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Random walk

Definition

Let {Yk : k ! 1} be a sequence of independent random variables
such that P(Yi = 1) = p and P(Yi = −1) = q, i ! 1. Let

Xn =

!
0, n = 0

Y1 + Y2 + · · ·+ Yn, n ! 1

Then, {Xn : n ! 1} is a discrete time stochastic process called a
random walk (with parameter p).

◮ The state space is Z.
◮ If p = q = 1/2 we say that the random walk is symmetric.
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Random walk

A realization of this process can be visualized as the movement of
a particle that walks randomly in one dimension, starting from the
origin.

If at time n the particle is at coordinate k, then at time n + 1 it

will be

◮ either at coordinate k + 1 with probability p,

P(Xn+1 = k + 1 |Xn = k) = p

◮ or at coordinate k − 1 with probability q,

P(Xn+1 = k − 1 |Xn = k) = q
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Random walk

Another interpretation is as a game between two players A and B

that repeteadly toss a coin showing heads with probability p.

Let Hn and Tn be the number of heads and tails in the first n

tosses. Thus,

Xn = Hn − Tn, n ! 1

If at time n:

◮ Xn > 0, we say that player A is in the lead;

◮ Xn < 0, we say that player B is in the lead;

◮ Xn = 0, then the game is in a draw.
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Random walk
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Mean and variance

Notice that {Xn = k} if and only if in the first n tosses the number
r of heads and the number s = n − r of tails satisfy:

r − s = 2r − n = k

Hence,

r =
n + k

2
, r = 0, 1, . . . , n

At time n the particle is at coordinate k with probability

P(Xn = k) =

"
n

n+k
2

#
p

n+k
2 q

n−k
2 ,

where k = −n,−n + 2, . . . , n − 2, n.
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Mean and variance

We have that

E(Xn) = E(Hn)− E(Tn) = n(p − q)

Var(Xn) = Var(2Hn − n) = 4npq

Moreover, the Central Limit Theorem implies

Xn − n(p − q)√
4npq

d−→ N(0, 1)

◮ If the walk is symmetric, then E(Xn) = 0, Var(Xn) = n and

Xn√
n

d−→ N(0, 1)
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First visit to a negative coordinate

Let T be the random time at which the particle visits a negative
coordinate for the first time,

T = min{n ! 1 : Xn < 0}

Alternatively, T is the first time at which player B is in the lead.

Let us calculate P(T = n).
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First visit to a negative coordinate

For instance,
P(T = 1) = q

P(T = 2) = 0

P(T = 3) = pq
2

P(T = 4) = 0

P(T = 5) = 2p2q3

· · · · · · · · · · · · · · ·

Notice that P(T = 2k) = 0 for all k ! 1.

◮ It could be possible that the particle will never visit a negative
coordinate, that is to say, P(T = ∞) > 0. In such a case, we
say that the random variable T is defective.
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First visit to a negative coordinate

For odd n ! 3 we have that

P(T = n) =P(T = n,X1 = 1) = p P(T = n |X1 = 1)

Let Z be the time of the first return to the origin,

Z = min{m ! 2 : Xm = 0}

Then

P(T = n |X1 = 1)

=
n−1$

m=2

P(T = n |Z = m,X1 = 1)P(Z = m |X1 = 1)
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First visit to a negative coordinate

Notice that

◮ P(Z = m |X1 = 1) = P(T = m − 1)

◮ P(T = n |Z = m,X1 = 1) = P(T = n −m)

Therefore, if we denote P(T = n) as rn we have the recurrent
equation

rn = p

n−1$

m=2

rm−1rn−m, n ! 3, odd
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First visit to a negative coordinate

For instance,

P(T = 1) = r1 = q

P(T = 3) = r3 = p r
2
1 = pq

2

P(T = 5) = r5 = p (r1r3 + r3r1) = 2p2q3

P(T = 7) = r7 = p (r1r5 + r
2
3 + r5r1) = 5p3q4

· · · · · · · · · · · · · · ·

P(T = n) = rn = p (r1rn−2 + r3rn−4 + · · ·+ rn−2r1)

· · · · · · · · · · · · · · ·
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First visit to a negative coordinate

Let

GT (s) =
$

n!0

rn s
n

be the generating function of the sequence {rn}. (We take r0 = 0.)

Observe that

GT (s) = r1s + r3s
3 + r5s

5 + · · ·
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First visit to a negative coordinate

Therefore

p s (GT (s))
2

= ps (r1s + r3s
3 + r5s

5 + · · · )(r1s + r3s
3 + r5s

5 + · · · )

= p r
2
1 s

3 + p(r1r3 + r3r1)s
5 + p (r1r5 + r

2
3 + r5r1)s

7 + · · ·

· · ·+ p (r1rn−2 + r3rn−4 + · · ·+ rn−2r1)% &' (
rn

s
n + · · ·

= r3s
3 + r5s

5 + r7s
7 + · · ·+ rns

n + · · · = GT (s)− q s
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First visit to a negative coordinate

Then
p s (GT (s))

2 − GT (s) + qs = 0

Solving for GT (s) we obtain

GT (s) =
1−

)
1− 4pqs2

2ps
=

2qs

1 +
)

1− 4pqs2

◮ We have to choose the root of
√

which makes GT (s) finite
at s = 0.

◮ The radius of convergence is R = 1/(2
√
pq). Hence, if

p = q = 1/2, then R = 1. Otherwise, R > 1.
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First visit to a negative coordinate

For a symmetric random walk (p = q = 1/2):

GT (s) =
s

1 +
√
1− s2

=
1

2
s +

1

8
s
3 +

1

16
s
5 +

5

128
s
7 +

7

256
s
9 +

21

1024
s
11 + · · ·

In general,

GT (s) =
2qs

1 +
)

1− 4pqs2

= qs + pq
2
s
3 + 2p2q3s5 + 5p3q4s7 + 14p4q5s9 +

42p5q6s11 + · · ·
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Eventual visit to a negative coordinate

The probability of an eventual visit to a negative coordinate is

$

n!0

P(T = n) =
$

n!0

rn

= GT (1) =
1−

√
1− 4pq

2p
=

1− |q − p|
2p

=

*
+,

+-

1, p # q

q

p
, p > q
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Eventual visit to a negative coordinate

Therefore

◮ If p # q, the particle will visit a negative coordinate with
probability 1. In this case, T is a proper random variable, and

rn = P(T = n), n ! 0

is its probability function.

◮ If p > q, the variable T is defective. There is a nonzero
probability that the particle never visits a negative coordinate:

P(T = ∞) = 1−
$

n!0

P(T = n) = 1− q

p
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Expected time to a negative coordinate

If T is not defective (p # q), then

E(T ) = G
′
T (1) =

*
+,

+-

1

q − p
, p < q

∞, p = q

For instance,

◮ for p = 0.4 one has E(T ) = 5,

◮ for p = 0.49 one has E(T ) = 50,

◮ for p = 0.499 one has E(T ) = 500 (“long excursions”).
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Explicit value of rn

The probability rn = P(T = n) is the coefficient of sn in the series
expansion of

GT (s) =
1−

)
1− 4pqs2

2ps

Therefore

r2k−1 = − 1

2p
c2k ,

where c2k is the coefficient of s2k in the expansion of the function

(1− 4pqs2)1/2
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Explicit value of rn

To find c2k we can use the binomial series

(1 + x)α =
∞$

m=0

"
α

m

#
x
m,

where "
α

m

#
=

α(α− 1) · · · (α−m + 1)

m!
, α ∈ R

Thus

(1− 4pqs2)1/2 =
∞$

k=0

"
1/2

k

#
(−4pqs2)k
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Explicit value of rn

Therefore

r2k−1

= − 1

2p

"
1/2

k

#
(−4pq)k = − 1

2

"
1/2

k

#
(−4)kpk−1

q
k

= −1

2

(1/2)(−1/2)(−3/2) · · · (1/2− k + 1)

k!
(−4)kpk−1

q
k

=
1

2
2k

1 · 3 · · · (2k − 3)

k!
p
k−1

q
k

=
1 · 2 · 3 · · · (2k − 3)(2k − 2)

(k − 1)! k!
p
k−1

q
k

=
1

2k − 1

"
2k − 1

k

#
p
k−1

q
k , k ! 1

23 / 43

Returns to the origin

The probability that the particle is visiting the origin at time n is

P(Xn = 0) =

*
++,

++-

0, n odd

"
2k

k

#
p
k
q
k , n = 2k
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Returns to the origin

By Stirling’s approximation, m! ∼
√
2πm (m/e)m, we have that

P(X2k = 0) ∼
√
2π2k

.
2k
e

/2k

2πk
.
k
e

/2k p
k
q
k =

(4pq)k√
πk

◮ In particular, for a symmetric random walk:

P(X2k = 0) ∼ 1√
πk
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Returns to the origin

Let A" be the limit superior of the sequence of events

Ak = {X2k = 0} , k ! 1

That is to say, A" is the event “the return to the origin happens
infinitely often”

Remember that

P(Ak) ∼
(4pq)k√

πk
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Returns to the origin

If the random walk is not symmetric (p ∕= q), then 4pq < 1.

In this case, the series
0

k ((4pq)
k)/

√
πk converges. Therefore,0

k P(Ak) < ∞, and the first Borel-Cantelli lemma implies
P(A") = 0:

P ({X2k = 0} happens infinitely often) = 0

(Remark)

If the random walk is not symmetric, then (with probability one)

{X2k = 0} occurs only a finite number of times.
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First return to the origin

Let fn = P(Z = n), where Z = min{n ! 1 : Xn = 0}.

That is,
f0 = f1 = 0

fn = P(X1 ∕= 0,X2 ∕= 0, . . . ,Xn−1 ∕= 0,Xn = 0), n ! 2

For instance,
f2 = P(Z = 2) = 2pq

f3 = P(Z = 3) = 0

f4 = P(Z = 4) = 2p2q2

· · · · · · · · · · · · · · ·
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First return to the origin

For n ! 2 we have that

fn = P(Z = n)

= p P(Z = n |X1 = 1) + q P(Z = n |X1 = −1)

= p rn−1 + q r
′
n−1

where r
′
n−1 is as rn−1 exchanging p for q.

◮ Notice that r ′n is the probability that the first visit to a
positive coordinate happens at time n.
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First return to the origin

Then

GZ (s) = p s

$

n!2

rn−1s
n−1 + q s

$

n!2

r
′
n−1s

n−1

= p s

$

n!0

rns
n + q s

$

n!0

r
′
ns

n

= p s GT (s) + q s GT ′(s)

= p s
1−

)
1− 4pqs2

2ps
+ q s

1−
)

1− 4pqs2

2qs

= 1−
)

1− 4pqs2
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First return to the origin

The series expansion of GZ (s) is

GZ (s) = 2pq s2 + 2p2q2 s4 + 4p3q3 s6 + 10p4q4 s8 + · · ·

Thus,

P(Z = 2) = f2 = 2pq

P(Z = 4) = f4 = 2p2q2

P(Z = 6) = f6 = 4p3q3

P(Z = 8) = f8 = 10p4q4

· · · · · ·
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Eventual return to the origin

The probability of an eventual return to the origin is:

$

n!0

P(Z = n) =
$

n!0

fn

= GZ (1) = 1−
)

1− 4pq = 1− |q − p|

◮ If p ∕= q, there is a nonzero probability |q − p| that the
particle never returns to the origin.

◮ If p = q (symmetric walk), then Z is not defective and the
return to the origin happens with probability one. However,

E(Z ) = G
′
Z (1)

=
d

ds

1
1−

)
1− s2

2333
s=1

=
s√

1− s2

3333
s=1

= ∞
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Other properties

The following property holds:

P(Z = 2k) = f2k = p r2k−1 + q r
′
2k−1

= p
1

2k − 1

"
2k − 1

k

#
p
k−1

q
k + q

1

2k − 1

"
2k − 1

k

#
p
k
q
k−1

=
2

2k − 1

"
2k − 1

k

#
p
k
q
k =

1

2k − 1

"
2k

k

#
p
k
q
k

=
1

2k − 1
P(X2k = 0)
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Other properties

Moreover, for a symmetric random walk it can be proved that

P(X1 ∕= 0,X2 ∕= 0, . . . ,X2m ∕= 0) = P(X2m = 0)

Proof:

Let f2k = P(Z = 2k) and u2k = P(X2k = 0). If the random walk is

symmetric, then

f2k =
1

2k − 1

"
2k

k

#
1

22k
, u2k =

"
2k

k

#
1

22k

It can be checked that

u2k−2 − u2k = f2k , k ! 1
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Other properties

Hence

P(X1 ∕= 0,X2 ∕= 0, . . . ,X2m ∕= 0)

= 1− P(X2k = 0 for some 1 # k # m)

= 1−
m$

k=1

f2k = 1−
m$

k=1

(u2k−2 − u2k) = u2m

= P(X2m = 0)
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Last return to the origin

Theorem

The probability α2k,2m that a symmetric random walk of length 2m
has a last return to the origin at time 2k equals

α2k,2m =

"
2k

k

#"
2m − 2k

m − k

#
1

22m

= P(X2k = 0)P(X2m−2k = 0), 0 # k # m

(The case k = 0 corresponds to {Xi ∕= 0 : 1 # i # 2m}.)
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Last return to the origin

Proof.
Let A2k,2m denote the event “the symmetric random walk of
length 2m has a last return to the origin at time 2k”, 0 # k # m.

Then,

α2k,2m = P(A2k)

= P ({X2k = 0} ∩ {X2k+1 ∕= 0,X2k+2 ∕= 0, . . . ,X2m ∕= 0})

= P(X2k = 0)P(X2k+1 ∕= 0,X2k+2 ∕= 0, . . . ,X2m ∕= 0 |X2k = 0)
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Last return to the origin

A random walk is temporally homogeneous. Therefore,

P(X2k+1 ∕= 0,X2k+2 ∕= 0, . . . ,X2m ∕= 0 |X2k = 0)

= P(X1 ∕= 0,X2 ∕= 0, . . . ,X2m−2k ∕= 0 |X0 = 0)

= P(X0 = 0,X1 ∕= 0,X2 ∕= 0, . . . ,X2m−2k ∕= 0)

= P(X1 ∕= 0,X2 ∕= 0, . . . ,X2m−2k ∕= 0)

Moreover, we know that

P(X1 ∕= 0,X2 ∕= 0, . . . ,X2r ∕= 0) = P(X2r = 0)
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Last return to the origin

Hence,

α2k,2m = P(A2k)

= P(X2k = 0)P(X1 ∕= 0,X2 ∕= 0, . . . ,X2m−2k ∕= 0)

= P(X2k = 0)P(X2m−2k = 0)

For large k , the asymptotic behaviour of P(X2k = 0) is

P(X2k = 0) ∼ 1√
πk

Hence, if k and m go to infinity, then

α2k,2m ∼ 1

π
)

k(m − k)
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Last return to the origin
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Figure: A plot of the probability α2k,80 for k = 1, 2, . . . , 40
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Last return to the origin

Observe that
α2k,2m = α2m−2k,2m

(Remark)

Since each possible trajectory of length 2m occurs with probability

1/22m, this symmetry means that the number of paths that have a

last return to 0 at time 2k equals the number of paths that have a

last return to 0 at time 2m − 2k.

Hence, the probability that a symmetric random walk of length 2m
has no return to the origin during the last m steps is 1/2.

41 / 43

Last return to the origin

Another curious result is the following one.

Theorem

If players A and B play a game of Heads and Tails of length 2m,

the probability that A will be in the lead exactly 2k times is equal

to α2k,2m.
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Last return to the origin

If we ask what is the most probable number of times that player A
is in the lead, many people will say that the answer is m. But this
is not at all the case.

In the figure, the values of α2m,2k are plotted for 2m = 80 and
k = 1, 2, . . . , 40.

(Remark)

The less probable value of the number of times that A is in the lead

occurs for 2k = m (m = 40 in the figure); whereas (unexpectedly)

the most probable one occurs for 2k = 0 and 2k = 2m
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