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Abstract
In this paper, we consider the energy decay of some problems involving domains with ra-
dial symmetry. Three different settings are studied: a strong porous dissipation and heat
conduction, a weak porous dissipation and heat conduction and poro-thermoelasticity with
microtemperatures. In all the three problems, the exponential energy decay is shown. More-
over, for each of them some finite element simulations are presented to numerically demon-
strate this behavior.

Keywords Heat conduction · Dissipation · Porous-thermoelasticity · Energy decay ·
Numerical experiments
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1 Introduction

The study of elastic solids with voids started with the contributions of Cowin and Nunziato
[1–3]. This kind of materials has deserved much attention in the last forty years [4–14].
Interesting physical applications of the thermoelasticity with voids are directed to the study
of solids with small distributed porous. Rocks, soils, woods, ceramics or even biological
materials as bones are natural examples. In fact, in recent years multiporosity structure has
been considered [15–18]. This kind of solids can be seen as a particular kind of elastic
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materials with microstructure. Indeed, an increasing interest has been developed to con-
sider the theories with microstructure along the last and current centuries [19–25]. A rele-
vant sub-class of these solids corresponds to the case that the microstructure [26] is deter-
mined by microtemperatures [27]. The wide applicability of this kind of structures made
that many scientists are interested in the study of elastic materials with microtemperatures
[28–35].

Since Quintanilla [36] showed the slow decay of the solutions when only one mechanism
of porous dissipation is considered, much studies have been done to analyze the decay of
the solutions when different types of dissipative mechanisms are introduced in the system
[4–7, 9–12, 28, 33, 37]; however, we can say that all the contributions correspond to the one-
dimensional problem. To the knowledge of the authors the only exception to this statement
corresponds to the article Nicaise and Valein [38]. In that contribution, the authors showed
the polynomial decay to a certain kind of thermo-porous elastic problem. We can say that
it is generally accepted that for different problems porous-thermo-elasticity is not natural to
expect exponential decay of the solutions for dimension greater than one. Therefore, one can
ask if it is possible to identify solutions in such a way that they decay in an exponential way.
In this sense, we believe that the geometry of the body plays a relevant role in this kind of
study. The main aim of the present contribution is to identify solutions for different porous-
thermo-elastic problems in such a way that they decay in this fast way. For this reason, in this
paper we restrict our attention to geometries as which are radially symmetric. Examples of
radially symmetric domains are the balls centered at the origin as well as the circular crowns.
In this case we can see that the radially symmetric solutions decay in an exponential way.
To this end, we will follow the energy arguments, which are naturally applied because they
are usual in the study of decay of solutions within several thermoelastic theories (see for
instance [39, 40]).

In the next section we describe the basic equations corresponding to the theories we are
going to work with. Section 3 is devoted to the study of the time decay of solutions for
porous-thermoelasticity with strong porous dissipation. Later, we consider the case when
the porous dissipation is weak, but in this case we need to change the boundary conditions.
Last section is devoted to the case of porous thermoelasticity with microtemperatures.

2 Several Theories

In this section we recall the basic equations we will work in this paper.
First problem we consider corresponds to the porous-thermo-elasticity with strong

porous dissipation. In this case, the problem is determined by the evolution equations [41]:

ρüi = tij,j , (1)

J φ̈ = hk,k + g, (2)

ρT0η̇ = qj,j , (3)

and the constitutive equations:

tij = λerrδij + 2μeij + μ0φδij − βθδij ,

hi = aφ,i + a∗φ̇,i + k1θ,i ,

g = −μ0eii − ηφ + β1θ,
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ρη = βeii + β1φ + cθ,

qi = kθ,i + k2φ̇,i .

In this system of equations we have that ρ is the mass density, ui is the displacement vec-
tor, tij is the stress tensor, hi is the equilibrated stress tensor, g is the equilibrated body
force, η is the entropy, qi is the heat flux vector, J is the equilibrated inertia, T0 is the
reference temperature at the equilibrium state (assumed uniform and equal to one to sim-
plify the calculations), eij is the strain tensor which is related to the displacement by the
relation

eij = 1

2
(ui,j + uj,i),

φ is the volume fraction, θ is the temperature. Here λ and μ are the usual Lamé pa-
rameters, β determines the coupling between the displacement and the temperature, μ0

is the coupling between the displacement and the porosity, k is the thermal conductivity
and c the thermal capacity. Other parameters are usual in the study of the present the-
ory.

We will consider this system with homogeneous Dirichlet boundary conditions. There-
fore it is suitable to recall that some certain geometries there exist undamped solutions. The
main idea is to consider domains where certain spectral conditions are satisfied. Here, we
will assume that ui = 0 on the boundary and homogeneous (Dirichlet or Neumann) bound-
ary conditions for the domain for the other variables. We consider domains that satisfy the
condition:

Condition D. There exists a nonzero field ψi ∈ H1
0 such that ψi,jj = γ2ψi and ψi,i = 0,

where γ2 �= 0.
We note that in dimension one there are no functions satisfying this condition; however,

in dimension greater than one this condition is satisfied for several symmetric domains. For
instance, if the domain is a ball there are an infinity of eigenvalues satisfying this condition
(see [42]).

When the domain is such that condition (D) is satisfied, we look for solutions of the form
(ui, φ, θ) = (exp(ωt)ψi,0,0) whenever ω2ρ + γ 2μ = 0. It is clear that our solutions are
undamped and therefore they do not decay; however, the aim of this paper is different and
we are looking for solutions that decay in an exponential way. For this reason, we will study
the radial solutions which are totally different from the ones considered previously.

Second problem we will study corresponds to the porous-thermo-elasticity with weak
porous dissipation. Again we will work with the evolution equations (1)-(3), but we need to
change the constitutive equations for the equilibrated stress tensor and the equilibrated body
force. They should be

hi = aφ,i, g = −μ0eii − ηφ − η∗φ̇ + β1θ,

meanwhile the other constitutive equations continue in the same form, but k2 = 0. It is worth
noting that the examples of undamped solutions can be considered also in this problem.

Third system we are going to study in this note corresponds to thermoelasticity with
voids and microtemperatures. In this case to the system (1)-(3) we have to add the equation:

ρε̇i = qij,j + qi − Qi,
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where εi is the first heat flux moment tensor, Qi is the microheat flux average, qij is the first
heat flux moment tensor. The constitutive equations are ([41]):

tij = λerrδij + 2μeij + μ0φδij − βθδij ,

hi = aφ,i − μ2Ti,

g = −μ0eii − ξφ + β1θ,

ρη = β0eii + β1φ + cθ,

ρεi = −μ2φ,i − bTi,

qi = kθ,i + κ1Ti,

qij = −κ4Tr,r δij − κ5Tj,i − κ6Ti,j ,

Qi = (k − κ3)θ,i + (κ1 − κ2)Ti,

where the new constitutive parameters are the usual ones in the theories with mi-
crotemperatures. Again, we can obtain undamped solutions of the form (ui, φ, θ, Ti) =
(exp(ωt)ψi,0,0,0).

Though we have seen examples of undamped solutions for certain domains, our main
aim in this paper is to prove the exponential decay of solutions for the problems defined pre-
viously whenever we consider radially symmetric solutions. It is relevant to recall that this
kind of solutions are only possible in the case that the domain would be radially symmetric
as in the case of balls or crowns. For this reason, we want to emphasize how the geometry
of the domain allow the existence of exponentially stable solutions which is the main aim of
the paper.

3 First Case: Strong Porous-Dissipation and Heat Conduction

The aim of this section is to study the radial solutions of the problem determined by the sys-
tem obtained after the substitution of the constitutive equations into the evolution equations:

ρüi = μui,jj + (λ + μ)uj,ji + μ0φ,i − βθ,i , (4)

J φ̈ = aφ,jj + a∗φ̇,jj + k1θ,jj − μ0ur,r − ηφ + β1θ, (5)

cθ̇ = kθ,jj − βu̇r,r − β1φ̇ + k2φ̇,jj . (6)

This system corresponds to the case of the porous-thermoelasticity where the dissipative
mechanisms are given by the heat conduction and the strong porous viscosity given by the
term a∗φ̇,jj . As we said before, (ui) is the displacement vector, φ is the volume fraction,
θ is the temperature, ρ is the mass density, J is the equilibrated inertia, λ and μ are the
Lamé’s parameters, k is the thermal conductivity and μ0, β , a, a∗, η and β1 are constitutive
coefficients for this theory. We will study the problem determined by this system with the
Dirichlet boundary conditions:

ui(x, t) = φ(x, t) = θ(x, t) = 0, x ∈ ∂B, (7)

and the initial conditions:

ui(x,0) = u0
i (x), u̇i(x,0) = v0

i (x), φ(x,0) = φ0(x), φ̇(x,0) = ψ0(x),

θ(x,0) = θ0(x).
(8)
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It is clear that in the case we assume that the initial conditions have radial symmetry we
obtain that the solutions are always of radial type. That is, the solutions can be given in the
following way:

ui(x, t) = xiU(r, t), φ(x, t) = φ(r, t), θ(x, t) = θ(r, t), (9)

where r2 = x2
1 + x2

2 for the two dimensional case and r2 = x2
1 + x2

2 + x2
3 in the three-

dimensional case. It is worth noting that in this situation we have that ui,j (x, t) = uj,i(x, t).
Therefore, the first equation of our system can be written as

ρüi = (λ + 2μ)uj,ji + μ0φ,i − βθ,i . (10)

Our aim in this section is to prove that the radial solutions decay in a exponential decay.
Therefore we should recall the assumptions that we need to work. In this section we assume
that μ > 0, λ + μ > 0, ημ > μ2

0, c > 0, a > 0, a∗ > 0, 4a∗k > (k1 + k2)
2, ρ > 0 and J > 0.

The sign of the other constitutive coefficients is not a restriction, however we need that β

must be different from zero.
The problem described previously has solutions (for instance by means of the semigroup

arguments) in the Hilbert space H = H1
0 × L2 × H 1

0 × L2 × L2. Existence and uniqueness
of solutions are guaranteed. Even more, the stability of solutions can be obtained; however,
we cannot expect (in the general case) its exponential decay.

Now, our aim here is to obtain the exponential decay of the radial solutions to the problem
proposed previously. We have the following.

Theorem 1 Let us introduce the functions E1, E2 and E3 given by

E1(t) = 1

2

∫
B

(
ρu̇i u̇i + J |φ̇|2 + cθ2 + (λ + 2μ)ui,jui,j + 2μ0ui,iφ + ηφ2 + aφ,iφ,i

)
dv,

E2(t) = 1

2

∫
B

(
ρüi üi + J |φ̈|2 + c|θ̇ |2 + (λ + 2μ)u̇i,j u̇i,j + 2μ0u̇i,i φ̇ + η|φ̇|2 + aφ̇,i φ̇,i

)
dv,

E3(t) = 1

2

∫
B

(
ρu̇i,j u̇i,j + J φ̇,i φ̇,i + cθ,iθ,i + (λ + 2μ)ui,jjui,kk + 2μ0ui,jjφ,i

+ηφ,iφ,i + aφ,iiφ,jj

)
dv,

and define the energy of the system as

E(t) = E1(t) + E2(t) + E3(t).

Then, this energy decays exponentially, that is, there exist two positive constants M and ω

such that

E(t) ≤ ME(0) exp(−ωt).

Proof First, we have that

Ė1(t) = −
∫

B

(
kθ,iθ,i + a∗φ̇,i φ̇,i + (k1 + k2)θ,i φ̇,i

)
dv,

Ė2(t) = −
∫

B

(
kθ̇,i θ̇,i + a∗φ̈,i φ̈,i + (k1 + k2)θ̇,i φ̈,i

)
dv,
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Ė3(t) = −
∫

B

(
kθ,iiθ,jj + a∗φ̇,jj φ̇,ii + (k1 + k2)θ,ii φ̇,jj

)
dv

−
∫

∂B

(
βu̇i,i

∂θ

∂n
+ μ0ui,i

∂φ̇

∂n

)
da,

where n is the normal vector to the surface ∂B .
We note that

∣∣∣∣
∫

∂B

βu̇i,i

∂θ

∂n
da

∣∣∣∣ ≤ ε(λ + 2μ)

∫
∂B

u̇i,i u̇j,j da + C

ε

∫
∂B

(
∂θ

∂n

)2

da,

where ε is as small as we want and C is a calculable positive constant. If we recall Lemma
4.1 of the book of Jiang and Racke [40], we obtain

ε(λ + 2μ)

∫
∂B

u̇i,i u̇j,j da ≤ 2ε(λ + 2μ)

λ + μ

d

dt

∫
B

üiσku̇i,kdv + Cε

∫
Π1dv

−εμ(λ + 2μ)

λ + μ

∫
∂B

∂u̇i

∂n
∂u̇i

∂n
da,

where σk is a smooth field defined on B such that σi = ni on the boundary of B and

Π1 = üi üi + u̇i,i u̇j,j + φ̇,i φ̇,i + θ̇,i θ̇,i .

Recalling again Lemma 4.1 of the book of Jiang and Racke [40] we find that

C

ε

∫
∂B

(
∂θ

∂n
)2da ≤ ε

∫
B

(u̇i,i u̇j,j + φ̇,jj φ̇,ii )dv + C

ε2

∫
B

(θ,iθ,i + θ̇,i θ̇,i + |φ̇|2)dv,

∣∣∣∣
∫

∂B

μ0ui,i

∂φ̇

∂n
da

∣∣∣∣ ≤ ε(λ + 2μ)

∫
∂B

ui,iuj,j da + C

ε

∫
∂B

(
∂φ̇

∂n

)2

da.

The first integral can be bounded in a similar way as previously to obtain

ε(λ + 2μ)

∫
∂B

ui,iuj,j da ≤ 2ε(λ + 2μ)

λ + μ

d

dt

∫
B

u̇iσkui,kdv + Cε

∫
Π2dv

−εμ(λ + 2μ)

λ + μ

∫
∂B

∂ui

∂n
∂ui

∂n
da,

where

Π2 = u̇i u̇i + ui,iuj,j + φ,iφ,i + θ,iθ,i .

The other integral can be bounded by

C

ε

∫
∂B

(
∂φ̇

∂n

)2

da ≤ C∗

ε

(∫
B

φ̇,i φ̇,i

)1/2 (∫
B

φ̇,ii φ̇,jj

)1/2

If we select a parameter χ large enough we can show that

χ(Ė1 + Ė2) + Ė3 ≤ −C1

∫
B

(θ,iθ,i + θ̇,i θ̇,i + θ,iiθ,jj + φ̇,i φ̇,i + φ̈,i φ̈,i + φ̇,jj φ̇,ii )dv
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−2ε(λ + 2μ)

λ + μ

d

dt

∫
B

(u̇iσkui,k + üiσku̇i,k)dv

−εμ(λ + 2μ)

λ + μ

∫
∂B

(
∂ui

∂n
∂ui

∂n
+ ∂u̇i

∂n
∂u̇i

∂n

)
da + Cε

∫
B

Π3dv,

where

Π3 = üi üi + u̇i,i u̇j,j + ui,iuj,j + φ,iφ,i .

As β is different from zero, we can obtain the estimate

∫
B

u̇i,i u̇j,j dv ≤ C

∫
B

(|θ̇ |2 + θ,iiθ,jj + |φ̇|2 + φ̇,jj φ̇,ii )dv, (11)

and therefore the next inequality can be found:

χ(Ė1 + Ė2) + Ė3

≤ −C1

∫
B

(θ,iθ,i + θ̇,i θ̇,i + θ,iiθ,jj + φ̇,i φ̇,i + φ̈,i φ̈,i + φ̇,jj φ̇,ii + u̇i,i u̇j,j )dv

−2ε(λ + 2μ)

λ + μ

d

dt

∫
B

(u̇iσkui,k + üiσku̇i,k)dv

−εμ(λ + 2μ)

λ + μ

∫
∂B

(
∂ui

∂n
∂ui

∂n
+ ∂u̇i

∂n
∂u̇i

∂n

)
da + Cε

∫
B

Π4dv,

where

Π4 = üi üi + ui,iuj,j + φ,iφ,i .

We now consider the functions:

F1(t) =
∫

B

(
ρuiu̇i + Jφφ̇ + a∗

2
φ,jφ,j

)
dv,

F2(t) =
∫

B

(
ρui,i u̇j,j + Jφ,i φ̇,i + a∗

2
φ,iiφ,jj

)
dv.

We have

Ḟ1(t) = −
∫

B

(
(λ + 2μ)ui,jui,j + 2μ0ui,iφ + aφ,jφ,j + ηφ2 + k1θ,jφ,j

)
dv

+
∫

B

(
β1θφ − βθ,iui

)
dv +

∫
B

(ρu̇i u̇i + J |φ̇|2)dv

≤ −C2

∫
B

(ui,jui,j + φ,jφ,j + φ2)dv + C

∫
B

(θ,iθ,i + u̇i u̇i + |φ̇|2)dv.

On the other hand, since

F2(t) = −
∫

B

(
ρu̇iui,jj + J φ̇φ,jj )dv +

∫
B

a∗

2
φ,iiφ,jj dv, (12)
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we see that

Ḟ2(t) = −
∫

B

(
(λ + 2μ)ui,jjui,kk + 2μ0ui,jjφ,i + aφ,jjφ,ii + ηφ,iφ,i + kθ,iiφ,jj

)
dv

−
∫

B

(
β1θφ,ii − βθ,iui,jj

)
dv +

∫
B

(ρu̇i,j u̇i,j + J φ̇,i φ̇,i )dv −
∫

∂B

ui,i

∂φ

∂n
da.

It follows that

Ḟ2(t) ≤ −C2

∫
B

(
ui,jjui,kk + φ,jjφ,ii + φ,iφ,i

)
dv

+ C

∫
B

(
θ,iiθ,jj + θ,iθ,i + u̇i,i u̇j,j + φ̇,j φ̇,j

)
dv

+ C3

[(∫
B

ui,iuj,j dv

)1/2(∫
B

ui,jjui,kkdv

)1/2

+
(∫

B

φ,iφ,idv

)1/2(∫
B

φ,jjφ,kkdv

)1/2]
.

If we select χ∗ large enough we get

χ∗Ḟ1(t) + Ḟ2(t) ≤ −C2

∫
B

(ui,jjui,kk + φ,jjφ,ii + φ,iφ,i + ui,iui,i + φ2)dv

+ C

∫
B

(
θ,iiθ,jj + θ,iθ,i + u̇i,i u̇j,j + φ̇,j φ̇,j

)
dv.

At the same time, we also note that there exists a positive K such that

∫
B

üi üidv ≤ K

∫
B

(ui,jjui,kk + φ,iφ,i + θ,iθ,i)dv. (13)

We now define the function

E∗(t) = χ(E1 + E2) + E3 + ε1/2(χ∗F1(t) + F2(t))

+ 2ε(λ + 2μ)

λ + μ

d

dt

∫
B

(u̇iσkui,k + üiσku̇i,k)dv.

In view of the previous estimates we see that

Ė∗(t) ≤ −C1

∫
B

(θ,iθ,i + θ̇,i θ̇,i + θ,iiθ,jj + φ̇,i φ̇,i + φ̈,i φ̈,i + φ̇,jj φ̇,ii + u̇i,i u̇j,j )dv

−C1ε
1/2

∫
B

(ui,iuj,j + ui,jjui,kk + φ,iφ,i + φ,iiφ,jj + üi üi )dv

+Cε1/2
∫

B

(
θ,iiθ,jj + θ,iθ,i + u̇i,i u̇j,j + φ̇,j φ̇,j

)
dv + Cε

∫
B

Π4dv.

We note that, for ε small enough, we can obtain that

Ė∗(t) + CE(t) ≤ 0,
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where we recall that

E(t) = E1(t) + E2(t) + E3(t)

In view that E∗(t) is equivalent to E(t) we obtain the exponential decay of solutions. �

3.1 Numerical Simulations

In this section, we want to present numerical simulations for the solutions to our problem
in the case that we have a two-dimensional ball with radius 1. We also assume that the time
interval is fixed as [0, T ], where T denotes the final time, and we note that, in order to
simplify the writing, we do not indicate the dependence on the spatial variable (xi).

Taking into account the boundary conditions, defining the velocity vi = u̇i and the
porosity speed e = φ̇ system (4)-(6) leads to the following variational formulation, for a.e.
t ∈ [0, T ],

ρ(v̇i(t),wi) + μ(ui,j (t),wi,j ) + (λ + μ)(uj,j (t),wi,i ) = μ0(φ,i(t),wi)

−β(θ,i(t),wi) ∀(wi) ∈ V, (14)

J (ė(t), z) + a(φ,j (t), z,j ) + a∗(e,j (t), z,j ) + η(φ(t), z) = −μ0(ur,j (t), z)

+β1(θ(t), z) ∀z ∈ E, (15)

c(θ̇(t), r) + k(θ,j (t), r,j ) = −β(vj,j (t), r) − β1(e(t), r) ∀r ∈ E, (16)

where vi(0) = v0
i and e(0) = ψ0, the variational spaces E and V are given by

E = {z ∈ H 1(B) ; z = 0 on ∂B},
V = {(wi) ∈ [H 1(B)]2 ; wi = 0 on ∂B for i = 1,2},

and we denote by (·, ·) the inner product in the space L2(B). Here, the displacements and
the porosity are defined as

ui(t) =
∫ t

0
vi(s) ds + u0

i , φ(t) =
∫ t

0
e(s) ds + φ0. (17)

Now, we consider a fully discrete approximation of problem (14)-(17). This is done in
two steps. First, we assume that the domain B is polyhedral and we denote by T h a regular
triangulation in the sense of [43]. Thus, we construct the finite dimensional spaces V h ⊂ V

and Eh ⊂ E given by

Eh = {rh ∈ C(B) ; rh
|T r ∈ P1(T r) ∀T r ∈ T h, rh = 0 on ∂B},

V h = {wh
i ∈ C(B) ; wh

i|T r
∈ P1(T r) ∀T r ∈ T h, wh

i = 0 on ∂B, for i = 1,2},
where P1(T r) represents the space of polynomials of degree less or equal to one in the
element T r , i.e. the finite element spaces V h and Eh are composed of continuous and piece-
wise affine functions. Here, h > 0 denotes the spatial discretization parameter. Moreover,
we assume that the discrete initial conditions, denoted by u0h

i , v0h
i , φ0h, e0h and θ0h, are

given by

u0h
i = Phu0

i , v0h
i = Phv0

i , φ0h = Phφ0, e0h = Phψ0, θ0h = Phθ0,
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where Ph is the classical finite element interpolation operator over Eh (see, e.g., [43]).
Secondly, we consider a partition of the time interval [0, T ], denoted by 0 = t0 < t1 <

· · · < tN = T . In this case, we use a uniform partition with step size τ = T/N and nodes
tn = nτ for n = 0,1, . . . ,N . For a continuous function z(t), we use the notation zn = z(tn)

and, for the sequence {zn}N
n=0, we denote by δzn = (zn − zn−1)/τ its corresponding divided

differences.
Therefore, using the backward Euler scheme, the fully discrete approximations are con-

sidered as follows.

ρ(δ(vhτ
n )i ,w

h
i ) + μ((uhτ

n )i,j ,w
h
i,j ) + (λ + μ)((uhτ

n )j,j ,w
h
i,i ) = μ0((φ

hτ
n ),i ,w

h
i )

−β((θhτ
n ),i ,w

h
i ) ∀(wh

i ) ∈ V h,

J (δehτ
n , zh) + a((φhτ

n ),j , z
h
,j ) + a∗((ehτ

n ),j , z
h
,j ) + η(φhτ

n , zh) = −μ0((u
hτ
n )r,j , z

h)

+β1(θ
hτ
n , zh) ∀zh ∈ Eh,

c(δθhτ
n , rh) + k((θhτ

n ),j , r
h
,j ) = −β((vhτ

n )j,j , r
h) − β1(e

hτ
n , rh) ∀rh ∈ Eh,

where the discrete displacements and the discrete porosity are obtained from the relations:

(uhτ
n )i = τ(vhτ

n )i + (uhτ
n−1)i , φhτ

n = τehτ
n + φhτ

n−1.

The above fully discrete problem leads to a linear system written in terms of a pro-
duct variable which has a unique solution due to the conditions imposed on the constitutive
coefficients.

Our aim now is to show numerically the asymptotic energy behavior. Therefore, we use
the following data:

T = 30, ρ = 1, μ = 5, λ = 2, μ0 = 2, β = 2 J = 5, a = 2,

a∗ = 5, η = 5, β1 = 3, c = 1, k = 0.1,

and the initial conditions:

φ0 = ψ0 = θ0 = 0, u0
i (x, y) = v0

i (x, y) = x2 + y2 − 1 for (x, y) ∈ B.

Taking the discretization parameter τ = 0.001 and using the finite element mesh shown
in Fig. 1, in Fig. 2 we plot the evolution in time, in both natural and semi-log scales, of the
discrete energy Ehτ

n defined as:

Ehτ
n = 1

2

∫
B

(
ρ(vhτ

n )i(v
hτ
n )i + J |ehτ

n |2 + c(θhτ
n )2 + (λ + 2μ)(uhτ

n )i,j (u
hτ
n )i,j

+2μ0(u
hτ
n )i,iφ

hτ
n + η(φhτ

n )2 + a(φhτ
n ),i(φ

hτ
n ),i

)
dv.

As can be seen, the discrete energy tends to zero and the theoretical exponential asymptotic
behavior seems to be achieved.

4 Second Case: Weak Porous-Dissipation and Heat Conduction

In this section, we consider a similar problem as in the previous one, but in the case that we
assume weak porous dissipation. That is, we replace equation (5) by

J φ̈ = aφ,jj − μ0ur,r − ηφ − η∗φ̇ + β1θ, (18)
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Fig. 1 First system: Finite
element mesh

Fig. 2 First system: Evolution in time of the discrete energy in natural (left) and semi-log (right) scales

where η∗ is a positive constant and we assume that k2 = 0. The analysis in this section
follows the lines proposed before; however, as we have seen in the previous section, the
boundary conditions proposed there impose that the manipulations are very cumbersome
and it is not clear that we can directly extend to the present situation. In order to overcome
this difficulty, we change a little bit the boundary conditions to assume that

ui(x, t) = ∂φ(x, t)

∂n
= ∂θ(x, t)

∂n
= 0, x ∈ ∂B. (19)

To define a well-posed problem we need to consider the initial conditions proposed in (8).
Again, we assume radial solutions of the form proposed in the previous section and equation
(4) becomes (10). This problem can be solved in the Hilbert space H = H1

0 × L2 × H 1∗ ×
L2∗ × L2∗, where

L2
∗(B) =

{
f ∈ L2,

∫
B

f dv = 0

}
,

and H 1∗ (B) = H 1
0 (B) ∩ L2∗(B).

Now, our aim is again to obtain the exponential decay of the radial solutions to the pro-
blem proposed in this section. So, we have the following.
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Theorem 2 Let us consider the functions Ei, i = 1,2,3, defined in Theorem 1 and the ener-
gy function E given by

E(t) = E1(t) + E2(t) + E3(t).

Then, this energy decays exponentially; i.e., there exist two positive constants M and ω such
that

E(t) ≤ ME(0) exp(−ωt).

Proof We have

Ė1(t) = −
∫

B

(
kθ,iθ,i + η∗|φ̇|2)dv,

Ė2(t) = −
∫

B

(
kθ̇,i θ̇,i + η∗|φ̈|2)dv,

Ė3(t) = −
∫

B

(
kθ,iiθ,jj + η∗φ̇,i φ̇,i

)
dv.

We note that, in view of the boundary conditions, the expression of the time derivative of E3

is easier to manipulate. Using similar arguments to the ones used in the previous section we
see

Ė1 + Ė2 + Ė3 ≤ −C1

∫
B

(
θ,iθ,i + θ̇,i θ̇,i + θ,iiθ,jj + |φ̇|2 + |φ̈|2 + φ̇,i φ̇,i + u̇i,i u̇j,j

)
dv.

Proceeding as in the proof of Theorem 1 we also need to introduce a couple of functions,
but being a little bit different:

F1(t) =
∫

B

(
ρuiu̇i + Jφφ̇ + 1

2
η∗|φ|2

)
dv,

F2(t) =
∫

B

(
ρui,i u̇j,j + Jφ,i φ̇,i + 1

2
η∗φ̇,i φ̇,i

)
dv.

It follows that

Ḟ1(t) ≤ −C2

∫
B

(ui,j ui,j + φ,jφ,j + φ2)dv + C

∫
B

(θ,iθ,i + u̇i u̇i + |φ̇|2)dv,

Ḟ2(t) ≤ −C2

∫
B

(
ui,jjui,kk + φ,jjφ,ii + φ,iφ,i

)
dv + C

∫
B

(
θ,iθ,i + u̇i,i u̇j,j + φ̇,j φ̇,j

)
dv.

Again, the expression of the time derivative of F2(t) is easier due to the boundary conditions
we assume. We also note that inequality (13) also holds here. Therefore, we find that

Ḟ2(t) ≤ −C∗
2

∫
B

(
ui,jjui,kk + üi üi +φ,jjφ,ii +φ,iφ,i

)
dv+C∗

∫
B

(
θ,iθ,i + u̇i,i u̇j,j +φ̇,j φ̇,j

)
dv.

The function

E∗(t) = E1(t) + E2(t) + E3(t) + ε(F1(t) + F2(t))
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Fig. 3 Second system: Evolution in time of the discrete energy in natural (left) and semi-log (right) scales

is equivalent to the function E(t) = E1(t) + E2(t) + E3(t) whenever ε is small enough. At
the same time, we get

Ė∗(t) ≤ C1

∫
B

(θ,iθ,i + θ̇,i θ̇,i + θ,iiθ,jj + |φ̇|2 + |φ̈|2 + φ̇,i φ̇,i + u̇i,i u̇j,j )dv

−εC2

∫
B

(ui,j ui,j + φ,jφ,j + ui,jjui,kk + üi üi )dv + εC∗
∫

B

(θ,iθ,i + u̇i,i u̇j,j + φ̇,j φ̇,j )dv.

Obviously, if we select ε small enough it follows that

Ė∗(t) + CE(t) ≤ 0,

and, therefore, the exponential decay can be obtained. �

4.1 Numerical Simulations

In this section, the system obtained replacing equation (5) by (18) is numerically solved.
Since the differences with respect to the numerical algorithm shown in Sect. 3.1 are minor,
we skip the details for the sake of reading.

Therefore, we use the following data:

T = 30, ρ = 1, μ = 5, λ = 2, μ0 = 2, β = 2 J = 5, a = 2,

η∗ = 5, η = 5, β1 = 3, c = 1, k = 4,

and the same initial conditions than in Sect. 3.1.
Taking now the time discretization parameter τ = 0.001 and the finite element mesh

shown in Fig. 1, the evolution in time of the discrete energy is shown in Fig. 3 in both
natural and semi-log scales. Again, we can observe that the discrete energy tends to zero
and the expected asymptotic exponential decay.

5 Third Case: Heat Conduction and Microheat Conduction

Third case we want to analyze in this paper corresponds to the study of porous-thermoelasti-
city with microtemperatures. The system of equations is:

ρüi = μui,jj + (λ + μ)uj,ji + μ0φ,i − βθ,i , (20)
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J φ̈ = aφ,jj − μ0ur,r − dwi,i − ηφ + β1θ, (21)

cθ̇ = kθ,jj − βu̇r,r + κ1wi,i − β1φ̇, (22)

ζ ẇi = κ6wi,jj + (κ4 + κ5)wj,ji − κ3θ,i − κ2wi − dφ̇,i . (23)

We pay attention that this system does not impose any kind of porous dissipation and the
damping is proposed by the temperature and the microtemperatures. To study this system,
we need to impose the initial conditions proposed in (8), but we also need initial conditions
for the microtemperatures. That is,

wi(x,0) = w0
i (x).

We also impose the boundary conditions proposed in (19) as well as Dirichlet homogeneous
boundary conditions for the microtemperatures:

wi(x, t) = 0, x ∈ ∂B.

Apart of the assumptions proposed previously for the different constitutive coefficients in
the case that the microtemperatures are present, it is usual to assume that

κ6 + κ5 + 3κ4 > 0, κ6 + κ5 > 0, κ6 − κ5 > 0, (κ1 + κ3)
2 < 4kκ2.

Under these assumptions we can determine the existence and uniqueness of solutions in the
Hilbert space:

H = H1
0 × L2 × H 1

∗ × L2
∗ × L2

∗ × L2.

However, we here concentrate our attention to radial solutions. That is, solutions of the
form (9) and such that wi(x, t) = xiW(r, t). As we have seen for the displacement, the
microtemperatures satisfy wi,j = wj,i and, therefore, equation (23) can be written as

ζ ẇi = κ∗wi,jj − κ3θ,i − κ2wi − dφ̇,i , (24)

where κ∗ = κ4 + κ5 + κ6 and we will assume, from now on, positive. As we have imposed
in the previous sections, we assume that β is different from zero, but in this section we also
assume that d is different from zero.

Theorem 3 Let us introduce the functions E1, E2 and E3 given by

E1(t) = 1

2

∫
B

(
ρu̇i u̇i + J |φ̇|2 + cθ2 + (λ + 2μ)ui,jui,j + 2μ0ui,iφ + ηφ2

+aφ,iφ,i + ζwiwi

)
dv,

E2(t) = 1

2

∫
B

(
ρüi üi + J |φ̈|2 + c|θ̇ |2 + (λ + 2μ)u̇i,j u̇i,j + 2μ0u̇i,i φ̇ + η|φ̇|2

+aφ̇,i φ̇,i + ζ ẇiẇi

)
dv,

E3(t) = 1

2

∫
B

(
ρu̇i,j u̇i,j + J φ̇,i φ̇,i + cθ,iθ,i + (λ + 2μ)ui,jjui,kk + 2μ0ui,jjφ,i + ηφ,iφ,i

+aφ,iiφ,jj + ζwi,jwi,j

)
dv,
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and define the energy of the system as

E(t) = E1(t) + E2(t) + E3(t).

Then, this energy decays exponentially, that is, there exist two positive constants M and ω

such that

E(t) ≤ ME(0) exp(−ωt).

Proof We have

Ė1(t) = −
∫

B

(
kθ,iθ,i + (κ1 + κ3)θ,iwi + κ2wiwi + κ∗wi,jwi,j

)
dv,

Ė2(t) = −
∫

B

(
kθ̇,i θ̇,i + (κ1 + κ3)θ̇,i ẇi + κ2ẇiẇi + κ∗ẇi,j ẇi,j

)
dv,

Ė3(t) = −
∫

B

(
kθ,iiθ,jj + (κ1 + κ3)θ,jjwi,i + κ2wi,iwj,j + κ∗wi,jjwi,kk

)
dv.

We note that (11) holds and, in a similar way, since d is different from zero, we find that

∫
B

φ̇,i φ̇,idv ≤ C

∫
B

(wi,jjwi,kk + ẇiẇi + θ,iθ,i )dv.

Therefore, it follows that

Ė1 + Ė2 + Ė3

≤ −C1

∫
B

(θ,iθ,i + θ̇,i θ̇,i + θ,iiθ,jj + wi,iwj,j + ẇiẇi + wj,iiwj,kk + φ̇,i φ̇,i + u̇i,i u̇j,j )dv.

We also consider the functions:

F1(t) =
∫

B

(ρuiu̇i + Jφφ̇)dv,

F2(t) =
∫

B

(ρui,i u̇j,j + Jφ,i φ̇,i )dv,

and we obtain that

Ḟ1(t) = −C2

∫
B

(ui,jui,j + φ,jφ,j + φ2)dv + C

∫
B

(θ,iθ,i + wi,iwj,j + u̇i u̇i + |φ̇|2)dv,

Ḟ2(t) ≤ −C2

∫
B

(
ui,jjui,kk + φ,jjφ,ii + φ,iφ,i

)
dv

+ C

∫
B

(
θ,iθ,i + wi,iwj,j + u̇i,i u̇j,j + φ̇,j φ̇,j

)
dv.

According to inequality (13) we can show that

∫
B

|φ̈|2dv ≤ K

∫
B

(ui,j ui,j + φ,iiφ,jj + θ,iθ,i + wi,iwj,j )dv. (25)
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In view of (13) and (25) it follows that

Ḟ2(t) ≤ −C2

∫
B

(
ui,jjui,kk + φ,jjφ,ii + φ,iφ,i + üi üi + |φ̈|2

)
dv

+ C

∫
B

(
θ,iθ,i + wi,iwj,j + u̇i,i u̇j,j + φ̇,j φ̇,j

)
dv.

We can define the function

E∗(t) = E1(t) + E2(t) + E3(t) + ε(F1(t) + F2(t)),

which is also equivalent to the function E(t) = E1(t) + E2(t) + E3(t), whenever ε is small
enough. At the same time, we have

Ė∗(t) ≤ C1

∫
B

(θ,iθ,i + θ̇,i θ̇,i + θ,iiθ,jj + |φ̇|2 + φ̇,i φ̇,i + u̇i,i u̇j,j + wi,jwi,j

+ẇi,j ẇi,j + wi,jjwi,kk)dv + εC∗
∫

B

(θ,iθ,i + u̇i,i u̇j,j + φ̇,j φ̇,j )dv

−εC2

∫
B

(ui,jui,j + φ,jφ,j + ui,jjui,kk + üi üi + φ̈|2)dv.

It is clear that if we choose ε small enough we obtain that

Ė∗(t) + CE(t) ≤ 0,

and, therefore, the exponential decay can be concluded. �

5.1 Numerical Simulations

Finally, we solve numerically system (20)-(23). Since we could obtain straightforwardly the
fully discrete approximations following the procedure described in Sect. 3.1, we omit again
the details for the sake of reading.

Therefore, we use the following data:

T = 40, ρ = 1, μ = 5, λ = 2, μ0 = 2, β = 2 J = 5, a = 2,

η = 5, β1 = 3, c = 1, k = 4, d = 1, ζ = 1, k1 = 3, k2 = 1,

k3 = 2, k4 = 1, k5 = 1, k6 = 2,

and the same initial conditions than in Sect. 3.1, by adding the following one for the mi-
crotemperatures:

w0
i = 0.

Using again the time discretization parameter τ = 0.001 and the finite element mesh
shown in Fig. 1, the evolution in time of the discrete energy Ehτ

n given now as

Ehτ
n = 1

2

∫
B

(
ρ(vhτ

n )i(v
hτ
n )i + J |ehτ

n |2 + c(θhτ
n )2 + (λ + 2μ)(uhτ

n )i,j (u
hτ
n )i,j

+2μ0(u
hτ
n )i,iφ

hτ
n + η(φhτ

n )2 + a(φhτ
n ),i(φ

hτ
n ),i + ζ(whτ

n )i(w
hτ
n )i

)
dv,
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Fig. 4 Third system: Evolution in time of the discrete energy in natural (left) and semi-log (right) scales

is plotted in Fig. 4 in both natural and semi-log scales. Again, we can observe that the
discrete energy tends to zero and the expected asymptotic exponential decay.
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