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Abstract: We explore the possibility of extending the depth of focus of an imaging lens with an
asymmetric quartic phase-mask, while keeping the aberration within a relatively low level. This
can be intended, for instance, for ophthalmic applications, where no further digital processing
can take place, relying instead on the patient’s neural adaptation to their own aberrations. We
propose a computational optimization method to derive the design-strength factor of the asymmetric
profile. The numerical and experimental results are shown. The optical experiment was conducted
by means of a modulo-2π phase-only spatial light modulator. The proposed combination of the
asymmetric mask and the lens can be implemented in a single refractive element. An exemplary
case of an extended-depth-of focus intraocular lens based on the proposed element is described and
demonstrated with a numerical experiment.

Keywords: extended depth of focus; depth of field; phase mask; ophthalmic lens; intraocular lens;
range of vision; presbyopia compensation

1. Introduction

Defocus is one of the most common sources of image degradation in the optical
imaging system of the eye. An image with maximum lateral resolution is perceived when
the human sensor is placed at the optical conjugate plane of the object or, at least, within
an axial range of the image space; this is known as depth of focus (DOF). An analogous
axial range can be measured in the object space, called depth of field, where objects placed
at different distances from the optical system are imaged with maximum sharpness. In
human vision, the DOF can be considered to provide a perceptual tolerance for relatively
small focus errors. This perceptual tolerance is certainly desirable, and is common to all
physiological feedback control systems [1].

Image quality rapidly decreases outside the DOF. There has been a variety of ap-
proaches aimed at resolving this disadvantage by extending the DOF, which in turn,
enlarges the depth of field. Applications oriented to digital imaging by cameras, and to
ophthalmic vision correction, are reviewed in [2].

A large number of diffractive optical elements (DOEs), refractive components, and
multifocal lenses has been designed to mitigate defocus and obtain DOF extension in
imaging systems. For instance, a simple approach consists of co-axially combining several
lenses that are spatially multiplexed and displayed on a liquid-crystal device [3]. The axial
irradiance distribution produced by each lens overlaps with the next, thus resulting an
extended DOF. Other solutions, such as a combination of an asymmetric phase-mask (APM)
with an imaging lens [4,5], involve the introduction of a certain amount of aberration that
stays nearly constant along the axial segment, thus extending the DOF. Typically, a digital
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deconvolution in a post-processing stage is required to further improve the output result
and obtain a sharp image.

In this work, we explore the possibility of extending the DOF of an imaging lens
with an optical element such as the APM, while keeping the aberration within a relatively
low level so that no further posterior digital processing is needed. Although a perfectly
clear and in-focus retinal image is ideally present only when an object is optically conju-
gated with the retina itself, a slightly defocused image will also be interpreted this way
by the brain, as long as it is positioned within the optical extension of the DOF. This
hypothesis relies on the neural adaptation wherein the human brain compensates for
the eye’s optical aberrations [6,7], and even has a neural mechanism that compensates
for the optical differences between the eyes [8]. Encouraged by the demand for presby-
opia compensation in ophthalmic optics and the results abundantly reported showing a
variety of elements—such as quartic phase-mask [4], light sword [9], peacock eye [10],
small aperture [11], a combination of fourth- and sixth-order spherical aberration [12], and
line-umbilical multifocal-wavefront-based elements [13], to mention a few—we study the
trade-off between extending the DOF with the quartic APM [4] and a decrease in image
quality. We propose a numerical optimization scheme that could be used as a design
criterion for ophthalmic imaging systems that cannot admit further digital processing.

We describe the computational optimization method and show numerical as well
as experimental results. The optical experiment was conducted by means of a modulo-
2π phase-only spatial light modulator (SLM). For this reason, the computed trade-off
asymmetric profile displayed on the SLM looked like a pure diffractive optical element,
with its characteristic distribution of echelettes or diffractive steps. The combination of an
asymmetric mask and a monofocal lens can be implemented in a single optical element. Its
prototyping can be mechanized with smooth curvature onto the ophthalmic lens’ surfaces,
which would show no discrete diffractive steps. This property would clearly simplify the
manufacturing process of the refractive element, and reduce the wavelength dependence
of its performance in comparison with a DOE.

2. Methods
2.1. Theoretical Background: The Generalized Pupil Function of a Thin Lens and Defocus

In imaging systems, defocus results in a spatial low-pass filter effect. Such an effect can
be described through the optical-transfer function (OTF), which, in the case of a single thin
lens, corresponds to the scaled autocorrelation of the generalized pupil function defined
by [14]:

P(x, y) = Q(x, y)ϕ(x, y) (1)

where (x, y) are the pupil-plane spatial coordinates, Q(x, y) is the physical aperture, and
ϕ(x, y) represents the phase transformation at the plane of the pupil; this can be expressed
as ϕ(x, y) = exp[ikW(x, y)], where W(x, y) is the wave aberration function, k = 2π/λ, λ
is the optical wavelength, and i is the imaginary unit. For the sake of simplicity, in the
following, we discuss a one-dimensional (1-D) imaging model.

When an aberration such as defocus is introduced, W(x) has a quadratic form:

W(x) = W20

( x
R

)2
(2)

where R is the radius in case of a lens with a circular aperture. Hopkins’ defocus coefficient
W20 determines the severity of the defocus aberration [15] and is given by:

W20 =
R2

2

(
1
z
+

1
z′
− 1

f

)
, (3)
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where z is the distance from the object plane to the lens, z′ is the distance from the lens to
the image plane, and f is the focal length. When the object and image planes conjugate
optically through the thin lens, the imaging condition is fulfilled, that is,

1
z
+

1
z′

=
1
f

, (4)

and W20 = 0. The DOF is the axial range in the image space ∆z′ where the image appears
sharp, i.e., with maximum lateral resolution. Frequently, the coefficient W20 is translated
into a phase misfocus factor ψ,

ψ = kW20, (5)

so that, the 1-D generalized pupil function of the thin lens can be written as:

P(ψ; x) = Q(x) exp
[

iψ
( x

R

)2
]

. (6)

2.2. Asymmetric Phase-Mask Family to Extend the Depth of Focus

Castro and Ojeda [4] demonstrated that there is a family of asymmetric phase-masks
that, when placed in the pupil of an imaging system, are useful for extending the axial
range of high, lateral resolution (either depth of field, if measured in the object space, or
DOF, if measured in the image space). Their generalized pupil function takes the form:

Pa(x) = Q(x) exp
[
i2πα sgn(x)

∣∣∣ x
R

∣∣∣n], (7)

where α is a strength factor that represents the maximum optical path difference in wave-
length units, introduced by the mask, and n is a positive integer number that denotes
the order of the phase profile. Typically, the strength factor α is a positive number. No
asymmetric mask would be introduced for the trivial case α = 0. The asymmetry of
the phase-mask is introduced in Equation (7) through the signum function, defined as
sgn(x) = +1 for x > 0, sgn(x) = −1 for x < 0. Since the masks are phase-only, the
light-gathering capability of the imaging system is not affected. Moreover, since the whole
pupil aperture is covered by the mask, the frequency content is preserved. However, these
properties are achieved at the expense of a decline in the image quality, which is also re-
vealed in a decay of the modulation transfer function (MTF) curves. As the authors pointed
out, the image degradation from the in-focus to the out-of-focus images is slower for the
phase-masks with low orders (n = 4, 5, 6) than for those with high orders (for example,
n = 9, 10, and 12). This fact led them to propose digital image restoration procedures for
further image enhancement [4]. According to the authors, “the asymmetric phase-mask of
the order n = 4 is a good choice because the resulting MTFs have low variations with focus
error. Additionally, the ripples (along the main curve of the MTF) are reduced” [4]. For this
reason, we consider a quartic-order-phase profile hereafter in this work.

2.3. Image Quality Metrics

The optical-transfer function (OTF) of an imaging system allows a complete mathemat-
ical description of the image quality in terms of the spatial frequency u. The 1-D OTF H(u)
of a single lens that uses incoherent illumination can be expressed as the normalized auto-
correlation function of the generalized pupil function [14]. We assume a binary aperture
Q(x), which equals 1 within the pupil and 0 outside. In the presence of severe defocus, that
is, when W20 � λ, such a 1-D OTF can be approximated by H(u) = sin c(4πW20z′u/R),
which explains the spectral low-pass filtering effect of defocus [2]. The OTF can be cal-
culated as the Fourier transform of the impulse response h(x′), where x′ represents the
image-plane spatial coordinate. For incoherent systems, the impulse response is, in turn,
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the square of the Fourier transform of the generalized pupil function. Therefore, the 1-D
OTF of a single lens imaging system affected by defocus can be expressed as:

H(ψ; u) = F{h
(
ψ; z′

)
} = F

{
|F{P(ψ; x)}|2

}
. (8)

The MTF, which is the absolute value of the OTF, |H(u)|, provides a means to quantify
the image quality in terms of the magnitude response of the optical system to sinusoids of
different spatial frequencies. For imaging systems limited by diffraction and aberrations,
this useful metric reveals the general decrease in contrast or modulation depth in the image,
with increasing frequency [14,16].

The impulse response h(x) is equal to the image of an ideal point object, generally
known as the point-spread function (PSF). The imaging quality of the optical system can be
evaluated through PSF-based metrics. In particular, many PSF descriptors are widely used
in visual optics (e.g., Strehl ratio, light-in-the-bucket) [17,18]. Demenikov [19] introduced a
PSF shape descriptor based on kurtosis to evaluate the imaging quality of systems affected
by aberrations, in particular, defocus ψ. The 1-D kurtosis measure (KM) [19] of the actual
PSF ha is given by:

KM =
κ(ha(ψ; x′))
κ(hdl(0; x′))

, (9)

where the kurtosis κ(s) = µ4(s)/µ2
2(s) is defined from the fourth and second central

moments, µ4 and µ2, of the distribution s. From Equation (9), KM is normalized to the
in-focus and diffraction-limited impulse response represented by hdl . Demenikov applied
KM (Ec. 9) to evaluate the restored PSF obtained after mitigating defocus by means of
cubic and quartic phase-masks [19]; in this paper, however, we will use KM to evaluate
the imaging quality of the DOF extension produced by a monofocal lens combined with
an APM.

2.4. Phase Mask Trade-Off

Unlike a hybrid optical-digital imaging system, we aim for an optimal trade-off
between the extended DOF and image quality for an imaging system—such as the eye—in
which digital restoration is not possible. This way, we aim for a system that is as invariant
as possible to defocus, but at the same time, preserves the image quality along the DOF.
This criterion for optimization has been considered by other authors [20]. To this end, we
will use a combination of a single thin lens with a quartic-order (n = 4) APM profile Pa(x)
(Equation (7)), and propose an optimization scheme based on two terms, E1(α) and E2(α),
for selecting the appropriate strength factor α that achieves the best trade-off.

On the one hand, invariance to defocus involves a kind of constancy in the MTFs along
the axis in the image space. Let us define the term E1(α) that, for a given α, computes the
accumulated square differences between the defocused MTF and the in-focus MTF along
the axis in the image space:

E1(α) =
∑k ∑l [|Hα(ψk; ul)| − |Hα(0; ul)|]2

∑l [Hα(0; ul)]
2 , (10)

where l covers, with uniform sampling, the discrete space-frequency domain normalized
to the diffraction-limited cutoff frequency. The axial range in the image space is discretized
uniformly in k defocus levels ψk. The extreme values of k must be set to contain the pursued
DOF extension, which is typically expressed in terms of the design focal length f . For
example, an axial segment ranging from 0.6 f to 1.6 f , in f /10 steps, is to be considered
in Section 3. The in-focus MTF for a strength factor α is |Hα(0; u)|. The denominator of
Equation (10) has been introduced for normalization purposes. If E1(α) is minimized,
the imaging system will be as little affected by defocus as possible. Ideally, if E1(α) were
zero, the imaging performance along the DOF segment would be equal to that of the
in-focus plane.
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On the other hand, we aim to achieve good image quality by reducing the impact of
blur with respect to the aberration-free imaging system. To this end, let us define the term
E2(α) that computes, in the in-focus plane, the square difference between the MTF of the
imaging system for a given α and the diffraction-limited MTF |Hdl(0; u)|,

E2(α) =
∑l [|Hα(0; ul)| − |Hdl(0; ul)|]2

∑l [Hdl(0; ul)]
2 . (11)

Overall, the goal is to extend the DOF as much as possible with little degradation
of the in-focus image quality. This can be accomplished mathematically by means of the
global minimization function or residual

argmin
α
|βE1(α)− (1− β)E2(α)|, (12)

where β ∈ [0, 1] defines the relative weight of either extending the DOF or preserving
in-focus image quality.

The method outlined so far leads us to use the asymmetric quartic phase-mask for
extending the DOF of a simple monofocal lens in ophthalmic optics. Despite the fact
that the proposed phase distribution can be implemented using refractive optics, we will
use programmable diffractive optics in our experiments with an SLM for evaluating the
concept. Concerning the potential applications of our work to the human vision system,
the in-focus plane is assumed to be coincident with the far-focus plane, that is, the focus
plane corresponding to the vision of objects placed at a long distance from the observer.
In our experiments, we observed that small variations around β = 0.5 (less than 10%) did
not produce significant differences. We tentatively set β = 0.6, meaning that extending
the DOF is slightly preferred over the in-focus image quality, while still assuming that
the visual system can tolerate the distortion. This parameter β, however, can be tuned
according to another criterion.

3. Experiments and Results

We tested our optimization method with numerical simulations for an imaging system
consisting of a diffractive Fresnel lens (FL) combined with an APM, which we were able to
replicate using a phase-only spatial light modulator (SLM) in our experimental setup. We
optimized the APM strength factor for the considered imaging system and validated the
simulation results through an experiment conducted in the optical setup shown in Figure 1.
We explored the potential applicability of such results to the design of an extended-depth-
of-focus (EDOF) intraocular lens (IOL).

3.1. Numerical Simulation

We computationally simulated a diffractive FL with circular pupil diameter L = 8.64 mm,
f = 500 mm focal length, illuminated by the incoherent light of wavelength λ = 632 nm.
The dimension L was equal to the aperture of the SLM used in the experimental imple-
mentation, which covered 1080 pixels of 8-micron pitch. For a distant object (z0 = ∞), the
in-focus image plane was located at z′0 = 500 mm from the lens. We considered a discrete
axial segment ∆z′0 in the image space to include both positive and negative defocus values.
It ranged from 0.6 f to 1.6 f , in f /10 steps, which resulted in the following series of eleven
image plane positions z′ and their corresponding defocus W20 coefficients:

z′ = {300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800}mm,
W20 = {19.7, 12.7, 7.4, 3.3, 0,−2.7,−4.9,−6.8,−8.4,−9.8,−11.1}λ,

(13)

where we have approximated R ≈ L/2 in Equation (3). We used a quartic phase-mask given
by Equation (7) with n = 4 and with a strength value α determined via the optimization
procedure described in Section 2.4. To this end a bounded global-minimum search (using
the MATLAB fminbnd function) was used to find the α value that gave the minimum
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residual to Equation (12) with β = 0.6. The advantage of this approach is that the best
trade-off between extending the DOF and preserving image quality is automatically found,
and no empirical selection of α is needed. In essence, the algorithm seeks the best solution
to Equation (12) for α in the positive range of values. In practice, a test with the optical
setup parameters of our study showed that Equation (12) is a well-behaved function of α
(Figure 2), with a single minimum α value within the range from 10 to 50. We obtained
the optimal value α = 31.9. Since α represents the maximum optical path difference of the
APM, it is typically expressed in terms of either modulo-π or wavelength units. For this
reason, we use the equivalence α = 31.9 = 100/π hereafter. Figure 3 illustrates (except
for the circular pupil mask) the grey-level representation of the phase distribution of the
combined system of APM + FL with the appropriate α = 100/π.
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Figure 1. Experimental setup to evaluate the EDOF DOE displayed on the phase-only SLM (element 9).
Element 5 is introduced for incoherent illumination. Element 6 is the large-object test from which
character 2 (the one that identifies group 2 in the 1951 USAF resolution test chart) is taken for the
image-forming experiments. To obtain the PSF, elements 5 and 6 were removed, and element 4
(microscope objective and spatial filter) was moved forward to reach the front focal plane of the
collimator (element 7). This way, the image intensity of the point-source at infinity was registered
with the CCD sensor (element 11). The iris diaphragm (element 10) limited the square aperture of the
SLM to a circular pupil.

Figure 4 shows the horizontal PSF profiles of the combined system with α = { 0, 100/π,
300/π } obtained for a distant point-source through numerical simulations using a Fourier
optics approach [14]. Note that for α = 0 in Equation (7), the generalized pupil function is
just the physical aperture and, therefore, this case corresponds to the diffraction-limited
system. The image planes range from z′ = 400 mm to z′ = 600 mm in steps of 50 mm in
Figure 4.

In all cases (α = {0, 100/π, 300/π }), the best and most compact PSF is obtained
at or near the in-focus plane (z′0 = 500 mm) (central frame in Figure 4) according to the
design focal distance f = 500 mm. Apart from the asymmetric lateral tail at the different
z′-image planes of the combined systems with α = {100/π, 300/π } (second and third
row in Figure 4), the PSF shape is nearly invariant, with defocus over a wider range of z′-
positions than that of the diffraction-limited system (α = 0, first row).
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and FL phases.

As expected, a system with a larger α = 300/π (third row of Figure 4), exhibits greater
invariance to defocus than the system with α = 100/π (second row). However, the spread
of the in-focus and the defocused PSFs obtained with α = 300/π is considerably wider
than that obtained with the optimized value α = 100/π. This means that the system
with α = 300/π involves a more severe image degradation, with a significant decrease
in quality with respect to the optimized case. This observation agrees with the results
obtained with the KM metrics in Figure 5. The KM measures the kurtosis (spread) of the
PSFs obtained with the combined system for a given α, relative to the one obtained with a
diffraction-limited system. From Figure 5, the system with the optimized value α = 100/π
reaches higher KM values in the vast extension of the considered z′-image planes than
the system with α = 300/π, except for the extreme z′ = 300 mm. Moreover, the optimal
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system shows a KM peak near the in-focus z′0 = 500 mm position which would be the
ideal performance for an ophthalmic lens design that would benefit, for instance, far vision.
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Finally, the system with the optimized α value represents the trade-off solution be-
tween extending the DOF (large invariance to defocus) and maintaining the maximum
fidelity in image formation, this involving expectance of acceptable degradation. Figure 6
illustrates these results through the numerical simulation of the PSFs and the image of an
extended object (character 2) within the range of z′-image planes. Image magnification
was taken into account by scaling properly according to geometrical optics imaging in the
z′-image plane range [21]. The best image of both the point-source and the extended object
is clearly near the in-focus position z′0 = 500 mm (central frame in Figure 6); however, even
at the extremes of the z′-image plane range z′ = {300, 800}mm, character 2 is discernible
despite a mild blur. Note that the PSF shows less spread in directions other than the main x′

and y′ axes (horizontal and vertical) and, therefore, the image degradation in those angular
directions would be lower.
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3.2. Experimental Results on Optical Bench

We dealt with the phase distribution of the combined system APM + FL (Figure 3c)
as a programmable DOE; we displayed it on a parallel-aligned liquid-crystal on silicon
(LCoS) SLM working by reflection in a phase-only modulation regime (Figure 1) [3,10]. The
Holoeye-HEO LCoS SLM used to display the DOEs in our experiment had been previously
characterized for a linear and optimized performance following the procedure reported
in [22]. The SLM had a resolution of 1920 × 1080 pixels in a 15.36 mm × 8.64 mm array.
The combined APM + FL system was displayed using a square array of 1080 × 1080 pixels.
Other specifications were a pixel pitch equal to 8 microns, 87% fill factor, and (8-bit)
256 electrically addressable gray levels.

A linearly polarized He-Ne laser beam with λ = 632.8 nm was used for illumination
(element 1 in Figure 1), and a half-wave plate (element 3) to adjust the polarization plane of
the incident beam on the SLM, to obtain a phase-only modulation according to the previous
characterization of the device [22]. The beam was spatially filtered by a small pinhole
(element 4) placed on the optical axis, and then collimated by a lens (element 7, with
faux = 200 mm), to represent a point-source at infinity. Alternatively, we used character 2
from the USAF test (element 6) and the same collimator for an extended object at infinity
that covered an angular field of ≈ 0.07′ ≈ 4.2′′. To obtain incoherent illumination a ground-
glass rotating diffuser (element 5) was located against the extended object. The object
(either the point-source or character 2) was imaged by the DOE displayed on the LCoS
SLM. A CCD sensor (element 11) acquired the image intensity. We fixed the capturing
parameters of the CCD camera (PCO 1600, with large 16-bit dynamic range) so as to avoid
saturation. The CCD camera was mounted on a separate bench for linear translation to
cover the considered z′-image plane range. Further details about the setup (Figure 1) can
be found elsewhere [10].

The experimental results obtained for the combined APM + FL system, with the
optimized value α = 100/π, are shown in Figure 7. Note that there is an excellent agree-
ment with the images obtained by numerical simulation (Figure 6). Figure 8 contains the
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MTFs obtained in the optical experiment. We used a standard procedure based on the
measurement of the edge-spread function to calculate the one-dimensional MTF profiles of
Figure 8 [16,23]. All MTFs are very close, which confirms the EDOF property, except for
the extreme z′ = 300 mm, which was the one with the largest defocus value (W20 = 19.7λ).
Overall, the system performs very well, with no contrast inversions. As expected, the MTF
for the design focal length z′0 = 500 mm (red line in Figure 8) is slightly better than the
rest. From the simulated and experimental PSF results, we remark an excellent property:
its shape, orientation, and on-axis position remain constant through the z′-image plane
segment, only modified by the natural magnification. This constancy of performance does
not occur with other elements that have already been proposed for focus extension in
ophthalmic optics such as, for instance, the light sword [9,24,25].
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3.3. Exemplary Case: Optimized EDOF IOL

As an exemplary case of application to ophthalmic lenses, we consider the design
of an EDOF IOL. Let us assume that the lens, with a refractive power 20 D ( f = 50 mm)
and pupil diameter d = 6 mm, is immersed in a wet-cell assembly filled with a liquid of
refractive index n = 1.336, which corresponds approximately to the ocular humors. For
the purpose of optimization, we take an axial segment of ±8.3 mm around the design
focal plane intended for far vision, which is located at z′0 = f = 50 mm from the lens
(Figure 9). This axial segment in the image space is equivalent to ∆z′0 = {41.7 . . . 58.3}mm
that, in terms of defocus coefficients, corresponds to W20 = {37.9 . . .− 27.1}λ (we kept
λ = 632 nm for the sake of simplicity and comparison with the experiment before, although
the design wavelength of IOLs corresponds to a green light, as fixed by the ISO standard to
546 nm [26]) and, in terms of vergences, to ∆P = {+5.3 . . .− 3.8}D. Certainly, a design axial
segment providing such a ∆P power variation covers, by far, the need for focus extension
in normal emmetropic vision, which would range from 0.0 to 4.0 D at the IOL plane; the
latter is the additional power needed to image a near object placed at about 0.3 m from
the observer (that is, about a 3 D add-power at the spectacle plane). Despite this fact, we
have chosen a longer segment to ensure the best image quality for far vision at the design
focus (z′0 = f = 50 mm)—which involves taking advantage of only half of the segment
length—and yet to have enough focus extension in the positive defocus range to discard
the extreme. We recall that such an extreme corresponds to the image plane position with
the maximum W20 value and, therefore, to the worst performance condition as evidenced
in Figure 8 (graph for z′ = 300 mm). With these design parameters and constraints in mind,
we applied the optimization procedure described in Section 2 to obtain the value of the
strength factor for the combination of APM + FL that represents the IOL. The trade-off value
that minimized the residual (Equation (12)) was α = 80 ≈ 251/π (Figure 10). Figure 11
shows the horizontal PSFs and Figure 12 the image of the extended object for the optimized
IOL imaging system in the axial segment corresponding to ∆z′0 = {41.7 . . . 50.0}mm,
equivalent to ∆P = {+5.3 . . . 0.0}D. For the sake of comparison, Figure 12 includes the
images obtained, in the same defocus range, by a real EDOF IOL (3.5 mm pupil) and a
conventional monofocal IOL (6.0 mm pupil) of the same design focal length f = 50 mm. For
the real EDOF IOL design, we have assumed the description found in [27] as corresponding
to the commercial TECNIS Symfony® IOL (Johnson & Johnson). In our computational
comparison, the Symfony-like design consisted of a pupil-dependent diffractive bifocal lens
of nominal +1.75 D add-power at the IOL plane (+1.98 D measured for λ = 625± 10 nm)
intended for intermediate vision. For the calculation, we considered the energy efficiency
ratio reported for the distance/intermediate foci, i.e., 5.68 for a pupil size of 3.5 mm [27].
Due to apodization, the Symfony-like design for larger apertures would benefit the distance
focus, and hence, higher efficiency ratios would be expected.
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Note that, for the optimized APM + FL combination (6.0 mm pupil), the PSFs are
very similar through the defocus range in Figure 11; the same can be said for character
2′s images in Figure 12, except for the extreme on the left, which would eventually be
discarded for a more useful range of vision of 4 D at the IOL plane (marked with a rectangle
in Figures 11 and 12). As expected, the monofocal IOL (6.0 mm pupil) achieves the best
image with far-vision focus, but the image quality decreases rapidly for mid- to near-vision
distances. Such a quality decrease is slower with the EDOF Symfony-like IOL in Figure 12,
in part because of its optical design and in part because of the smaller pupil (3.5 mm).
At the intermediate vision distance (2D), the in-focus image formed by the intermediate
focus of the Symfony-like IOL (+1.98 D for λ = 625± 10 nm) appears overlaid by a slightly
larger out-of-focus image formed by the distance focus. The image degradation worsens
progressively in the 3D and 4D positions. In contrast, the proposed optimized APM + FL
(6.0 mm pupil) sufficiently resolves the image shape with nearly constant degradation
throughout the whole 4D range of vision at the IOL plane (meaning from an infinite distance
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to ∼0.3 m from the observer). This result has been presented here only as an example, to
illustrate the method performance and its potential. We think it could be further improved
by adjusting the axial segment that determines the useful range of vision and the pupil
size in the optimization process. In fact, the target range of vision has followed different
trends over time. Early bifocal IOLs of 4 D add-power were later modified to 3 D. This
bifocal design provided relatively good vision for far and near objects, corresponding
to two distinct foci, but the patients reported visual disturbances (e.g., halo, glare) and
poor visual quality for intermediate distances. The current notion of an EDOF IOL does
not really provide good near vision, but keeps good distance vision that extends into the
intermediate region. Actual EDOF IOLs have a modest focal improvement (1 D extension
of focus, or even 0.5 D [28], may potentially be useful). Concerning the pupil, although the
IOL optical aperture is 6 mm, the central 3 mm or 3.5 mm diameter aperture draws most of
the attention, because that is an average illumination diameter at the IOL plane for an older
eye. These moderate constraints of the focus extension and pupil size should facilitate the
optimization of an IOL based on an APM + FL design.
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plane. Results obtained by numerical simulation.

4. Conclusions

We have shown that the asymmetric quartic phase-mask can be a suitable element for
extending the depth of focus of a simple monofocal lens with applications in ophthalmic
optics. Using the proposed optimization algorithm, we have obtained a remarkable axial
extension in the image space with a minimized spread of the PSF. We have validated the
proposal through numerical simulation and on-bench optical experimentation. Although
the numerical and optical experiments considered a programmable modulo-2π diffractive
optical element for displaying the optimized combination APM + FL on a phase-only



Photonics 2022, 9, 119 14 of 15

SLM, there is no need for manufacturing a pure diffractive profile. Instead, a continuous,
smoothly varying curvature would be implemented—for instance, by means of freeform
surface lathing, molding injection or embossing, among other methods—for lens prototyp-
ing. Therefore, the combination of the asymmetric mask and the lens can be implemented
in a single optical element. This property is relevant because a refractive element over-
comes the typically strong spectral dependence of DOEs when operating under broadband
illumination.

From the proof-of-concept results, we consider that the application of the proposed
optical element to ophthalmic optics is feasible, in particular, for the design of an EDOF
IOL. Despite the fact that the optimization process does not fully suppress the lateral tails
of the PSF peak, it ensures their reduction to a minimum extent while keeping a nearly
constant degradation: the PSF shape, orientation, and on-axis position remain constant for
the image plane positions covered by the design axial segment, and are only modified by
the natural magnification change. These properties can be advantageous in comparison to
other asymmetric EDOF designs that have already been proposed for presbyopia correction.
Since they are static optical elements, the issue of image degradation will be always present,
and particularly bothersome just after lens implantation. Although the human visual
system does not allow further digital processing to restore the retinal image, the brain
has a powerful resource—neural adaptation—that provides neural compensation for the
eye’s optical aberrations [6]. This capability depends on a variety of factors, including
the personal characteristics of the subject. The constancy of the degradation over the
observation distance would likely alleviate the challenge for achieving an acceptable level
of aberration in a short time frame for adaptation.
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