Random walks

March 19, 2022

Random walk

Definition
Let {Yk : kK > 1} be a sequence of independent random variables
such that P(Y; =1)=pand P(Y;=—-1)=gq, i > 1. Let

0, n=20
Xn =
Yi+ Yo+ 4+ Y, n2>1

Then, {X,: n> 1} is a discrete time stochastic process called a
random walk (with parameter p).

» The state space is Z.
» If p=gq = 1/2 we say that the random walk is symmetric.
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Random walk

A realization of this process can be visualized as the movement of
a particle that walks randomly in one dimension, starting from the
origin.

If at time n the particle is at coordinate k, then at time n+ 1 it
will be

» either at coordinate k + 1 with probability p,
P(Xpr1=k+1|X,=k)=p
» or at coordinate k — 1 with probability q,

P(Xpy1 =k —1|X,=k)=gq
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Random walk Random walk

Another interpretation is as a game between two players A and B

that repeteadly toss a coin showing heads with probability p. Xn /\/\//\\
4 1\
. / VAN
Let H,, and T, be the number of heads and tails in the first n . /\ ‘/‘\/\ ‘/‘\/‘ \ ‘/“ A
tosses. Thus, ;/\/ \ / \

Vo

Xo=Hy,—Tn, n>1 —
\ AN

If at time n: VAN
Vi

» X, > 0, we say that player A is in the lead;
» X, <0, we say that player B is in the lead;
» X, =0, then the game is in a draw.
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Mean and variance Mean and variance
Notice that {X, = k} if and only if in the first n tosses the number We have that
r of heads and the number s = n — r of tails satisfy:
E(X») = E(Hn) —E(T,) = n(p - q)
r—s=2r—n=xk
Var(X,) = Var(2H, — n) = 4npq
Hence,
_n+k B Moreover, the Central Limit Theorem implies
r= 5 r=0,1,...,n
Xn — —
% 45 N(0,1)
npq
At time n the particle is at coordinate k with probability
. wik ek » If the walk is symmetric, then E(X,) =0, Var(X,) = n and
P(X, = k) = ek P24 2, ;
? Zn 4y N(0,1)
where k = —n,—n+2,....,n— 2, n. Vn
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First visit to a negative coordinate

Let T be the random time at which the particle visits a negative

coordinate for the first time,

Alternatively, T is the first time at which player B is in the lead.

T=min{n>1: X, <0}

Let us calculate P(T = n).

First visit to a negative coordinate

For odd n > 3 we have that

P(T=n)=P(T=nX;=1)=pP(T=n|Xy=1)

Let Z be the time of the first return to the origin,

Then

Z=min{m>2: X, =0}

P(T =n|X =1)

n—1

m

=2

S BT=n[Z=mX =1)P(Z=m|X =1)
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First visit to a negative coordinate

For instance,

P(T=1)=gq
P(T=2)=0
P(T =3) = pq?
P(T=4)=0
P(T =5) = 2p%¢®

Notice that P(T = 2k) = 0 for all k > 1.

» It could be possible that the particle will never visit a negative
coordinate, that is to say, P(T = o0) > 0. In such a case, we

say that the random variable T is defective.

First visit to a negative coordinate

Notice that

> P(Z=m|Xy=1)=P(T=m-1)

> P(T=n|Z=mX;=1)=P(T=n—m)

Therefore, if we denote P(T = n) as r, we have the recurrent

equation

n—1
rh=p Z fm—1fn—m, n =3, odd
m=2
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First visit to a negative coordinate

For instance,
P(T=1)=n=gq
P(T =3)=r=pr? = pqg?
P(T =5)=r=p(nrn+nn)=_2pq¢
P(T=7)=r=p(nr+ri+rmnn)=>5pq
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First visit to a negative coordinate

Therefore

ps(Gr(s))?
=ps(rns+ s> +rss®+---)(rns+r3sd 4 rss® )
=pris® +p(nr+r3n)s® +p(rrs+ri+rsr)s’ +---
ot p(rmatrsrnat o+ mon)s+
In

=SS+ r5s° 418 - 1"+ = Gr(s) —gs
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First visit to a negative coordinate

Let

be the generating function of the sequence {r,}. (We take rp =0.)

Observe that

Gr(s)=ns+rs>+ s> +---

First visit to a negative coordinate

Then
ps(Gr(s))? — Gr(s)+gs =0

Solving for G7(s) we obtain

—/1—4pgs? 2qgs
2ps 1+ +/1— 4pgs?

Gr(s) = *

> We have to choose the root of |/~ which makes Gr(s) finite
at s =0.

» The radius of convergence is R = 1/(2,/pq). Hence, if
p=q=1/2, then R = 1. Otherwise, R > 1.
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First visit to a negative coordinate

For a symmetric random walk (p = g = 1/2):

S

=1 Ae

1 1 5 7 21
=s+o88 4 2+ ——s'+ —s° +

— 11 ...
2 8 16 128 256 1024s +

In general,
2gs
1+ +/1— 4pgs?
= qs + pq’s> +2p2q3s® + 5p3g*s’ + 14p*¢°s® +
42p5q6511 4.

GT(S) =
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Eventual visit to a negative coordinate

Therefore

» If p < q, the particle will visit a negative coordinate with
probability 1. In this case, T is a proper random variable, and

rm=P(T=n), n=>0

is its probability function.

» If p > q, the variable T is defective. There is a nonzero
probability that the particle never visits a negative coordinate:

Mszﬁzl—E)MTz@zl—g

n=>0
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Eventual visit to a negative coordinate

The probability of an eventual visit to a negative coordinate is

ZIP’(T: n):Zrn

n=0 n=>0
e Lo VI—4pg _1—[q—pl
P p
I, p<gq
=949
) p>q
p

Expected time to a negative coordinate

If T is not defective (p < g), then

1
, ——, p<q
E(T) = Gr(1)=4 9P

For instance,
» for p=0.4 one has E(T) =5,
» for p = 0.49 one has E(T) = 50,
» for p =0.499 one has E(T) = 500 (“long excursions").
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Explicit value of r, Explicit value of r,

The probability r, = P(T = n) is the coefficient of s” in the series To find cox we can use the binomial series

expansion of )
_ _ 2 _ «Q m
S B . a0 =3 ()
2ps m=0
where
Therefore 1 N ala—1)-(a—m+1)
k-1 = _2_p C2k, m) = oy , aelR
where ¢ is the coefficient of s2¥ in the expansion of the function Thus
o0
1/2
(1 — 4pgs?)'/? (1—4pgs®)t/? = kz_% ( Z )(—4pqs2)k
21/43 22 /43
Explicit value of r, Returns to the origin
Therefore
rk-1
_ 112 Kk 1/1)2 k k-1 _k
- _5< k >(—4pq) - 5( k >(_4) P4 The probability that the particle is visiting the origin at time n is
_1(@/2)(=1/2)(=3/2)---(1/2 - k+1) (—a)kpk1gk 0, n odd
I
2 k! P(X, = 0) = o
_l2k1'3"'(2k—3) k—1 k <k>pqu, n =2k
2 k! P
C1:2:3--(2k=3)(2k—2) 1 «
- (k— 1)1 k! P

1 (2k—1\ , ., 4
- >1
2k—1( k )p . K
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Returns to the origin

By Stirling’s approximation, m! ~ v/2rm(m/e)™, we have that

2k
]P(ng = 0) —i)el)( qk =

» In particular, for a symmetric random walk:

1
P(X2k - 0) ~ \/ﬁ
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Returns to the origin

If the random walk is not symmetric (p # q), then 4pg < 1.

In this case, the series >, ((4pq)¥)/V/mk converges. Therefore,
>« P(Ak) < 00, and the first Borel-Cantelli lemma implies
P(A*) =0:

P ({Xok = 0} happens infinitely often) =0
(Remark)

If the random walk is not symmetric, then (with probability one)
{Xak = 0} occurs only a finite number of times.

27 /43

Returns to the origin

Let A* be the limit superior of the sequence of events
Ak:{XQkZO}, k>1

That is to say, A* is the event “the return to the origin happens
infinitely often”

Remember that

First return to the origin

Let f, = P(Z = n), where Z =min{n >1: X, =0}.

That is,
fo=fH=0

f,,:]P’(Xl7é0,X2750,...,Xn,1#O,Xn:O), nz=?2
For instance,
f,=P(Z =2)=2pq
=P(Z=3)=0
fs =P(Z = 4) = 2p°¢°
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First return to the origin

For n > 2 we have that

fn=P(Z = n)
=pP(Z=n|X1=1)+qP(Z=n| Xy =-1)
=pra1+qr_;

where r/_; is as r,_1 exchanging p for q.

» Notice that r} is the probability that the first visit to a
positive coordinate happens at time n.

29 /43

First return to the origin

The series expansion of Gz(s) is

Gz(s) =2pqs® +2p°q° s* + 4p>q® s® + 10p*q* s® + - -

Thus,
P(Z=2)=1f =2pq
P(Z = 4) = f, = 2p°q®
P(Z =6) = f = 4p3¢>
P(Z = 8) = f3 = 10p*q*
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First return to the origin

Then
Gz(s) = psz rno1s" 1+ qsz rl_s"1

n>2 n>2
=ps g rys"+qs E rls"
n=>0 n=0

=psGr(s)+ qgsGri(s)

1—\/1—4pqs2dl_qsl—\/1—4pqs2

2ps 2qgs

=1-—+/1—4pgs?

:ps

Eventual return to the origin

The probability of an eventual return to the origin is:

Y P(Z=n=) f

n=>0 n>0
=Gz(1)=1-+/1-4pg=1—|q—p|

> If p # q, there is a nonzero probability |g — p| that the
particle never returns to the origin.

> If p = g (symmetric walk), then Z is not defective and the
return to the origin happens with probability one. However,

E(Z) = GZ(1)

:i(l_m)

ds

S

s=1  1-¢2

=0
s=1
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Other properties

The following property holds:

P(Z =2k) = fox = proak—1+ G rap_;

1 [2k=1\ 44 1 (2k—1\ 4 41
_p2k—1( k )p q+q2k—1< k )pq

2 [2k=1\ , 1 [2K\ 4,
_2k—1< k )pq_2k—1<k>pq

1
= P(X5, =
2k —1 ek =0)
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Other properties

Hence

]P)(Xl 7é07X2 #Ow"aXZm#O)

=1—P(Xok =0 for some 1 < k < m)
m

m
=1- fu=1- (tok—2— k) = tom
k=1 k=1

= P(Xom = 0)
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Other properties

Moreover, for a symmetric random walk it can be proved that

P(X; #0,X #0,..., Xom # 0) = P(Xom = 0)

Proof:
Let frx = P(Z = 2k) and upx = P(Xok = 0). If the random walk is

symmetric, then

£ 1 2k L by — 2k L
k= ok —1\ k )22k KT\ k) 22k
It can be checked that

Upk—o — Upp = foy, k=1

Last return to the origin

Theorem

The probability cupi om that a symmetric random walk of length 2m
has a last return to the origin at time 2k equals

2k\ (2m —2k\ 1
Q2k2m = k m— k )22m
= P(ng = 0) ]P(XZm—2k = 0), 0 < k < m

(The case k = 0 corresponds to {X; #0: 1< i< 2m}.)
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Last return to the origin

Proof.

Let Asiom denote the event “the symmetric random walk of
length 2m has a last return to the origin at time 2k”, 0 < k < m.

Then,

azkom = P(Ax)

=P ({Xok = 0} N {Xoky1 # 0, Xoky2 #0,..., Xom # 0})
= P(Xox = 0)P(Xok1 # 0, Xoks2 #0,..., Xom # 0] Xok = 0)

Last return to the origin

Hence,

a2k 2m = P(Ax)

=P(Xox = 0)P(X1 #0,X2 #0,...,Xom_2k # 0)

= P(Xok = 0)P(Xom—2k = 0)

For large k, the asymptotic behaviour of P(Xp, = 0) is

P(Xox = 0)

1

~ —

vk

Hence, if k and m go to infinity, then

Q2K 2m

™

1

k(m — k)
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Last return to the origin

A random walk is temporally homogeneous. Therefore,

P(Xoki1 # 0, Xoki2 #0,..., Xom # 0| Xox = 0)

:P(Xl 7507X2 #Oa"')XZm—Zk 7&0|X0 :0)
=P(Xo=0,X1 #0,X2 #0,...,Xom—2k #0)
=P(X1 #0,X2 #0,...,Xom 2k # 0)

Moreover, we know that

]P(Xl 7é0,X2 #07"'7)(2!‘ 7&0) :]P(X2r:0)

Last return to the origin
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Figure: A plot of the probability apxgo for k =1,2,...,40
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Last return to the origin

Observe that
Q2k2m = A2m—2k2m

(Remark)

Since each possible trajectory of length 2m occurs with probability
1/22™, this symmetry means that the number of paths that have a
last return to 0 at time 2k equals the number of paths that have a
last return to 0 at time 2m — 2k.

Hence, the probability that a symmetric random walk of length 2m
has no return to the origin during the last m steps is 1/2.
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Last return to the origin

If we ask what is the most probable number of times that player A
is in the lead, many people will say that the answer is m. But this
is not at all the case.

In the figure, the values of aopm 2k are plotted for 2m = 80 and
k=1,2,...,40.
(Remark)

The less probable value of the number of times that A is in the lead
occurs for 2k = m (m = 40 in the figure); whereas (unexpectedly)
the most probable one occurs for 2k = 0 and 2k = 2m
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Last return to the origin

Another curious result is the following one.

Theorem

If players A and B play a game of Heads and Tails of length 2m,
the probability that A will be in the lead exactly 2k times is equal
to aok om-



