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Abstract This paper discusses the generic local classification of typical singular-
ities of 2D piecewise smooth vector fields when the switching set is an algebraic
variety. The main goal is to obtain classification results concerning structural sta-
bility and generic codimension one local bifurcations.
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1 Introduction

First of all, we observe that this paper is part of a general program involving
the study of discontinuous piecewise smooth systems in Rn of the form

ẋ = F (x) + sgn (f(x))G(x); (1)

where x = (x1, ....., xn) and F, G : Rn → Rn, f : Rn → R are smooth functions
on Rn. Note that we have two different smooth systems defined in all Rn, one,
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X = F + G, that will be considered in the region where f(x) > 0 and the other,
Y = F −G, where f(x) < 0.

In this direction, let X,Y : U ⊂ R2 → R2 be sufficiently smooth vector fields
defined in a bounded neighborhood U of the origin. Consider f : (x1, x2) ∈ U ⊂
R2 → x2 ∈ R having 0 as a regular value and let Σ = f−1(0). Thus Σ is a regular
codimension one submanifold of U ⊂ R2. The submanifold Σ splits the open set
U into two open sets U+ = {p ∈ U : x2 > 0} and U− = {p ∈ U : x2 < 0}.

Let Z be the space of all piecewise smooth vector fields Z = (X,Y ) defined as

Z(p) =

{
X(p), if p ∈ U+

Y (p), if p ∈ U−
. (2)

The dynamics on each open set U± is given by the smooth vector fields X and
Y , respectively. The submanifold Σ is called discontinuity curve or switching curve
and we assume that the dynamics over Σ is given by the Filippov’s convention.
More details about the Filippov’s convention can be found in [13]. The piecewise
smooth, also called non-smooth, vector field defined in this way is called a Filippov
system.

Due to their importance in applications, non-smooth Systems have been largely
studied in recent years. There are a huge number of works focusing on the local
and global dynamics of these systems. We refer the reader to [4] and references
therein for an extensive survey about general non-smooth systems.

In the case of Filippov systems, many authors have contributed to their study.
See, for instance,[13,19,26,20,15,11,2,6,16,7].

Concerning the study of the generic behavior for planar Filippov systems, it
was firstly made by Kozlova ([19]). In [20], Kuznetsov at al., classified and studied
all codimension one bifurcations and also some global bifurcations using suitable
normal forms. Following the same approach, in [5] the authors study some higher
codimension bifurcations.

One of the starting points for our approach in the study of bifurcations in
planar Filippov systems was the work of M.A. Teixeira [25] about smooth systems
in 2-dimensional manifolds with boundary. This work was generalized in [6] to the
study of structurally stable Filippov Systems defined in 2-dimensional manifolds.

Using the concepts of local Σ−equivalence and weak equivalence of unfoldings,
in [15] the authors gave a rigorous proof of the theorem which classifies the set
of the local Σ−structural stable Filippov systems and revisited the codimension
one bifurcations. In addition, they gave a preliminary classification of codimen-
sion two bifurcations. In [23] the authors revisited the codimension one generic
local bifurcations of Filippov systems, presenting a rigorous classification of the
generic fold-fold singularities set ΛF , as well as a formal study of the versal un-
foldings of each singularity. Moreover, they have proved that ΛF is a codimension
one embedded submanifold of Z. There are also results about global bifurcations
involving periodic orbits of codimension one or higher, see for instance [18,14,4,
22,21]. Concerning Filippov systems in higher dimensions [8,9,17,10] study local
and global bifurcations involving periodic orbits in Rn for n ≥ 3.

Most works on piecewise smooth systems are devoted to study switching man-
ifold which are regular curves or manifolds. However, using the same definition
of piecewise smooth vector fields, some works have considered Σ as the union of
two codimension one submanifolds which intersect transversely at the origin. For
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instace, in [12], the authors propose a special choice for the sliding vector field at
the intersection of the two manifolds, and the work [3] studies some global bifur-
cations related to ”corner collision” bifurcations where a periodic orbit of one of
the systems intersects the non- regular point of the boundary.

In this paper, we are interested in the particular subject: 2D systems as in (1)
for which f(x1, x2) = x1 · x2. We understand that a systematic program towards
the bifurcation theory for such systems is currently emergent.

In this case, the origin is a non-degenerated critical point of f and Σ = f−1(0)
is a degenerate hyperbole. Thus Σ can be seen as the union of two lines that
intersect transversally at the origin. The piecewise smooth vector field Z = (X,Y )
is given exactly as in (2) and in this case, we assume that the Filippov’s convention
is valid in Σ \ {0}.

Piecewise dynamical systems naturally arise in the context of many applica-
tions. In this direction our approach is motivated by equations expressed as

ẍ + aẋ = sgn (x · f(x, ẋ)));

that are commonly found in many fields such as Control Theory and Engineering.
In [1] problems involving asymptotic stability of such systems are fairly discussed.
In this book the author presents an stabilization problem that can be solved pro-
vided a discontinuity of this type is introduced in the system.

Let Ω be the set of all piecewise vector fields defined as above. In this work,
our aim is to describe rigorously the set of the locally Σ−structurally stable vector
fields having this kind of switching set and their codimension one bifurcations. The
structure of this work is as follows:

In section 2 we describe the objects we are going to work with, as the trajec-
tories, tangencies, notion of local Σ−equivalence and weak equivalences of unfold-
ings.

Section 3 is devoted to classify the set Ω0 composed by the locally Σ−structu-
rally stable vector fields in Ω. In this way we establish the generic conditions which
are necessary to Z ∈ Ω be locally Σ−structurally stable. Moreover, in each case
we construct the Σ−equivalence between Z ∈ Ω0 and its corresponding “normal
form” which describes the dynamics.

Once we have classified the set Ω0 ⊂ Ω, in section 4 we describe the set
Ξ1 ⊂ Ω1 = Ω \Ω0 composed by the vector fields Z which have a codimension one
bifurcation at the origin. In order to get this result, we establish some conditions
for Z ∈ Ξ1 and show that Ξ1 is open in Ω1 (endowed with the induced topology of
Ω). More precisely, Ξ1 is an embedded codimension one submanifold of Ω. Finally,
we show that for each Z ∈ Ξ1 the unfoldings which are transverse to Ξ1 at Z are
weakly equivalent and its dynamic is then described. One special feature of these
systems is that, contrarily to what happens with the unfoldings of codimension
one singularities of Filippov systems, the unfoldings in this case no periodic orbits
appear nearby the singularity.

2 First definitions and results

Let f : R2,0 → R, 0 be a Cr smooth function such that f(0) = 0 and that 0
a non degenerate critical point. The purpose of this work is to study the generic
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singularities of planar piecewise vector fields Z which discontinuity set is given by
the zeros of the map f(x1, x2).

As it is known that there are coordinates around the origin such that f can be
written as f(x1, x2) = x21 ± x22. In this paper we will study the case f(x1, x2) =
x21 − x22, or equivalently, f(x1, x2) = x1 · x2.

In this direction, let X and Y be smooth Cr, r ≥ 1 vector fields defined in a
bounded neighborhood U of the origin.

Let f : p = (x1, x2) ∈ U 7→ f(p) = x1x2 ∈ R. The set Σ = f−1(0) is an
algebraic variety and splits U as the closure of the regions U+ = {p ∈ R2 : f(p) >
0} and U− = {p ∈ R2 : f(p) < 0}. Moreover, the region U+ can be decomposed
as U+

+ = U+ ∩ {x2 > 0} and U+
− = U+ ∩ {x2 < 0}, as can be seen in Figure 1.

Analogously, we define the regions U−+ and U−− .
Let Ω be the set of all piecewise vector fields defined as:

Z(p) =

{
X(p), if p ∈ U+

Y (p), if p ∈ U−
. (3)

The set Σ is the discontinuity set or switching set. Observe that we can write
Σ = Σ1 ∪ Σ2 with Σ1 = {(x1, x2) ∈ Σ : x1 = 0} and Σ2 = {(x1, x2) ∈ Σ :

x2 = 0}. Moreover, Σ1 = Σ+
1 ∪Σ

−
1 where Σ+

1 = {(0, x2) ∈ Σ1 : x2 > 0} and

Σ−1 = {(0, x2) ∈ Σ1 : x2 < 0}. Similarly, one can write Σ2 = Σ+
2 ∪Σ

−
2 .
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0
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Fig. 1 The decomposition of the domain U .

Each Σi, for i = 1, 2, can be decomposed as the closure of the crossing, sliding
and escaping regions as follows:

Σci = {p ∈ Σi : Xi · Yi(p) > 0} ,

Σsi =
{
p ∈ Σ+

i : Xi(p) < 0, Yi(p) > 0
}
∪
{
p ∈ Σ−i : Xi(p) > 0, Yi(p) < 0

}
,

Σei =
{
p ∈ Σ+

i : Xi(p) > 0, Yi(p) < 0
}
∪
{
p ∈ Σ−i : Xi(p) < 0, Yi(p) > 0

}
.

Then the crossing, sliding and escaping regions in Σ are the union of the corre-
sponding regions in Σ1 and Σ2.

In the regions Σs,ei , for i = 1, 2, we define the sliding vector field:

Zsi (p) =
1

Yi(p)−Xi(p)
[Yi(p)Xj(p)−Xi(p)Yj(p)]

∣∣∣∣
Σi

, (4)
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where i, j = 1, 2 and i 6= j.

Definition 1 Fix i = 1, 2. The point p ∈ Σs,ei is a pseudo-equilibrium if Zsi (p) = 0
and it is hyperbolic if (Zsi )′(p) 6= 0.

Since we are interested on low codimension singularities, we focus our attention
just to one kind of tangency, the fold point, which is defined below.

Definition 2 The point p ∈ Σi is a fold point of X in Σi if Xi(p) = 0 and

Xj(p) ·
∂

∂xj
Xi(p) 6= 0 for i, j = 1, 2 and i 6= j. Moreover, p ∈ Σ is a regular-fold

of X in Σi if is a fold point for X in Σi and Y is transverse to Σ at the origin,
that is, Yl(0) 6= 0 for l = i, 2.

Analogously, we define a fold point and a regular fold for Y .

Σ1

Σ2

X

X

Y

Y

0

(a)

0

Σ1

Σ2

X

X

Y

Y

(b)

Fig. 2 The origin is a fold point of X. (a) X2(0) = 0 and X1 ·
∂

∂x1
X2(0) > 0; (b) X1(0) = 0

and X2 ·
∂

∂x2
X1(0) > 0.

Now we define the trajectories of Z through points of U , following [15]. Let
us denote by ϕX(t; p) the flow of a regular vector field X. In order to preserve
the uniqueness of orbits, we assume that, if p ∈ U± is such that the curve
{ϕX,Y (t; p); t ∈ R} t Σs,e, then the trajectories of X and Y through p are rela-
tively open, that is, they do not reach Σe ∪Σs in finite time.

Next definition gives the trajectories through a point of U \ {0}.

Definition 3 Let p ∈ U \ {0}, then its trajectory ϕZ(t; p) is given by:

– If p ∈ U+ ∪ U− then its trajectory is given by the trajectory of X or Y ,
respectively.

– If p ∈ Σc = Σc1 ∪ Σc2 then its trajectory is the concatenation of its respective
trajectories in U+ and U−;

– If p ∈ (Σsi ∪Σei ) \ {0} for i = 1 or 2, then its trajectory is given by ϕZsi (t; p),
where Zsi is given in (4);

– If p ∈ ∂Σei ∪ ∂Σsi ∪ ∂Σci and if lim
q→p−

ϕZ(t; q) = lim
q→p+

ϕZ(t; q), then ϕZ(t; p) =

lim
q→p

ϕZ(t; q). These points are regular tangency points.

– If p ∈ ∂Σei ∪∂Σsi ∪∂Σc does not satisfy the last condition, then ϕZ(t; p) = {p}
and it is called by singular tangency points.
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Next definition gives the trajectory of p = 0.

Definition 4 Let {0} ∈ Σ, then its trajectory ϕZ(t; 0) is described below:

– If {0} ∈ Σ = Σc = Σc1 ∩Σc2 then there is only one trajectory of X or Y which
cross the origin and we define ϕZ(t; 0) as being this trajectory;

– If {0} ∈ Σei ∪Σsi ∩ Σcj , i, j = 1, 2 and i 6= j, then the trajectory ϕZ(t; 0) =
ϕZsi (t; 0);

– If {0} ∈ ∩2i=1Σ
e
i ∪Σsi then ϕZ(t; 0) = {0};

After the last two definitions, we can define the singularities of Z ∈ Ω.

Definition 5 The singularities of Z ∈ Ω are:

– p ∈ U± which are singularities of X or Y , respectively;
– p ∈ Σe,si such that Zsi (p) = 0;
– p ∈ ∂Σei ∪ ∂Σsi ∪ ∂Σci , for i = 1, 2, which are singular tangency points;
– {0} ∈ Σ when both Zsi are defined in a neighborhood of the origin, i = 1, 2.

In the sequel we define some different types of “periodic” orbits which can
appear in piecewise smooth systems, once again we follow the definitions given in
[15].

Definition 6 A regular periodic orbit is a regular orbit γ = {φZ(t; p) : t ∈ R},
which belongs to U+ ∪ U− ∪ Σc and satisfies φZ(t + T ; p) = φZ(t; p) for some
T > 0.

Σ1

Σ2

γ1

(a)

Σ1

Σ2

γ2

γ

(b)

Σ1

Σ2

γ1

(c)

Fig. 3 Examples of periodic orbits containing the origin: (a) regular periodic cycle (b) periodic
cycle (c) closed contour

Definition 7 A cycle is a closed curve formed by a finite set of pieces of orbits
γ1, . . . , γn such that γ2k is a piece of sliding orbit, γ2k+1 is a maximal regular orbit
and the departing and arrival points of γ2k+1 belong to γ2k and γ2k+2, respectively.
We define the period of the cycle as the sum of the times that are spent in each
of the pieces of orbit γi, i = 1, . . . , n.

Definition 8 We define a closed contour (also called a pseudo-cycle, see [15]) as
the closure of a set of regular orbits γ1, . . . , γn such that their edges, that is the
arrival and departing points, of any γi coincide with one of the edges of γi+1 and
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one of the edges of γi+1 (and also between γ1 and γn) forming a curve homeomor-
phic to S1 = R/Z, in such a way that in some point coincide two departing or two
arrival points.

In Figures 3 (a) and (b) the curves γ1 and γ2 are examples of regular periodic
orbits. As we will see in section 3 and 4, this kind of orbits do not appear in low
codimension bifurcations. For example, the phase portrait sketched in Figure 3 (a),
can happen when the origin is a saddle for X (with non admissible eigenspaces,
that is, the eigenspaces V1,2 ⊂ U−) and a focus for Y , which is a bifurcation
of codimension at least four. As an example of vector field having infinitely many
periodic cycles, one can take Z = (X,Y ) where X(x, y) = (−8x−5y, 10x+7y) and
Y (x, y) = (8x−5y, 10x−7y) are both linear vector fields. Observe that both vector
fields have a saddle point at the origin and this is a codimension four phenomena.

The orbit γ in Figure 3(b), gives us an example of a periodic cycle. These orbits
can appear, for example, in the unfolding a codimension 2 fold-fold bifurcation.

In figure 3(c), γ3 is an example of closed contour. Observe that closed contours
are not real closed orbits but they are preserved by Σ−equivalences (see definitions
11 and 12) and it is the unique type of recurrence containing the origin which
appears in the unfoldings of some codimension one bifurcations.

Σ1

Σ2

X

X Y

Y

Fig. 4 Z is transient, in this picture, the origin can be a saddle point for X with non admissible
eigenspaces and Y is transverse to Σ at the origin.

Definition 9 We say that Z ∈ Ω is transient in U± if for every p ∈ U± there exist
t1(p), t2(p) ∈ R satisfying ϕZ(t1(p); p) ∈ Σ1, ϕZ(t2(p); p) ∈ Σ2 and ϕZ(t; p) ∈ U±
for all t ∈ [min{t1(p), t2(p)},max{t1(p), t2(p)}]. We say that Z is transient if it is
transient in U+ and U−.

Let Z ∈ Ω transient. For each p ∈ Σ1 there exist a unique tX(p) ∈ R such that
ϕX(p; t) ∈ U+ for all t ∈ [min{0, tX(p)},max{0, tX(p)}] satisfying ϕX(tX(p); p) ∈
Σ2. We have defined a diffeomorphism

φX : p ∈ Σ1 7→ ϕX(tX(p); p) ∈ Σ2.

By the Implicit Function Theorem, the function tX : p ∈ Σ1 7→ tX(p) ∈ R is a
differentiable map. Analogously, we define

φY : p ∈ Σ2 7→ ϕY (tY (p); p) ∈ Σ1.
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And finally we define the first return map of Z by

φZ : Σ−2 → Σ−2
p 7→ (φX ◦ φY )2(p)

(5)

which is clearly a diffeomorphism, since it is the restriction of a diffeomorphism
to the cross section Σ−2 .

Σ1

Σ2

X

X Y

Y

p

φY (p)

Σ1

Σ2

X

X Y

Y q

φX (q)

Σ1

Σ2

X

X Y

Y

p

φY (p)

φX (φY (p))

Fig. 5 The first return map associated to the vector field Z.

Remark 1 In fact, the map φZ is an one dimensional map, since its second coor-
dinate is always zero. Thus we will write φZ as a projection to the first coordinate
of the first return map.

Observe that if Z is transient, the origin is always a fixed point for φZ since
tX(0) = tY (0) = 0. Moreover, by unicity of solutions for flows in the plane, φZ is
an increasing function and therefore, φ′Z is always positive.

In our context, sometimes the first return map will not have a real dynamical
meaning, since it is defined for any transient vector field Z. It can happen that a
trajectory of Z through a point p ∈ Σ−2 do not reach again the cross section Σ−2
neither in backward nor in forward time, see Figure 4. But even in these cases
the first return map will be important in order to detect the appearance of closed
contours.

Definition 10 Let Z ∈ Ω be transient and let φZ be its first return map associ-
ated to Z at the origin. Then the origin is “geometrically stable” if 0 < φ′Z(0) < 1
and it is “geometrically unstable” if φ′Z(0) > 1. When Σ = Σc then the dynamics
of Z around the origin is similar to a focus, in this case we say that the origin is a
“focus”. Otherwise, 0 ∈ Σe,si ∩Σcj the trajectories of an initial condition does not

reach Σ−2 again and the origin will be called “geometric-focus”.

Now we are going to start with the definitions of local Σ−structural stability
and codimension k bifurcations. It is well known that the set X = Xr(U), Ū com-
pact, of the germs of vector fields of class Cr, r ≥ 1 endowed with the Cr−topology
is a Banach space. Therefore, Ω = X×X is also a Banach space. Consequently, Ω
is a Banach manifold.

In the sequel we will establish a relation between local Σ−structural stability
in our context with some special submanifolds of Ω.
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Definition 11 Let Z and Z̃ ∈ Ω, defined in U and Ũ neighborhoods of the origin,
with discontinuity sets Σ and Σ̃, respectively. We say that Z and Z̃ are locally
Σ−equivalent if there exist neighborhoods U0, Ũ0 of the origin and an orienta-
tion preserving homeomorphism h : U0 → Ũ0 which maps trajectories of Z in
trajectories of Z̃ and sends Σ in Σ̃.

Definition 12 We say that Z ∈ Ω is locally Σ−structurally stable at the ori-
gin if there exists a neighborhood VZ ⊂ Ω such that if Z̃ ∈ VZ then is locally
Σ−equivalent to Z.

Let Ω0 denote the set of all piecewise systems in Ω which are locally Σ−struc-
turally stable.

When Z is not locally Σ−structurally stable at the origin, we say that Z
belongs to the bifurcation set Ω1 = Ω \Ω0.

Definition 13 Let Z ∈ Ω. A m−parameter unfolding of Z is a smooth map
γ : δ = (δ1, · · · , δm) ∈ (−δ0, δ0)m 7→ Zδ ∈ Ω with δ0 � 1, m ≥ 1 and satisfying
γ(0) = Z0 = Z. We usually denote an unfolding of Z by Zδ.

Definition 14 Let Z, Z̃ ∈ Ω. We say that two unfoldings of Zδ and Z̃δ̃ are locally
weak equivalent if there exists a homeomorphic change of parameters µ(δ), such
that, for each δ the vector fields Zδ and Z̃µ(δ) are locally Σ−equivalent. Moreover,
given an unfolding Zδ of Z it is said to be a versal unfolding if every other unfolding
Zα of Z is locally weak equivalent to Zδ.

Definition 15 A piecewise smooth vector field Z ∈ Ω1 has a codimension one
singularity at the origin if it is locally Σ−structural stable in the induced topology
of Ω1. That is, if there exists an open set VZ ⊂ Ω such that Z̃ ∈ VZ ∩Ω1 then Z̃ is
locally Σ−equivalent to Z and any 1−parameter unfoldings of Z and Z̃ are locally
weak equivalent. We denote by Ξ1 the set of all codimension one bifurcations in
Ω.

One can define Ξk, the set of all Z ∈ Ω having a codimension k bifurcation
at the origin, recursively. Let Ωk = Ωk−1 \ Ξk−1 then Ξk is the subset of Ωk
composed by the Σ−structurally stable in Ωk.

3 Local Σ−structural stability

The aim of this section is to describe the set Ω0 ⊂ Ω of all the vector fields
which are locally Σ−structurally stable near the origin. We use the definitions of
local Σ−equivalence and local Σ−structural stability stated previously. We will
prove the following theorem:

Theorem 1 (Σ−structural stability on Ω) Denote by Ω0 ⊂ Ω the set of all
the vector fields which are locally Σ−structurally stable near the origin. Let Z ∈ Ω.
Then Z ∈ Ω0 if, and only if, Z satisfies one of the following conditions:

A. Xi(0).Yi(0) > 0, for i = 1, 2;
B. Xi(0).Yi(0) < 0, for i = 1, 2 and detZ(0) = (X1 · Y2 −X2 · Y1)(0) 6= 0;
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C. Xi(0).Yi(0) > 0, Xj(0).Yj(0) < 0 for i = 1, 2, i 6= j. In addition, when Z is

transient, it satisfies αZ =

(
X1 · Y2(0)

X2 · Y1(0)

)2

6= 1.

Moreover, the subset Ω0 is an open and dense in Ω, therefore local Σ−structural
stability is a generic property in Ω.

We devote the rest of this section to prove this theorem.
Lets consider Z ∈ Ω, with X and Y transverse to Σ1 and Σ2 at the origin. It is

clear that the transversality of the vector field with Σ at the origin is a necessary
condition for local Σ−structural stability of Z. In the sequel we will see that it is
not a sufficient condition.

Before we start the analysis of the behavior near the origin, we summarize
some important facts about the sliding vector fields. By definition of the sliding
vector fields expressed in (4), as it was observed in [24], we have

Zsi (p) = hi(p) · detZ(p), p ∈ Σi, (6)

where detZ(p) = X1(p) · Y2(p)−X2(p) · Y1(p) and

hi(p) = [(−1)i−1(Xi(p)− Yi(p))]−1, (7)

Since each Zsi is defined on sliding and escaping regions of Σi, it follows that hi
does not vanish on these intervals since Xi · Yi(p) < 0 if p ∈ Σe,si . Then, we have
the next proposition which proof follows directly.

Proposition 1 Let Z = (X,Y ) ∈ Ω. Then p ∈ Σe,si is a pseudo-equilibrium of
Zsi , i = 1, 2, if and only if, detZ(p) = 0. In addition, p ∈ Σe,si is a hyperbolic

pseudo-equilibrium to Zsi provided
∂

∂xj
detZ(p) 6= 0, for i = 1, 2 and i 6= j.

When both sliding vector fields are defined in a neighborhood of the origin,
using (6) we obtain that Zs1(0) = 0 if, and only if, Zs2(0) = 0.

The next proposition will be important when we construct the homeomor-
phisms in order to prove the local Σ−equivalence between the Σ−structural stable
vector fields.

Proposition 2 Suppose that p0 ∈ Σs,ei is a regular point of the sliding vec-
tor field Zsi . Then Zsi is locally conjugated to the constant vector field Z̃si (p) =
(−1)i−1sgn (Xi(p0)) · sgn (detZ(p0)) by the identity map.

Proof A straightforward computation gives us that around p0 we have sign sgn (Z)si (p) =

(−1)i−1sgn (Xi(p0)). Since Zsi and Z̃si are one dimensional vector fields, they are
conjugated by the identity map.

Corollary 1 Let Z = (X,Y ) ∈ Ω. Suppose that both sliding vector fields are
defined around the origin, then sgn(Zs1(0)) = sgn(Zs2(0)), if X1(0) ·X2(0) < 0 or
sgn(Zs1(0)) = −sgn(Zs2(0)), if X1(0) ·X2(0) > 0.

Proposition 3 Given Z = (X,Y ) ∈ Ω suppose that the origin belongs to Σe,si ∩Σ
c
j

for i, j = 1, 2 and i 6= j. Then the origin is a regular point of Zsi .
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Proof Since we have Zsi (0) = 0 if and only if, detZ(p) = 0, it is enough to prove
that detZ(p) 6= 0. As 0 ∈ Σe,si , we have Xi · Yi(0) < 0 and 0 ∈ Σcj therefore
Xj · Yj(0) > 0. Consequently, sgn(Xi(0).Yj(0)) = sgn(−Yi(0).Xj(0)) and then
detZ(0) 6= 0.

From now on, our goal is to classify the localΣ−structural stable behavior inΩ.
We give a normal form for each equivalence class and construct the respective local
Σ−equivalences between an arbitrary vector field and its corresponding normal
form.

Observe that beingX and Y transverse toΣ at the origin, we have the following
configurations for Σ:

C1. Xi · Yi(0) > 0, for i = 1, 2 and then Σ = Σc;
C2. Xi · Yi(0) < 0, for i = 1, 2 and we have Σ = Σs ∪Σe;
C3. Xi ·Yi(0) > 0 and Xj ·Yj(0) < 0, then Σi = Σci and Σj = Σsj ∪Σej for i, j = 1, 2

and i 6= j;

Considering the continuous maps

ξi : Ω → R
Z 7→ Xi · Yi(0)

(8)

it follows that conditions stated in items C1 to C3 are open. Then for each Z ∈ Ω
satisfying conditions C1 to C3 there exists a neighborhood VZ ⊂ Ω such that
sgn (ξi|VZ ) is constant. Moreover, conditions C1 to C3 define a generic set, since
its complement in Ω is ξ−1

1 (0)∪ ξ−1
2 (0). Nevertheless, even if these conditions are

open, we will see that vector fields satisfying some of them are not structurally
stable. We will analyze each case separately.

Definition 16 Let Ω1
0 ⊂ Ω be the subset of all Z ∈ Ω satisfying condition C1

and therefore, condition A on Theorem 1.

The Proposition 4 gives the local Σ−equivalence between any Z ∈ Ω1
0 and the

corresponding normal form Z̃.
Let Z ∈ Ω1

0 and VZ ⊂ Ω be a neighborhood of Z such that sgn (ξi|VZ ) >
0, i = 1, 2. By Proposition 4, each Z′ ∈ VZ is locally Σ−equivalent to Z̃. By
transitivity it follows that Z′ is Σ−equivalent to Z. Then every Z ∈ Ω1

0 is locally
Σ−structurally stable.

Proposition 4 Suppose that Z ∈ Ω1
0 . Then Z is locally Σ−equivalent to the

piecewise smooth system

Z̃(p) =

{
X̃(p) = (a, b), if p ∈ U+

Ỹ (p) = (a, b), if p ∈ U−
, (9)

where a = sgn(X1(0)) and b = sgn(X2(0)).
In other words, Z is C0−equivalent to the continuous vector field Z̃(p) = (a, b).

Proof We will present the construction for the case X1(0), X2(0) > 0. The other
cases can be done analogously. In this case, the vector field Z̃ has the form

Z̃(x, y) =

(
1
1

)
(10)
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Since X and Y are both transverse to Σ at the origin, there is a neighborhood
U of the origin such that for each initial condition p ∈ U the trajectory of Z
through p reaches the discontinuity Σ in finite time.

We are going to construct the homeomorphism piecewisely.

Σ1

Σ2

X

X Y

Y
Σ1

Σ2

p

q1(p) = ϕY (p, t1(p))

q2(p) = ϕY (p, t2(p))

q1(p)

−q1(p)

h−(p)
h−

X

X Y

Y

Fig. 6 The map h− in U− for X1 ·X2(0) > 0.

Σ1

Σ2

X

X Y

Y
Σ1

Σ2

X

X Y

Y

Γ

R1

R2

R1

R2

Γ̃
R̃1

R̃2

R̃1

R̃2

Fig. 7 The regions Ri for i = 1, 2 of U and the respective cross sections Γ and Γ̃ for Z and
Z̃ when X1 ·X2(0) > 0.

Let p ∈ U−. As Y1 ·Y2(0) > 0, Z is transient in U−. Then there exists a unique
time ti(p) ∈ R such that Qi(p) = ϕY (p; ti(p)) ∈ Σi for i = 1, 2.

On the other hand, givenQ1(p) = (0, q1(p)) ∈ Σ1, the point Q̃2(p) = (−q1(p), 0) =
ϕỸ (Q1(p);−q1(p)) belongs to Σ2.

As illustrated in Figure 6, we define the homeomorphism h− on U− as

h−(p) = ϕỸ (Q1(p), σ(p))

where σ(p) = − q1 · t1
t2 − t1

(p).

Observe that h−|Σ1
= Id, h−(p) = (−q1(p), 0) if p ∈ Σ2 and h−(0) = 0.

Moreover, the map h− is an homeomorphism in U−.
Consider now the cross section Γ = {ϕX(0, t), t ∈ R}∩U and define the regions

R1 = {p ∈ U+
+ : p is above Γ} ∪ {p ∈ U+

− : p is below Γ} ∪ Γ,

R2 = {p ∈ U+
+ : p is below Γ} ∪ {p ∈ U+

− : p is above Γ} ∪ Γ.
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Since Σ = Σc for each p ∈ Ri there exists a unique ti(p) ∈ R such that
Qi(p) = ϕX(p, t(p)) ∈ Σi, i = 1, 2.

Define on each region Ri the homeomorphisms

h+1 (p) = ϕX̃(Q1(p);−ti(p)), p ∈ R1,

h+2 (p) = ϕX̃(h−(Q2(p));−ti(p)), p ∈ R2.

Observe that if p ∈ Γ then h+1 (p) = ϕX̃(0,−t(p)) = h+2 (p). Therefore, the
map h+, defined as h+(p) = h+1 (p), if p ∈ R1 and h+(p) = h+2 (p), if p ∈ R2 is a
homeomorphism in U+.

Moreover, the maps h+ and h− agree on Σ. If p ∈ Σi, then Qi(p) = p and
ti(p) = 0, thus h−(p) = h+1,2. Therefore the map h defined as follow is an homeo-
morphism.

h(p) =


h−(p), p ∈ U−,
h+1 (p), p ∈ R1,

h+2 (p), p ∈ R2

.

Σ1

Σ2

X

X Y

Y
Σ1

Σ2

X

X Y

Y

Γ

Γ̃

p

q(p) = ϕX (p, t(p))

p′

q(p′) = ϕX (p′, t(p′))

h1(p)

h−(q(p))

h2(p′)

h−(q(p′))

hi

Fig. 8 The homeomorphism hi define on regions Ri for X1 ·X2(0) > 0

Regarded the way that h has been constructed it is clear that h carries the
trajectories of Z to trajectories of Z̃ preserving the orientation. Moreover, if p =
(p1, p2) ∈ U , a straightforward calculation shows that the map

g(p) =


ϕY ((0, p2 − p1)); τ(p)), p ∈ Ũ−,
ϕX((0, p2 − p1); p1), p ∈ R̃1,

ϕX(ϕY ((0, p2 − p1);−t2(p2 − p1); p2) p ∈ R̃2,

where τ(p) =
p1 · t2(0, p2 − p1)

p1 − p2
is the inverse of h. Thus h is a homeomorphism.

The case X1(0), X2(0) < 0 is analogous. The only difference is that we must
consider the cross section Γ = {ϕY (t, 0)} : t ∈ R} ∩ U , define the regions Ri and
then proceed in the same way as in the case X1(0), X2(0) > 0.

Opposed to the case C1, if Z ∈ Ω satisfies C2 one can not automatically
conclude that Z is locally Σ−structurally stable even if C2 is an open condition.
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This occurs because one can have that Z satisfies C2 and detZ(0) = 0 and then
the origin is a pseudo-equilibrium for both Zi. Lets take for instance

Zα(x, y) =

{
Xα(x, y) = (1− α+ x, 1)

Y (x, y) = (−1 + y,−1)
. (11)

In this case, the sliding vector field is defined in Σ1 and Σ2. However, for
α = 0 the vector field Z0 has just one pseudo-equilibrium at the origin, while
when α 6= 0 the vector field Zα has two pseudo-equilibria in Σ1 and Σ2 near the
origin. Therefore, one can not establish a local Σ−equivalence between Z0 and Zα
for α 6= 0.

Since det : Z ∈ Ω 7→ detZ(0) ∈ R is a continuous function, once Z satisfies
detZ(0) 6= 0, we obtain a neighborhood WZ ⊂ VZ such that sgn (det |WZ

) is
constant. Then Z′ ∈ WZ satisfies condition C2 and detZ′(0) 6= 0.

Definition 17 Let Ω2
0 be the set of all Z ∈ Ω satisfying C2 and detZ(0) 6= 0 and

therefore condition B of Theorem 1.

Then from the argument exposed above and the next proposition we conclude
that Z ∈ Ω2

0 is local Σ−structurally stable.

Remark 2 Even if the formula stated for the normal form of Z̃ ∈ Ω2
0 in system

(12) is cumbersome, it is a good way to write all the normal forms in a concise way.
Substituting the values for a, b and c indicated in Proposition 5 the expression of
Z̃ becomes very simple.

Proposition 5 Let Z ∈ Ω2
0 . Then Z is locally Σ−equivalent to the piecewise

smooth system

Z̃(p) =

{
((δ−1(ab)δ1c + 1) · a,−(δ−1(ab)δ−1c − ab) · a), if p ∈ U+

(−(δ1(ab)δ1c + 1) · a,−(δ1(ab)δ−1c + ab) · a), if p ∈ U−
, (12)

where a = sgn(X1(0)), b = sgn(X2(0)), c = sgn(detZ(0)) and δrs is the Kro-
necker function.

Proof Observe that Z̃ also satisfies condition C2. Moreover, substituting the value

of ab in the formula (12), we obtain det Z̃(0) = δ1c−δ−1c. Thus, sgn
(

det Z̃(0)
)

=

sgn (detZ(0)) 6= 0.
As Zsi and Z̃si are one dimensional vector fields with the same sign, the identity

is an equivalence between them. Therefore, the same construction of Proposition 4
can be applied in this case.

The last case to be studied is when Z belongs to Ω3
0 , that is, the set of all

Z ∈ Ω satisfying C3. Observe that in the previous cases there were no meaningful
differences on the dynamics of Z depending of sgn (X1 ·X2(0)), since one case is
just the reflection of the other. This is not true when we are considering Z ∈ Ω3

0 .
For this reason, we define,

Definition 18 Let Ω3
0 the set of all Z ∈ Ω satisfying condition C3 and

Ω3,1
0 = {Z ∈ Ω3

0 : X1 ·X2(0) > 0}.
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A standard argument and Proposition 6 show that Z ∈ Ω3,1
0 is always local

Σ−structurally stable. Observe that this is not the case when Z ∈ Ω3
0 \ Ω3,1

0 . In
fact, if X1 ·X2(0) < 0, the vector field X is transient. Moreover, condition C3 gives
straightforwardly that the vector field Y is also transient. Consequently, since Z
is transient, one needs to analyze the first return map defined in (5) in order to
avoid a non hyperbolic fixed point of φZ at the origin. This situation would lead
to a higher codimension bifurcation.

Proposition 6 Suppose Z ∈ Ω3,1
0 . Then Z is locally Σ−equivalent around at the

origin to

Z̃(p) =

{
X̃(p) = (a, a), if p ∈ U+

Ỹ (p) = (b,−b), if p ∈ U−
,

where a = sgn(X1(0)) and b = sgn(Y1(0)).

Σ1

Σ2

XY
Σ1

Σ2

X̃

X̃ Ỹ

Ỹ

ΓX

ΓY

R2
+R2

−

R1
+

Γ
X̃

Γ
Ỹ

R̃2
+R̃2

−

R̃1
+

R̃2
−

X Y

R2
−

Fig. 9 The cross sections ΓX,Y and regions Ri, i = 1, 2 when a = 1.

Proof Fix a = b = 1. Other cases can be done similarly.

In this case we have Σ1 = Σc and Σ2 = Σe∪Σe, by Proposition 3 the origin is
a regular point of Zs2 and by Proposition 2, Zs2 is locally conjugated to the constant
vector field Z̃s2(p) = 1. Moreover, by Proposition 2 there exists a homeomorphism
h∗ with h∗(0) = 0 which gives the C0−equivalence between these vector fields in
a neighborhood of the origin.

The trajectories of X and Y through the origin are both admissible and inter-
sect Σ transversely at this point and the same occurs for Z̃.

Consider the following cross sections of Σ given by ΓX = {ϕX(t, 0) : t ∈ R}∩U
and ΓY = {ϕY (t, 0) : t ∈ R}∩U . Analogously, we define the cross sections ΓX̃ and

ΓỸ for Z̃. See Figure 9.

Let Ri ⊂ U be the region between ΓX and ΓY which contains Σi for i = 1, 2.
In addition, decompose R2 into two regions given by R±2 = R2 ∩ U±. Proceeding
in the same way as above, we define R̃1 and R̃±2 contained in Ũ .

For each p ∈ R1 there exists a unique t1(p) ∈ R such that the point q(p) =
ϕZ(p, t1(p)) belongs to Σ1. Then set

h(p) = ϕZ̃(ϕZ(p, t1(p)),−t1(p)).
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If p ∈ R2 then t2(p) ∈ R is the unique time such that q(p) = ϕX(p, t2(p)) ∈ Σ2

if p ∈ R+
2 and q(p) = ϕY (p, t2(p)) ∈ Σ2 if p ∈ R−2 . In both cases, h∗(q(p)) belongs

to Σ̃2 and if p ∈ R+
2 we define h(p) = ϕX̃(h∗(q(p)),−t2(p)) and in case p ∈ R−2

we set h(p) = ϕỸ (h∗(q(p)),−t2(p)).

The three functions defined above are homeomorphisms and due to the way
they were constructed they also agree on the intersections, hence the map

h(p) =


ϕZ̃(ϕZ(p, t1(p)),−t1(p)), p ∈ R1,

ϕX̃(h∗(ϕX(p, t2(p)))),−t2(p)), p ∈ R+
2 ,

ϕỸ (h∗(ϕY (p, t2(p)))),−t2(p)), p ∈ R−2 .

is a homeomorphism which carries trajectories of Z into trajectories of Z̃ preserving
the orientation and so they are locally Σ−equivalent.

Finally suppose that Z ∈ Ω3
0 \Ω3,1

0 , that is, Z satisfies X1 ·X2(0) < 0. Under
these hypothesis, Z is transient. Thus we need to understand what happens with
the first return map φZ defined in (5).

p′

Σ1

Σ2

X

X Y

Y
Σ1

Σ2

X̃

X̃ Ỹ

Ỹ

ΓX

ΓY

Γ
X̃

Γ
Ỹ

p

q(p)

h(p)

q(p)

q(p′)

h(p′)

h∗(q(p′))h

Fig. 10 The homeomorphism h for a = 1. In this case h is defined independently in each
region Ri in a way to agree on the cross sections.

It is important to notice that since there are sliding and escaping regions in Σ,
given p ∈ Σ−2 its Z trajectory does not reach Σ−2 again. Thus there are no regular
periodic orbits for this case. Even though, one can exist closed contours which are
preserved by Σ−equivalences.

In general, it is not easy to compute explicitly the first return map. The next
proposition gives its approximation when Z is transient and transverse toΣ around
the origin.

Proposition 7 Let Z ∈ Ω3
0 satisfying X1 ·X2(0) < 0. Then the first return map

is given by

φZ(x) = α2
Zx+O(x2)

with

αZ =
X1 · Y2(0)

X2 · Y1(0)
. (13)
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Proof Near the origin, the trajectories of Y through a point (x, 0) ∈ Σ2 can be
written as

ϕY ((x, 0), t) = (x, 0) + (Y1(x, 0), Y2(x, 0))t+O(t2). (14)

From this equation we obtain that the time to arrive Σ1 is t =
x

Y1(0)
+O(x2).

Then, using again (14), we have

φY (x) = −Y2(0)

Y1(0)
x+O(x2).

Analogously, for all (y, 0) near the origin, we obtain

φX(y) = −X1(0)

X2(0)
y +O(y2).

By composing twice φX and φY we obtain the desired map.

Observe that the constant αZ is always negative in this case. Then by Propo-
sition 7, the origin is a hyperbolic fixed point for φZ if and only if,

γZ = X1 · Y2(0) +X2 · Y1(0) 6= 0 (15)

In addition, the origin will be stable if αZ + 1 > 0 and unstable if αZ + 1 < 0.

Definition 19 Let Ω3,2
0 be the subset of Ω3

0 such that X1 ·X2(0) < 0 and αZ 6=
−1.

It is clear that given Z ∈ Ω3,2
0 there exists a neighborhoodWZ of Z such that Z′ ∈

WZ then Z′ ∈ Ω3,2
0 with sgn (αZ + 1) = sgn (αZ′ + 1). As an easy consequence of

the next proposition we have that Z and Z′ are locally Σ−equivalent and thus Z
is locally Σ−structurally stable.

Remark 3 Observe that the origin is attractive of φZ if |αZ | < 1, this is equivalent
to γZ = |X1 · Y2(0)|+ |X2 · Y1(0)| = X1 ·Y2(0) +X2 ·Y1(0) < 0. Analogously, the
origin is repelling if γZ > 0.

Proposition 8 Suppose Z ∈ Ω3,2
0 . Then Z is locally Σ-equivalent to

Z̃(p) =

{
(a,−a), if p ∈ U+,

(b(1 + δ1c), b(1 + δ−1c)), if p ∈ U−,

with a = sgn(X1(0)), b = sgn(Y1(0)) and c = sgn (αZ + 1).

Proof We are going to fix a, b, c = 1, the other cases can be treated analogously.
First of all, observe that αZ̃ = −1

2 , thus the origin is an stable hyperbolic fixed
point to φZ̃ . By the Grobman-Hartman Theorem there exists a homeomorphism
h∗ defined in a neighborhood of the origin such that φZ ◦ h∗ = h∗ ◦ φZ̃ .

Moreover, by Proposition 2 and Proposition 3 we have that Zs2 and Z̃s2 are
C0−equivalent in a suitable neighborhood of the origin.

Let consider R+ = {(x, y) ∈ U : y > 0} and R− = {(x, y) ∈ U : y < 0}. Since
a, b = 1 then Σ1 = Σc and so the trajectories of Z through a point of U+ or U−
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is an appropriate concatenation of the trajectories of X and Y . The same is valid
for Z̃.

For each (q, 0) ∈ Σ−2 there exist unique times t1(q), t2(q) ∈ R such that
(0, q+1 ) = ϕY ((q, 0); t1(q)) ∈ Σ +

1 and (q+2 , 0) = ϕX((0, q+1 ), t2(q) − t1(q)) ∈ Σ+
2 .

This defines a continuous curve (see Figure 11) in R+

η+q (t) =

{
ϕY ((q, 0); t), t ∈ I1q = [0, t1(q)],

ϕX(ϕY ((q, 0); t2(q)− t1(q)), t), t ∈ I2q = [t1(q), t2(q)].
(16)

Σ1

Σ2

XY

q

q
+
1 = ϕY (q, t1(q))

q
+
2 = ϕX (q

+
1 , t2(q))

η+q

Fig. 11 The trajectory of every point q ∈ Σ−2 can be seen as a continuous curve η+q .

Analogously we define the curve η−q in R− :

η−q (s) =

{
ϕY ((q, 0); s), s ∈ J1

q = [0, s1(q)],

ϕX(ϕY ((q; 0); s2(q)− s1(q)); s), s ∈ J2
q = [s1(q), s2(q)],

(17)

where s1(q), s2(q) ∈ R satisfy (0, q−1 ) = ϕY ((q, 0); s1(q)) ∈ Σ−1 ,and (q−2 , 0) =
ϕY ((0, q−1 ); s2(q)− s1(q)) ∈ Σ+

2 .
For each p ∈ R+ there exists a unique point (q(p), 0) ∈ Σ−2 and a unique t(p)

such that p = η+q(p)(t(p)) for some t(p) ∈ Iq(p) = I1q(p) ∪ I
2
q(p).

Consider h∗(q(p)) ∈ Σ̃−2 and let

η̃+h∗(q(p)) : Ĩh∗(q(p)) → R̃+

be its Z̃ trajectory. Where

Ĩh∗(q(p)) = [0,−1

2
h∗(q(p))] ∪ [−1

2
h∗(q(p)),−h∗(q(p))].

In order to get an equivalence that preserves Σ, we will make a reparametriza-
tion of time σ+

p which preserves the subintervals of Iq(p) and Ĩh∗(q(p)). Then define

the homeomorphism h+ on R+ by

h+(p) = η̃+h∗(q(p))(σ
+
p (t(p))). (18)

Let r(p) be the intersection between the trajectory of p in R− with Σ−2 . Pro-
ceeding in the same way we define the homeomorphism h− in R− by

h−(p) = η̃−h∗(r(p))(σ
−
p (s(p))). (19)
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η
+
q(p)p

(q(p), 0) = (r(p′), 0)

p′
η
−
q(p)

(h∗(q(p), 0) = (h∗(r(p′), 0)

h+(p)

h−(p)

η̃
+
h∗(q(p))

η̃
−
h∗(q(p))

h

Σ1

Σ2

Σ1

Σ2

R+

R−

R+

R−

Fig. 12 The homeomorphism which gives the equivalence between Z ∈ Ω3,2
0 and its normal

form for a, b, c = 1.

Given p ∈ Σ2, then if p ∈ Σ−2 then h+(p) = h∗(p) = h−(p) since both

maps coincide with h∗ in Σ−2 . On the other hand, given p ∈ Σ+
2 the trajectory

of p in R± intersects Σ−2 at the point q(p) and r(p), respectively. Observe that
r(p) = φZ(q(p)) and since h∗◦φZ = φZ̃ ◦h

∗ we have that φZ̃(h∗(q(p))) = h∗(r(p)),
therefore h∗(q(p)) and h∗(r(p)) belong to the same trajectory, then h+(p) = h−(p).

As the maps h+ and h− agree in Σ2, then we can define h : U → Ũ given by

h(p) =

{
η̃+h∗(q(p))(σ

+
p (t(p))), p ∈ R+,

η̃−h∗(r(p))(σ
−
p (s(p))), p ∈ R−.

Since all the maps involved are continuous and bijective, we conclude that h
is also a bijective and continuous function. The inverse of h can be constructed in
the same way and is also continuous, then h is a homeomorphism.

Due to the way that h was constructed it is clear that h maps all trajectories
of Z in trajectories of Z̃, including the trajectories of the sliding vector field, since
h preserves the order on Σ2.

Let us observe that the set Ω3,1
0 ∪ Ω3,2

0 consists of the piecewise vector fields
satisfying condition C of Theorem 1.

We are now in conditions to present a characterization of Ω0, the set of all
locally Σ−structurally stable systems in Ω. Set

Ω′0 = Ω1
0 ∪Ω2

0 ∪Ω31
0 ∪Ω32

0 ⊂ Ω,

during this section we had shown that Ω′0 ⊂ Ω0. On the other hand, if Z ∈ Ω \Ω′0
then Z satisfies at least one of the following items:

(i) The map ξi(Z) = 0 for i = 1 or 2;
(ii) Z ∈ Ω2

0 but detZ(0) = 0;
(iii) Z ∈ Ω3,2

0 with γZ = 0 (see (15)), or equivalently, αZ = −1 (see (13)).

If Z ∈ Ω \ Ω0 satisfies (i), then Z is tangent to Σ at the origin. In this case,
the family

Zn =

{
X + ( 1

n ,
1
n ) p ∈ U+

Y + ( 1
n ,

1
n ) p ∈ U−

converges to Z when n → ∞ and it is transverse to Σ at the origin for all n ∈
N, then Z and Zn can not be locally Σ−equivalent. Therefore, Z is not local
Σ−structurally stable.
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In case Z satisfies (ii) or (iii) the family

Zn =

{
X + ( 1

n , 0) p ∈ U+

Y p ∈ U−

also converges to Z. Moreover, observe that detZn(0) 6= 0 and γZn 6= 0, thus one
can not establish a Σ−equivalence between Z and Zn. Concluding that if Z ∈ Ω
does not belong to Ω′0 then Z is not structurally stable, thus Ω′0 = Ω0.

In addition, the above argument also shows that Ω0 is dense in Ω since for
every neighborhood of Z ∈ Ω there exists a sequence Zn ∈ Ω0 such that Zn → Z
when n→∞. Combining the results we stated by now, we have proved Theorem 1.

4 Codimension one generic bifurcations

Once we have classified the generic behavior of Z ∈ Ω0, we will now investigate
what happens in the bifurcation set Ω1 = Ω \Ω0.

The goal of this section is to classify the codimension one generic bifurcation
set, which will be called Ξ1 ⊂ Ω1, that is, classify the set of the structurally stable
piecewise smooth systems in Ω1 endowed with the induced topology of Ω. In order
to Z belong to Ξ1 it is necessary to break at most one of the conditions stated in
Theorem 1. We must consider the following three groups:

– X or Y has a tangency point at the origin, that is, Xi(0) = 0 or Yi(0) = 0 for
i = 1, 2;

– Z satisfying condition C2 and detZ(0) = 0, that is, the origin is a pseudo-
equilibrium for the sliding vector fields Zsi , i = 1, 2;

– Z satisfying C3, X1 ·X2(0) < 0 and γZ = 0, or equivalently, αZ = −1, that is,
the origin is a non hyperbolic fixed point for the first return map φZ .

More precisely, we will prove the following theorem:

Theorem 2 (Local Σ−structural stability on Ω1) Let Z ∈ Ω1 = Ω \ Ω0.
Then Z ∈ Ξ1, that is, it has a condimension one singularity at the origin (see
definition 15) if, and only if, Z satisfies one of the following conditions:

A. Xi · Yi(0) < 0, detZ(0) = 0 and
∂

∂xi
detZ(0) 6= 0 for i = 1, 2;

B. Xi · Yi(0) > 0, Xj · Yj(0) < 0, for i, j = 1, 2, i 6= j and X1 ·X2(0) < 0. In this
case, Z is transient and the coefficient αZ of the first return map (24) satisfies
αZ = −1, then we ask the other coefficients to satisfy βZ 6= 0 and ηZ 6= 0.

C. the origin is a regular-fold to Z (see Definition 2).

In addition, the subset Ξ1 is an open and dense set in Ω1, therefore local Σ−structural
stability is a generic property in Ω1.

The rest of this section is devoted to prove this theorem.
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4.1 The double pseudo-equilibrium bifurcation

We consider now the bifurcation derived from the case where Z ∈ Ω1 satisfies
condition A. As detZ(0) = 0, the origin is an pseudo-equilibrium for both sliding
vector fields Zsi (see (6)). Moreover, as ∂

∂xj
detZ(0) 6= 0 for j = 1, 2, by proposi-

tion 1 we know that the origin is a hyperbolic pseudo-equilibrium for both sliding
vector fields.

Definition 20 Let Ξ1
1 ⊂ Ω1 be the subset containing all Z satisfying condition A

of Theorem 2, equivalently, for which the origin is a hyperbolic pseudo-equilibrium
of the sliding vector fields Zsi , i = 1, 2.

Proposition 9 The set Ξ1
1 is an embedded codimension one submanifold of Ω

and it is open in Ω1.

Proof Let Z0 = (X0, Y 0) ∈ Ξ1
1 . Since conditionsX0

i ·Y 0
i (0) < 0 and ∂

∂xi
detZ0(0) 6=

0 for i = 1, 2 of Theorem 2 are open, there is a neighborhood V0 ⊂ Ω of Z0 in
which these conditions are fulfilled for all Z ∈ V0. Moreover, the sign of Xi · Yi(0)
and ∂

∂xi
detZ(0) for i = 1, 2 are constant in this neighborhood.

Considering the Frechet differentiable map

η : V0 ×D0 → R2

(Z, (x1, x2)) 7→ (detZ(0, x1), detZ(x2, 0))

where D0 is a neighborhood of the origin in R2 such that Xi ·Yi(p) < 0 for p ∈ Σi
and sgn

(
∂
∂xi

detZ(p)
)

is constant for i = 1, 2.

By the Implicit Function Theorem applied to η at the point (Z0, (0, 0)), we
obtain a Frechet differentiable map

g : Z ∈ W0 ⊂ V0 7→ (g1(Z), g2(Z)) ∈ U0 ⊂ D0, (20)

satisfying

η(Z, g(Z)) = (detZ(0, g1(Z)),detZ(g2(Z), 0)) = (0, 0), for all Z ∈ W0,

where W0 and U0 are neighborhoods of Z0 and 0, respectively.
The following arguments prove simultaneously that Ξ1

1 is an embedded codi-
mension one submanifold of Ω and an open set in Ω1.

Consider the map g1 : Z ∈ W0 7→ g1(Z) ∈ R. It is clear that

g−1
1 (0) = Ξ1

1 ∩W0 = Ω1 ∩W0 ⊂ Ξ1
1 .

In fact, given Z ∈ g−1
1 (0) then g1(Z) = 0 and therefore detZ(0) = 0, thus as

Z ∈ V0, Z ∈ Ξ1
1 ∩ W0. On the other hand, if Z ∈ W0 ∩ Ω1 then detZ(0) = 0,

by the exposed above, g1(Z) is the unique point such that detZ(0, x2) = 0, then
g1(Z) = 0, what proves the desired equality.

To finish the proof one needs to show that Dg1(Z0) 6= 0. In fact, using the
chain rule to the map detZ(0, g1(Z)) = 0, we obtain

DgZ0
=

DZ detZ0(0)

∂x2(det)Z0(0)

which is a non zero linear functional.
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Now we are going to study the unfoldings of Z ∈ Ξ1
1 . More precisely, we are

going to show that every local unfolding of Z has exactly the same behavior.

Let Z ∈ Ξ1
1 and W0 ⊂ Ω be the neighborhood of Z given in (20) where g is

defined. One can always suppose that W0 is connected, therefore the submanifold
Ξ1

1 splits W0 into two connected open subsets W±0 = g−1
1 (R±).

Let γ(δ) = Zδ a versal unfolding of Z. With no loss of generality, suppose that
γ((−δ0, 0)) ⊂ W−0 and γ((0, δ0)) ⊂ W+

0 .

It follows from Proposition 9 that for δ 6= 0 the sliding vector fields (Zδ)
s
i ,

i = 1, 2 have a unique pseudo-equilibrium Pi(δ) = gi(Zδ) ∈ Σi, i = 1, 2, which has
the same stability as the origin has for Zsi . Moreover, if δ 6= 0 then detZδ(0) 6= 0,
therefore the origin is a regular point of the sliding vector fields (Zδ)

s
i .

To simplify our analysis, fix Xi(0) > 0 for i = 1, 2 (and therefore, Yi(0) < 0 to
satisfy condition A of theorem 2), the other case is just the reflection through the
y−axis. This case leads to four non equivalent configurations, depending on the
stability of the origin for the sliding vector fields Zsi , i = 1, 2. However, we focus
only in two, the others can be obtained analogously.

Differentiating (4) and using Proposition 9 it follows that

sgn
(
((Zδ)

s
i )
′(Pi(δ))

)
= (−1)i−1ci, (21)

where ci =
∂

∂xj
detZ(0), i, j = 1, 2 and i 6= j.

Moreover, by Proposition 2,

sgn ((Zδ)
s
i (0)) = (−1)i−1 detZδ(0). (22)

δ < 0 δ = 0 δ > 0

(a) xXi(0) > 0 and ci = 1 for i = 1, 2.

δ < 0 δ = 0 δ > 0

(b) Double pseudo-Equilibrium: Xi(0) > 0 for i = 1, 2 and c1 = 1
and c2 = −1.

Fig. 13 The unfolding of the double-equilibrium singularity. The big dots represent the
pseudo-equilibrium.
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One must consider four different cases depending on the signs of c1 and c2. We
focus in only two, c1 = c2 = 1 and c1 = 1 and c2 = −1.
• If c1 = c2 = 1, for δ = 0 the origin is an unstable pseudo-equilibrium for Zs1

and stable for Zs2 , as in Fig. 13(a). In one hand, if δ < 0, then Zδ ∈ W−0 and thus
unstable pseudo-equilibrium P1(δ) = g1(Zδ) ∈ Σ−1 . Consequently, (Zδ)

s
1(0) > 0,

therefore detZδ(0) > 0, thus (Zδ)
s
2(0) < 0. Then the stable pseudo-equilibrium

P2(δ) belongs to Σ−2 . On the other hand, if δ > 0, then Zδ ∈ W+
0 therefore

P1(δ) ∈ Σ+
1 . It follows that (Zδ)

s
1(0) < 0 and by the same argument we have

(Zδ)
s
2(0) > 0. Concluding that the attracting pseudo-equilibrium P2(δ) belongs to

Σ+
2 .
• In the case c1 = 1 and c2 = −1, for δ = 0 the origin is an unstable pseudo-

equilibrium for both sliding vector fields, as in Fig. 13(b). Using the same argument
as in the case c1 = c2 = 1 we conclude that for δ < 0 then P1(δ) ∈ Σ−1 and
P2(δ) ∈ Σ+

2 and for δ > 0 then P1(δ) ∈ Σ+
1 and P2(δ) ∈ Σ−2 .

As a consequence of the above discussion, we have the following proposition:

Proposition 10 Let Z ∈ Ξ1
1 . Then any versal unfolding of Z is locally weak

equivalent to the one parameter family

Z̃δ =


X̃δ(x1, x2) =

(
a− bc2x1
b− aδ

)
, x1 · x2 > 0

Ỹ (x1, x2) =

(
−a

−b+ ac1x2

)
, x1 · x2 < 0

(23)

where a = sgn (X1(0)), b = sgn (X2(0)), ci = sgn
(

∂
∂xj

detZ(0)
)

with i, j = 1, 2

and i 6= j.

It is easy to see that the family Z̃δ satisfies sgn
(
X̃1(0)

)
= a, sgn

(
X̃2(0)

)
= b,

sgn
(

∂
∂xj

det Z̃(0)
)

= ci with i, j = 1, 2 and i 6= j. Therefore, the vector field Z

and Z̃0 are locally weak equivalent.

4.2 The pseudo-Hopf bifurcation

In this section we are going to study what happens near a piecewise smooth
system Z ∈ Ω1 satisfying condition B of theorem 2.

As X1 ·X2(0) < 0, the vector field Z is transient and we can consider the first
return map φZ , see (5). In Proposition 7 we have computed the first term of the
Taylor expansion of φZ near the origin. Even if one can compute the higher orders
terms for φZ , they have a cumbersome expression and this computation will be
omitted. However, suppose that

φX(x) = aXx+ bXx
2 + cXx

3 +O(x4)

φY (x) = aY x+ bY x
2 + cY x

3 +O(x4).

In fact, in Proposition 7 we have seen that aX = −X1

X2
(0) and aY = −Y2

Y1
(0).

Therefore, we obtain the following expression for φZ

φZ(x) = α2
Zx+ (αZ + α2

Z)βZx
2 + ηZx

3 +O(x4), x ∈ Σ−2 (24)
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where αZ = X1Y2

X2Y1
(0), as given in Proposition 7 and we are assuming that αZ = −1.

In this case, the coefficients βZ and ηZ are given by βZ = bX · a2Y + aX · bY and

ηZ = −2

(
(bX · aY )2 + cX · a3Y +

(
bY
aY

)2

+

(
cY
aY

)2
)
.

It is clear that as αZ = −1 the origin is an unstable fixed point for φZ if ηZ > 0
and it is stable if ηZ < 0.

Definition 21 Let Ξ2
1 be the set Z ∈ Ω satisfying condition B of Theorem 2.

Proposition 11 The set Ξ2
1 ⊂ Ω1 is an embedded codimension-one submanifold

of Ω. Consequently, it is an open set in Ω1.

Proof Given Z0 ∈ Ξ2
1 , our aim is to find a map g :W0 → R for which 0 is a regular

value, W0 is a neighborhood of Z0 and Ξ2
1 ∩W0 = g−1(0).

Since conditions βZ 6= 0 and ηZ 6= 0 are open, one can find a neighborhood
V0 ⊂ Ω of Z0 such that these conditions hold, moreover, the signs of βZ and ηZ
are constant in V0.

Observe that the origin is a fixed point for φZ for all Z ∈ V0. In this neighbor-
hood φZ is written as

φZ(x) = x
(
α2
Z +

(
αZ + α2

Z

)
βZx+ ηZx

2 +O
(
x3
))

Consider the following Frechet differentiable map

F : V0 ×D0 → R
(Z, x) 7→ α2

Z + (αZ + α2
Z)βZx+ ηZx

2 +O(x3)

where D0 ⊂ Σ2 is a neighborhood of the origin.
Let G = ∂

∂xF . Since Z0 belongs to Ξ2
1 , we have G(Z0, 0) = (αZ0

+α2
Z0

)βZ0
= 0

and ∂
∂xG(Z0, 0) = 2ηZ0

6= 0. Then by the Implicit Theorem Function there exists
a Frechet differentiable map

g : Z ∈ W0 ⊂ V0 7→ g(Z) ∈ U0 ⊂ D0

such that G(Z, g(Z)) = 0 for all Z ∈ W0, and W0 and U0 are neighborhood of Z0

and 0 ∈ Σ2, respectively.
Then for all Z ∈ W0 we have

αZ + α2
Z =

−2ηZ
βZ

g(Z) +O(g(Z)2) (25)

Notice that if Z ∈ Ξ2
1 ∩W0 then αZ = −1 and then G(Z, 0) = 0 thus g(Z) = 0.

On the other hand, if g(Z) = 0, by Equation (25) we have that αZ + α2
Z = 0

therefore αZ = −1. Thus Z ∈ Ξ2
1 implying that g−1(0) = Ξ2

1 ∩W0.
To finish the proof we need to show that DgZ0

is different from zero. In fact,
by the Chain rule we obtain:

DgZ0
=
DG(Z0,0)

2ηZ0

= − βZ0

2ηZ0

· (DαZ)Z0
6= 0.
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Let Z ∈ Ξ2
1 and consider γ(δ) = Zδ a versal unfolding of Z. Suppose that γ is

transverse to Ξ2
1 at γ0 = Z and that Zδ ∈ W+

0 if δ > 0 and Zδ ∈ W−0 if δ < 0,
where W±0 = g−1(R±).

For each δ ∈ (−δ0, δ0) we associate the first return map

φδ(x) = α2
δx+ (αδ + α2

δ)βδx
2 + ηδx

3 +O(x)4.

Observe that x 6= 0 is a fixed point for φδ if, and only if, F (Zδ, x) = 1. The
point g(Zδ) ∈ Σ−2 given by Proposition 11 is a critical point of Fδ(x) = F (Zδ, x)−1
since

(Fδ)
′(g(Zδ)) =

∂

∂x
F (Zδ, g(Zδ)) = G(Zδ, g(Zδ)) = 0.

Therefore g(Zδ) is a local maximum or minimum of Fδ depending on sgn (ηδ) =
sgn (ηZ) if δ is small enough.

δ < 0 δ = 0 δ > 0

Fig. 14 The pseudo-Hopf bifurcation for Z satisfying ηZ > 0. The origin is always a fixed
point for φδ(x).

To simplify the analysis, suppose that X1(0) > 0. Fix ηZ and βZ > 0. There-
fore, the origin is a repelling fixed point of φZ and the point g(Zδ) is a minimum
of Fδ(x).

Remark 4 The case βZ < 0 is just a reparametrization of γ making δ 7→ −δ.

If δ > 0, by Equation (25) we have αδ + α2
δ < 0, thus −1 < αδ < 0 therefore

the origin is an stable fixed point of φδ.

Moreover using Equation (25), one can see that Fδ(g(Zδ)) = α2
δ − ηδg(Zδ)

2 +
O(g(Zδ)

3) < 0 and therefore there exist unique points p−δ < 0 < p+δ satisfying
Fδ(p

±
δ ) = 0 which are unstable fixed points of φδ since (φδ)

′(p±δ ) > 1. Associated
to this fixed point there is a closed contour of Zδ.

When δ < 0 we obtain αδ + α2
δ > 0 then the origin is an unstable fixed point

of φδ since αδ < −1. In this case we have Fδ(g(Zδ)) > 0 and therefore there are
no fixed points of φδ around the origin.

The same reasoning can be done when ηZ < 0, in this case g(Zδ) is a maximum.
It follows that for δ > 0 the origin becomes unstable. Moreover, F (g(Zδ)) > 0 and
being a maximum, two stable fixed appears, given rise to a closed contour of Zδ.
For δ < 0 the origin remains stable and there are no closed contour around the
origin.
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Proposition 12 Let Z ∈ Ξ1
2 . Then any versal unfolding of Z is locally weak

equivalent to the one parameter family

Z̃δ =


X̃δ(x1, x2) =

(
ac

−(ac+ δ)

)
, x1 · x2 > 0

Ỹ (x1, x2) =

(
a

a+ x+ abx21

)
, x1 · x2 < 0

(26)

where a = sgn (Y1(0)), b = sgn (ηZ), c = sgn (X1 · Y1(0)).

Proof It is enough to observe that αZδ = −1, βZδ 6= 0 and sgn (ηZδ ) = sgn (ηZ) .

4.3 Regular-fold bifurcation

In this section we are going to study what happens near a piecewise smooth
system Z ∈ Ω1 satisfying condition C of theorem 2.

In this case, we allow the trajectories ofX or Y being tangent toΣ at the origin.
If the trajectory through the origin of X, is tangent to both Σi for i = 1, 2 then
X has a singularity at the origin and this situation leads to a higher codimension
bifurcation. Another situation which raises a higher codimension bifurcation is
when the trajectories through zero of both vector fields X and Y are tangent to
Σ.

In this section we will see that Z having a regular fold is a codimension one
bifurcation.

Definition 22 We call Ξ3
1 the set of all elements of Ω1 having a regular fold at

the origin.

Without loss of generality, we can fix X2(0) = 0, X1(0) > 0 and ∂
∂x1

X2(0) > 0.
Under these conditions we have four cases to analyze, which are not equivalent,
depending on sign of Y1(0) and Y2(0). The other ones can be obtained by reversing
time and combinations of reflections and rotations of the previous ones.

Remark 5 When Z ∈ Ξ3
1 , provided Zsi is defined in Σi for i = 1, 2, we have

Zs1(0) =
(X1 · Y2)(0)

(X1 − Y1)(0)
and Zs2(0) = X1(0), therefore, the origin is a regular point

for the sliding vector fields Zsi .

Proposition 13 The set Ξ3
1 is an embedded codimension-one submanifold of Ω

and an open set of Ω1.

Proof Let Z0 = (X0, Y 0) ∈ Ξ3
1 . In order to simplify the notation, we will make

the proof for the case when the origin is a fold of X0 at Σ2. Any other case is
analogous.

Let V0×D0 ⊂ Ω×U a connected neighborhood of (Z0,0) for which all Z ∈ V0
satisfies:

(a) sgn (detZ(p)) = sgn (detZ0(0)) for all p ∈ D0 ∩Σ;
(b) sgn (γZ) = sgn (γZ0

), where γZ is defined in (15);



Local generic behavior of a 2D Filippov system with non-smooth switching curve 27

Table 1 Decomposition of Σ when X2(0) = 0, X1(0) · ∂
∂x
X2(0) > 0, depending on signs of

Y1(0) and Y2(0).

Y1 · Y2(0) > 0

δ > 0, g(Zδ) > 0 δ = 0, g(Zδ) = 0 δ < 0, g(Zδ) < 0

Y1(0) > 0

Σ1 = Σc

Σ−2 = Σe

Σ+
2 = Σc ∪Σs

Σ1 = Σc

Σ−2 = Σe

Σ+
2 = Σc

Σ1 = Σc

Σ−2 = Σe ∪Σc

Σ+
2 = Σc

Y1(0) < 0

Σ−1 = Σs

Σ+
1 = Σe

Σ−2 = Σc

Σ+
2 = Σc ∪Σe

Σ−1 = Σs

Σ+
1 = Σe

Σ−2 = Σc

Σ+
2 = Σe

Σ−1 = Σs

Σ+
1 = Σe

Σ−2 = Σc ∪Σs

Σ+
2 = Σe

Y1 · Y2(0) < 0

δ > 0, g(Zδ) > 0 δ = 0, g(Zδ) = 0 δ < 0, g(Zδ) < 0

Y1(0) > 0

Σ1 = Σc

Σ−2 = Σc

Σ+
2 = Σc ∪Σe

Σ+
1 = Σc

Σ−2 = Σc

Σ+
2 = Σe

Σ1 = Σc

Σ−2 = Σc ∪Σs

Σ+
2 = Σe

Y1(0) < 0

Σ−1 = Σs

Σ+
1 = Σe

Σ−2 = Σe

Σ+
2 = Σs ∪Σc

Σ−1 = Σs

Σ+
1 = Σe

Σ−2 = Σe

Σ+
2 = Σc

Σ−1 = Σs

Σ+
1 = Σe

Σ−2 = Σe ∪Σc

Σ+
2 = Σc

(c) The sign of X1(x, 0), Yi(x, 0), i = 1, 2, and ∂
∂xX2(x, 0) is constant in V0×D0.

Consider the Frechet differentiable application

ξ : V0 × (D0 ∩Σ2) → R
(Z, x) 7→ X2(x, 0)

We have ξ(Z0,0) = 0, since the origin is a fold point toX atΣ2 and ∂
∂xξ(Z0,0) =

∂
∂x1

X0
2 (0, 0) 6= 0. Then by the Implicit Function Theorem we obtain open sets

W0 ⊂ V0, U0 ⊂ D0 ∩Σ2 and a Frechet differentiable map g : W0 → U0 such that
ξ(Z, x) = 0 if, and only if, x = g(Z). The point (g(Z), 0) is the unique tangency
point of Z with Σ and it is a regular-fold of X at Σ2.

Therefore, g−1(0) =W0 ∩Ξ3
1 . Using the Chain rule it is easy to see that DgZ0

is a surjective linear functional. Therefore Ξ3
1 is a codimension one embedded

submanifold of Ω and also an open set of Ω1.

From now on we are going to present the generic unfoldings of Z ∈ Ξ3
1 . Fixing

X2(0) = 0 and X1 · ∂∂xX2(0) > 0, the other cases can be done identically.

Let γ(δ) = Zδ a versal unfolding of Z. LetW±0 = g−1(R±) and without loss of
generality, suppose that for δ > 0, Zδ ∈ W+

0 , therefore, X has a fold in Σ+
2 which

is visible. Analogously, for if δ < 0, Zδ ∈ W−0 , therefore, X has a fold in Σ−2 which
is invisible. Knowing the position of the fold for every δ, it allows us to give the
decomposition of Σ. See Figure 16 and also Table 1.

Since sgn (detZδ(p)) does not change for all (Z, p) ∈ U × (U0 ∩ Σ), whenever
it is defined, sgn ((Zδ)

s
i (p)) = sgn (Zsi (0)) > 0 for all δ ∈ (−δ0, δ0).
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δ < 0 δ = 0 δ > 0

(a) Y1 · Y2(0) > 0 and Y1(0) > 0

δ < 0 δ = 0 δ > 0

(b) Y1 · Y2(0) > 0 and Y1(0) < 0

Fig. 15 The unfoldings of a regular-fold singularity satisfying Y1 · Y2(0) > 0. The black dots
represent the singularities of the vector fields.

δ < 0 δ = 0 δ > 0

(a) Y1 · Y2(0) < 0 and Y1(0) > 0

δ < 0 δ = 0 δ > 0

(b) Y1 · Y2(0) < 0 and Y1(0) < 0

Fig. 16 The unfoldings for a regular-fold singularity satisfying Y1 ·Y2(0) < 0. The black dots
represent the singularities of the vector fields.

– Suppose that Y1 · Y2(0) > 0, thus the Y trajectory trough zero has positive
slope.
– Let Y1(0) > 0. Fig. 15(a)
• If δ < 0, X2 > 0 near the origin and therefore Zδ satisfies hypothesis
A of theorem 1.
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• When δ > 0, X2 < 0 near the origin. In this case, the vector field
Zδ is transient and therefore, it is necessary to analyze the stability
of the origin for the first return map φδ. By Remark 3, the origin is a
hyperbolic fixed point of φδ if

γδ = ((Xδ)1 · (Yδ)2 + (Xδ)2 · (Yδ)1) (0) 6= 0,

but γδ is positive for δ sufficiently small because for δ = 0 we have γ0 =
X1 · Y2(0) > 0. Therefore, Zδ satisfies the hypothesis C of Theorem 1
and therefore, it is locally Σ-structurally stable.

– Let Y1(0) < 0, see Fig. 15(b).
• If δ < 0, X2 < 0 near the origin and therefore the origin satisfies

condition B of Theorem 1.
• The case δ > 0 is analogous to the case Y1(0).

– Suppose that Y1 · Y2(0) < 0, that is the Y trajectory of zero has negative
slope. We have different dynamics on the switching manifold depending on
sgn (Y1(0)) .
– Fix Y1(0) > 0, see figure 16(a).
• For δ < 0, X2 > 0 near the origin and therefore, Zδ satisfies the condi-

tion C with X1 ·X2 > 0, therefore, Zδ it is also locally Σ-structurally
stable.
• If δ > 0, then X2 < 0 near the origin and therefore, Zδ satisfies hy-

pothesis A of theorem 1.
– Fix Y1(0) < 0, see figure 16(b).
• If δ < 0, then (Xδ)2 > 0 near the origin and therefore Zδ satisfies

hypothesis C of theorem 1 with (Xδ)1 · (Xδ)2(0) > 0, therefore Zδ is
locally Σ−structurally stable.
• If δ > 0 then (Xδ)2 < 0 near the origin and therefore, as detZδ(0) 6= 0,
Zδ satisfies hypothesis B of theorem 1, thus Zδ is locally Σ−structu-
rally stable.

The following proposition gives a normal form which satisfies all the previous
conditions.

Proposition 14 Let Z ∈ Ξ1
3 and fix X1(0) and ∂

∂xX2(0) positive. Then any
versal unfolding of Z is locally weak equivalent to the one parameter family

Z̃δ =


X̃δ(x1, x2) =

(
1

x1 − δ

)
, x1 · x2 > 0

Ỹ (x1, x2) =

(
a

b

)
, x1 · x2 < 0

(27)

where a = sgn (Y1(0)), b = Y2(0). The other normal forms can be obtained from
this proposition by reflections and rotations.

Combining all the results of the last three subsections we prove Theorem 2.
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