
Scanflow-K8s: Agent-based Framework for
Autonomic Management and Supervision of ML

Workflows in Kubernetes Clusters
Peini Liu∗†, Gusseppe Bravo-Rocca∗†, Jordi Guitart∗†,

Ajay Dholakia‡, David Ellison‡, Miroslav Hodak ‡
∗Barcelona Supercomputing Center, Barcelona, Spain
†Universitat Politècnica de Catalunya, Barcelona, Spain

‡Lenovo Infrastructure Solutions Group, Lenovo, Morrisville, NC, USA
E-mail: {peini.liu, gusseppe.bravo, jordi.guitart}@bsc.es,{adholakia,dellison,mhodak}@lenovo.com

Abstract—Machine Learning (ML) projects are currently heav-
ily based on workflows composed of some reproducible steps and
executed as containerized pipelines to build or deploy ML models
efficiently because of the flexibility, portability, and fast delivery
they provide to the ML life-cycle. However, deployed models
need to be watched and constantly managed, supervised, and
debugged to guarantee their availability, validity, and robustness
in unexpected situations. Therefore, containerized ML workflows
would benefit from leveraging flexible and diverse autonomic
capabilities. This work presents an architecture for autonomic
ML workflows with abilities for multi-layered control, based on
an agent-based approach that enables autonomic management
and supervision of ML workflows at the application layer and
the infrastructure layer (by collaborating with the orchestrator).
We redesign the Scanflow ML framework to support such multi-
agent approach by using triggers, primitives, and strategies.
We also implement a practical platform, so-called Scanflow-K8s,
that enables autonomic ML workflows on Kubernetes clusters
based on the Scanflow agents. MNIST image classification and
MLPerf ImageNet classification benchmarks are used as case
studies to show the capabilities of Scanflow-K8s under different
scenarios. The experimental results demonstrate the feasibility
and effectiveness of our proposed agent approach and the
Scanflow-K8s platform for the autonomic management of ML
workflows in Kubernetes clusters at multiple layers.

Index Terms—Scanflow, Machine Learning Workflow, Auto-
nomic, Self-Management, Agent, Kubernetes, MLOps

I. INTRODUCTION

Machine Learning (ML) has become common with good
results in different tasks such as image classification, machine
translation, recommendation systems, and speech recognition.
While working on a ML project, workflows comprising some
reproducible steps run as a pipeline are widely used to build or
deploy a model efficiently because of the flexibility, portability,
and fast delivery they provide to the ML life-cycle [1].

ML workflows still face several challenges while being used
by different teams. The Data Science team requires to auto-
mate some repetitive tasks within ML workflows to train and
improve the model [2], [3]. Therefore, some AutoML modules
and frameworks have been developed for algorithm selection
[4], model selection [5], and feature selection [6] to tune
hyperparameters and have good learning performance with less

human assistance. However, ML life-cycle is more than just
training a model [7]. Once the model has been trained, the Data
Engineer team works on deploying the ML workflows into
production. More importantly, they are required to operate the
workflows to maintain the robustness of the model at runtime,
that is, to deal with security vulnerabilities, concept drift, lack
of explainability and interpretability, and hidden technical debt
[8], [9], because the model may degrade its accuracy due
to constantly evolving data profiles. Also, the model online
inference serving services have strict latency requirements and
efficiency issues that should be considered [10]–[12]. There-
fore, the ML workflow is no longer running in a known context
and with static requirements, and consequently, enabling the
autonomy to manage and supervise ML workflows to meet
dynamic changes has become an open issue [13].

Autonomic computing brings inspiring approaches to adapt
ML systems at runtime, helping to manage and supervise
the ML workflows operation in dynamic contexts [14]–[17].
For example, by enabling adaptive learning algorithms for
streaming data to supervise ML models at the application
layer or by reconfiguring and restructuring the workflows at
the infrastructure layer [18]. Consequently, our work enables
an agent-based approach to leverage autonomic computing for
ML workflows system to meet dynamic changes. The agents
focus on the robustness and requirements of the model at the
application layer while managing the quality of services and
the structure of workflows at the infrastructure layer.

In our previous work, we presented Scanflow, an executor
multi-graph framework for end-to-end ML workflow manage-
ment and debugging in an offline mode, in the form of a
proof-of-concept prototype running in a single node, which
featured an anomaly detector of out-of-distribution samples in
the inference phase [19]. In this paper, we contribute Scanflow-
K8s, a functional agent-based MLOps framework that enables
autonomic management and online supervision of the end-
to-end life-cycle of ML workflows on Kubernetes. Scanflow-
K8s redesigns Scanflow from scratch to upgrade the executor
nodes to a multi-agent system based on triggers, primitives,
and strategies, and to be fully integrated with the Kubernetes



platform, enabling autonomic multi-layer management and
supervision of ML workflows in clusters.

The remainder of this paper is organized as follows: Section
2 discusses the related work. Section 3 introduces the multiple
management layers in autonomic ML workflows. Section 4
describes the agent architecture, social ability, triggers, and
operation primitives. Section 5 presents some case studies
and experiments on Scanflow-K8s platform. Finally, Section
6 concludes the paper and discusses the future work.

II. RELATED WORK

Lately, many data researchers and companies have been
interested in automating the ML tasks within a training
workflow (e.g., AutoML) in order to construct ML models
efficiently [2]–[6]. However, these powerful AutoML modules
and frameworks (e.g., Kubeflow Pipelines1) are turned off
after training a model, thus cannot help the model after being
deployed to meet dynamic changes.

To make an autonomic system for ML, Kedziora et al.
[13] defined an autonomous system (i.e., AutonoML) as one
showing fundamental characteristics of persistence and adap-
tation. Persistence means that an AutonoML system should be
capable of operations in the long term, and adaptation refers to
the theories and practices of facing dynamic contexts. Zliobaite
et al. [18] identified challenges in designing and building
adaptive learning (prediction) systems to achieve scalability,
usability, and trust, taking into account various application
needs. These works provide a conceptual level view or frame-
work without practical implementation or evaluation.

Seldon2 provides a set of tools for deploying ML models
at scale and presents their practical oversight and governance
for ML deployments. But these tools (so-called Alibi) mainly
focus on metrics monitoring, outliers and drift detection,
and model explanation [20], rather than autonomically taking
actions to maintain the model performance. KubeDL3 supports
running different deep learning workloads on Kubernetes. It
considers training, model version, model serving, and also an
auto-configuration framework Morphling [21] to tune the best
configuration before the serving service is deployed. However,
the training steps are considered as jobs and the model serving
is considered as a simple service rather than a ML workflow,
losing the flexibility of using workflows, and also autonomy
is not considered. KServe4, formerly KFServing and used by
Kubeflow, enables serverless model inference on Kubernetes.
It encapsulates the complexity of autoscaling, networking,
health checking, and server configuration to bring serving
features like GPU autoscaling, scale to zero, and canary
rollouts to the ML deployments. However, it is based on the
serverless model supported by Knative, which can only support
streaming online inference. Moreover, it integrates Alibi add-
ons to detect anomalies, but not deal with them autonomically.

1https://www.kubeflow.org/
2https://www.seldon.io/
3https://kubedl.io/
4https://kserve.github.io/website

Some adaptive learning algorithms are designed for stream-
ing (unpredicted new data arrives) [8], [9], [22]. Gama et al.
[8] presented a survey on concept drift adaptation, which intro-
duces the online adaptive learning processes and algorithms.
Imbrea [22] proposed a framework for implementing AutoML
on data streams architectures in production and indicated that,
in the presence of concept drift, detection or adaptation tech-
niques have to be applied to maintain the predictive accuracy
over time. These adaptive learning systems or methods can
deal with partially dynamic contexts, but as we discussed in
the introduction, autonomy should be applied at multiple levels
to handle both robustness and efficiency problems.

Autonomic computing theories and practices have been used
in multiple areas. Formerly, they were applied in the service-
oriented computing paradigm [17]. Lately, as systems were
adopting the microservice architecture, Liu et al. [14] studied
the autonomy in those microservice-based systems. Also, some
works showed the usage of agents for autonomic computing
[15]–[17]. These related works did not directly show how to
bring autonomy for ML workflows, but they inspired our work
for adopting an agent-based autonomic approach.

III. ARCHITECTURE FOR AUTONOMIC ML WORKFLOWS

In this section, we firstly describe diverse uncertainties that
occur in ML workflows. Then, we present an architecture for
autonomic ML workflows featuring a multi-layered autonomic
framework. Finally, we present a practically implemented
platform that enables autonomic ML workflows on Kubernetes
clusters based on agents.

A. Uncertainties in ML Workflows

The need to embed ML systems into long-lived dynamic
contexts is likely to increase in the coming years [13], thus
inherent uncertainties in ML workflows may increase when
they are deployed in production (e.g., Cloud). Table I shows
a taxonomy of potential uncertainties in ML workflows.

TABLE I
UNCERTAINTIES IN ML WORKFLOWS

Categories Examples
Requirements Functional

Requirements
End-users expect robust ML models
when facing data drift; Data scientist
adds new steps to the workflow

Non-
functional
Requirements

End-users define some QoS require-
ment for model serving; Data engi-
neer provides resource restrictions and
affinity settings for workflow executors

Contexts Workflow
Contexts

Workflow executor fails to run (e.g.,
software bug, out-of-memory error);
Model serving service is not available

System
Contexts

Other workflows compete to use the
same resources

External
Contexts

Hardware/Operating System crashes or
is not available

Uncertainties in ML workflows come from two main
sources, namely the requirements and the context. The former
come from the data scientists and end-users and include
the functional and non-functional requirements of the ML



Fig. 1. Conceptual architecture of multi-layer controlled ML workflows.

workflows. In particular, (1) the functional requirements can
include changes in the topology of the ML workflows (e.g.,
adding new steps), as well as the need to maintain the
quality and robustness of the ML models (e.g., dealing with
security vulnerabilities, outliers, concept drift, and model
explainability) in unexpected situations; (2) the non-functional
requirements can include the need to fulfill the QoS (Quality
of Service) guarantees related to the model serving service’s
performance (e.g., latency and failure rate) in the occurrence
of churn, as well as the definition of runtime parameters (e.g.,
resource restrictions and affinity settings) for workflow execu-
tors and services. The uncertainties in the context come from
the execution of the workflows themselves, their interaction
with other workflows, and the software/hardware platform. In
particular, (1) the changes in the workflows contexts happen
in workflows themselves, for instance, a workflow executor
fails (e.g., software bug, out-of-memory error), or a workflow
service is not available; (2) the changes in the internal system
contexts derive from the relationship between the various
workflows (and other applications) and how the orchestrator
arbitrates their use of the shared platform where they run, for
instance, when the resources needed to run a workflow may
be in use by other workflows; (3) the changes in the external
contexts occur in the underlying platform, including hardware
resources, operating systems, and other related systems, which
can fail or become unavailable. Those changes can be detected
and the manager can react to them but cannot be directly
solved at the management level.

B. Multi-layered Control for Autonomic ML Workflows

Each type of uncertainty requires applying different strate-
gies to enable autonomy for ML workflows. These strategies
could reside at different layers, for instance, ML workflows
could react to changes by restructuring the workflow topology
or by reconfiguring the workflow executor/service instances.
Thus, we should implement controllers at several layers to
manage ML workflows in a completely autonomic way.

A conceptual architecture for multi-layer controlled auto-
nomic ML workflows is proposed in Figure 1, which shows
the layers and their interactions. ML workflows are the target
system focusing on the ML business. From a static design
perspective, ML workflows are composed of some repro-
ducible steps and organized by dependencies. From a dynamic
implementation perspective, ML workflows could be run as
containerized executors in a pipeline or deployed as online

Fig. 2. ML workflows supported by Scanflow-K8s (a batch ML workflow on
the left and an online ML workflow on the right).

services consisting of microservice instances. The manage-
ment system actuates on multiple control layers, namely the
application-controlled layer and the infrastructure-controlled
layer, which can operate the target system to deal with different
types of uncertainty: (1) the application-controlled layer senses
the application-related changes, such as the requirements from
data scientists and end-users and the workflow context, and
restructures the static view of the target system, which is
executed with the help from the lower control loops; (2) the
infrastructure-controlled layer senses the internal and exter-
nal system contexts, and adjusts the workflow executors or
services at run-time accordingly to the predefined rules of
the resource manager by taking advantage of the orchestrator
resource management capabilities. In this case, the system
autonomy appears as a form of reconfiguration.

C. A Practical Platform for Autonomic ML Workflows

This section describes Scanflow-K8s, a practical platform
for autonomic ML workflows that implements the above-
mentioned multi-layered control autonomy by means of the
integration of a ML workflow manager (i.e., Scanflow) with
an orchestrator (i.e., Kubernetes). The whole architecture of
this platform is depicted in Figure 3.

Target System: The top of the figure shows the ML
workflows which are the target system focusing on the ML
business. From a static design perspective, ML workflows
define some steps and their dependencies. As shown in Figure
2, two types of workflows are supported by Scanflow-K8s
for both training and inference phases. On the left side, a
ML workflow is defined as a batch pipeline composed of
several executors Ei that are executed in sequence or in
parallel. In a batch inference, predictions can be generated
asynchronously with a batch of samples and the time to get the
results is unconstrained. On the right side, a ML workflow is
defined as online services with graph traffic forwarding. In an
online inference, predictions are served in real time, typically
subject to a latency bound. From a dynamic implementation
perspective, the batch executors or the online services are
conducted as containerized instances executing locally or in
the Cloud. In particular, the executors of batch workflows run



legend


Dependency


Instantiate


Component


Registry


Workflow


Pod


Container


control flow


Target System

(ML workflow)


Etcd


workflow & 

requirements


Registry


ML Workflow

Manager


(Scanflow)


Resource
Manager


(Kubernetes &
plugins)


User

workflow & 

component


images


cAdvisor


Log

Kubelet


Workflow


Docker


wfgathering


Docker


wfpreprocessing
 wfmodeling


Docker


ML workflow

En
vi

ro
nm

en
t


cAdvisor


external

context

Metric Server

& Kubedashboard

Prometheus 

& Grafana

Scanflow


Kubernetes

API ServerKube-scheduler


/Volcano

Keda/multi-objects

Kubernetes

images

Scanflow API Server

Checker
Docker


Check


Planner
Docker


Plan


Tracker
Docker


Track


Executor
Docker


Execute

Kubelet


Knowledge base

Mlflow

Docker


Server

Docker


Fig. 3. Scanflow-K8s: A practical platform for autonomic ML workflows.

once for each time the workflow is executed, and the online
workflow is deployed as a long-run microservice that is able
to deal with client’s invocations. Normally, the Data Science
team uses the batch ML workflows to build and gain ML
models at the ML training phase, while the Data Engineer
team conducts the batch ML workflows for batch predictions
or deploys online ML workflows in production to make real-
time predictions at the ML inference phase.

Application-controlled Layer: ML workflow manager (i.e.,
Scanflow) is used as a controller of the application layer,
as shown in the middle of Figure 3. Scanflow is composed
of multiple reactive agents, which work together to perform
adjustments in ML workflows to deal with the application-
related changes. Internally, Scanflow supports four predefined
agent templates, namely tracker, checker, planner, and execu-
tor. A tracker-agent, which is based on Mlflow5, is used to
collect the metrics (e.g., number of predictions) or logs (e.g.,
prediction results) from ML workflows and save information
in a knowledge base. A checker-agent can define thresholds to
detect outliers or use learning methods to check drift anoma-
lies, which are both based on real-time stream executions and
knowledge from a tracker-agent. A planner-agent can decide
how to address the detected issues, for instance by retraining
the model using transfer learning to improve its robustness
based on knowledge from tracker-agent and checker-agent.
Finally, the operating plans from a planner-agent can be orga-
nized as a set of actions, for example upgrading or changing
the version of the model, which are then carried out by an
executor-agent, which manages the application-layer internal
changes, and the Scanflow API server, which communicates

5https://www.mlflow.org/docs/latest/tracking.html#scenario-4-mlflow-with-
remote-tracking-server-backend-and-artifact-stores

with the infrastructure layer to adjust the target system.
Infrastructure-controlled Layer: The bottom of Figure 3

shows the resource manager working on the infrastructure-
controlled layer. Scanflow’s best practice is integrating with
the well-known Kubernetes orchestrator, given that our ML
workflows are wrapped as containers that can be finely man-
aged, and Scanflow-K8s can take advantage from the wide
range of toolkits in the Kubernetes ecosystem. Used toolkits
are presented in Table II.

TABLE II
KUBERNETES TOOLKITS.

Tool Role
Kubernetes6 Container orchestration, automated container deploy-

ment, scaling, and management.
Istio7 Service-to-service connection and traffic monitoring.
Prometheus8 Metrics monitoring and alerting.
Volcano9 Batch workflow scheduling.
Keda10 Event-driven autoscaler.
Argo Workflows11 Multi-step workflow engine supporting DAG.
Seldon Core12 Online model serving on Kubernetes.

The infrastructure-controlled layer supports the deployment
and execution of our containerized ML workflows on the
platform by leveraging Kubernetes. At the training phase, ML
workflows are defined as batch executors and are executed
in K8s as Argo Workflows. At the inference phase, ML
workflows can be defined both as batch executors or online

6https://kubernetes.io/
7https://istio.io/
8https://prometheus.io/
9https://volcano.sh/en/
10https://keda.sh/
11https://argoproj.github.io/
12https://www.seldon.io/



services, according to data engineers’ preferences. The former
are executed as Argo Workflows (as in the training phase),
whereas the latter are deployed and executed using Seldon.

At the infrastructure-controlled layer, the resource manager
senses the system and external contexts from the environment,
and enables autonomic ML workflows by performing finer-
grain adjustments at run-time. For the monitoring, Kubernetes
internal metric server and Prometheus toolkit collect the status
of the cluster and the performance/resource usage of ML
workflows executors or service instances. Also, Istio service
mesh traces the traffic and security of each invocation. For the
analysis and optimization, the manager can choose the optimal
values for the configurable thresholds, which will be used
by the HPA (Horizontal Pod Autoscaler) or Keda autoscaler
to decide the number of instances, as well as configure the
scheduling policy for the default kube-sheduler and the batch
scheduler Volcano, which will be used to decide the allocation
of ML workflows. Finally, the decided actions are carried out
by the Kubernetes API server, which hands out the operations
to the kubelet within the cluster to adjust ML workflows in
order to adapt to the changing context.

Moreover, the ML workflow manager can govern some
changes in collaboration with the resource manager. For exam-
ple, some application-related run-time information at the in-
frastructure layer can be tracked by the agents and considered
at the application layer. Similarly, some application-related
changes in the requirements/decisions need to be implemented
in the infrastructure layer, which requires the Scanflow API
server to communicate with Kubernetes, for example, to
autoconfigure the application thresholds in Keda autoscaler or
the affinity/resource limits of workflows according to the user’s
requirements, and to operate workflows in case of a fail-over
to a user-defined backup service.

IV. AGENTS FOR AUTONOMIC ML WORKFLOWS

In this section, we introduce the architecture of Scanflow
agents and their features. In detail, we define the agent commu-
nication, triggers, and operation primitives for ML workflows
under uncertainties.

A. Agent Architecture

We use the concept of reactive agent, which does not
implement a global model or plan but only some simple
behaviors. These behaviors allow the agent to react when the
environment changes. An agent includes a sensor that senses
internal and external state changes, a set of conditional rules
that respond to related events, and an actuator that activates a
certain process of the environment or other agents.

Scanflow agents are the fundamental components to imple-
ment autonomic ML workflows. Each agent is an independent
computational unit that is able to run actions according to
the state changes. Therefore, an agent can be defined as a
set of state-to-action mappings (i.e., Agent = States(s) →
Actions(a)), that is, state changes could result in the execution
of actions (if the conditional rules are satisfied). However, an
agent usually cannot directly perceive the states but compute

Fig. 4. Agent-Environment interaction.

them from observations ot using a function F . Also, the
agent performs actions through rules with the computed states
st (at = R(st)). Figure 4 shows the agent-environment
interaction: At time t, the agent computes the states st from
the observations ot using function F . Then, it chooses actions
at according to rules R to achieve the agent’s goal.

To cope with the autonomic management and supervi-
sion for ML workflows, each agent implements its auton-
omy by defining strategies that include events, constraints,
and actions. The autonomic management strategy represents
the automation scenarios and can be expressed as 3-tuples
Strategy = (Events,Constraints,Actions), where an Event
is mainly a state change, which is judged from the observations
gathered by the agent triggers, a Constraint is a boolean
expression, which refers to whether an attribute value fulfills a
condition (e.g., fitting a threshold), and an Action is a single or
combined operation primitives or a request to call other agents.
Specifically, the autonomic management strategy of the agent
is described as: when the Event happens, if the Constraint
is satisfied, then the Action will be executed.

B. Agent Social Ability

Social ability describes how multiple agents could col-
laborate to solve problems by interacting with each other.
Traditionally, interaction has been modelled through agent
communication languages, such as FIPA-ACL13. Recently,
researchers have proposed other interaction methods based on
concepts like using a shared volume [19]. Scanflow leverages
microservice-based agents [23] which could also interact with
each other transparently with a service discovery through
RESTful APIs. In practice, a single approach of social ability
is often insufficient, and thus Scanflow agents apply both
shared artifacts and RESTful APIs communication approaches
to support social ability of agents.

• Interaction through RESTful APIs: In this approach, the
states or actions of an agent are exposed as interfaces.
Agents need to be registered first into a service discovery,
then they could call the well-defined interfaces from other
agents through REST. Normally, the remote call leads
to changing the belief/state of the agent and will finally
drive an action. Figure 5 exemplifies how Scanflow agents
communicate with RESTful APIs. Tracker-agent asks for
an agent to check for anomalies in the predicted new
data. First, tracker-agent needs to specify which action it
wants (e.g., check predictions); then Scanflow manager

13http://www.fipa.org/



Fig. 5. Agents communicate with RESTful APIs.

will generate the service domain name of the agent and
request a specific IP address by using CoreDNS, which
resolves the domain name, and etcd, which returns the IP
address from a service name. Thus, tracker-agent could fi-
nally link to the checker-agent. This RESTful POST from
the tracker-agent changes the state of the checker-agent,
therefore, the checker-agent will POST a run workflow
action to Scanflow API server and Kubernetes API server
to carry out its belief (e.g., run detector workflow to check
the anomaly of predicted new data).

• Interaction through shared artifacts: This approach com-
municates through shared artifacts within an application-
related knowledge base which receives queries from
agents and delivers the results from its database. These
include the metadata and logs from the prediction service,
and the metrics, scores, parameters, and different versions
of the ML model. The states of Scanflow agents can
be easily updated through RESTful interaction, but, for
complex operations with large data involved, it is more
efficient to use shared artifacts so that agents could make
actions directly with the accessible resources.

C. Agent Triggers

To actively monitor current States , agents are required
to trigger tasks to sense the useful observations. Scanflow
provides different types of built-in triggers, namely interval
triggers, date triggers, and cron triggers (see Table III). Also,
the basic triggers can be combined together using ‘and’ or
’or’ logic to produce more complex hybrid triggers. These
triggers can be scheduled at a specific time or time intervals
to execute tasks so that agents could get required observations
to evaluate the changes of States . Note that each Scanflow
agent contains an asynchronous I/O scheduler with multiple
queued tasks. Tasks are run by the scheduler in a thread pool.

On the other hand, an agent can also be triggered by external
actions. For example, receiving invocations from other agents,
as discussed in Section IV-B.

TABLE III
TYPES OF AGENT TRIGGERS.

Types Definition
Scheduled Interval Trigger at the specified frequency.
Triggers Date Trigger once on the given date and time.

Cron Trigger when current time matches all specified
time constraints (similarly to UNIX cron).

Action
Triggers

Call-
Receive

Call-Receive interface for agent to be triggered
through invocations from other agents.

D. Operation Primitives

After some change in the States, the agents need to
perform Actions (i.e., at = R(st)). Therefore, we propose
some operation primitives that represent the atomic autonomic
management steps. The execution of a single primitive or a
series of combined primitives is able to implement a full action
of an agent. Given that Scanflow agents can manage the ML
system by making adjustments both at the application layer
and the infrastructure layer (as described in Section III-C),
and that both batch and online workflows should be supported,
the primitive operations should be designed to happen at those
layers and to adapt to those types of workflows.

TABLE IV
AGENT OPERATION PRIMITIVES.

Application layer Infrastructure layer
Batch
ML
workflow

runWorkflow()
stopWorkflow()
upgradeWorkflow()
updateWorkflowAffinity()
updateWorkflowResource()

runExecutor()
stopExecutor()
upgradeExecutor()
updateExecutorAffinity()
updateExecutorResource()

Online
ML
workflow

deployWorkflow()
deleteWorkflow()
upgradeWorkflow()
updateWorkflowAffinity()
updateWorkflowResource()
updateWorkflowReplica()
updateWorkflowTraffic()

applyWorkflowInstance()
deleteWorkflowInstance()
duplicateWorkflowInstance()

As shown in Table IV, at the application layer, we propose
primitives for both types of ML workflows to manage the ML
workflow itself, and to set requirements (e.g., affinity, resource
limits, etc.) for the workflow from the users’ perspective. At
the infrastructure layer, we introduce primitives for operating
executors of batch ML workflows or instances of online ML
workflows in order to collaborate with the resource manager.

Regarding batch ML workflows, from the application layer,
the agents can control the life cycle of the workflow and
update its metadata, parameters, and artifacts. For example,
the planner-agent can restart the training workflow to re-
train the model through runWorkflow(); the executor-agent
can update the version of the workflow ML model by us-
ing upgradeWorkflow() and can update the affinity (using
updateWorkflowAffinity()) or resource limits requirements
(using updateWorkflowResource()) with the knowledge from
the planner-agent. From the infrastructure layer perspective,
the executors will be run and guaranteed by the resource
manager, but the agents can actively run or stop an executor
using runExecutor() or stopExecutor(), respectively. For



example, replicated executors can be stopped in case any one
of them has finished the task. Also, a specific executor within
the workflow can be upgraded, for instance, the planner-agent
can update the input parameters for the data-gathering executor
of the workflow by using upgradeExecutor() and also change
its run-time settings by using updateExecutorX () operations.

Regarding online ML workflows, from the application
layer, the agents can add, upgrade, delete, and update the
microservice using deployWorkflow(), upgradeWorkflow(),
deleteWorkflow(), and updateWorkflowX (), respectively.
For example, when the model serving service in the work-
flow needs a new version of the model, the executor-agent
must upgrade the microservice by using upgradeWorkflow().
The agents can also provide user’s requirements to define
application-related thresholds. For instance, the planner-agent
may call updateWorkflowReplica() to set a failure rate or
throughput threshold, so that the online ML workflow mi-
croservice will be scaled when the observed value is over
the threshold. As for the infrastructure layer, the agents
have the option to directly control the number of workflow
serving instances. For instance, the executor-agent can call
duplicateWorkflowInstance() to scale up and down the on-
line ML workflow service.

V. CASE STUDY AND EXPERIMENTAL ANALYSIS

This section presents case studies and conducts experiments
on Scanflow-K8s to illustrate the features of the agents and
evaluate the feasibility and effectiveness of our agent-based
approach for autonomic management of ML workflows.

A. Experimental Setup

Hardware: Our experiments are executed on a ten-node
K8s cluster. Each host consists of 2 x Intel 2697v4 CPUs (18
cores each, hyperthreading enabled), 256 GB RAM, 60 TB
GPFS file system, and 1-Gigabit Ethernet network.

Software: For all the hosts, we use CentOS release 7.7.1908
with host kernel 3.10.0-1062.el7.x86 64. The Scanflow-K8s
platform14 is built based on Kubernetes v1.19.16 (with Docker
19.03.11, Etcd 3.4.9, Flannel 0.15.0, CNI 0.8.6, and CoreDNS
1.7.0). Its corresponding toolkits (as described in Section
III-C) are Istio v1.11.4, Prometheus v14.3.0, Volcano v1.2.0,
Keda v2.4.0, Argo Workflows v3.0.0-rc3, and Seldon Core
v1.11.2. Additionally, we use Scanflow v0.1.1 with built-in
agents for drift detection, which works with MLflow v1.14.1
integrated with a relational database (e.g., PostgreSQL v13.4)
for backend entity storage, and an S3 bucket (e.g., Minio
Operator v8.0.10) for artifact storage. For the Docker con-
tainers used as steps of the ML workflows, Scanflow provides
a base executor image using continuumio/miniconda3 and a
base service image using python:3.7-slim.

Datasets and Benchmarks: For the first experiment, we
use MNIST15 (60,000 28×28 pixel grayscale images of hand-
written digits from 0 to 9) dataset for training a baseline

14https://github.com/bsc-scanflow/scanflow
15http://yann.lecun.com/exdb/mnist

model, and MNIST-C16 (handwritten digit database with 15
corruptions: corrupted version of MNIST) dataset as new input
samples to make predictions. For the second experiment, we
use MLPerf Inference benchmark17 to test batch and online
ML inference for image classification, in particular, we use
ResNet50 tensorflow model for the ImageNet2012 validation
dataset (50,000 images of objects from 1,000 classifications).

To support batch inference in MLPerf, we extended it
with the tf2 backend, which supports tensorflow saved model
format, and we packaged both the model and the serving
framework in a Docker image, along with a start script to
configure MLPerf when launching the container. To support
online inference in MLPerf, we extended it with a Seldon
backend, so that MLPerf queries can be generated as RESTful
invocations and sent to the model serving services. These
extensions are available at Github18.

MLPerf benchmark supports different realistic end-user sce-
narios through its LoadGen tool. We use the Offline scenario,
which represents applications where all data is immediately
available and latency is unconstrained, to test the throughput
(i.e., samples/s) of batch inference workflows, and the Server
scenario with multiple concurrent LoadGen clients sending
queries according to a Poisson distribution to test the through-
put (i.e., queries/s) subject to a latency bound (i.e., 6 ms) of
online inference workflows.

B. MNIST classification

In this experiment, we show how the various teams will use
Scanflow-K8s in the different phases to build and deploy their
workflows, as well as the effectiveness of agents that help to
manage and supervise the workflows at the application layer
while running in production (i.e., to detect and handle drift
anomalies). The complete use case is available at Github19.

1) Various teams build and deploy workflows:
• Training Phase: The Data Science team is responsible

for training the ML model to classify MNIST images.
Scanflow-K8s supports the definition, building, and exe-
cution of batch ML workflows, and runs the various steps
of the workflow (i.e. the executors) on Kubernetes by
using Argo. Scanflow-K8s allows the modeling step of
this workflow to train with different algorithms or with
different hyperparameter tuning. Then, the team could
select the best model based on the accuracy.

• Inference Phase: After the training, the model is stored
in the registry provided by Mlflow and is ready to be
used in production. The Data Engineer team should build
an inference workflow, so that the trained model can be
used to make batch predictions, or deployed as a serving
service to allow users to ask for predictions online.

2) Agents implementation: Scanflow agents are responsible
for application-layer automation. The four internal supported

16https://github.com/google-research/mnist-c
17https://github.com/mlcommons/inference
18https://github.com/peiniliu/inference/tree/scanflow
19https://github.com/bsc-scanflow/scanflow/tree/main/tutorials/mnist



templates of agents are namely tracker-agent, checker-agent,
planner-agent, and executor-agent. The Data Engineer team
can provide custom functions to enhance the capabilities of
each agent. This section evaluates agents which feature a
non-trivial data drift detector workflow built from the im-
plementation of the components presented in our previous
paper [19]. Checker-agent detects out-of-distribution samples
by means of a convolutional deep autoencoder and selects the
critical points within these data, which are labelled based on
human intervention. Planner-agent leverages transfer learning
from the original training workflow to retrain the model after
adding the labelled picked critical points to the training data.
The autonomic strategies of those agents to manage drift are
described in detail in Table V.

TABLE V
AGENTS AUTONOMIC MANAGEMENT STRATEGY

Agent Strategies
Tracker-
agent

Strategy: count number of predictions
WHEN IntervalTrigger(1h, count number of predictions)
IF number of predictions ≥ 1000
THEN Call(Checker -agent : check predictions(newdata))

Checker-
agent

Strategy: check predictions
WHEN CallReceive(check predictions(newdata))
IF successful call
THEN runWorkflow(Detector -workflow ,newdata)

Planner-
agent

Strategy: retrain model
WHEN IntervalTrigger(1h, count number of pickeddata)
IF number of pickeddata ≥ 100
THEN runWorkflow(Training-workflow(production model ,
retrain = True), pickeddata)
Strategy: update model
WHEN IntervalTrigger(1h,modelaccuracy)
IF newmodelaccuracy > currentmodelaccuracy
THEN Call(Executor -agent : change model(version))

Executor-
agent

Strategy: change model transition
WHEN CallReceive(change model(version))
IF successful call
THEN updateWorkflow(modelversion,modeltransition)

3) Application-level autonomy results: Figure 6 presents
how a model is autonomously improved by multiple agents in a
single interval. At 60 min, tracker-agent sums up the number of
predictions during the last one hour (i.e., interval between blue
dashed lines: 0-60min). As there are 1000 predictions, checker-
agent is triggered to detect the anomalous data (300 anomalous
samples are identified) and pick enough new critical data to be
appended to the training dataset. As there are 100 new critical
samples, planner-agent is triggered to retrain the model and
generate a new version. Only those models trained that achieve
better accuracy will be iteratively upgraded by executor-agent
to be used in production. Figure 7 shows such roadmap of
MNIST model upgrades in production. Model V1 is a baseline
model trained by the Data Science team at the training phase
with in total 60000 samples and gaining 90% accuracy. The
agents monitor predictions over each 1-hour interval (between
blue dashed lines) and trigger anomalies detection (between
red dashed lines), which might generate a new version of the
model for each interval. From those upgraded models, over
time only V2, V3, and V7 have been used for predictions in

Fig. 6. Agent-based model debugging in the presence of data drift.

Fig. 7. Road map of MNIST model upgrades in production.

production because they provided better accuracy than the
former ones (e.g., V2: 91%, V3: 92%, and V7: 93%). This
demonstrates that Scanflow agents can provide autonomy at
the application level to help ML workflows to maintain the
model accuracy when facing constantly evolving data profiles.

C. MLPerf Inference Benchmark

In this experiment, we show how Scanflow-K8s can deal
with both context changes and non-functional requirements
by taking advantage of the resource manager and also the
collaboration between application and infrastructure layers.
This use case is also available at Github20.

1) Automation at the infrastructure layer: Automation at
the infrastructure layer allows taking advantage of the resource
management capabilities of the orchestrator to improve the
reliability, scalability, and load balancing of workflows. The
infrastructure layer provides simple strategies to deal with
some system contexts such as self-healing, auto-scaling based
on observed system metrics such as CPU utilization, and load-
balancing in a round-robin option [24]. However, as they
use low-level system information, these strategies are less
expressive and more difficult to configure for the end-user,
as demonstrated in the next section.

2) Multi-layered Control for Autonomic ML workflows:
This section shows the benefit of considering application-
provided knowledge to perform resource management actions.

First, we compare infrastructure- vs. application-level auto-
scaling by using 100 LoadGen users asking for predictions

20https://github.com/bsc-scanflow/scanflow/tree/main/tutorials/mlperf



Fig. 8. Auto-scaling driven by CPU utilization metric.

Fig. 9. Agent-tuned auto-scaling driven by application-level metric.

in the Server scenario while expecting a given service QoS
(e.g., average queries/s per replica < 20). In Figure 8, the
data-engineer uses different infrastructure-related settings to
define the auto-scaling threshold (i.e., setting the target CPU
utilization to 5, 8, or 10 CPUs). The workflow is rapidly scaled
up (i.e., number of replicas is increased) at the beginning
when setting CPU utilization threshold to 5, hence the system
wastes many resources to fulfill the throughput requirement.
The workflow is never scaled when setting CPU utilization
threshold to 10, thus does not mostly satisfy the throughput re-
quirement. Setting CPU threshold to 8 mitigates the problems
of the other two settings, but it is still not matching exactly
the QoS requirement. This shows how hard is for the data-
engineer to find the optimal auto-scaling settings when using
only infrastructure-related metrics. Figure 9 shows agent-tuned
auto-scaling according to an application-level non-functional
QoS requirement provided by the end-user. The planner-
agent can autonomically replace the data-engineer to tune the
auto-scaling threshold of Keda to meet the requirement. The
workflow is scaled up when the real-time throughput goes over
the threshold, and scaled down when facing a low load. That
is to say, having the application-layer knowledge allows the
agents to manage resources wisely by matching the threshold
with the QoS requirement in the service level agreement.

At this point, we evaluate the agent-tuned anti-affinity for
batch workflows, which allows to constrain which nodes they
are not eligible to be scheduled based on the pods that are
already running on the nodes. We use 50 LoadGen users in
the Server scenario to stress out an online inference service,
while in the meantime another LoadGen user asks for a batch

Fig. 10. Agent-tuned anti-affinity.

Fig. 11. Agent-tuned service fail-over and traffic redirection.

prediction by means of the Offline scenario. In the baseline
configuration, the batch and online inference workflows are
colocated in the same node; while in the anti-affinity configu-
ration, the planner-agent sets anti-affinity of the batch vs. the
online workflow, so that they are allocated separately. Figure
10 shows the benefit on the performance of both workflows
when agents define their anti-affinity, because each workflow
can use the spare resources in its allocated node, which would
be otherwise used by the colocated workflow if they are
executed together, as shown in the baseline.

Finally, we demonstrate how Scanflow-K8s can deal with
workflow internal faults by means of replica fail-over driven
by application-level information. In particular, if the inference
service is not available and it cannot be recovered by restarting
the service instances at the infrastructure layer, a backup
service deployed at the initiative of the Data Engineer team
can take over and Scanflow-K8s redirects all the traffic from
the original inference service to the backup service to maintain
the availability. We show the queries distribution between these
two services in Figure 11. We have started 200 LoadGen users
in the Server scenario so that replicas of the original inference
service start to fail the readiness health-check due to the high
load. When the planner-agent detects that the online-inference
service is not available (i.e., its number of ready replicas is 0),
it dynamically redirects the query traffic from the unavailable
service to the backup service. This is possible thanks to the



application knowledge that both services are equivalent, since
from the infrastructure perspective they are different services.

The above experiments exemplify how the agents can lever-
age application-layer knowledge to enhance resource man-
agement actions. In the first one, the agent used arbitrary
application-level metrics to configure auto-scaling according
to QoS requirements. In the second one, the agent tuned
the container-level resource and affinity configuration to opti-
mize performance according to workflow type and resource
availability. In the last one, the agent dealt with service
unavailability by redirecting the traffic to a backup service
defined at the application level. Application-layer knowledge
is currently provided by the end-user/data-engineer, but the
agent strategies could be enhanced to gather knowledge from
other sources (e.g., other models, expert knowledge base).

VI. CONCLUSIONS AND FUTURE WORK

This paper presented Scanflow-K8s, an agent-based frame-
work that enables autonomic management and supervision
of the end-to-end life-cycle of ML workflows at Kubernetes
clusters. We evaluated two simple use cases, although we
engineered the framework so that it can be easily adapted to
different ML workloads and more complex adaptation scenar-
ios. First, we used a MNIST project to show how different
teams could leverage Scanflow-K8s to manage ML workflows
at different phases and how its agents collaborate to debug
a drift anomaly problem and upgrade a new model. Second,
we used ImageNet2012 classification from MLPerf benchmark
for batch and online inference scenarios to show how agents
take actions to keep the performance and availability of work-
flows in this multi-layer controlled autonomic architecture.
We provided some template agents to be used in these use
cases, but as future work, we plan to implement more generic
template strategies and user interfaces so that developers could
easily bring their knowledge or the insights learned from other
models to the agents. We will also develop more complex (and
more dynamic) adaptation policies both at the application and
the infrastructure layers, and the needed enhancements in the
framework to enforce them at scale (management of conflicts
among multiple strategies, agent throughput under high load,
etc.).

ACKNOWLEDGMENT

This work was supported by Lenovo as part of Lenovo-BSC
2020 collaboration agreement, by the Spanish Government un-
der contract PID2019-107255GB-C22, and by the Generalitat
de Catalunya under contract 2017-SGR-1414 and under grant
2020 FI-B 00257.

REFERENCES

[1] Google Cloud, “Machine learning workflow,” 2021. [Online]. Available:
https://cloud.google.com/ai-platform/docs/ml-solutions-overview

[2] Q. Yao, M. Wang, Y. Chen, W. Dai, Y.-F. Li, W.-W. Tu, Q. Yang,
and Y. Yu, “Taking Human out of Learning Applications: A
Survey on Automated Machine Learning,” 2019. [Online]. Available:
https://arxiv.org/abs/1810.13306

[3] Run.AI, “Machine Learning Workflow: Automating Machine Learning
Workflows,” 2021. [Online]. Available: https://www.run.ai/guides/mach
ine-learning-engineering/machine-learning-workflow/#Automating

[4] B. Bischl, P. Kerschke, L. Kotthoff, M. Lindauer, Y. Malitsky,
A. Fréchette, H. Hoos, F. Hutter, K. Leyton-Brown, K. Tierney, and
J. Vanschoren, “Aslib: A benchmark library for algorithm selection,”
Artificial Intelligence, vol. 237, pp. 41–58, 2016.

[5] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and
F. Hutter, “Efficient and Robust Automated Machine Learning,” in Proc.
of the 28th Intl. Conference on Neural Information Processing Systems
- Vol. 2, ser. NIPS’15. MIT Press, 2015, pp. 2755–2763.

[6] G. Katz, E. C. R. Shin, and D. Song, “ExploreKit: Automatic Feature
Generation and Selection,” in 2016 IEEE 16th International Conference
on Data Mining (ICDM), 2016, pp. 979–984.

[7] Google Cloud, “MLOps: Continuous delivery and automation
pipelines in machine learning,” 2021. [Online]. Avail-
able: https://cloud.google.com/architecture/mlops-continuous-delivery-
and-automation-pipelines-in-machine-learning

[8] J. Gama, I. Žliobaitundefined, A. Bifet, M. Pechenizkiy, and
A. Bouchachia, “A Survey on Concept Drift Adaptation,” ACM Comput.
Surv., vol. 46, no. 4, Mar. 2014.

[9] J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang, “Learning under
Concept Drift: A Review,” IEEE Transactions on Knowledge and Data
Engineering, vol. 31, no. 12, pp. 2346–2363, 2019.

[10] C. Olston, N. Fiedel, K. Gorovoy, J. Harmsen, L. Lao, F. Li,
V. Rajashekhar, S. Ramesh, and J. Soyke, “TensorFlow-Serving:
Flexible, High-Performance ML Serving,” 2017. [Online]. Available:
https://arxiv.org/abs/1712.06139

[11] A. Ali, R. Pinciroli, F. Yan, and E. Smirni, “Batch: Machine Learning
Inference Serving on Serverless Platforms with Adaptive Batching,”
in Proc. of the Intl. Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC’20. IEEE Press, 2020.

[12] C. Cox, D. Sun, E. Tarn, A. Singh, R. Kelkar, and D. Goodwin,
“Serverless inferencing on Kubernetes,” 2020. [Online]. Available:
https://arxiv.org/abs/2007.07366

[13] D. J. Kedziora, K. Musial, and B. Gabrys, “AutonoML: Towards
an Integrated Framework for Autonomous Machine Learning,” 2020.
[Online]. Available: https://arxiv.org/abs/2012.12600

[14] P. Liu, X. Mao, S. Zhang, and F. Hou, “Towards reference architecture
for a multi-layer controlled self-adaptive microservice system,” in Pro-
ceedings of the 30th International Conference on Software Engineering
and Knowledge Engineering (SEKE), 2018, pp. 236–241.

[15] T. De Wolf and T. Holvoet, “Towards autonomic computing: agent-
based modelling, dynamical systems analysis, and decentralised control,”
in Proceedings of the IEEE International Conference on Industrial
Informatics (INDIN), 2003, pp. 470–479.

[16] G. Tesauro, D. Chess, W. Walsh, R. Das, A. Segal, I. Whalley, J. Kephart,
and S. White, “A multi-agent systems approach to autonomic comput-
ing,” in Proc. of the 3rd Intl. Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS), 2004, pp. 464–471.

[17] F. M. Brazier, J. O. Kephart, H. V. D. Parunak, and M. N. Huhns,
“Agents and Service-Oriented Computing for Autonomic Computing:
A Research Agenda,” IEEE Internet Computing, vol. 13, no. 3, pp. 82–
87, 2009.

[18] I. Zliobaite, A. Bifet, M. Gaber, B. Gabrys, J. Gama, L. Minku, and
K. Musial, “Next Challenges for Adaptive Learning Systems,” SIGKDD
Explor. Newsl., vol. 14, no. 1, pp. 48–55, Dec. 2012.

[19] G. Bravo-Rocca, P. Liu, J. Guitart, A. Dholakia, D. Ellison, J. Falkanger,
and M. Hodak, “Scanflow: A multi-graph framework for machine
learning workflow management, supervision, and debugging,” 2021.
[Online]. Available: https://arxiv.org/abs/2111.03003

[20] J. Klaise, A. V. Looveren, C. Cox, G. Vacanti, and A. Coca, “Monitoring
and explainability of models in production,” 2020. [Online]. Available:
https://arxiv.org/abs/2007.06299

[21] L. Wang, L. Yang, Y. Yu, W. Wang, B. Li, X. Sun, J. He, and L. Zhang,
“Morphling: Fast, Near-Optimal Auto-Configuration for Cloud-Native
Model Serving,” in Proceedings of the ACM Symposium on Cloud
Computing, ser. SoCC’21. ACM, 2021, pp. 639–653.

[22] A. Imbrea, “An empirical comparison of automated machine learning
techniques for data streams,” Ph.D. dissertation, January 2020. [Online].
Available: http://essay.utwente.nl/80548/

[23] R. W. Collier, E. O’Neill, D. Lillis, and G. O’Hare, “MAMS: Multi-
Agent MicroServices,” in Proceedings of the 2019 World Wide Web
Conference, ser. WWW’19. ACM, 2019, pp. 655–662.

[24] Kubernetes, “Why you need Kubernetes and what it can do,” 2021.
[Online]. Available: https://kubernetes.io/docs/concepts/overview/what-
is-kubernetes/#why-you-need-kubernetes-and-what-can-it-do

https://cloud.google.com/ai-platform/docs/ml-solutions-overview
https://arxiv.org/abs/1810.13306
https://www.run.ai/guides/machine-learning-engineering/machine-learning-workflow/#Automating
https://www.run.ai/guides/machine-learning-engineering/machine-learning-workflow/#Automating
https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning
https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning
https://arxiv.org/abs/1712.06139
https://arxiv.org/abs/2007.07366
https://arxiv.org/abs/2012.12600
https://arxiv.org/abs/2111.03003
https://arxiv.org/abs/2007.06299
http://essay.utwente.nl/80548/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/#why-you-need-kubernetes-and-what-can-it-do
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/#why-you-need-kubernetes-and-what-can-it-do

	Introduction
	Related Work
	Architecture for Autonomic ML Workflows
	Uncertainties in ML Workflows
	Multi-layered Control for Autonomic ML Workflows
	A Practical Platform for Autonomic ML Workflows

	Agents for Autonomic ML Workflows
	Agent Architecture
	Agent Social Ability
	Agent Triggers
	Operation Primitives

	Case Study And Experimental Analysis
	Experimental Setup
	MNIST classification
	Various teams build and deploy workflows
	Agents implementation
	Application-level autonomy results

	MLPerf Inference Benchmark
	Automation at the infrastructure layer
	Multi-layered Control for Autonomic ML workflows


	Conclusions And Future Work
	References

