included extraneous factors. How-

ever, Primrose in [136] proved for the first time that 16 solutions the 32-degree resultant poly-

nomial always lay at infinity and, therefore, the inverse kinematic of general 6R has at most 16

real solutions. Later, an instance with 16 real distinct solutions was introduced in [102], proving

that the bound is tight.

Finally, in 1988 Lee and Liang reformulated the characteristic polynomial of the manipulator

as a determinant of 8 × 8 matrix in square of a joint variable which led to polynomial degree

16 [94]. An alternative solution was proposed by Raghavan and Roth [138] using dialyctic

elimination to also obtain a polynomial of degree 16. Both methods use 14 equations in 5 joint’s

variables, but the latter was more suitable for further improvements. Therefor, the numerical

stability, the accuracy, and the computational efficiency of this approach have been improved in

subsequent contributions. For instance, the problem has been formulated as the eigenvalue of a

16× 16 matrix in [56] and [81]. Afterward, Manocha and Canny proposed an algorithm in term

of the general eigenvalue problem of a 24 × 24 matrix. Despite calculating a surplus of eight

imaginary solutions, the approach was able to solve the problem very efficiently thanks to the

use of highly-efficient linear algebra software libraries [4].

During the following years, the community explored alternative ways to formulate the prob-

lem. For instance, Morton and Elgersma used quaternions to derive a general eigenvalue prob-

lem [113] and Gervasi and et.al [55] combined dual quaternions and multivariate elimina-

tion [55]. Dual quaternions where also used in [72] and in [51]. where a polynomial of degree

24 was derived using Dixon multi-variate elimination. Later in [202] the eight extraneous roots

of this polynomial are factored out.

Most of the approaches described in the literature, though, work well in general, but fail on

particular classes of problems. Surprisingly, only limited attempts have been made to compare

them on broad classes of problems [6]. However, among all the works, arguably the most

influential one is that by Manocha and Canny [101] which provided the first efficient algorithm

for the problem. Since we will use it as a reference in the following, we next summarize it.

4.2.1 The Manocha and Canny method

Using the DH convention, the 4× 4 homogeneous transform relating link i with link i+ 1 is

Ai =













ci −si λi si µi ai ci

si ci λi −ci µi ai si

0 µi λi di

0 0 0 1













(4.3)
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where

si = sin θi, (4.4)

ci = cos θi, (4.5)

µi = sinαi, (4.6)

λi = cosαi, (4.7)

(4.8)

and where (θi, di, αi, ai) are the DH parameters of the corresponding joint. In 6R chains, only θi

is variable for i ∈ {1, . . . , n}.

In this formalism, the pose of the end-effector is given by an arbitrary 4 × 4 homogeneous

transform Ah. Thus, the 6R loop defines a matrix equation

A1 A2 A3 A4 A5 A6 = Ah, (4.9)

which can be re-ordered as

A3 A4 A5 = A−1
1 A−1

2 AhA
−1
6 , (4.10)

to reduce the degree of the terms. This equation defines 12 scalar equations, but only 6 of them

are independent. The equations corresponding to the last two columns do not involve neither

c6 nor s6 and, thus, they only depend on θ1, θ2, θ3, θ4, and θ5. These equations can be written as
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, (4.11)

where Q is a constant matrix and P depends linearly on c3 and s3. Matrix Q has a particular
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structure which allows to split Eq. (4.11) as

Q1

(
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c1

)

= P
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, (4.12)

and
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, (4.13)

Two rows of Q1 forming a full rank minor are used to remove the left-hand side monomials of

Eq. (4.12) and six independent rows of Q2 are used to remove the left-hand side monomials of

Eq. (4.13). In this way we end up with six equations in three unknowns, θ3, θ4, and θ5. After

applying the the tangent-half angle substitution xi = tan(θi/2) for i ∈ {3, 4, 5} and multiplying
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by x4 the system is transformed to
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. (4.14)

Matrix Σ is 12× 12 and includes quadratic terms in x3. Thus, it can be decomposed as

Σ = A x23 +B x3 +C, (4.15)

where A, B, and C are constant. It can be seen that the eigenvalue of the 24× 24 matrix

M =

(

0 I

−A−1 C −A−1 B

)

(4.16)

correspond to the roots of |Σ| = 0. Moreover, the corresponding eigenvectors have the form

v =

(

w

x3 w

)

(4.17)

where w are solutions to Eq. (4.14) and, thus, they can be used to determine the values for x4
and x5 in the solution points.

The procedure just described woks well in general, but special care must be taken to avoid

numerical issues in particular cases. Manocha and Canny used the SVD to adjust matrices

Q1 and Q2 in Eqs. (4.12) and (4.13) so that small perturbations do not decrease their rank.

Moreover, matrix A in Eq. (4.15) may be bad conditioned if, for instance, one of the solutions

of the inverse kinematics has θ3 close to π. In this case, a random shift on θ3 similar to the

one described in Section 2.2.1, can be applied. Otherwise, a generalized eigenproblem can

be used to determine the valid value for x3, although this is computationally more expensive
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than solving a standard eigenproblem. Finally, the different numerical processes may introduce

inaccuracies in the solutions and, therefore, a Newton procedure is used to refine them.

4.2.2 Comparative analysis

The performance, robustness, and generality of the proposed method has been evaluated on

three 6R loops with zero-dimensional solution sets.

θi di αi ai
θ1 0 π/2 0.3
θ2 0 0.017 1
θ3 0.2 π/2 0
θ4 0 0.017 1.5
θ5 0 π/2 0
θ6 0 0.017 0

Ahand =









−0.7601 −0.6416 0.1022 −1.1401
0.1333 0 0.9910 0
−0.6359 0.7669 0.0855 0

0 0 0 1









Table 4.4: DH parameters and closure condition for a 6R loop with 16 real solutions.

6R loops with zero-dimensional solution sets

We will use as a first test-case the example appearing in [188] and also in [101]1, which has 16

real solutions. The DH parameters for this test-case appear in Table 4.4. Table 4.5 shows the

performance statistics of the compared methods.

The sets of angles for the 16 solutions and the corresponding robot configurations appear in

Fig. 4.2. The software described in [175] has been used for the robot representation.

LP LR Trapezoid

Processed boxes 8644 10025 20270
Box reductions 13064 11149 27698
Bisected boxes 4290 5012 10103
Empty boxes 4338 4997 10149
Solution boxes 16 16 18
Verified solutions - 16 16
Execution time [s] 15 22 0.035

Table 4.5: Performance of the three compared methods for a 6R loop with 16 solutions.

1The version of this example given in [101] has a wrong sign in one of the entries of the Ahand matrix.
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1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

solution θ1 θ2 θ3 θ4 θ5 θ6

1 0.043934 1.886280 1.955521 -0.183661 0.000089 -0.001911
2 0.043934 1.886280 -1.186071 -2.957932 3.141504 3.139684
3 1.547731 -3.084428 0.057089 -2.037814 0.398002 -0.690520
4 1.547731 -3.084428 -3.084504 -1.103779 2.743591 2.451086
5 2.937771 -1.813260 2.558719 -0.300911 -2.999858 1.713237
6 2.937771 -1.813260 -0.582874 -2.840682 -0.141734 -1.428522
7 1.986946 0.092614 0.039370 -2.165532 -2.042299 2.384515
8 1.986946 0.092614 -3.102223 -0.976061 -1.099293 -0.757069
9 -0.225897 -1.834277 1.134894 3.088823 3.012142 1.755402

10 -0.225897 -1.834277 -2.006699 0.052769 0.129451 -1.388927
11 -1.680482 -0.109494 3.141049 0.671707 0.917184 -0.687745
12 -1.680482 -0.109494 0.000544 2.469886 2.224409 2.453854
13 -2.108155 3.007802 0.016182 2.594746 -0.580930 -0.648888
14 -2.108155 3.007802 -3.125411 0.546846 -2.560663 2.492696
15 -3.108889 1.888300 0.563151 -3.042226 -0.267479 -0.007681
16 -3.108889 1.888300 -2.578442 -0.099366 -2.874113 3.134286

Figure 4.2: The 16 solutions to the inverse kinematics of the 6R robot whose DH parameters are
given in Table 4.4.
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Using the LP method, the simplex tableau has 48 rows and 320 columns (i.e., 15230 entries)

and the 16 solution boxes of this problem are identified in 15 seconds. None of them are verified

because, as said, this approach does not includes any verification procedure. As a comparison,

the LR method takes 22 seconds to solve the same problem and correctly verifies all the solution

boxes. In this case, the tableau is smaller, as it has 223 rows and 59 columns (i.e., 13157 entries).

Despite defining a larger tableau, the LP method is more efficient due to the particularities of the

test-case, since this is not the case in general. The method proposed in this paper (the trapezoid

method) only takes 35 ms to isolate the 16 solutions of the problem. Two of the solutions

are returned as a cluster of two boxes. However, the maximum error in the center of any of

the returned boxes is below 10−3, which means that all of them can be considered solutions if

mechanical tolerances are taken into account.

Using the trapezoid method, six of the returned boxes are verified using Miranda’s theo-

rem. Since Miranda’s theorem is the most general existence theorem none of the alternative

approaches would be able to verify more solution boxes. In any case, the sixteen boxes actu-

ally including a solution can be readily identified with negligible computational cost using a

Newton-Raphson process initialized at the center of each of the returned boxes.

Note that the algorithm described in [101], whose implementation is available at [100], can

solve this problem in less than 2 ms. Unfortunately, due to an unreported bug, it fails to provide

the correct value of θ6 for the first solution in Fig. 4.2. This method is based on an eigenproblem

which can be efficiently solved relying on highly optimized linear algebra libraries [4]). How-

ever, its implementation is not trivial due to the numerous reasons that lead to an ill-conditioning

of the involved matrices. For example, this approach fails when applied to the problem in Ta-

ble 4.6. In contrast, as shown in Table 4.7 the method presented in this paper has no problem

and solves the problem in just 95 ms. The only relevant issue is that, due to the particularities of

the mechanism, each solution is returned in the form of a cluster of boxes. However, the error

in the center of the returned boxes is, in all cases, below 10−2. The LP and LR methods identify

only 8 solution boxes, but they are about 200 times slower than the trapezoid method. If the

result provided by the trapezoid method is combined with a Newton-Raphson process, the eight

boxes containing the exact solutions are readily identified in 98 ms. An alternative strategy to

limit the cluster effect is to use the LP method only for the boxes considered as solutions by the

trapezoid method. In this case, the eight solutions are identified in just 0.69 s, still significantly

faster than the LP or the LR methods alone.

Numerical issues arise not only for problems with particular arrangements of the rotation

axes (e.g., parallel or orthogonal axes), but also in 6R loops with, apparently, generic param-

eters such as those in Table 4.8, which correspond to Problem 5 in [188]. This is a slightly

perturbed version of Problem 4 in the same reference. Problem 4 has two real solutions and
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θi di αi ai
θ1 0.1875 −π/2 0.5
θ2 0.375 0 1
θ3 0.25 π/2 0.125
θ4 0.875 −π/2 0
θ5 0 π/2 0
θ6 0.125 0 0.25

Ahand =









−1 0 0 0.41150993
0 −1 0 0.14908956
0 0 1 0.4889994
0 0 0 1









Table 4.6: DH parameters and closure condition of the bad_eg0 example from [100].

LP LR Trapezoid

Processed boxes 10140 7761 45802
Box reductions 16087 8842 74481
Bisected boxes 5038 3880 22869
Empty boxes 5094 3873 22277
Solution boxes 8 8 656
Verified solutions - 2 8
Execution time [s] 20 19 0.098

Table 4.7: Performance of the three compared methods for the bad_eg0 example from [100].

two solutions with a tiny imaginary part (of the order of 10−2). The perturbation has the ef-

fect of converting the imaginary solutions into ill-conditioned, real solutions. As a consequence,

Manocha’s method returns four points, but none of them is an actual solution of the problem. Ta-

ble 4.9 shows the results obtained with the three interval-based method compared in this work.

The three of them correctly identify the solutions of the problem, but the trapezoid method does

so more efficiently than two other alternatives.

4.3 Computation of the input-output relations of over-

constrained mechanisms

A mechanism is overconstrained if it moves when it is expected to be rigid. The degree of

mobility of a system is studied in Rigidity Theory, a discipline that can be traced back to

Maxwell [104]. In this context, the Laman and Tay Theorems [91, 170] provide necessary and

sufficient conditions for rigidity in 2D and 3D, respectively. However, these results only hold for

generic or for particular regular structures [79].
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θi di αi ai
θ1 0.9685 0.0175 123.4
θ2 0.563 0.6109 143.6
θ3 0.19 0.3491 162.5
θ4 0.163 1.1519 0.343
θ5 0.1 2.7925 0.7893
θ6 0.876 0.6458 0.123

Ahand =









0.7447 −0.6667 −0.02942 −344.9961
0.3135 0.3884 −0.86650 253.3829
−0.0294 −0.8665 0.49831 2.7113

0 0 0 1









Table 4.8: DH parameters and closure condition of Problem 5 from [188].

LP LR Trapezoid

Processed boxes 16510 69 47424
Box reductions 25971 135 62887
Bisected boxes 8223 34 23680
Empty boxes 8283 31 23739
Solution boxes 4 4 5
Verified solutions - 4 4
Execution time [s] 28.5 1 0.078

Table 4.9: Performance of the three compared methods for Problem 5 from [188].

In Robotics, the degree of mobility of a mechanism is typically estimated following the

Grübler–Kutzbach criterion [5, Cap. 6], which only provides a necessary condition for rigidity.

According to this criterion, the degree of mobility, M , of a given linkage is given by

M = 6 (N − 1− J) +

J
∑

i=1

ri, (4.18)

with N the number of rigid bodies in the system, J the number of joint between the bodies,

and ri the degrees of freedom allowed by the i-th joint. For instance, for single degree of

freedom joints like revolute or prismatic joints ri is 1. An intuitive derivation of this formula is

given, for instance, in [185].

Despite overconstrained mechanisms can include several kinematic loops (like in deployable

structures, for instance), research focus on single loop overconstrained mechanisms including

only revolute or, less often, prismatic joints. In these cases N = J and ri = 1, ∀i ∈ {1, . . . , J}
and, thus, M = J − 6. Consequently, any loop with less than 7 links (or joints) is either

rigid or overconstrained. In the second case it typically exhibits a one-dimensional solution
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set. Positive-dimensional solution sets are usually called self-motion manifolds [19] because any

trajectory embedded in them represents a valid motion of the mechanism which does not require

to disassemble it.

From the practical point of view, overconstrainess offers the possibility to transmit motion

and forces with less links and joints than the expected ones [29], which is economically advan-

tageous. From a theoretical point of view, several relevant issues are still open in the study of

overconstrained mechanisms [103]:

- The design of overconstrained mechanisms: The industrial use of overconstrained

mechanism is probably limited because the design of their motion trajectories is hard. Al-

though some progresses have been achieved using Bennett mechanisms [123], this issue

is mainly open in general.

- The proof of overconstrainess: Since rigidity criteria only offers necessary conditions,

ad hoc geometric reasonings or even the construction of real models if often used to proof

the overconstrainess of a given mechanism. Currently, there is a lack of formal tools to

provide such proofs for any mechanism from the parameters defining it (e.g., the Denavit-

Hartenberg parameters). The difficulty arises due to the complex non-linear relations

between such parameters that typically characterize overconstrained mechanisms.

- Existence of new overconstrained mechanisms: While the possible overconstrained

mechanisms with loops of four and five bodies are well-know, this is not the case for

six body loops since new overconstrained mechanisms of this kind are described every

now and then. There is a lack of analytic methods to identify new overconstrained mech-

anisms or even to elucidate if any two overconstrained mechanisms are subsumed by a

more general case.

- The calculation of the input-output relations: Since typically overconstrained mecha-

nisms with mobility one are studied, the input-output relations describe the evolution of all

joint variables (i.e., the output variables) in terms of one of them (i.e., the input variable).

Ideally, input-output relations should be derived analytically, but the derivation process is

complex and existing methods are valid only for particular geometries. The input-output

relations are also difficult to identify using numerical methods since most of the existing

methods cannot isolate positive-dimensional solution sets.

Next, we show that the method proposed in this thesis is particularly adequate to isolate the

input-output relation of overconstrained mechanisms with different number of joints.
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4.3.1 4R overconstrained mechanisms

Bennett proposed the first movable 4R closed loop, i.e., the so-called Bennett linkage [11].

Despite other 4R movable loops have been described [38], Brunnthaler [17] proved that all of

them are equivalent to the Bennett linkage.

The family of Bennett linkages fulfill the following conditions between their DH parameters

a1 = a3 (4.19)

a2 = a4 (4.20)

α1 = α3 (4.21)

α2 = α4 (4.22)

d1 = d2 = d3 = d4 = 0 (4.23)
a1

sinα1
=

a2
sinα2

(4.24)

θi di αi ai
θ1 0 1.2829 20
θ2 0 0.5 10
θ3 0 1.2829 20
θ4 0 0.5 10

Table 4.10: DH parameters of the Bennett linkage used in the experiments.

Table 4.10 gives the DH parameters defining the Bennett linkage used in our tests and

Fig. 4.3 shows the input-output relations of this linkage. Finally, Table 4.11 gives the perfor-

mance statistics of the solver on this problem. In the case of the trapezoid method, the solution

boxes are verified with the Newton-based procedure described in Section 3.3.2 and the given

execution time includes the time used in this verification procedure.

LP LR Trapezoid

Processed boxes 2620 2647 5168
Box reductions 3940 2653 7640
Bisected boxes 1302 1323 2576
Empty boxes 42 3 528
Solution boxes 1276 1321 2064
Verified solutions - 0 596
Execution time [s] 4.03 0.7 0.015

Table 4.11: Summary of the results for the Bennett 4R overconstrained mechanism using the
trapezoid box reduction procedure.
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Figure 4.3: The input-output relations of the Bennett linkage, with θ1 the input variable.
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4.3.2 5R overconstrained mechanisms

Two families of 5R overconstrained mechanisms exists [76]. Both of them essentially combine

Bennett linkages and the difference between them are in the offset in the links. The family with

zero offsets was proposed by Goldberg [58] and it subsumes the Myard linkage [114]. In its

general form, the Goldberg linkage is defined by the constraints for the two combined Bennett

linkages [194]

a1 = a3 (4.25)

α1 = α3 (4.26)

d3 = d4 = d5 = 0 (4.27)
a1

sinα1
=

a4
sinα4

=
a5

sinα5
(4.28)

and the constraints on the connector link

α2 = ± arccos (cosα4 cosα5 − cos ǫ sinα4 sinα5) , (4.29)

a2 =
a1

sinα1
(cosα4 + cosα5) tan

α2

2
, (4.30)

d1 = d2 =
a1

sinα1
sin ǫ

sinα4 sinα5

1 + cosα2
, (4.31)

where ǫ is the so-called kink angle. Fixing the different parameters overconstrained mechanisms

arise. For instance, ǫ = π, α1 = π/2, and α1 = π − α4 the Myard mechanism is obtained. For

ǫ = 0 the conditions for the original 5R Goldberg mechanism are obtained:

a1 = a3 (4.32)

a2 = a4 + a5, (4.33)

α1 = α3 (4.34)

α2 = α4 + α5, (4.35)

d1 = d2 = d3 = d4 = d5 = 0 (4.36)
a1

sinα1
=

a4
sinα4

=
a5

sinα5
(4.37)

Table 4.12 gives the DH parameters defining the Goldberg linkage used in our tests, which

is defined with ǫ = 0, and Fig. 4.4 shows the input-output relations of this linkage. Finally,

Table 4.13 gives the performance statistics of the solver on this problem.
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Figure 4.4: The input-output relations of the Goldberg linkage, with θ1 the input variable.
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θi di αi ai
θ1 0 0.8727 0.3711
θ2 0 2.5307 0.6243
θ3 0 0.8727 0.3711
θ4 0 0.4363 0.2047
θ5 0 2.0944 0.4195

Table 4.12: DH parameters of the Goldberg 5R linkage used in the experiments using the trape-
zoid box reduction procedure.

LP LR Trapezoid

Processed boxes 5032 4305 41480
Box reductions 7676 5661 60184
Bisected boxes 2500 2152 20724
Empty boxes 662 225 9898
Solution boxes 1870 1928 10858
Verified solutions - 0 1778
Execution time [s] 15.05 4 0.14

Table 4.13: Summary of the results for the Goldberg 5R overconstrained mechanism using the
trapezoid box reduction procedure.

4.3.3 6R overconstrained mechanisms

While all the possible 4R and 5R overconstrained mechanism are rather well determined, cur-

rently there is no a characterization of all possible overconstrained 6R mechanisms. Therefore,

new designs are derived every now and then, using either geometric reasonings or algebraic

approaches. A list of the described 6R overconstrained linkages up to 2002 can be found in [9].

Three of them have been widely used in industrial applications so far (see Fig. 4.5, for few exam-

ples). The first one is the double-Hooke’s-joint linkage (also known as double Cardan linkage),

which was proposed as early as 1683. It connects two universal joints by an intermediate link

to obtain a uniform rotational movement, improving the motion obtained with a single univer-

sal joint [9]. This mechanism is widely-used for transmission coupling. Later, in 1853 Sarrus

proposed a mechanism that obtains a linear motion using only revolute joints [152]. Due to its

simplicity, it is used in many engineering applications [99, 201]. Finally, Schatz in 1942 [155]

patented a mechanism that is the base of the Turbula mixing machine. This mechanism was

later shown to be a variation of the Bricard’s trihedral linkage [127].

Next, we will apply the solver proposed in this thesis to six 6R overconstrained mechanisms.

First we will analyze the Bricard’s trihedral linkage [15], a case that was later studied and

generalized by Wohlhart in [193]. This mechanisms has a particular simple set of parameters,

which allowed us to explicitly give the set of multi-lineal equations formalizing its position
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Figure 4.5: Industrial applications of overconstrained 6R mechanisms. From left to right: A
double-Hooke’s-joint transmission, a Sarrus linkage used in the positioning of a Bosch saw, and
a Turbula mixing machine based on the overconstrained mechanism proposed in [155].

analysis problem in detail in Chapter 2. Next we will give the input-output relations for the three

6R overconstrained linkages with industrial application mentioned in the previous paragraph

and, finally, the input-output relations for two representative linkages deeply studied in the

literature, namely, the classical Bricard’s plane symmetric linkage [15] and the more recent

linkage in this class, proposed by Dietmaier in [43].

Bricard trihedral linkage

Let start, thus, analyzing in detail the performance of the presented method for solving the

position analysis of the Bricard’s overconstrained 6R closed-loop mechanism shown in Fig. 4.6.

The conditions defining this family of overconstrained mechanisms is:

a1 = a2 (4.38)

a3 = a4 (4.39)

a5 = a6 (4.40)

α1 = 2 π − α2 (4.41)

α3 = 2 π − α4 (4.42)

α5 = 2 π − α6 (4.43)

d1 = d3 = d5 = 0 (4.44)

d6 = −d2 − d4 (4.45)
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θ1
θ2

θ3

θ4

θ5

θ6

θi di αi ai
θ1 0 π/2 1
θ2 0 −π/2 1
θ3 0 π/2 1
θ4 0 −π/2 1
θ5 0 π/2 1
θ6 0 −π/2 1

Figure 4.6: Bricard’s trihedral overconstrained 6R closed-loop mechanism and its DH parame-
ters. All joint angles in the shown mechanism configuration are π/2.



4.3 Computation of the input-output relations of overconstrained mechanisms 53

- - /2 0 /2

1

-

- /2

0

/2

2

- - /2 0 /2

1

-

- /2

0

/2

3

Figure 4.7: The input-output relations of the Bricard trihedral linkage, with θ1 as the input
variable. Only the relations with θ2, and θ3 are shown since the relations with the rest of
variables are the same as the displayed ones.

In particular, the Bricard’s trihedral linkage fulfills:

a21 + a23 + a25 = a22 + a24 + a26 (4.46)

α1 = α3 = α5 =
π

2
(4.47)

α2 = α4 = α5 =
3 π

2
(4.48)

d1 = d2 = d3 = d4 = d5 = d6 = 0 (4.49)

The set of DH parameters used in our case are included in Fig. 4.6, Fig 4.7 shows the solution

obtained with the solver proposed in this work using the trapezoid box reduction method, and

Table 4.14 presents the corresponding performance statistics. Since the solution set is one-

dimensional in this problem, Miranda’s theorem can not identify which boxes include part of this

set. As an alternative, we can post-process each box using the Newton-Raphson method taking

as initial guess the box center. If this method converges inside the considered box, it includes

part of the sought-after one-dimensional solution set. Using this approach, 1372 solution boxes

are verified, taking only 7 ms to the overall execution time.
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LP LR Trapezoid

Processed boxes 12264 7459 31312
Box reductions 18148 9767 45464
Bisected boxes 6100 3729 15624
Empty boxes 3921 1322 12068
Solution boxes 2243 2408 3620
Verified solutions - 0 1372
Execution time [s] 33.09 6 0.06

Table 4.14: Performance in the characterization of the self-motion manifold of the mechanism
in Fig. 4.6.

Double-Hooke’s-joint

The double-Hooke’s-joint (or Cardan) linkage fulfills:

a2 = a3 = a5 = a6 = 0 (4.50)

α2 = α3 = α5 = α6 =
π

2
(4.51)

d1 = d2 = d3 = d6 = 0 (4.52)

θi di αi ai
θ1 0 0.1745 2.2361
θ2 0 π/2 0
θ3 0 π/2 0
θ4 1 0 1
θ5 1 π/2 0
θ6 0 π/2 0

Table 4.15: DH parameters of the double-Hooke’s-joint linkage used in the experiments.

The particular parameters of the double-Hooke’s linkage used in our experiments are in-

cluded in Table 4.15, and Fig. 4.8 shows the input output parameters of this mechanism ob-

tained with the solver introduced in this work. The statistics of the solution process using the

trapezoid box reduction procedure are given in Table 4.16. In this case, the Newton-Raphson

box certification procedure identifies 3422 boxes including part of the solution, which is in the

same order of magnitude as solution boxes identified by the LR and LP methods. This means

that the trapezoid method can provide a good coverage of the self-motion manifold with certified

boxes much faster than the alternative methods.
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Figure 4.8: The input-output relations of the double-Hooke’s-joint linkage, with θ1 the input
variable.
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LP LR Trapezoid

Processed boxes 17168 6461 43642
Box reductions 26808 9327 64841
Bisected boxes 8552 3230 21789
Empty boxes 5352 12 15190
Solution boxes 3264 3219 6663
Verified solutions - 0 3422
Execution time [s] 39.60 11 0.08

Table 4.16: Performance in the characterization of the self-motion manifold of the double-
Hooke’s-joint linkage.

Sarrus linkage

The Sarrus linkage fulfills:

a1 = a5 (4.53)

a2 = a4 (4.54)

a3 = a6 = 0 (4.55)

α1 = α2 = α4 = α5 = 0 (4.56)

α3 = α6 (4.57)

d1 = d2 = d3 = d4 = d5 = d6 = 0 (4.58)

Note that since all axes are parallel, the di parameters for i ∈ {1, . . . , 6} are irrelevant. Different

designs can be defined by changing them.

θi di αi ai
θ1 0 0 2
θ2 0 0 1
θ3 0 π/2 0
θ4 0 0 1
θ5 0 0 2
θ6 0 π/2 0

Table 4.17: DH parameters of the Sarrus linkage used in the experiments.

The particular parameters of the Sarrus linkage used in our experiments are included in Ta-

ble 4.17, and Fig. 4.9 shows the input output parameters of this mechanism obtained with the

trapezoid method. The statistics of the solution process using the trapezoid box reduction proce-

dure are given in Table 4.18. In this particular case, the Newton-Raphson certification procedure

can not identify solution points in any of the boxes bounding the self-motion manifold.
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Figure 4.9: The input-output relations of the Sarrus linkage, with θ1 the input variable.
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LP LR Trapezoid

Processed boxes 16432 12587 63136
Box reductions 27861 13924 100848
Bisected boxes 8184 6293 31536
Empty boxes 3864 2101 22088
Solution boxes 4384 4193 9512
Verified solutions - 0 0
Execution time [s] 47.57 26.0 0.22

Table 4.18: Performance in the characterization of the self-motion manifold of the Sarrus link-
age.

Schatz linkage

The Schatz linkage fulfills:

a1 = a5 = 0 (4.59)

a2 = a3 = a4 (4.60)

a6 =
√
3 a2 (4.61)

α1 = α2 = α3 = α4 = α5 =
π

2
(4.62)

α6 = 0 (4.63)

d1 = −d6 (4.64)

d2 = d3 = d4 = d5 = 0 (4.65)

θi di αi ai
θ1 2 π/2 0
θ2 0 π/2 3
θ3 0 π/2 3
θ4 0 π/2 3
θ5 0 π/2 0
θ6 −2 0 5.1962

Table 4.19: DH parameters of the Schatz linkage used in the experiments.

The particular parameters of the Schatz linkage used in our experiments are included in

Table 4.19, and Fig. 4.10 shows the input output parameters of this mechanism obtained with

the solver introduced in this work. The statistics of the solution process using the trapezoid box

reduction procedure are given in Table 4.20.
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Figure 4.10: The input-output relations of the Schatz linkage, with θ1 the input variable.
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LP LR Trapezoid

Processed boxes 17912 9889 81700
Box reductions 28184 13498 124639
Bisected boxes 8924 4944 40818
Empty boxes 5024 919 24942
Solution boxes 3964 4026 15940
Verified solutions - 0 3188
Execution time [s] 55.10 8 0.21

Table 4.20: Performance in the characterization of the self-motion manifold of the Schatz link-
age.

Plane symmetric Bricard’s linkage

The general plane symmetric Bricard’s linkage fulfills:

a1 = a6, a2 = a5, a3 = a4 (4.66)

α1 = 2π − α6 (4.67)

α2 = 2π − α5 (4.68)

α3 = 2π − α4 (4.69)

d1 = d4 = 0 (4.70)

d2 = −d6 (4.71)

d3 = −d5 (4.72)

θi di αi ai
θ1 0 2π/3 1
θ2 0 −2π/3 1
θ3 0 2π/3 1
θ4 0 −2π/3 1
θ5 0 2π/3 1
θ6 0 −2π/3 1

Table 4.21: DH parameters of the plane symmetric Bricard’s linkage used in the experiments.

The particular parameters of the plane symmetric Bricard’s linkage used in our experiments

are included in Table 4.21, and Fig. 4.11 shows the input output parameters of this mechanism

obtained with the solver introduced in this work. The statistics of the solution process are given

in Table 4.22.
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LP LR Trapezoid

Processed boxes 15008 8441 98564
Box reductions 23680 10975 151255
Bisected boxes 7472 4220 49250
Empty boxes 4871 1431 29686
Solution boxes 2665 2790 19628
Verified solutions 0 0 1948
Execution time [s] 59.90 6 0.32

Table 4.22: Performance in the characterization of the self-motion manifold of the plane sym-
metric Bricard’s linkage.

Dietmaier linkage

The 6R overconstrained linkage proposed by Dietmaier fulfills

a1 = a4 (4.73)

α1 = α4 (4.74)

d1 = d3 (4.75)

d4 = d6 (4.76)

d2 = d5 = 0 (4.77)
a2

sinα2
=

a3
sinα3

(4.78)

a2 (cosα2 + cosα3)

sinα2
=

a5 (cosα5 + cosα6)

sinα5
(4.79)

a5
sinα5

=
a6

sinα6
(4.80)

θi di αi ai
θ1 0 0.6981 1
θ2 0 0.8727 1.3
θ3 0 1.2217 1.5947
θ4 0 0.6981 1
θ5 0 1.9199 −9.3273
θ6 0 1.3963 −9.7751

Table 4.23: DH parameters of the Dietmaier’s linkage used in the experiments.

The particular parameters of the Dietmaier linkage used in our experiments are included

in Table 4.23, and Fig. 4.12 shows the input output parameters of this mechanism obtained

with the solver introduced in this work. The statistics of the solution process are given in

Table 4.24. As in all the previous case, the trapezoid method is significantly faster than the
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Figure 4.11: The input-output relations of the plane symmetric Bricard’s linkage, with θ1 the
input variable. Only the relations with θ2, and θ3 are shown since the relations with the rest of
variables are the same as the displayed ones.

two other methods. It is typically two orders of magnitude faster than the LP method and

one order of magnitude faster than the LR method. It isolates the self-motion manifold with

some clustering (specially noticeable in this example) but, in general it produces a dense set of

certified boxes. These results qualify the methods proposed in this thesis as a the most effective

and efficient tool to derive the input-output relations of overconstrained linkages.

LP LR Trapezoid

Processed boxes 19996 9871 218620
Box reductions 34892 14232 345607
Bisected boxes 9966 4935 109278
Empty boxes 6380 1380 57244
Solution boxes 3650 3556 52098
Verified solutions 0 0 2768
Execution time [s] 64.64 9 0.58

Table 4.24: Performance in the characterization of the self-motion manifold of the Dietmaier’s
linkage.
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Figure 4.12: The input-output relations of the Dietmaier’s linkage, with θ1 the input variable.
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4.4 Computation of the input-output relationships of mo-

bile closed-loop mechanisms

In this section we analyze the input-output relations of several closed-loop mechanisms with

seven joints, which can be either revolute of prismatic joints. Such mechanisms are mobile

and, in general, they exhibit a one-dimensional motion. Kinematotropic mechanisms, thought,

can have variable degrees of freedom, depending on the configuration. Examples of these two

classes of mechanisms are considered herein to validate the solver proposed in this thesis and to

show its robustness and generality.

A C5R loop with a singular 1-dimensional solution set

Fig. 4.13-top shows a C5R closed-loop mechanism resulting from substituting one revolute joint

of Wohlhart’s 6R mechanism with a cylindrical joint. The self-motion manifold of this mech-

anism is also one-dimensional, but singular (it contains nodes). When the translation in the

cylindrical joint is null, we obviously have the standard Bricard’s mechanism. Therefore, the

solution set appearing in Fig. 4.7 will appear as a subset of the new solution set.

LP LR Trapezoid

Processed boxes 321866 227137 926804
Box reductions 531473 268578 1408882
Bisected boxes 160901 113568 463370
Empty boxes 22081 3416 191606
Solution boxes 138884 110153 271828
Verified - 0 9892
Execution time [s] 1237 101 4

Table 4.25: Performance of the three compared methods for the self-motion manifold computa-
tion of the mechanism in Fig. 4.13.

Figure 4.14 shows the characterization of the self-motion manifold of this mechanism ob-

tained using the trapezoid method. The nodes appearing on this self-motion manifold are given

in Table 4.26. Although hardly noticeable to the naked eye in the plot, clustering appears, spe-

cially around the nodes. This is clear from the results in the table since the LP method bounds

the solutions set with 138884 whereas the trapezoid method delivers 271828 solution boxes.

Using the Newton-based procedure 9892 of these boxes can be verified to include a solution.

Thus, approximation obtained with the LP method is more accurate, but obtaining it is about

300 times more expensive in terms of computational time. One possibility is to use the trape-

zoid method first and then filter out the possible solutions using the LP method. This procedure
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Figure 4.13: C5R closed-loop mechanism resulting from substituting one revolute joint in the
Bricards’s overconstrained mechanism with a cylindrical joint. Contrarily to one might expect,
its self-motion manifold remains one-dimensional after this substitution.
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Figure 4.14: Top: self-motion manifold of the C5R closed-loop mechanism in Fig. 4.13 projected
on the subspace defined by θ1, θ2, and d. The solution boxes are represented as semitransparent
spots to better appreciate the accumulation of boxes. Here, we only represent the result ob-
tained using the trapezoid method. The only noticeable difference with respect to the solutions
obtained using the LP or the LR methods is the cluster effect around the nodes, as shown on the
right zoom-in. Bottom: mechanism configurations at the nodes of the self-motion whose coor-
dinates are given in Table 4.26. Some nodes are repeated at the boundaries of the represented
region because this self-motion is periodic in θ1 and θ2.
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isolates the solution set with 192362 solution boxes in about 466 s, still faster than when using

the LP method directly.

Node d θ1 θ2 θ3 θ4 θ5 θ6
1 2 π π 0 π/2 0 π/2
2 -2 π π 0 −π/2 0 −π/2
3 -2 π π/2 0 π/2 π π
4 2 π −π/2 0 −π/2 π π
5 -2 0 π 0 −π/2 0 −π/2
6 -2 0 π/2 0 π/2 0 π
7 0 0 2π/3 0 2π/3 0 2π/3
8 2 0 π 0 π/2 0 π/2
9 2 0 −π/2 0 −π/2 0 π

10 0 0 −2π/3 0 −2π/3 0 −2π/3

Table 4.26: Coordinates of the nodes of the self-motion manifold represented in Fig. 4.14.

A 7R closed-loop kinematotropic mechanism

Mechanisms with variable degrees of freedom (or kinematotropic) are a class of reconfigurable

mechanisms motion modes with variable degrees of freedom [64,87,125,195], despite its theo-

retical mobility computed as described in Section 4.3 should be constant. The kinematic analysis

of these mechanisms is of particular interest since their configuration space includes algebraic

components of different dimension. Therefore, there has been a significant amount of work de-

voted to derive their input-output relations using both algebraic [84, 126] of continuation [68]

methods.

Among all possible 7R kinematotropic closed-loop mechanisms, the one studied in [85] (see

Fig. 4.15), which is a particular case of the one proposed in [87], is of particular interest for

us because it has five motion modes, the largest number of modes known to date for such

a kind of mechanism. According to the results presented in [87], one of these modes is 2-

dimensional and the other four, 1-dimensional. All these modes are connected through ten

transition configurations. Thus, this mechanism is a nice challenging example in which we can

check the correctness of our method and, if possible, attain a greater insight into this peculiar

mechanism.

The performance of the three compared methods to compute the self-motion manifold of

this mechanism appear in Table 4.27. The representation of the obtained solutions using the

LP and the trapezoid methods appear in Fig. 4.16-top. In this example, while the LP and the

trapezoid methods provide an excellent approximation of the 2-dimensional component, the

approximation of the one-dimensional ones are much rougher for the trapezoid method. This
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θi di αi ai
θ1 0 2 arctan 2 5
θ2 0 −2 arctan 2 5
θ3 0 0 12
θ4 0 0 2
θ5 0 −2 arctan 2 3
θ6 0 2 arctan 2 5
θ7 0 0 12

Figure 4.15: 7R closed-loop mechanism studied in [85], and its DH-parameters.
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suggests the idea that the trapezoid method is very good at characterizing the components of

higher dimension, but suffers from the clustering effect in the characterization of those of lower

dimension. We can say that the lower the dimension of the component, the more relevant the

clustering effect.

In Fig. 4.16-top, we have identified the ten transition configurations with the same indices as

in [85] and the corresponding mechanism configurations are represented in Fig. 4.16-bottom.

They perfectly match those reported in [85]. The situation is not so clear when trying to iden-

tify the five 1-dimensional components reported in [85]. Although their identification from

Fig. 4.16-top might be puzzling due to the 2π−periodicity of the represented set in the three

coordinate axes, a simple visual inspection reveals that this number should be higher than five.

Indeed, if we remove the transition points from the self-motion manifold, we obtain one 2-

dimensional and 16 1-dimensional connected smooth manifolds, not five. The reason for this

discrepancy is rather subtle: the decomposition in motion modes given in [87] does not corre-

spond to a stratification of the self-motion manifold. According to our analysis, the self-motion

manifold can be decomposed into the union of one 2-dimensional, 16 1-dimensional, and 10

0-dimensional smooth submanifolds. Roughly speaking, since these submanifolds are disjoint,

and their union is the whole self-motion manifold, this decomposition is a stratification and each

submanifold is a stratum. Nevertheless, strictly speaking, some additional conditions on the way

in which the parts fit together must also be satisfied to be stratification, which we omit here for

the sake of simplicity (see [186] for details). On the contrary, the characterization given in [87]

is not a stratification. Two strata of dimension 1 accepting the same parameterization is pre-

sented as a single motion mode. As a consequence, the connectivity graph between the different

motion modes given in [87] should not be confused with a topological description of the cor-

responding self-motion manifold. In our case, a correct topological description can be directly

inferred from Fig. 4.16-top and simply stated as follows: the 0-dimensional strata indexed from

1 to 8 are directly connected to the 2-dimensional stratum. The 0-dimensional strata 9 and 10

are connected to these eight strata through two disjoint sets of eight 1-dimensional strata each.

Using screw theory, it can be readily proved that in each transition configuration, the variable-

DOF 7R mechanism has generally three instantaneous DOF.

4.5 Position analysis of spatial parallel mechanisms

A parallel mechanism is typically composed of a moving platform connected to a base by means

of serial kinematic chains, which are called legs. Only few of the joints in each leg are actuated

and the rest are passive. The actuators tend to be mounted near the base so that the platform has

a low inertia and, thus, it can be efficiently moved. Parallel platforms have high speed, payload,
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Figure 4.16: Top: Approximation of the self-motion manifold of the mechanism in Fig. 4.15
using the trapezoid (left) and the LP (right) methods. The results have been projected onto the
subspace defined by θ3, θ4, and θ7. Bottom: The strata of dimension 0 have been identified
using an index and the corresponding mechanism configurations represented in two rows. They
represent the transition points between the different motion modes.



4.5 Position analysis of spatial parallel mechanisms 71

LP LR Trapezoid

Processed boxes 706658 679935 12699994
Box reductions 1090058 733929 18416851
Bisected boxes 353265 339967 6349933
Empty boxes 115952 61423 3279703
Solution boxes 237441 278545 3070358
Verified solutions - 0 238261
Execution time [s] 7000 339 89

Table 4.27: Performance of the three compared methods for the computation of the self-motion
manifold of the mechanism in Fig. 4.15.

stiffness, and accuracy. Their main disadvantage is that due to leg collision and specially due to

the low mobility ranges of the spherical joints typically used in the legs, their workspace is usu-

ally small. Such issues are highly-relevant in the most know architecture, the Gough-Steward

platform [36]. This platform is composed by two bodies connected by six legs each formed by

a universal, a prismatic and a spherical joint. In this case, only the prismatic joint is actuated

and the platform can move with six degrees of freedom. Many industrial applications, however,

do not require of six degrees of freedom. Thus, architectures with less than six DOF have been

proposed [135]. Most of them have 3 DOF and their added advantage is that they are simpler

and cheaper to construct [52]. They may exhibit spherical (discussed in Section 4.1), transla-

tional [22], or mixed motion models [46]. In the later, position and orientation displacement

are coupled and their accuracy is typically low due to the presence of parasitic motions. An al-

ternative is to use hybrid architectures where position and orientation are decoupled [161,179].

Yet another way to alleviate the shortcomings general parallel platforms, is to keep the number

of legs low, but increase the number of actuated joints at each leg [8,20,31,33,160,181]. Such

structures are more complex to construct, but keep the advantages of parallel robots with larger

workspaces. In any case and whatever the design used, parallel platforms have at least three

legs and, thus, they define a multi-loop system.

As in the case of spherical mechanisms (see Section 4.1), spatial multi-loop mechanisms do

not offer any extra conceptual complexity once formalized as follows. First, a graph is defined

where the vertices are the links of the mechanism and the edges are given by the joints connect-

ing the links. Then, a set of independent loops is obtained defining a spanning tree of the graph:

each edge of the graph not included in the tree determines a independent loop [27]. Finally, the

equations for each one of these independent loops are generated using the procedure defined in

Section 2.3. In a mechanism with m links and n joints, we have m − n + 1 independent loops.

However, different sets of independent loops can be extracted from a given graph. All of them

encode the same problem, but not all of them are equally adequate from a computational point
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of view.

We use the Tripteron mechanism shown in Fig. 4.17 to illustrate this procedure. This is a

patented [59] 3-PRRR parallel robot with a moving platform linked to a fixed based through

three legs where each leg has an active prismatic joint and three passive revolute joints. The

platform has linear displacements in all directions, as a Cartesian robot, but with the characteris-

tic reduced inertia and increased rigidity of parallel robots. In our particular analysis, we fix the

prismatic joints of legs two and three, but we let free the variable representing the displacement

of the slider joint of the first leg.

The three legs of the robot define three loops, but only two of them are independent (i.e.,

the third one can be deduced from the other two). In this case, we use the loop formed by legs

one and two and the loop formed by legs one and three.

LP LR Trapezoid

Processed boxes 1084304 14611 7980140
Box reductions 1735675 18310 8915118
Bisected boxes 541896 7305 3976104
Empty boxes 535483 20 4656253
Solution boxes 6925 7305 14222
Verified - 0 8994
Execution time [s] 10302 14 32

Table 4.28: Performance of the three compared methods for the self-motion manifold computa-
tion of the 3-PRRR parallel robot in Fig. 4.17.

Table 4.28 compares the performance of the trapezoid method with the LP and LR methods.

In contrast to what happens with the previous test-cases, the LR method is the most efficient

one in this particular case. This so because the LR method incorporates some basic symbolic

simplification procedures which, due to the regularity of the parameters for this robot, results

in a particularly trivial set of equations. Despite its simplicity, the trapezoid method is also quite

efficient. For instance, it is more than two orders of magnitude faster than the LP method,

which is based on the same formulation. As we will see in the next chapters, the basic trapezoid

method can be improved significantly to the point of outperform the LR method taking into

account redundant equations and variable eliminations. Without such improvements, though,

the trapezoid method bounds the solution set with 14222 small boxes. Using the Newton-based

verification procedure, 8994 of them are verified to include a point of the sought solution set.

This is more than the number of solution boxes returned by the LP method, meaning that the

trapezoid method identifies a dense set of verified solutions.

Figure 4.18 shows the self-motion manifold of this mechanism together with some represen-

tative configurations. The configurations labeled with 1 to 4 are at extremes of the range for l1



4.5 Position analysis of spatial parallel mechanisms 73

l1

l2

l3

θ1

θ2 θ3

θ4

θ5

θ6

θ7

θ8

θ9

θi di αi ai
0 lk 0 0
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θ3k -0.2 0 0

Figure 4.17: A 3-PRRR parallel robot with a moving platform (in yellow) linked to a fixed based
(in red) through three legs and the DH-parameters of these legs for k ∈ {1, 2, 3}. Each leg has
an active prismatic joint and three passive revolute joints.
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Figure 4.18: The self-motion manifold of the 3-PRRR parallel robot and some representative
configurations.
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and configurations 5-6 and 7-8 are very close in this particular projection but, as it can be seen

in the displayed configurations, they differ in the rest of variables.





5
Multi-affine redundancy

In this chapter we show how we take advantage of multi-affine redundant

equations to reduce the clustering effect. We describe how such redun-

dant equations can be generated and analyze experimentally which ones

are more beneficial in the solving process.

Redundancy is typically used in engineering to obtain robust solutions to a given problem.

This robustness, though, is obtained at a higher cost (e.g., at the cost of implementing two com-

plementary and concurrent solutions for the same problem). In the context of solving systems of

equations, redundancy manifest in the form of a system with more equations than those strictly

needed to represent a given problem. It is well known that in linear systems, redundancy cre-

ates overdetermined problems, which, if the redundancy is properly defined, are compatible, i.e.

some points exist that fulfill all the equations simultaneously. The same happens in non-linear

systems of equations.

The different approaches to solve systems of non-linear equations reviewed in Chapter 1

deal with redundancy in different ways. In some approaches, like interval Newton [80] or some

continuation methods [62], redundant equations are identified and discarded. In some cases,

redundancy is not just tolerated, but explicitly favored. This is the case of many elimination

methods that augment the system of equations before condensing it. Finally, branch-and-prune

methods like linear relaxations or the trapezoid method introduced in this work, can be directly

applied to redundant systems. The former uses a linear solver where the active set of constraints

(i.e., a non-redundant subset of linear inequalities) is considered at each step. The trapezoid

method, instead, processes each equation independently and, thus, any number of equations can

be considered. The only effect is a linear increment in the computational cost. This increment,

though, is often compensated by the additional box reduction provided by the redundant equa-

tions. Moreover, this additional reduction mitigates the clustering effect (see Section 3.2.2).
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This effect is caused by the fact of proceeding equation-wise since each equation is just a nec-

essary condition for a point being a solution. Therefore, taking into account just one equation

many points can be wrongly characterized as being valid solutions. However, by considering a

large number of redundant, sufficient conditions, we are approximating a necessary condition,

i.e., the probability of a point being wrongly identified as a solution decreases with every new

redundant equation added to the system.

Taking into account the potential benefits of using redundant equations, we next present

different options to generate redundant multi-affine equations and then we evaluate their effect

in several representative problems.

5.1 A redundant equation for each loop

Using the notation introduced in Chapter 2, the closure equations of a kinematic loop can be

compactly represented from its DH parameters (θi, di, αi, ai) for i = 1 . . . n as

rz(t1) tz(d1) rx(u1) tx(a1) · · · rz(tn) tz(dn) rx(un) tx(an) h = c, (5.1)

where ti =
θi
2 , ui = tan αi

2 , h is a constant dual quaternion representing the pose of the end-

effector with respect to the origin, and c is a non-null scalar depending on the configuration.

This equation can be more compactly represented as

t1 . . . tn = c, (5.2)

where ti, i = 1, . . . , n is each one of the individual transforms in Eq. (5.1). This equation

generates eight independent multi-linear equations, four in the rotational part and four in the

translational (or dual) part. The equation given by the real term in the rotational part can not

be used unless the scalar c, which is non-linearly dependent on the configuration, is known. The

other seven equations are multi-linear, but only six of them are independent. The remaining one

can be used to increase the redundancy of the system.

5.2 Cyclic permutations of loops

The formulation of a loop closure condition can be arbitrarily started at any point in the loop.

Each starting point results in an equivalent, but different system of loop closure equations. This

property can be leveraged to generate redundant equations for each kinematic loop.
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Formally, if the loops closure is represented as

t1 . . . tn = c. (5.3)

with ti i = 1, . . . , n each individual constant or variable transform in the loop, then

t2 . . . tn t1 = c,

t3 . . . tn t1 t2 = c,

. . .

tn t1 . . . tn−1 = c

are alternative formulations of the same condition. Each of them express the same solution

variety, but with different systems of equations. The clustering effect is caused by using one

equation at a time and it is exacerbated if the solution varieties of the individual equations

are near tangent. Thus, having more alternative equations decreases the probability of being

affected by this undesired effect.

If the transform moved from one end of the loop equation to the other is constant, we essen-

tially have the same system of equations, but with a different preconditioner. A preconditioner

is the application of a transformation to a problem to obtain a form that is more suitable for a

given solving method. If the moved transform is variable, we end up with a transform sequence

where the order of variables changes. Our experiments show that adding redundant equations

by changing the order of variables in the loop has notable effects on the solving process, but

using the ones obtained just changing the constant preconditioners has a modest effect.

5.3 Redundant loops

As mentioned in Section 4.5, in a multi-loop mechanism, a set of independent loops is enough

to properly encode the problem since the rest of loops can be generated by composition of the

independent ones. Thus, in multi-loop mechanism, a way to generate redundant equations is to

compose two or more overlapping loops to obtain a redundant loop constraint.

Formally, the composition of two loop equations

t1 . . . ti tk . . . tk+r = c1, (5.4)

and

t1 . . . ti tl . . . tl+s = c2, (5.5)
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generates a loop where the common part between the two composed links vanishes

tk . . . tk+r t
−1
l+s . . . t

−1
l = c3. (5.6)

This operation can be repeated for each pair of overlapping loops, independently of whether

they are basic or already composed ones.

5.4 Examples

We will evaluate the effects of the redundant equations described in Sections 5.1 and 5.2 on

three problems with solution sets of different dimension. First, we will consider the 6R loop

with 16 solutions whose parameters are given in Table 4.4 in Section 4.2.2. Then, we will use the

C5R loop described in Section 4.4 which has the one-dimensional solution set shown in Fig. 4.14.

Finally, we will examine the effects of redundancy in the 7R kinematotropic mechanism with the

2-dimensional solution shown in Fig. 4.16. In all three cases we will solve the problem with the

trapezoid method and:

- The basic set of six non-redundant equations per loop described in Chapter 2 that will be

used as a reference;

- The same basic set, adding the extra equation per loop described in Section 5.1;

- All the equations that can be generated cycling each loop as described in Section 5.2,

including the circulation of constant transforms;

- The equations with different cyclic permutations of variables that are obtained cycling the

loops.

These four systems will be denoted, respectively, as Basic non-redundant, Redundancy in loops,

Cyclic permutation (all), and Cyclic permutation (variables).

Tables 5.1, 5.2, and 5.3 show the results of the experiments in the different problems. In all

cases, we observe that adding a new equation in each loop results in a moderate reduction of

the clustering effect and of the number of processes boxes. This reduction does not compensate

the extra time required to process an additional equation. Therefore, the overall execution time

typically increases when taking into account this redundant constraint.

A similar increment in the computational cost is observed when considering the redundant

equations resulting from cycling all the transforms in the loop equations, including the constant

ones. However, in this case there is a notable mitigation of the clustering effect to the point that

the number of solution boxes is closer to the one obtained with the LP method (see Chapter 4),
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Basic Redundancy Cyclic permutations Cyclic permutations
non-redundant in loop (all) (variables)

Processed boxes 20270 17922 4668 5820
Box reductions 27698 24546 5168 6664
Bisected boxes 10103 8929 2302 2878
Empty boxes 10149 8975 2350 2926
Solution boxes 18 18 16 16
Verified solutions 16 16 16 16
Execution time [s] 0.035 0.033 0.054 0.040

Table 5.1: Performance of the trapezoid method without and with different sources of redun-
dancy for a 6R loop with 16 solutions. See the text for details.

Basic Redundancy Cyclic permutations Cyclic permutations
non-redundant in loop (all) (variables)

Processed boxes 926804 856200 390368 399592
Box reductions 1408882 1280852 453548 471564
Bisected boxes 463370 428068 195152 199764
Empty boxes 191606 188716 19596 23308
Solution boxes 271828 239416 175620 176520
Verified solutions 9892 0 11092 8051
Execution time [s] 4 8.8 23.7 13.8

Table 5.2: Performance of the trapezoid method without and with different sources of redun-
dancy for the C5R loop. See the text for details.

which applies necessary and sufficient conditions and not just necessary ones. When consider-

ing only the cyclic permutations that change the order of the variables in the loop, we obtain

a similar reduction on the clustering effect and, in some cases like in the 7R kinematotropic

mechanism, there is also a significant reduction in the overall execution time (see Table 5.3).

Figure 5.1 shows the approximation of the solution set obtained when considering this last set

of redundant equations compared to the approximation obtained when considering the basic,

non-redundant set of equations. This approximation is noticeable closer to the one obtained

when using the LP method (shown in Fig. 4.16), which, as mentioned, applies necessary and

sufficient conditions.

The effect of using redundant loops in multi-loop mechanisms will be illustrated with the

Tripteron parallel mechanism shown in Fig. 4.17. The three legs of this parallel mechanism

define two independent loops. Table 5.4 includes the performance of the trapezoid method

when considering the two independent loops formed by leg one and leg two and by leg one and

leg three. The table also includes the results obtained when additionally considering the loop

formed by combining these two loops, i.e., the loop formed by legs two and three. Finally, the
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Basic Redundancy Cyclic permutations Cyclic permutations
non-redundant in loop (all) (variables)

Processed boxes 12699994 12605922 685486 742550
Box reductions 18416851 18286384 932976 1041208
Bisected boxes 6349933 6302897 342679 371211
Empty boxes 3279703 3235703 68243 86472
Solution boxes 3070358 3067322 274564 284867
Verified solutions 238261 0 202132 204187
Execution time [s] 89 132 62 35

Table 5.3: Performance of the trapezoid method without and with different sources of redun-
dancy for the 7R kinematotropic mechanism. See the text for details.

θ3 θ3

θ4 θ4

θ7 θ7
1 1

2 23 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

Figure 5.1: Approximation of the self-motion manifold of the 7R kinematotropic mechanism
using the trapezoid method on the basic set of non-redundant equations (left) and on a set of
redundant equations obtained with cyclic permutation of the loop equations, considering only
the permutations where the order of variable change. The results have been projected onto the
subspace defined by θ3, θ4, and θ7. Using the redundant set of equations, the solution set is
approximated more accurately. This improved accuracy is particularly noticeable in the solution
components of dimension one. The labels refer to the transition points identified in Fig. 4.16.

table includes the results obtained when using the three loops and all their cyclic permutations

that change the order of the variables. Again, we observe that the redundancy does not decrease

the execution time, but it has a strong effect in minimizing the clustering effect. In the last

experiment, the solution set is bounded with 6905 boxes, which is about the same number
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Basic Redundant Redundant loop and
non-redundant loop cyclic permutations (variables)

Processed boxes 7980140 6537976 1022104
Box reductions 8915118 7115126 1078703
Bisected boxes 3989814 3268732 510796
Empty boxes 3976104 3256931 504403
Solution boxes 14222 12313 6905
Verified solutions 8994 6490 6905
Execution time [s] 32 31 33

Table 5.4: Performance of the trapezoid method without and with different sources of redun-
dancy for the Tripteron parallel robot. See the text for details.

of boxes returned when using the LP method. Moreover, all of them are verified to include a

solution point. Therefore, in this case, the trapezoid method with redundancy is completely free

of clustering.

Summarizing, in this chapter we have presented several methods to generate multi-affine,

redundant equations. When considering such redundant equations, the clustering effect, one

of the principal drawbacks of the trapezoid method, is consistently mitigated. The effect on

the overall execution time is more problem dependent, but in many cases the improvement in

the accuracy in bounding the solution set is obtained with no extra computational cost or even

reducing it. In these cases, the additional burden of processing more equations is compensated

by the additional pruning provided by the redundant equations.





6
Multi-affine elimination

In this chapter we show how we can eliminate variables and equations

of the systems of obtained with the formulation described in Chapter 2

while still keeping the multi-affinity of the system. Therefore, the result-

ing systems can still be managed by the solved described in Chapter 3,

but with significant speed ups. We exemplify such speed ups in the in-

verse kinematics of general 6R loops and on several parallel robots with

challenging direct kinematics.

Elimination methods has been used to produce outstanding results in position analysis. The

idea behind these methods is to reduce the number of equation and variables transforming the

initial set of equations into a minimum degree polynomial in a single variable. Typically, every

elimination step reduces the number of variables, but increases the degree of the new equations.

So, if we apply a typical elimination procedure to the equations formulated in Chapter 2, we

will generate equations of high degree and, thus, not adequate for the solving method described

in Chapter 3. However, we next present an elimination procedure that keeps the multi-affinity

of the system of equations. Since the computational cost of the trapezoid method scales with

O(m n 2n), with m and n the number of equations and variables in the system (see 3.2.2),

reducing the number of equations and, specially, the number of variables results in significant

speed ups in the process of each candidate box.

We next describe the proposed elimination procedure in a 6R loop, although the procedure

can in principle be applied to any loop equation.
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6.1 Variable elimination

Typically, elimination processes involve the generation of redundant equations and the use of

linear algebra tools (e.g., determinants) on matrices including variables to generate resultant

equations. Herein, we will use the same tools, but on matrices of constant coefficients so that

the multi-affinity of the manipulated equations is preserved.

Using the notation in Chapter 2, the closure condition of a 6R loop can be formalized as

sz(t1, d1) sx(u1, a1) · · · sz(t6, d6) sx(u6, a6) h = c, (6.1)

where

sz(ti, di) =

(

1 + ti k + ε
di
2
(−ti + k)

)

, (6.2)

and

sx(ui, ai) =
(

1 + ui i + ε
ai
2
(−ui + i)

)

. (6.3)

and where h specifies the pose of the base with respect to the end-effector. Since

sz(ti, di) = rz(ti) tz(di), (6.4)

Eq. (6.1) can be re-arranged as

tz(d6) sx(u6, a6) h sz(t1, d1) sx(u1, a1) · · · sz(t5, d5) sx(u5, a5) = c
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0

0
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0

0
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, (6.5)

where the second, third, fifth, sixth, seventh, and eighth equations define a system of six equa-

tions involving only 5 variables, t1, . . . , t5. Thus, using them, t6 is effectively eliminated from the

problem. Since the resulting system still has more equations than variables, we can eliminate

one more variable to obtain a simpler system of four equations in four unknowns. To this end,

we generalize the previous straightforward algebraic procedure. First, Eq. (6.1) is re-arranged
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as

h sz(t1, d1) sx(u1, a1) · · · sz(t4, d4) sx(u4, a4) =
c sx(−u5,−a5) sz(−t5,−d5) sx(−u6,−a6) sz(−t6,−d6), (6.6)

where the left-hand side involves four variables and the right-hand side only two. Since both

sides of the equation define multi-linear polynomials, we can represent Eq. (6.6) as

Cl tl = cCr tr, (6.7)

where Cl ∈ R
8×16 and Cr ∈ R

8×4 are matrices of constant coefficient and tl ∈ R
16 and tr ∈ R

4

are vectors containing all the monomials involving the variables in the left- and right-hand side,

respectively, i.e.,

tl = (1, t1, t2, t1 t2, t3, t1 t3, t2 t3, t1 t2 t3,

t4, t1 t4, t2 t4, t1 t2 t4, t3 t4, t1 t3 t4, t2 t3 t4, t1 t2 t3 t4)
T , (6.8)

tr = (1, t5, t6, t5 t6)
T . (6.9)

Matrix Cr can be decomposed as

Cr = Q

[

R

0

]

, (6.10)

with Q ∈ R
8×8 an orthonormal matrix, i.e., a matrix such that QT Q = I, and R ∈ R

4×4 a upper

triangular matrix. Therefore, we can write

QT Cl tl =

[

R

0

]

tr, (6.11)

which can be split in two matrix equations

QT
1 Cl tl = cR tr, (6.12)

QT
2 Cl tl = 0, (6.13)

where Q1 and Q2 include, respectively, the first and last four columns of Q. Matrix Q2 encodes

the Gaussian elimination of the variables in tr from the last four equations in the system and,

thus, Eq. (6.13) defines sought after system of four equations in four unknowns, t1, t2, t3, and t4.

When the 6R chain includes a wrist, we can go one step further and eliminate the three

rotation variables with co-punctual rotation axis. In this case, the loop in Eq.(6.1) can be split
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as

h sz(t1, d1) sx(u1, a1) sz(t2, d2) sx(u2, a2) sz(t3, d3) sx(u3, a3) =

c sx(−u6,−a6) sz(−t6,−d6) sx(−u5,−a5) sz(−t5,−d5) sx(−u4,−a4) sz(−t4,−d4), (6.14)

where we assume that t4, t5, and t6 form the wrist. This equation can be rewritten as

Cl tl = cCr tr, (6.15)

where, in this case, Cl ∈ R
8×8, Cr ∈ R

8×8, and

tl = (1, t1, t2, t1 t2, t3, t1 t3, t2 t3, t1 t2 t3)
T , (6.16)

tr = (1, t4, t5, t4 t5, t6, t4 t6, t5 t6, t4 t5 t6)
T . (6.17)

The decomposition of Cr as

Cr = Q

[

R

0

]

, (6.18)

gives an orthonormal matrix Q ∈ R
8×8 and an upper triangular matrix R ∈ R

4×8. In this case,

Eq. (6.13) defines a system of equations involving only the three non-eliminated variables, t1,t2,

and t3.

Independently of the number of eliminated variables, since Eq. (6.1) defines necessary con-

ditions for the problem at hand, Eq. 6.13 also defines necessary conditions for this problem,

but involving only the unknowns defining tl. Depending on the parameters of the system, the

simpler necessary condition may have the same solution set as the original ones or they may

have a larger solution set.

If all the variables in the original problem are present in the reduced, redundant system,

the trapezoid method already takes care of propagating the ranges between subsets with shared

variables. If some variables are not present in the reduced system we can use the original system,

but only on the solution boxes identified with the reduced system. Alternatively, when removing

two variables, Eq. (6.12) can be used to determine the monomials in tr from those in tl as

tr =
1

c
R−1 QT

1 Cr tl, (6.19)

assuming that matrix R is full rank. Actually, there is no need to compute the scalar c since we

can compute

t̃r = R−1 QT
1 Cr tl (6.20)
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Trapezoid Trapezoid
Standard Elimination

Processed boxes 20270 338
Box reductions 27698 771
Bisected boxes 10103 161
Empty boxes 10149 156
Solution boxes 18 21
Verified solutions 16 16
Execution time [s] 0.035 0.0004

Table 6.1: Performance of the trapezoid method with and without elimination for a 6R loop
with 16 solutions.

from where

tr =
t̃r

t̃r,1
(6.21)

with t̃r,1 the first component of t̃r.

Note that the solver presented in Chapter 3 bounds the solutions with arbitrarily small ranges

in each of the variables in the problem. Consequently, Eq. (6.20) has to be evaluated using

interval arithmetic [110] to determine valid bounds for the variables in tr. Such evaluation

would over-estimate the bounds due to the dependencies between the terms intervening in

Eq. (6.20). If more accuracy is necessary, affine arithmetic [37] may be used to evaluate this

expression.

When removing three variables, though, Eq. (6.12) defines a under-determined linear sys-

tem where the is not a one-to-one relation between tl and tr. Thus, in this case, the interval

arithmetic procedure just described can not be used to recover the ranges for the eliminated

variables.

Summarizing, the elimination procedure just described can be used to obtain a new set of

necessary conditions in a reduced set of variables. In some cases, these necessary conditions

are enough to solve the problem since they have the same solution set as the initial problem.

In others, they define larger solution sets that fully include the sought after solutions. Thus,

considering the equations resulting from the elimination might not be enough to solve the prob-

lem at hand. However, as we have seen in Chapter 5, redundant, necessary conditions can be

combined to mitigate this issue.
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Trapezoid Trapezoid
Standard Elimination

Phase 1 Phase 2
Processed boxes 45802 196 306
Box reductions 74481 416 541
Bisected boxes 22869 94 101
Empty boxes 22277 89 168
Solution boxes 656 13 37
Verified solutions 8 0 6
Execution time [s] 0.098 0.0002 0.001

Table 6.2: Performance of the trapezoid method with and without elimination for the bad_eg0

example from [100].

6.2 Examples

The elimination procedure just described will be illustrated in the two 6R loops with zero-

dimensional solution sets described in Section 4.2 and in several parallel robots with challenging

kinematics.

6.2.1 Elimination in 6R loops

The first considered 6R loop has a general structure and 16 solutions, and the second one

includes a wrist and it only has 8 solutions. Their DH parameters are given in Tables 4.4 and 4.6,

respectively.

Table 6.1 compares the performance of the trapezoid method with and without the elimina-

tion procedure. In the reported experiment variables t1 and t6 are eliminated and the problem

is solved in variables t2, . . . , t5. This results in a significant reduction in the execution time.

Actually, with this elimination, the problem is solved faster than with specialized algorithms

such as the Manocha-Canny method described in Section 4.2.1. Variables t2, . . . t5 are bounded

with intervals whose size is below σ which is set to 10−4. The range propagation described in

the previous section allows bounding the valid values for variables t1 and t6 with ranges whose

size is typically below 10−2. As mentioned even more accurate ranges would be obtained using

affine arithmetic.

Different results can be obtained depending on the pair of eliminated variables. In this

particular problem, for instance, eliminating rotation axis 5 and 6 defines a system of necessary

conditions with a one-dimensional solution set. In this case, redundancy may be used to identify

the sought after solution points of the original problem. Redundancy can be obtained cyclically

permuting the loops, as described in Section 5.2. In this case, a different pair of variables can
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be eliminated from each redundant loop equation. As a consequence, the problem is formalized

with a larger set of equations, where each equation only involves four variables. From the point

of view of the computational cost, removing variables and adding redundancy we reduce the

exponential factor (2n with n the number of variables in the equation), but increase the linear

factor (the number of equations m). The obtained results show that this strategy pays off in

general.

In the second considered 6R, i.e., the one with 8 solutions, we can take advantage of the

fact that the three last axes are copunctual (i.e., they form an spherical wrist) to eliminate

three variables. In this case, the problem has to be solved in two phases. In the first one we

consider the reduced system of three equation involving only three variables. In the second

one the solutions identified in the first phase are considered with the full set of variables and

equations. Table 6.2 gives the performance statistics for each one of these two phases and

as well as those for the standard trapezoid method directly applied to the original problem.

Overall, using the elimination procedure the problem can be solved in about 1 ms, i.e., about

two orders of magnitude faster than with the standard trapezoid method. Moreover, in this

particular testbed, the elimination procedure reduces the clustering effect.

6.2.2 Elimination in parallel robots

The formulation of a parallel robot using the formalism described in Chapter 2 typically involves

a large number of variables. Therefore, their position analysis is harder when addressed using

the trapezoid method. Thus, in this kind of robots, the role of variable elimination is crucial.

We illustrate the performance improvements achieved with this procedure in three parallel plat-

forms: the Tripteron, the 3UPU and the 3RPS.

The Tripteron parallel platform

This parallel platform has already been described in Section 4.5, where the trapezoid method

has been shown to be able to solve its direct kinematic, but with a relatively low quality (i.e.,

with a high degree of clustering) and less efficiently than alternative methods. In particular the

trapezoid method returned more than twice solution boxes than the LP method and duplicated

the execution time of the LR method. In Section 5.4 we have shown that the the quality of the

approximation of the solution set can be clearly improved using redundant equations. Actually,

we have shown that, in this particular robot, the clustering effect can be completely canceled.

Next, we show that using variable elimination the computational time taken by the trapezoid

method can be drastically reduced, outperforming alternative methods.

With the non-redundant formulation, this problems has two loop equations. Two variables
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Variable elimination,
Variable Variable elimination three loops, and

Standard elimination and three loops cyclic permutations (variables)

Processed boxes 7980140 432762 68296 43902
Box reductions 8915118 663201 122664 62119
Bisected boxes 3989814 216349 34116 21695
Empty boxes 3976104 120908 11392 14777
Solution boxes 14222 95505 22788 7430
Verified solutions 8994 5605 8233 7368
Execution time [s] 32 1.1 0.3 0.9

Table 6.3: Performance of the trapezoid method without and with variable elimination and
redundancy for the Tripteron parallel robot.

can be eliminated from each one of them. Assuming that we eliminate a different pair of vari-

ables for each loop, the total number of variables would be reduced form ten to six.

Note, however, that eliminating the two parallel rotation axis of each leg would produce a

system of necessary equations with a 2D solution set instead of the 1D expected one. To avoid

this issue, we cyclically permute the loop equations using the procedure described in Section 5.2

so that the left-hand side of Eq. (6.6) includes pairs of variables from different legs.

Table 6.3 shows the results obtained eliminating variables and compares them with the re-

sults using the trapezoid method in the full problem. Clearly, thanks to the variable elimination

the execution time of the trapezoid method reduces from 32 seconds to just 1.1, outperforming

alternative methods. However, this improvement comes at the cost of exacerbating the cluster-

ing effect. As described in the previous chapter, redundancy can be used to palliate this negative

side effect. Thus, Table 6.3, includes the results when using a redundant loop equation. In this

case, the clustering significantly reduces and the execution time is even lower than before since

the problem is solved in merely 0.3 seconds. To further reduce the clustering effect, we can add

the redundant equations obtained by cyclically permuting loops. In this case the execution time

is still below one second and the solution is almost free of clustering.

Thanks to the efficiency improvements obtained with the proposed variable elimination pro-

cedure, the trapezoid method can now be applied to more complex parallel robots, as the one

described next.

The 3-UPU parallel platform

The 3-UPU is a widely studied parallel robot consisting of a fixed base and moving platform

connected by three serial chains, or legs, each of them having a universal-prismatic-universal

joint arranged in sequence. Fig. 6.1 shows one of these legs. The universal joints are passive



6.2 Examples 93

Ai

Bi

x
y

z

o

x′

y′

z′

o′

p

ai

bi

θ1i θ2i

θ3i

θ4i

gi

w2i

w1i

w4i

w3i

Figure 6.1: Notation associated with the ith leg of a general 3-UPU robot.

and only the prismatic joint are actuated.

With reference to Fig. 6.1, w1i and w2i are two mutually orthogonal unit vectors defined

by the revolute axes of the universal joint centered at Ai. Likewise, w3i and w4i are the two

mutually orthogonal unit vectors of the axes of the two revolute pairs constituting the universal

joint centered at Bi. ai and bi are the position vectors of Ai and Bi, respectively, in a generic

Cartesian reference fixed to the base, whereas p is the position vector of the origin, O′, of

the reference frame associated with the moving platform. θji, j = 1, . . . , 4, is a joint variable

denoting a rotation angle around the joint-axis defined by wji, j = 1, . . . , 4, using the right-hand

rule. The length of the i − th leg is equal to ‖bi − ai‖, and it will be denoted li. Moreover, we

define

gi = (bi−ai)/li,
hi = w3i×w4i,

ri = w1i×w2i,

si = hi×ri − [gi·(hi×ri)]gi.
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Observe that si is just the component of hi × ri perpendicular to gi.

In 1996, Tsai proposed a 3-UPU parallel robot with three translational degrees of freedom

in [177]. The axes of the universal joints of this particular robot, henceforth called Tsai manip-

ulator, are arranged as follows (see Fig. 6.2a):

(a1) the axes of the three revolute joints embedded in the base/platform (shown in green/red

Fig. 6.2a) form a triangle.

(a2) the two triangles are similar.

(a3) for each leg, the axes of the intermediate revolute pairs are parallel to each other and

perpendicular to the axis of the prismatic pair.

The sensitivity of this robot to geometric parameter variations and manufacturing tolerances

was analyzed in [122], where it was shown that small torsions in the legs generate large de-

viations in the position of the moving platform. Therefore, applications of the Tsai’s robot are

limited by this pseudo-singular behavior. The sensitivity of this robot to other manufacturing

errors is studied in [28,61]. Di Gregorio studied its singularities in [42]. The same analysis was

later preformed by Joshi and Tsai in [73] using screw calculus.

In 1998, Di Gregorio and Parenti-Castelli [41] studied the more general 3-RRPRR archi-

tecture and, from this analysis, they arrived at the important conclusion that the geometric

conditions for a 3-UPU robot to have three translational DOFs can algebraically be expressed as:

(b1) |w1,1 ·w1,2| = |w4,1 ·w4,2|.

(b2) |w1,1 ·w1,3| = |w4,1 ·w4,3|.

(b3) |w1,2 ·w1,3| = |w4,2 ·w4,3|.

(b4) w2,i = ±w3,i, i = 1, 2, 3.

(b5) w1,i = ±w4,i, i = 1, 2, 3.

Another important conclusion in [41] is that the pure translation of the moving platform

does not only depend on the leg topology, but also on specific mounting conditions. In this

sense, while the above conditions (b1), (b2), (b3), and (b4) are manufacturing conditions, (b5)

is a mounting condition.

As a result of this analysis, Tsai’s robot can be seen as a particular case of a large family of 3-

UPU translational robots. Another particular translational 3-UPU robot results if all the revolute-

pair axes at the leg endings converge, while remaining coplanar, toward a single point and every

leg has the two intermediate revolute-pair axes parallel to each other and perpendicular to the
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(a) (b)

(c) (d)

Figure 6.2: Four 3-UPU robots: (a) Tsai’s robot, (b) central robot, (c) Lu-Hu’s robot, and (d)
Hervé’s robot.

straight line through the universal joint centers (see Fig. 6.2b). This particular 3-UPU robot,

which we will call central robot, was studied in [187] and [30]. In [187], Walter et al. showed

that the translational motion of this robot is rather doubtful due to the presence of at least 16

different assembly modes including the pure translational one. Thus, it is important to highlight

that for a given set of leg lengths a translational 3-UPU manipulator have, in general, different

assembly modes and, only if the platform is properly assembled, it can have a pure translational

motion.

In 2006, Lu and Hu proposed a family of asymmetrical 3-UPU robots [98]. This family of

robots included a translational design (see Fig. 6.2c). Lu and Hu argued that, contrarily to what

happens with the above two symmetrical designs, condition (b5) is easier to satisfy due to the

peculiar joint disposal of their design, thus concluding that it provides a significant advantage

with respect to Tsai’s robot.
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At this point, we have three 3-UPU robots with identical pure translational DOFs and an

identical actuator arrangement. Nevertheless, they necessarily differ in terms of singularity con-

figuration and stiffness due to the different arrangement of their universal joints. For example,

as it is proved in [67], Tsai’s robot has a singularity plane and a singularity cylindrical surface,

while Lu-Hu’s robot has two singularity planes.

Observe that condition (b5) means that the axes defined by the first and the fourth revolute

axes in each leg should be parallel, and, if this condition is satisfied, (b1), (b2) and (b3) are also

satisfied. Thus, the geometric conditions for a 3-UPU robot to have three translational DOFs can

be simply expressed as the conjunction of (b4) and (b5). There is no need that the axes from

different legs intersect in finite points. Actually, these unnecessary extra geometric constraints

seem to be the ultimate reason for the poor behavior of Tsai’s and the central 3-UPU robots.

In 2000, Karouia and Hervé showed that a 3-UPU robot, under some mounting and man-

ufacturing conditions, can provide its moving platform with spherical motions [78]. These

conditions are as follows (see Fig. 6.2d):

(c1) The three revolute pairs axes fixed to the platform (base) must converge at a point fixed

in the platform (base).

(c2) In each leg, the intermediate revolute pair axes must be parallel to each other and perpen-

dicular to the leg axis which is the line through the universal joints’ centers.

(c3) The point located at the intersection of the platform’s revolute pair axes must coincide

with the point located at the intersection of the base’s revolute pair axes.

In this case, (c1) and (c2) are manufacturing conditions, and (c3) is a mounting condition.

Different aspects of the kinematics of this robot were studied in [39,40,178].

Finally, in [149] a 3-UPU robot is presented that can be reconfigured to work either as a

translational or as a rotational robot by simply flipping upside down its moving platform.

Despite all these research efforts, the direct kinematics of the 3-UPU is not yet available in

closed form. Thus, numerical methods as the one presented in this thesis have a fundamental

role in this problem.

In the 3-UPU, eliminating a pair of variables appearing consecutively in the loop equations

produces a higher-dimensional solution set in almost all cases. However, eliminating different

pairs of variables defines solution sets that only intersect in the solution points of the original

problem. Thus, the redundant equations described in Section 5.2 can be used to generate equa-

tions where variables appear in different order. Then, we can use the procedure described in

Section 6.1 to eliminate different pairs of variables. In this way, redundancy can be used to
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Trapezoid Trapezoid
Standard Elimination

Processed boxes 36296674 122686
Box reductions 51169733 165651
Bisected boxes 18148305 61311
Empty boxes 18124818 61130
Solution boxes 23551 245
Verified solutions 4 4
Execution time [s] 893 3.9

Table 6.4: Performance of the trapezoid method with and without elimination on the Tsai’s
3-UPU parallel robot.

Trapezoid Trapezoid
Standard Elimination

Processed boxes 28741056 95380
Box reductions 39988171 127165
Bisected boxes 14370496 47658
Empty boxes 14361082 47597
Solution boxes 9478 125
Verified solutions 8 8
Execution time [s] 645 2.6

Table 6.5: Performance of the trapezoid method with and without elimination on the central
3-UPU parallel robot.

complement the proposed variable elimination procedure. Table 6.4 shows that using this strat-

egy the problem is solved more than two orders of magnitude faster than when considering the

original system. As shown in tables 6.5, 6.6, and 6.7, similar performance improvements are

obtained in the central, the Lu-Hu’s and the Hervé’s 3-UPU variants.

The 3-RPS parallel platform

The 3-RPS is a parallel platform proposed by [70] that is composed of three identical legs con-

necting the base and the platform. Each leg includes a revolute joint, a prismatic actuated joint,

and a spherical joint.

The 3-RPS has been used in telescope applications [21], in milling machines [66], and in

human-machine interfaces in the context of medical applications [183]. Its kinematic analysis

including the number of solutions of its direct kinematics [115] or its self-motions [153] has

been addressed using different formalisms such as screw theory [50,69], quaternions [26], and

the Study’s kinematic mapping [154].

Different variants of this platform are obtained depending on the arrangement of the revolute
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Trapezoid Trapezoid
Standard Elimination

Processed boxes 45961484 105140
Box reductions 72005865 165735
Bisected boxes 22980764 52538
Empty boxes 22644137 51915
Solution boxes 336583 687
Verified solutions 9 9
Execution time [s] 2483 4.7

Table 6.6: Performance of the trapezoid method with and without elimination on the Lu-Hu’s
3-UPU parallel robot.

Trapezoid Trapezoid
Standard Elimination

Processed boxes 30878080 86078
Box reductions 43763219 112465
Bisected boxes 15439008 43007
Empty boxes 15416668 43032
Solution boxes 22404 39
Verified solutions 4 4
Execution time [s] 628 1.9

Table 6.7: Performance of the trapezoid method with and without elimination on the Hervé’s
3-UPU parallel robot.

axis in the base. In the most popular designs, they are either tangential to a circle, parallel, or

copunctual, but they can also be arranged arbitrarily. Whatever the configuration, a 3-RPS

parallel platform is fully characterized by the anchor points of the legs at the base and the

platform and the director vectors of the axis of the revolute joints at the base. For our tests, we

use the parameters given in [116, Section 5.3] which are

a1 = (0, 0, 0)T , b1 = (0, 0, 0)T , w1,1 = (−3, 5, 0)T ,

a2 = (1813 , 0, 0)
T , b2 = (−135

91 , 0, 0)
T , w1,2 = (−3, 2, 0)T ,

a3 = (2, 2, 0)T , b3 = (−12
7 , 3, 0)

T , w1,3 = (2, 1, 0)T ,

where, using the same notation as in Fig. 6.1, ai and bi denote, respectively, the coordinates of

the anchor points in the base and the platform in corresponding the local frame, and w1,i is the

(non-normalized) director vector of the rotation axis of the joints connecting the base and the

i-th leg. Using the same convention, the leg lengths are denoted as l1, l2, and l3.

As reported in Table 6.8, the process of solving the forward kinematic of this platform for

l1 = 2, l2 = 2, and l3 = 3 using the trapezoid method without any simplification takes more

than 5 hours. However, using the procedure described at the end of Section 6.1 we can eliminate
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Trapezoid Trapezoid
Standard Elimination

Phase 1 Phase 2
Processed boxes 1525170926 14306 36380
Box reductions 2068753294 28067 54843
Bisected boxes 762585207 7137 14934
Empty boxes 762574255 6762 15993
Solution boxes 11464 407 5453
Verified solutions 8 0 8
Execution time [s] 18639 0.043 1.25

Table 6.8: Performance of the trapezoid method with and without elimination for the 3-RPS
parallel platform.

the spherical joints from each loop equations before solving the forward kinematics. In this case,

the first phase (i.e., the one using the simplified system of equations) is solved in less than 0.05

seconds. The second phase (i.e, the one to recover the values of the eliminated variables using

the full system of equations) takes about 1.25 seconds. Thus, the overall process is solved more

than three orders of magnitude faster thanks to the use of the variable elimination procedure

described in this chapter.





7
Conclusions

The multi-affinity property of the closure equations of multi-loop mechanisms has been exploited

in this thesis to its latest consequences. As a result, we have derived a branch-and-prune method

—which we have named trapezoid method— for solving sets of this kind of equations which is

much simpler than all the related algorithms used in the past for position analysis in kinemat-

ics. The reason for this comparative simplicity is that all previous approaches apply to general

systems of algebraic equations, and the one derived here is specific for multi-affine systems, i.e.,

to closure equations in their simplest form.

We have presented a variety of examples including single-loop and multiple-loop mecha-

nisms and, in all of them, the trapezoid method is up to two orders of magnitude faster that

the alternative methods using a similar branch-and-prune approach. The obtained results for

6R closed loops with 0-dimensional solution sets are even comparable, in terms of performance,

with a specialized numerical approach. In the case of higher-order sets, commonly known as

self-motion manifolds, the obtained results provide good approximations for the strata of the

highest dimension, but those of lower dimension are degraded by the clustering effect. In these

cases, the trapezoid method benefits from the introduction of redundancy and elimination.

The simplicity of the proposed algorithm comes with three main disadvantages; namely:

- The use of a single equation at a time makes the convergence to the roots be linear while

other standard interval-based algorithms exhibit quadratic convergence [159]. Although

our algorithm compares unfavorably in terms of execution time, it should be borne in mind

that we are actually facing a trade-off between cost of each iteration and convergence rate.

- The use of one equation at a time leads to the so-called clustering problem, that is, each

solution is obtained as a cluster of boxes instead of a single box containing it [112]. All

the solution boxes, though, are close to the actual solutions and the error (i.e., the norm

of the residue of the equations) evaluated at the center of the solution boxes is small in all
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cases. Indeed, if the effect of manufacturing inaccuracies and/or slight elasticities in the

kinematic chain were incorporated as ranges in the coefficients of the closure conditions,

clustering-free branch-and-prune methods would also reproduce these clusters. Thus, al-

though from the pure mathematical point of view clusters of boxes might be seen as a

problem, from a mechanical point of view their presence provides qualitative information

on which configurations of the mechanism might lead to a the loss of rigidity. Neverthe-

less, the clustering effect can be mitigated taking into account redundant equations. In

this thesis, we have shown how to generate multi-affine redundant equations and how

they reduce the clustering effect to the point of completely eliminating it in some cases.

Thus, we have shown that the use of multiple necessary conditions can produce the same

result as when using necessary and sufficient conditions. The derivation of necessary con-

ditions has been one of the central topics of research in numerical methods for position

analysis. However, the results presented in this thesis call into question whether they are

actually required at all.

- The approach is inherently exponential with the number of variables in the problem and it

would sooner or later be unpractical as the problems become more complex. This should

not came as a surprise since the position analysis problem is known to be NP-hard [141].

We have shown that the approach can successfully be applied to many problems of practi-

cal interest and we have presented elimination techniques which significantly extend the

applicability of the method. However, to address even more complex problems we would

need to explore alternative, more compact formulations. Otherwise the number of initial

boxes to consider can be overwhelming. Note, though, that in practical applications the

ranges of the joints are typically limited. For instance, the spherical joints used in parallel

platforms have significantly small operational ranges. Thus, despite its theoretical limita-

tion, the trapezoid method is a good alternative to solve complex, but realistic problems.

Thus, despite its limitations, we have presented an algorithm remarkable for its simplicity,

efficiency, and easy parallelization.

Given the benefits of multi-affine formulations in the context of branch-and-bound meth-

ods, it seems worth exploring other numerical alternatives to solve multi-affine systems. For

example, the method presented in [113] reduces the resolution of such kind of systems to a

generalized eigenproblem. It would be worth reexamining this approach in the light of results

presented here. It would be also interesting to derive the Gröbner basis of the systems of multi-

affine equations since these basis pave the way for practical tools to solve the problem. Our

preliminary results show that the redundant equations introduced in this work may facilitate

the computation of such basis.
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[140] A. Rodríguez, L. Basañez, and E. Celaya. A relational positioning methodology for robot
task specification and execution. IEEE Transactions on Robotics, 24(3):600–611, 2008.

[141] J. Rohn. Np-hardness results for linear algebraic problems with interval data. In Topics

on Validated Computation, Studies in Computationl Mathematics, pages 463–471. 1994.

[142] N. Rojas. Distance-Based Formulations for the Position Analysis of Kinematic Chains. PhD
thesis, Universitat Politècnica de Catalunya, 2012.

[143] N. Rojas and F. Thomas. Closed-form solution to the position analysis of watt-baranov
trusses using the bilateration method. ASME Journal of Mechanisms and Robotics, 3:3,
2011.

[144] C. Rosales, J. M. Porta, R. Suárez, and L. Ros. Finding all valid hand configurations for a
given precision grasp. In IEEE International Conference on Robotics and Automation, pages
1634–1640, 2008.

[145] C. Rosales, L. Ros, J. M. Porta, and R. Suárez. Synthesizing grasp configurations with
specified contact regions. The International Journal of Robotics Research, 30(4):431–443,
2011.

[146] B. Roth and F. Freudenstein. Synthesis of path-generating mechanisms by numerical
methods. ASME Journal of Engineering for Industry, 85:298–307, 1963.

[147] B. Roth, J. Rastegar, and V. Scheinman. On the design of computer controlled manip-
ulators. In J. Lenarcic and M.L. Husty, editors, On Theory and Practice of Robots and

Manipulators, volume 201. Springer, Vienna, 1974.

[148] L. Rubbert, I. Charpentier, S. Henein, and P. Renaud. Higher-order continuation method
for the rigid-body kinematic design of compliant mechanisms. Journal of Precision Engi-

neering, 50:455–466, 2017.

[149] S. Sarabandi, P. Grosch, J. M. Porta, and F. Thomas. A reconfigurable asymmetric 3-
UPU parallel robot. In International Conference on Reconfigurable Mechanisms and Robots,
pages 1–8, 2018.

[150] S. Sarabandi, A. Shabani, J. M. Porta, and F. Thomas. On closed-form formulas for the
3-d nearest rotation matrix problem. IEEE Transactions on Robotics, 36(4):1333–1339,
2020.

[151] E. Sariyildiz, E. Cakiray, and H. Temeltas. A comparative study of three inverse kine-
matic methods of serial industrial robot manipulators in the screw theory framework.
International Joural of Advadnces Robotic System, 8:9–24, 2011.

[152] P. T. Sarrus. Note sur la transformation des mouvements rectilignes alternatifs, en mouve-
ments circulaires; et reciproquement. Academie des sciences, comtes rendus hebdomataires

des seances, 36:1036–1038, 1853.

[153] J. Schadlbauer, M. Husty, S. Caro, and P. Wengery. Self-motions of 3-RPS manipulators.
Frontiers of Mechanical Engineering, 8(1):62–69, 2013.



REFERENCES 115

[154] J. Schadlbauer, D. R. Walter, and M. Husty. The 3-RPS parallel manipulator from an
algebraic viewpoint. Mechanism and Machine Theory, 75:161–176, 2014.

[155] P. Schatz. Mechanism producing wavering and rotating movevements of receptacles. U.S.
Pat. No. 2,302,804, 1942.

[156] J. M. Selig. Geometric fundamentals of robotics. Springer, New York, 2005.

[157] J. M. Selig. Exponential and Cayley maps for dual quaternions. Advances in Applied

Clifford Algebras, 20(3):923–936, 2010.

[158] A. Sharkawy and N. A. Aspragathos. Comparative study of two methods for forward
kinematics and Jacobian matrix determination. In International Conference on Mechanical,

System and Control Engineering, pages 179–183, 2017.

[159] E. Sherbrooke and N. Patrikalakis. Computation of the solutions of nonlinear polynomial
systems. Computer Aided Geometric Design, 10:5, 1993.

[160] J. H. Shim, D. S. Kwon, and H. S. Cho. Kinematic analysis and design of a six D.O.F.
3-PRPS in-parallel manipulator. Robotica, 17(3):269–281, 1999.

[161] B. Siciliano. The Tricept robot: Inverse kinematics, manipulability analysis and closed-
loop direct kinematics algorithm. Robotica, 17:437–445, 1999.

[162] B. Siciliano and O. Khatib. Springer Handbook of Robotics. Springer, 2008.

[163] S. Smale. Algorithms for solving equations. In International Congress of Mathematicians,
pages 172–195, 1986.

[164] A. Sommese, J. Verschelde, and C. Wampler. Advances in polynomial continuation for
solving problems in kinematics. ASME Journal of Mechanical Design, 126:262–268, March
2004.

[165] A. Sommese and C. Wampler. The Numerical Solution of Systems of Polynomials Arising in

Engineering and Science. World Scientific, 2005.

[166] E. Study. Von den bewegungen und umlegungen. Mathematische Annalen, 39:441–565,
1891.

[167] B. Sturmfels. Solving systems of polynomial equations. Journal of Computational Chem-

istry, 97:152, 2002.

[168] B. Sturmfels. What is a Gröbner basis? Notices of the American Mathematical Society,
52(10):1199, 2005.

[169] H. D. Taghirad. Parallel Robot. Mechanics and Control. CRC Press, 2013.

[170] T.-S. Tay. Rigidity of multi-graphs, linking rigid bodies in n-space. Journal Combinatorial

Theory, B, 36:95–112, 1984.



116 REFERENCES

[171] R. Testylier and T. Dang. Analysis of parametric biological models with non-linear dy-
namics. arXiv preprint arXiv:1208.3849, 2012.

[172] F. Thomas. On the n-bar mechanism, or how to find global solutions to redundant single
loop spatial kinematic chains. In IEEE International Conference on Robotics and Automa-

tion, volume I, pages 403–408, 1992.

[173] F. Thomas. Approaching dual quaternions from matrix algebra. IEEE Transactions on

Robotics, 30(5):1037–1048, 2014.

[174] F. Thomas. A distance geometry approach to the singularity analysis of 3R robots. ASME

Journal of Mechanisms and Robotics, 8(1):011001 (11 pages), 2016.

[175] F. Thomas and A. Benito Martínez. Automatic meaningful representation of serial kine-
matic chains from their DH parameters. in preparation, 2020.

[176] S. C. A. Thomopoulos and R. Y. J. Tam. An iterative solution to the inverse kinematics of
robotic manipulators. Mechanism and Machine Theory, 26(4):359 – 373, 1991.

[177] L. Tsai. Kinematics of a three-dof platform with three extensible limbs. In Advances in

Robot Kinematics, pages 401–410, 1996.

[178] L. Tsai and S. Joshi. Kinematics and optimization of a spatial 3-UPU parallel manipulator.
Journal of Mechanical Design, 122(4):439–446, 2000.

[179] L. Tsai and S. Joshi. Kinematic analysis of 3-DOF position mechanisms for use in hybrid
kinematic machines. Journal of Mechanical Design, 124(2):245–253, 2002.

[180] L. Tsai and A. P. Morgan. Solving the kinematics of the most general six- and five-degree-
of freedom manipulators by continuation methods. Journal of Mechanisms, Transmissions,

and Automation in Design, 107:189–200, 1985.

[181] L. Tsai and F. Tahmasebi. Synthesis and analysis of a new class of six-degree-of-freedom
parallel minimanipulators. Journal of Robotic Systems, 10(5):561–580, 1993.

[182] S. M. Varedi, H. M. Daniali, and D. D. Gangi. Kinematics of an offset 3-UPU transla-
tional parallel manipulator by the homotopy continuation method. Journal of Nonlinear

Analysis, 10:1468–1218, 2008.

[183] D. Verde, S. Stan, M. Manic, R. Balan, and V. Matie. Kinematics analysis, workspace,
design and control of 3-RPS and TRIGLIDE medical parallel robots. In Conference on

Human System Interactions, pages 103–108, 2009.

[184] J. J. Vicker, J. Denavit, and R. S. Hartenberg. An iterative method for the displacement
analysis of spatial mechanisms. ASME Journal of Applied Mechanics, 31:309–314, 1964.

[185] K. J. Waldron. Overconstrained linkages. Environment and Planning B: Planning and

Design, 6(4):393–402, 1979.



REFERENCES 117

[186] C. T. C. Wall. Regular stratifications. In Anthony Manning, editor, Proceedings of a Sym-

posium on Dynamical Systems held at the University of Warwick, pages 332–344. Springer,
1974.

[187] D. R. Walter, M. Husty, and M. Pfurner. A complete kinematic analysis of the SNU 3-UPU
parallel robot. Contemporary Mathematics, 496:331, 2009.

[188] C. Wampler and A. P. Morgan. Solving the 6R inverse position problem using a generic-
case solution methodology. Mechanism and Machine Theory, 26(1):91–106, 1991.

[189] C. Wampler, A. P. Morgan, and A. Sommese. Numerical continuation methods for
solving polynomial systems arising in kinematics. ASME Journal of Mechanical Design,
112(1):59–68, 1990.

[190] W. Wedemeyer and H. Scheraga. Exact analytical loop closure in proteins using polyno-
mial equations. Journal of Computational Chemistry, 20:819–844, 1999.

[191] E. Weisstein. Algebraic function. MathWorld - A Wolfram Web Resource, Last accessed
2020.

[192] E. Weisstein. Sylvester matrix. MathWorld - A Wolfram Web Resource, Last accessed
2020.

[193] K. Wohlhart. A new 6R space mechanism. In World Congress on the Theory of Machines

and Mechanisms, volume 1, pages 193–198, 1987.

[194] K Wohlhart. Merging two general goldberg 5R linkages to obtain a new 6R space mech-
anism. Mechanism and Machine Theory, 26(7):659–668, 1991.

[195] K. Wohlhart. Kinematotropic linkages. In J. Lenarcic and V. Parenti-Castelli, editors,
Recent Advances in Robot Kinematics, pages 359–368. Springer, Dordrecht, 1996.

[196] T.-M. Wu. The inverse kinematics problem of spatial 4P3R robot manipulator by the
homotopy continuation method with an adjustable auxiliary homotopy function. Journal

of Nonlinear Analysis, 64:2373–2380, 2006.

[197] J. H. Yakey, S. M. LaValle, and L. E. Kavraki. Randomized path planning for linkages with
closed kinematic chains. IEEE Transactions on Robotics and Automation, 17:951–958,
2001.

[198] K. Yamamura. Interval solution of nonlinear equations using linear programming. BIT,
38(1):186–199, 1998.

[199] A. T. Yang and F. Freudenstein. Application of dual-number quaternion algebra to the
analysis of spatial mechanisms. ASME Journal of Applied Mechanics, 31(2):300–308,
1964.

[200] L. Yaohui. New method to extend macaulay resultant. In International Conference on

Intelligent Computation Technology and Automation, pages 562–565, 2009.



118 REFERENCES

[201] J.-S. Zhao, F. Chu, and Z.-J. Feng. Synthesis of rectilinear motion generating spatial
mechanism with application to automotive suspension. Journal of Mechanical Design,
130(6), 2008.

[202] Z. Zhao, T. Wang, and D. Wang. Inverse kinematic analysis of the general 6R manipulator
based on unit dual quaternion and dixon resultant. In Chinese Automation Congress, pages
2646–2650, 2017.

[203] N. D. Zoric, M. P. Lazarevic, and A. M. Simonovic. Multi-body kinematics and dynamics
in terms of quaternions: Lagrange formulation in covariant form - Rodriguez approach.
FME Transactions, 38(1):19–28, 2010.



Index of Authors

Affi, Z. 94
Albala, H. 35
Alefeld, G. E. 28
Altuzarra, O. 97
Amezua, E. 97
Anderson, E. 36, 42
Angeles, J. 35, 44
Angerer, A. 36
Aspragathos, N. A. 10

Bai, Z. 36, 42
Baigunchekovl, Z. 71
Baker, J. E. 50
Balan, R. 97
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