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Abstract

Rail operations are often disrupted by accidents that cause traffic to diverge from the scheduled operations, rendering it difficult to
run the schedule as planned. In such a case, the operator must change the schedule to return to the original schedule. If passengers
are delayed, a train operator may have a policy of economically compensating them (e.g., refunding ticket fare). Compensation
amounts are usually determined by the length of the delay. As a result, it is critical to have a smart way of determining whether to
accelerate trains to absorb delays, thus increasing energy usage, or to compensate passengers. This paper presents a mathematical
model for determining the speed profile while taking passenger usage into account. The model determines the best sequence of
operating regimes and switching points between them for a variety of different situations and train types, all while accounting
for delays and passenger compensation policies. The aim is to reduce both the amount of energy consumed and the amount of
compensation paid to passengers. There are constraints on traction and braking forces, train velocity, forces induced by vertical
and horizontal track profile, and passenger compensation policy. The results of computational tests performed on practical problem
instances of the Spanish rail operator RENFE are showed. The suggested approach is capable of producing strategies that strike an
excellent balance between different managerial objectives.
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1. Introduction

When operating railway networks, some unexpected or inadvertent events can cause railway traffic to deviate from
the planned or regular scenarios. Some of these incidents will make it difficult, if not impossible, to follow the original
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schedule. In such a case, the operator must change the planned schedule for the time interval of the incident, as well
as perform additional recovery steps, in order to return to the original state.

Following the classification of the type of incidents made in Cadarso et al. (2015) and Cacchiani et al. (2014),
on the one hand, infrastructure blockages, failing rolling stock, and crew shortages may all cause large-scale service
interruptions. The first task after one of these events is to decide the level of needed active intervention, and arrange-
ments must be developed to recover from the disrupted situation. We will refer to this type of event as a disruption. In
the works by D’Ariano et al. (2007) and D’Ariano and Pranzo (2009), strategies for recovery actions and resolution of
conflicts are presented. In Espinosa-Aranda and Garcı́a-Ródenas (2013) and Cadarso et al. (2013), novel approaches
are presented in which the demand of the system is also taken into account.

On the other hand, small-scale incidents occur when minor-to-moderate train delays occur. We will refer to these
incidents as perturbations and they will be the type of incident dealt with in this research. As proposed in Cadarso
et al. (2013) and Cadarso et al. (2015), these incidents can be fixed allowing delays to be mitigated by timetables’
buffer times, but some services requiring active intervention such as velocity changes to re-accommodate the service.

Optimisation of train movements and control methods have received increasing attention in recent years by re-
searchers and engineers. These methods may be employed to efficiently re-schedule service during perturbations,
which do not require heavy intervention. Dealing with delay propagation may be an example. Efficient optimal control
strategies can be categorised into three major classes: proportional-integral-derivative (PID) control techniques, fuzzy
control methods and optimisation techniques (Yang et al., 2012). The review in Scheepmaker et al. (2017) provides
extensive literature on train control oriented to efficient energy management. Optimal control-based driving strate-
gies, which minimise energy consumption, can be found in several studies, such as for example Khmelnitsky (2000),
Liu and Golovitcher (2003), Albrecht et al. (2016a), and Albrecht et al. (2016b). The solutions are all compromises
between driving times and energy-consumption, the two minimisation objectives concurrently optimised.

However, energy consumption may not be the only economic indicator. On top of minimisation of passenger incon-
venience, a train operator may have the policy of economically compensating (e.g., refunding ticket fare) passengers
when they incur in delays. This may be especially important if it is impossible to maintain schedule punctuality and
costly actions are needed to obtain a new schedule as close as possible to the original one. Note that passenger in-
convenience and compensation levels usually depend on the amount of delay. With this in mind, it seems plausible to
take into account passenger’s compensation as a component of an overall recovery strategy combining both, passenger
compensation and actions for alleviating the perturbations that the timetable will experience after a disruption.

With this approach, this research presents a model to decide the extent to which energy consumption (in actions
such as accelerating or braking a set of trains) must be jointly combined with an economic compensation to the set of
passenger, accordingly to a set of compensation rules adopted by the operators. The aim is to obtain a prompt response
once it is recognised that a set of services have experienced a level of delay such that intervention is required. Ac-
cordingly, a model and solution algorithm are developed with the previous objectives, being formulated as an optimal
control problem which considers a set of trains, with known initial states. It will determine a set of control parameters
to obtain optimal arrival times of those trains so that the total amount of energy plus economical compensations is
minimal. A suitable method for approximating the optimal control model by discretization is developed. And because
the resulting optimization problem is a mixed integer non-linear programming one, an algorithmic scheme based on
the Benders decomposition is proposed, such that much better computational performance is obtained as compared to
known commercial optimization packages.

The outline of the structure of this paper is as follows. Section 2 describes the problem in detail. The mathemat-
ical model is developed and discussed in Section 3. Section 4 presents the solution algorithm. Section 5 contains
computational experiments. Finally, we draw some conclusions.

2. Problem description

Disruptions, such as those caused by infrastructure blockages, collapsing rolling stock, and crew shortages, neces-
sitate large-scale adjustments to the schedule in order to recover. Leaving aside these major actions, when the effects
of an incident on the rail network result in a significant delay of some services, there exists the possibility that these
delays cannot be absorbed by the timetable buffers, which means recovery actions are needed resulting in incremental
costs. In addition, according to European regulations on the railway sector, in case of delays, operators must com-
pensate economically the passengers. And, on top of that, if the operator considers it is convenient, it is possible
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Table 1. Compensations to passengers in case of delays for different service types by the main Spanish rail operator, RENFE.

Delay(”) AVE&AVANT ALVIA LD MD REG CT1 CT2 SF

15 50 50 - 25 - 50 - -
30 100 50 - 50 25 100 50 -
45 100 50 - 50 50 100 50 -
60 100 100 50 100 100 100 100 50
90 100 100 100 100 100 100 100 100

to improve the protection level to passengers. As an example, the compensations by the main Spanish rail operator,
RENFE, are shown in Table 1. They are determined by: a) the length of the delay, b) the type of train service, and c)
the fare charged to the passengers. The first column in Table 1 shows the delay thresholds over which passengers are
entitled to compensation, which is offered as a percentage of the paid fare depending on train service types. The rest
of the columns in the table, one per train service type (AVE, AVANT, ALVIA, LD, MD, REG, CT1 and CT2), show
the percentages of the fares to be reimbursed for each delay threshold. The last column in Table 1, SF, shows special
compensation rules for discounted ticket fares. Consequently, there is an open question when looking for recovery
plans, which asks for the trade-off between the following counter-posed key performance indexes: energy costs for
recovering the schedule and the cost of compensations to passengers.

This research assumes that the set of services, which are (potentially) affected by delays, are defined on a line
defined by its terminal stations and the path through the infrastructure connecting them. The considered rescheduling
actions will affect the speed profiles of the train services. Note that the studied incidents here are perturbations, which
do not usually require high intervention. It will be assumed that, a) no overtaking between trains may occur along their
trajectories, and b) no energy is returned to the power line. The aim is to decide optimum speed profiles to reschedule
the system at the lowest total cost, taking into account operational costs, such as energy consumption and passenger
compensations, and passenger goodwill cost. The problem is stated as an optimal control problem, where speeds,
positions and arrival times of each of the trains play the role of state variables with known initial values, whereas
braking forces, acceleration forces and compensation to passengers play the role of control variables. Constraints
on trains’ dynamics, kinematic relationships, maximum velocities and on headway observation between consecutive
trains are taken into account. Initial value conditions are stated for speeds and positions, which are assumed to be
known at the starting time of the perturbation and/or recovery period. Also, because delays may propagate impacting
to other trains, the problem needs to consider a subset of trains which can be potentially affected by delay propagation.

3. Mathematical model

This section describes the Train REScheduling and PAssenger COmpensation Model (TRESPACOM), which is
a mixed integer nonlinear mathematical model. Prior to delving into the objective function and constraints, sets,
parameters and variables are introduced.

3.1. Sets and parameters

• T is the set of trains indexed by t.
• Z is the set of delay levels indexed by ζ.
• Υ is the set of passenger types indexed by υ.
• dυt , ϕυt are the number of passengers of type υ and the fare that they pay traveling in train t, respectively.
• cζt,υ is the percentage of the fare paid by a passenger of type υ in train service t to be compensated with when

suffering a delay of level ζ.
• cδ is the cost/loss of goodwill per unit of delay and passenger.
• aζ is the upper bound to the delay of level ζ at arrival under which passengers do receive compensation, if and

only if the delay at arrival is above a0.
• Ft, Bt are the maximum traction and braking force, respectively, per unit of mass for train t.
• r0, r1, r2 are the independent, linear and quadratic terms, respectively, of the running resistance per unit of mass.
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• V is the speed limit, assumed to be constant on the line.
• srtat, satat are the relative and absolute scheduled arrival times for train t, respectively. Relative time refers to

local time for each train such that scheduled relative departure time is set to zero for every train.
• htt,t′ is the headway time between train t and train t′.
• s f t, s0

t are the final and initial position for train t, respectively.
• ξ is a penalty for the rate of change of the controls.
• σ is a constant to convert energy consumption to expended money.

3.2. Variables

• αζt ∈ {0, 1} is 1 if train t is delayed such that arrival time activates the delay of level ζ; 0, otherwise.
• ft(τ) ∈ R+, bt(τ) ∈ R+ are the relative traction and braking force, respectively, of train t at time instant τ.
• vt(τ) ∈ R+, st(τ) ∈ R+ are the speed and position, respectively, of train t at time instant τ.
• τ f t ∈ R+ is the relative arrival time for train t. The delay for train t is then δt = τ f t − srtat.

3.3. Objective function

The objective function (1) minimizes the amount of money to be paid at every compensation level and the energy
consumption of all the trains t ∈ T , which is calculated as the product of power and time. The riding comfort is also
taken into account, which is expressed as a function of the change in the control variable ft(τ), since lowering its rate
of change may increase passenger comfort.

min z =
∑
t∈T

∑
υ∈Υ

∑
ζ∈Z

dυt cζt,υϕ
υ
t α

ζ
t +

∑
t∈T

cδδt + σ
∑
t∈T

∫ τ f t

0

(
Ft ft(τ)vt(τ) + ξ

d ft(τ)
dτ

2)
dτ (1)

3.4. Delay and compensation constraints

Constraints (2) state that only one compensation level can be active at most at any given time. Constraints (3)
activate compensation levels for each train t ∈ T based on the amount of delay δt experienced.

∑
ζ∈Z

α
ζ
t ≤ 1 ∀t ∈ T, ζ ∈ Z (2)

δt ≤ a0 +
∑
ζ∈Z

(aζ − a0)αζt ∀t ∈ T (3)

3.5. Train dynamics constraints

Constraints (4) are the dynamics equations of motion for all of the trains in the system; they show that the real
acceleration of each train is equal to the traction force minus the braking force and resistance to motion. Constraints
(5) are the kinematic constraints that apply to all of the trains in the system. Constraints (6) place an upper bound on the
trains’ speed, relative traction force, and relative braking force. Constraints (7) specify the initial and final conditions
for each train in the system, and calculate the delay of the trains as τ f t − srtat. Note that for calculating delays for
each train, local times are employed. This means srtat is used, which is the scheduled arrival time as measured from
the origin of time for each train, i.e., the scheduled trip time.

dvt(τ)
dτ

= Ft ft(τ) − Btbt(τ) − (r0 + r1vt(τ) + r2v2
t (τ))sgn(vt(τ)) ∀t ∈ T (4)

dst(τ)
dτ

= vt(τ) ∀t ∈ T (5)

0 ≤ vt(τ) ≤ V, 0 ≤ ft(τ) ≤ 1, 0 ≤ bt(τ) ≤ 1 ∀t ∈ T (6)

vt(0) = 0, vt(τ f t) = 0, st(0) = s0
t , st(τ f t) = s f t, δt = τ f t − srtat ∀t ∈ T (7)
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3.6. Headway constraints

It is assumed that trains t ∈ T are initially subject to some ordering accordingly to their initial position, i.e.,
s0

t1 ≤ s0
t2 ≤ ... ≤ s0

|T | . Also assuming that overtaking is not an admissible maneuver, constraints (8) state that running
times of different trains in the same infrastructure must respect headway times. Note that for ensuring headway times
are respected, absolute times are employed. This means satat is used, which is the scheduled arrival time as measured
from the origin of time of the overall problem. Without loss of generality, this modelling approach ensures headway
times are maintained at given point in the railway infrastructure. However, the formulation could be easily extended to
respect separation times at multiple points in the network. The problem shall be divided into multiple optimal control
problems, which shall be coupled by means of initial and final conditions. Consequently, headway times could be
ensured at the entry and exit of each of the optimal control problems. Due to space limitations, the mathematical
exposition of this feature is left aside.

satati + δti ≥ satati+1 + δti+1 + htti,ti+1 ∀i = 1, . . . |T | − 1, (8)

The TRESPACOM is then composed of the objective function in (1) subject to constraints (2)-(8).

4. Solution approach

The challenge to solve the optimization model in the previous section consists in dealing with integral and differ-
ential equations, and also with integer and continuous variables. To discretize the functional that defines the objective
function as well as the differential equations that define the constraints in the previous optimal control problem,
we have used the third-degree Gauss Lobatto collocation rule, which, for example, applied to ẋ = f (x) results in
x j+1 − x j =

∆τ j

6

[
f (x j) + 4 f (xC) + f (x j+1)

]
, where f (xC) = 1

2 (x j+1 + x j) +
∆τ j

8 ( f (x j) − f (x j+1)). Note that j is the
index for the nodes in the time mesh, and ∆τ j is the time step size. The discretization yields a non-linear integer
programming problem with a difficult computational tractability. Because of that, we will present two approaches
to solve it. Firstly, an approach based on available commercial software. Secondly, a Benders Decomposition-based
approach following that of Barea et al. (2019). The objective is to provide optimal or near optimal solutions in a
reasonable budget of computational time. The commercial software-based approach directly solves the mixed integer
non-linear model using BONMIN. For the the Benders Decomposition-based method, that is described next, CPLEX
and CONOPT are used.

Once the values of variables αζt are known or fixed, the rest of the problem consists of solving a traditional optimal
control problem. Benders’ decomposition strategy is iterative and it is based on divide-and-conquer: the original
problem’s variables are split into two subsets, belonging the first set of variables to a first-stage master problem or
model (MM) and the second set of variables to a second-stage subproblem o submodel (SM) for a given first-stage
solution. Here, the first-stage variable are given by variables αζt , and depending on their values the optimal control
problem must be solved. Note that if they are not set to appropriate values in the master model, the submodel might be
infeasible due to the need of big delays. Consequently, a new set of variables is defined: λt. These variables are used
to enable dummy delays for the submodel in case the αζt variables are set such that delays must be above the given
thresholds. Note that λt is heavily penalized (M is a big number) in order to eliminate it from the solution. Therefore,
feasibility cuts are not needed, and only optimality cuts will be used.

The master model is given by (9)-(10), where ` represents the iteration of the algorithm, θ is a free variable, µ` is
the value of the objective function of the submodel at each iteration (z∗S M` ), and γ`t is the dual variable of (discretized)
constraints (3). The submodel is composed of the objective function in (11), constraints (4)-(8), and constraints (12).
Note that the integral and derivative expressions in the submodel must be discretized following the previous Gauss-
Lobatto collocation scheme.

Master Model: min zMM = θ +
∑
t∈T

∑
υ∈Υ

∑
ζ∈Z

dυt cζt,υϕ
υ
t α

ζ
t (9)

Subject to: Constraints (2) and θ ≥ µ` +
∑
t∈T

(a0 +
∑
ζ∈Z

(aζ − a0)αζt + λ̄`t − δ̄
`
t ) γ

`
t ∀` ∈ L (10)
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Sub-Model: min zS M =
∑
t∈T

cδδt + σ
∑
t∈T

∫ τ f t

0

(
ft(τ)vt(τ)Ft + ξ

d ft(τ)
dτ

2)
dτ +

∑
t∈T

Mλt (11)

Subject to: Constraints (4) − (8) and δt ≤ a0 +
∑
ζ∈Z

(aζ − a0)ᾱζt + λt ∀t ∈ T (12)

The iterative solution approach based on the Benders algorithm is shown in Algorithm 1.

Algorithm 1 Benders Decomposition-based approach
1: Initialization UB` ← ∞; LB` ← −∞; Let ε be a tolerance parameter; set the iteration counter ` = 1.
2: Solve the master model MM` and let z∗MM` be its optimal value.
3: Update the lower bound LB` = max

{
LB`−1, z∗MM`

}
4: Update the submodel parameters: ᾱζt ← α

ζ∗
t and solve the sub-model S M`. Let z∗S M` be its optimal value.

5: Update the master model parameters γ̄`t ← γ∗t ; δ̄`t ← δ∗t ; λ̄`t ← λ∗t ; µ` ← z∗S M`

6: Update the upper bound UB` and evaluate the GAP: UB` = min
{
UB`−1, z∗MM` − θ

∗ + z∗S M`

}
, GAP = UB`−LB`

LB`

7: If GAP < ε then { return (αζt , δt, ft, bt, vt); Stop }
8: Update the iteration counter ` ← ` + 1. Go to 2

5. Computational experiments

The studies are focused on practical cases taken from the network of the main Spanish train operator, RENFE .
Several case studies are discussed to demonstrate the applicability of the presented strategy. Firstly, an Optimal Control
Model (OCM) is used to solve the trajectory of one train without delays. Secondly, the proposed mathematical model
(TRESPACOM) is employed to solve several one train instances featuring different delays. Finally, TRESPACOM is
also applied to several two train instances running the same infrastructure and featuring different delays.

All the mathematical models were coded in GAMS. Their sizes for presented case studies are shown in Table 2,
where the number of discrete and continuous variables, constraints, and non-zero elements are provided. The proposed
solution approach is tested against available mixed integer non-linear software, i.e., Bonmin. CPLEX and CONOPT
are used in the the Benders Decomposition-based approach. A personal computer with an Intel Core i9 CPU at 3.7
GHz and 32 GB of RAM, running under Windows 10 64-Bit, was used for the tests.

Table 3 compares the solutions provided for the different case studies and approaches. Case studies are denoted in
the first column by OCM and TRESPACOM(x, y), where x refers to the number of trains running consecutively and y
to the minutes of delay of the first train. Note that the OCM case study consists of solving the optimal control problem
for one train without any perturbation, i.e., delay. The second column shows the employed solution approach, namely,
commercial software (CONOPT or BONMIN) and the proposed solution strategy (Decomposition). The rest of the
columns show the values for the objective function, energy consumption, delay in seconds, monetary compensation
and solution time in seconds. When the case study involves two trains, energy consumption, delay, and compensation
are shown separately for each train.

When addressing problems featuring one train, it is worth noting that both approaches find the same solution,
the decomposition doing it in lower computational times. Note that for rescheduling problems computational times
are crucial. But, when the case study includes two trains, the commercial software based approach fails to obtain
feasible solutions, while the presented approach can balance energy consumption with delays and compensations. It
looks to minimize energy consumption in combination with compensation and loss of goodwill. When dealing with
the case study of two trains, it is also remarkable that due to the delay of the first train and to headway times, the
second train must be also delayed. Figure 1 gives more insights to these results. It shows the optimal speed profiles
for TRESPACOM(2,30) and TRESPACOM(2,60).
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Table 2. Number of variables, constraints and non-zeros

Item OCM TRESPACOM (1 train) TRESPACOM (2 trains)

Discrete variables 0 2 4
Continuous variables 1,314 1,317 2,837
Constraints 1,307 1,310 2,824
Non-zero elements 5,320 5,330 11,071

Table 3. Computational results for several case studies

Case Study Solution Approach Objective Function Energy Consumption Delay Compensation CPU time

OCM CONOPT 14,417.83 14,277.14 – – 0.30

TRESPACOM (1, 30) BONMIN 20,045.72 19,792.11 0.00 0.00 34.60
TRESPACOM (1, 30) Decomposition 20,045.72 19,792.11 0.00 0.00 0.57
TRESPACOM (1, 45) BONMIN 36,310.33 20,230.14 744.82 0.00 8.36
TRESPACOM (1, 45) Decomposition 36,310.33 20,230.14 744.82 0.00 0.56
TRESPACOM (1, 60) BONMIN 84,310.33 20,230.14 1,644.82 30,000 51.64
TRESPACOM (1, 60) Decomposition 84,310.33 20,230.14 1,644.82 30,000 0.85
TRESPACOM (1, 75) BONMIN 132,310.33 20,230.14 2,544.82 60,000 13.74
TRESPACOM (1, 75) Decomposition 132,310.33 20,230.14 2,544.82 60,000 0.80

TRESPACOM (2, 30) BONMIN – – – – –

TRESPACOM (2, 30) Decomposition 34,414.27
t1=19,778.01
t2=14,258.79

t1=0.00
t2=0.00

t1=0.00
t2=0.00

1.8

TRESPACOM (2, 45) BONMIN – – – – –

TRESPACOM (2, 45) Decomposition 50,612.83
t1= 20,180.88
t2=14,258.79

t1=756.92
t2=0.00

t1=0.00
t2=0.00

0.5

TRESPACOM (2, 60) BONMIN – – – – –

TRESPACOM (2, 60) Decomposition 105,973.06
t1=20,343.22
t2=15,874.11

t1=1,610.41
t2=260.41

t1=30,000
t2= 0.00

0.58

TRESPACOM (2, 75) BONMIN – – – – –

TRESPACOM (2, 75) Decomposition 201,973.06
t1= 20,343.22
t2=15,874.11

t1=2,710.41
t2=1,360.41

t1=60,000
t2=30,000

1.51

Fig. 1. Optimal speed profiles for different delays
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6. Conclusions

In this paper, a novel approach to dealing with small-scale disruptions in rail transportation networks is discussed.
The presented method determines the speed profile, the optimum sequence of operating regimes, and the switching
points between them for a variety of different circumstances and trains, all while considering the train operator’s
delays and passenger compensation policies. A comprehensive review of the relevant literature revealed that this
field of research has been scarcely addressed. The computational experiments on practical examples demonstrate the
applicability of the proposed method. The aim of reducing energy usage while also reducing compensation costs is
met. Furthermore, using a Benders Decomposition based solution strategy allows for near-real-time solution times,
which is critical for rescheduling problems.

Future research will concentrate on case studies involving additional challenges, but also on developing some
general rules that could allow practitioners to make informed decisions without running the whole approach for every
disruption. Investigation of at what delay level the decision changes from speeding up and reducing delay to slowing
down and using up all of the available time before an additional delay charge is incurred. Multiple types of trains with
varying passenger loads, different route characteristics, and stopping patterns will be also addressed to better illustrate
the model’s capabilities. Furthermore, the focus will be posed on passengers, also addressing connecting passengers.
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