
A Novel Set of Directives for Multi-device
Programming with OpenMP

Raul Torres, Roger Ferrer and Xavier Teruel
Computer Sciences Department

Barcelona Supercomputing Center
Barcelona, Spain

raul.torres1@bsc.es, roger.ferrer@bsc.es, xavier.teruel@bsc.es

Abstract—The latest versions of OpenMP have been offering
support for offloading execution to the accelerator devices
present in a variety of heterogeneous architectures via the
target directives. However, these directives can only refer to
one device at a time, which makes multi-device programming
an explicit and tedious task. In this work, we present an
extension of OpenMP in the form of a new set of directives
(target spread directives) which offers direct support for
multiple devices and allows the distribution of data and/or
workload among them without explicit programming. This
results in an additional level of parallelism between the host and
the devices. The target spread directives were evaluated
using the Somier micro-app in a PowerPC cluster node with
up to four Nvidia Tesla V100 GPUs. The results showed a
speedup of approximately 2X using four GPUs and the new
directive set, in comparison with the baseline implementation
which used one GPU and the existing target directive set.

Index Terms—OpenMP, language extension, multi-device
support, multi-GPU, heterogeneous architectures, offloading,
LLVM, accelerators

I. INTRODUCTION

High-Performance Computing (HPC) is entering the ex-
ascale era [1], where supercomputers are increasingly be-
ing built on top of heterogeneous architectures [2]. One
commonly found component in such architectures are ac-
celerators, which are hardware devices specially designed
for performing intensive parallel computations and which
have been progressively contributing on the overall increase
of the performance of these machines [3]. Examples of
accelerators are Graphic Processing Units (GPUs) and Field
Programmable Gate Arrays (FPGAs).

The OpenMP community, aware of this trend, included
direct support for accelerator offloading via the target
directives since the specification 4.0 [4]. However, in the last
years, the architectural landscape has drastically changed and
it is more common to find clusters whose computing nodes
have more than one accelerator. The CPU is progressively
taking a coordination role while most of the intense com-
putation is offloaded to the accelerators. Unfortunately, the
current OpenMP specification does not offer a satisfactory

This work was supported by MEEP project, which has received funding
from the European High-Performance Computing Joint Undertaking (JU)
under grant agreement No 946002. The JU receives support from the
European Union’s Horizon 2020 research and innovation programme and
Spain, Croatia, Turkey.

answer for programming these multi-device systems in a
straightforward way. In these systems, the current specifi-
cation forces to program each device individually making
the application code explicitly multi-device aware.

Working explicitly with multiple devices poses two main
challenges on the programmer side: workload- and data- dis-
tribution. At this level, the programmer should be responsible
for manually distributing data and, once data is distributed,
offloading the execution of code to the corresponding device.
A better approach consists of letting the programmer to
partition the loop iteration space using the traditional work-
sharing constructs (e.g., parallel for).

Our proposal consists of avoiding explicit and ad-hoc
implementations of multi-device programming in OpenMP,
and favouring direct support for it in the compiler, in the form
of an extended set of OpenMP directives specially designed
for such purpose.

In this paper the terms device and accelerator can be used
interchangeably. However we will favour the use of device
for the sake of clarity and simplicity.

This paper is organized as follows: Section II describes
concisely the current offloading model of OpenMP. Section
III explains the details of our proposed model and directives,
while Section IV makes a review of similar efforts. In Section
V we show a use case for the evaluation of the proposed
model while in Section VI we present the obtained results.
Finally, Section VII discusses the learned lessons, Section
VIII wraps up the conclusions and Section IX offers a
glimpse of the future directions of this research.

II. CURRENT DEVICE SUPPORT FOR OPENMP

OpenMP supports offloading work from the host to a
device via the target directive, which offloads work to a
single device (see line 2 of Listing 1), and does not present
any restriction about the type of the subsequent structured
block of code annotated by the directive (line 5), as long as
it is valid for the device.

Listing 1: OpenMP target directive example.
1 #pragma omp target \
2 device(0) \
3 map(to: A[0:N]) \
4 map(from:B[1:N-2])
5 { ... }

“© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.” The published version can be found at: DOI: 10.1109/IPDPSW55747.2022.00075

When using a fully parallelized com-
bined directive like #pragma omp target
teams distribute parallel for simd (see
Listing 2), the directly available parallelism levels are
intra-device only [5]:

1) Multiple teams (teams distribute).
2) Multiple threads (parallel for).
3) Multiple vector lanes (simd).

Listing 2: OpenMP target combined directives example.
1 #pragma omp target teams distribute parallel for simd \
2 device(0) \
3 num_teams(2) \
4 map(to: A[0:N]) \
5 map(from:B[1:N-2])
6 for(int i=1;i< N-1;i++){
7 B[i]=A[i-1]+A[i]+A[i+1];}

Unless the vendor provides a way to virtualize more than
one accelerator under a single OpenMP device, distributing
work over several devices has to be explicitly programmed.

III. PROPOSED MULTI-DEVICE SUPPORT FOR OPENMP

A. Proposed model

Our proposal consists on enabling direct multi-device
support in OpenMP in the form of an additional level of
parallelism, situated between the host and the target, and on
top of the existing ones:

1) Multiple devices (target spread).
2) Multiple teams (teams distribute).
3) Multiple threads (parallel for).
4) Multiple vector lanes (simd).
In contrast to offloading the work to a single device, as

in the current OpenMP model, the host first distributes that
work among the available devices (see Figure 1).

Fig. 1: Extension of the OpenMP target offloading model.

B. Directives for multi-device programming

In order to employ this model, we have implemented a new
set of directives whose syntax is very similar to the one of the
existing target directives. By simply adding the keyword
spread after the target keyword, we are enabling the
distribution of data and/or workload among devices.

In a previous publication [6] we have proposed
the standalone target spread directive as an
extension of the target directive. In this paper

we extend the set of directives that complement
target spread, by adding support to intra-
device parallelism (target spread teams
distribute parallel for) and data
management (target data spread,
target enter/exit data spread,
target update spread).

1) target spread: The aim of target spread is to
offload the workload over multiple devices by dividing the
execution into chunks (see Listing 3). This introduces one
restriction: the subsequent structured block of code must be
a loop (line 6).

Listing 3: Proposed target spread directive.
1 #pragma omp target spread \
2 devices(2,0,1) \
3 spread_schedule(static, 4) \
4 map(to: A[omp_spread_start-1:omp_spread_size+2]) \
5 map(from:B[omp_spread_start :omp_spread_size])
6 for(int i=1;i< N-1;i++){
7 B[i]=A[i-1]+A[i]+A[i+1];}

We have replaced the device clause of target with
a new devices clause (line 2), to allow the specification
of multiple accelerators, which are supposed to share the
workload. The order of distribution is determined by the
position in this list, not by the device identifier. As we offload
work over several devices, the spread_schedule clause
determines the distribution strategy and the size of the chunks
in which the loop will be split (line 3). At the moment, the
directive supports only static schedule, which performs
distribution of chunks among the devices in a round-robin
fashion, e.g, for Listing 3, if N is 14, the loop iterations
would be distributed as follows:

• Iterations 1, 2, 3 and 4 go to device 2.
• Iterations 5, 6, 7 and 8 go to device 0.
• Iterations 9, 10, 11 and 12 go to device 1.
The distribution changes if the chunk size

changes, e.g. if chunk size is now 2 (via
spread_schedule(static, 2)):

• Iterations 1 and 2 go to device 2.
• Iterations 3 and 4 go to device 0.
• Iterations 5 and 6 go to device 1.
• Iterations 7 and 8 go to device 2.
• Iterations 9 and 10 go to device 0.
• Iterations 11 and 12 go to device 1.
To map arrays according to the specified schedule, two

special variable identifiers have been introduced (line 4):
omp_spread_start makes reference to the start of each
chunk at execution time, while omp_spread_size does
the same with its size. Mapping halos (i.e. borders) can be
easily expressed by performing simple arithmetic with these
delimiters.

Like target, target spread supports asynchronous
execution via the nowait clause.

The OpenMP standard already includes the do across
dependences [7], [8] based on the keywords source and
sink to establish intra-loop dependencies (i.e., loop-carried

dependences) for the loop-worksharing construct. This mech-
anism is based on the iteration identifier. Existing propos-
als [9] extend dependencies to allow intra- and inter- loop
dependences based on the data used rather than on a given
iteration space. Data dependencies also allow us to describe
the application parallelism following a dataflow schema,
which may increase the level of parallelism and data locality.
Our proposed depend clause follows this latter approach.

2) target spread teams distribute parallel for: The new
directive target spread can be used as a combined
directive as well (see Listing 4):

1) The target spread directive distributes the work
among devices.

2) The teams distribute directive creates the teams
and distributes the workload among them.

3) The parallel for activates the parallel threads of
each team.

Listing 4: Proposed target spread combined directives.
1 #pragma omp target spread teams distribute parallel for \
2 devices(2,0,1) \
3 spread_schedule(static, 4) \
4 num_teams(2) \
5 map(to: A[omp_spread_start-1:omp_spread_size+2]) \
6 map(from:B[omp_spread_start :omp_spread_size])
7 for(int i=1;i< N-1;i++){
8 B[i]=A[i-1]+A[i]+A[i+1];}

The directive information related to
teams distribute is applied in a per-device basis, e.g.
each device will have as many teams as specified by the
num_teams clause (line 4).

3) target data spread: Recall that the existing
target data directive is applied over a subsequent
structured block of code (see line 5 of Listing 5). The same
applies to the new target data spread directive (line
15). However, in order to distribute data mappings, the
new directive uses more than one device (line 10), and
requires additional information, like the range (line 11)
and the size of the chunks in which the range will be split
(line 12). Because the proposed directive always assumes a
static round-robin distribution of data, we did not include a
spread_schedule clause. As its predecessor, the new
directive does not support asynchronous transfers (there is
no nowait clause) nor dependencies.

Listing 5: target data and target data spread compared.
1 #pragma omp target data \
2 device(0) \
3 map(to:A[0:N], \
4 B[1:N-2])
5 {
6 ...
7 }
8
9 #pragma omp target data spread \

10 devices(2,0,1) \
11 range(1:N-2) \
12 chunk_size(4) \
13 map(tofrom:A[omp_spread_start-1:omp_spread_size+2], \
14 B[omp_spread_start :omp_spread_size])
15 {
16 ...
17 }

4) target enter/exit data spread: OpenMP provides the
standalone data directives (i.e. not associated to user code)
target enter/exit data (see Listing 6), which fol-
low a similar syntax like the previous one. Our proposal
includes spread equivalents for those directives as well.
The nowait clause allows data transfers to happen asyn-
chronously (lines 3, 9, 17 and 25). However, the depend
clause is not supported yet.

Listing 6: target enter data and target enter data spread
compared.

1 #pragma omp target enter data \
2 device(0) \
3 nowait \
4 map(to:A[0:N], \
5 B[1:N-2])
6
7 #pragma omp target exit data \
8 device(0) \
9 nowait \

10 map(from:A[0:N], \
11 B[1:N-2])
12
13 #pragma omp target enter data spread \
14 devices(2,0,1) \
15 range(1:N-2) \
16 chunk_size(4) \
17 nowait \
18 map(to:A[omp_spread_start-1:omp_spread_size+2], \
19 B[omp_spread_start :omp_spread_size])
20
21 #pragma omp target exit data spread \
22 devices(2,0,1) \
23 range(1:N-2) \
24 chunk_size(4) \
25 nowait \
26 map(from:A[omp_spread_start:omp_spread_size], \
27 B[omp_spread_start:omp_spread_size])

5) target update spread: Similar to the original coun-
terpart, the new directive performs updates of previously
mapped data in the host and/or in the devices, but in a
distributed manner (see Listing 7). Asynchronous updates
are supported via the nowait clause (line 11). The depend
clause is not supported yet.

Listing 7: target update and target update spread compared.
1 #pragma omp target update \
2 device(0) \
3 nowait \
4 to(A[0:N]) \
5 from(B[1:N-2])
6
7 #pragma omp target update spread \
8 devices(2,0,1) \
9 range(1:N-2) \

10 chunk_size(4) \
11 nowait \
12 to(A[omp_spread_start-1:omp_spread_size+2]) \
13 from(B[omp_spread_start :omp_spread_size])

C. Implementation details

The proposed model and related directives where imple-
mented on top of the LLVM compiler [10]1. Most of the
changes were done in the OpenMP side of the Clang front-
end, and involved the following parts of the infrastructure:

• Lexical module.

1Commit 84adaabf3e04d1938a137b1299a677d2fa489383

• Parser.
• AST builder.
• Semantics module.
• Code generator.
Minor changes in the OpenMP runtime were necessary for

supporting the static scheduling for the target spread
directive.

IV. RELATED WORK

Work and data partition among different processing ele-
ments is a common problem that must be addressed in any
HPC programming model. Distributed environments could
solve data partition using explicit or implicit communication
(both implemented in MPI [11] through two-sided and one-
sided communication services, respectively). Distributed sys-
tems may also implement Partitioned Global Address Spaces
(PGAS), where the implicit communication still happens
at runtime level but they offer the perception of a single
memory address space. Such programming models usually
first distribute the data and then execute the associated work
where the data is placed.

X10 [12] provides the concepts of places, objects, and
activities. Objects and activities remain tied to the associated
place while places can migrate across different physical
locations. Chapel [13] implements this distribution employ-
ing domains, and there were also proposes to extend this
functionality allowing users to express more complex poli-
cies (e.g., Dynamically Load-Balanced Domain Maps [14]).
The Unified Parallel C (UPC) [15] provides a work-sharing
construct with the affinity annotation which specifies the
association among work and data.

Concerning OpenMP, several proposals have been done to
address the usage of multi-devices. One of them shows how
OpenMP can be useful to assign work to multiple GPUs on
a node by collectively offloading tasks containing OpenMP
target regions to the GPUs of a multi-GPU environment [16].
However, their implementation is explicitly performed using
the current language features, and not directly implemented
into the compiler infrastructure. Other authors have proposed
a source-to-source translator capable to parse C code anno-
tated with OpenACC directives and generate a multi-GPU
version in the same language but annotated with OpenMP
and OpenACC directives [17]. The resulting code still has
to be compiled afterwards. Yet another effort using a hybrid
OpenMP+OpenACC approach for programming multi-GPUs
has been proposed in [18], which was done on top the
OpenUH compiler.

The following proposals are closer to the ideas we are
developing in this work.

A. target device(any) and if device(...)

Similar to our approach, previous work has been done in
order to extend the target directive in order to enhance
OpenMP to support execution in multiple devices [19]. It
was implemented on top of the MACC compiler and the
OmpSs runtime [20]. Their approach consisted on letting the

device clause accept the keyword any as parameter, which
would force the generation of code for all the different types
of devices available in the system. The clause if_device
permits the specification of tailored code for an specific
type of device. However, the main goal is enabling the use
of devices of different types; there is no notion of work
distribution among the devices, which has to be programmed
by hand, i.e. by embedding the target region inside a for loop
that decomposes the problem into chunks beforehand.

B. parallel target and parallel for distribute

Another previously proposed language extension was im-
plemented on top of the HOMP compiler [21]. In this
work, a) they extended the target directive by adding
the parallel keyword before, which creates a context
for multi-device execution; b) they added the distribute
keyword after a for loop to indicate that the iterations must
be distributed among the devices of the parallel target region;
c) they added the partition modifier to the map clause,
in order to specify how the data should be distributed; d)
the device clause was modified to accept more than one
device.

In contrast to our approach, their parallel target region is
not restricted to be applied to a loop only; instead it creates
something similar to a classical OpenMP parallel region
but instead of having threads, it has devices. If the goal
is to distribute a loop, the parallel for distribute
construct has to be used inside that parallel region. In our
proposal the particular interest was the design of a model
that eases the distribution of the workload among the present
devices, so we preferred the invention of a new directive that
could be applied directly to for loops, hence skipping the
case of a parallel region of devices.

Another important difference is that in their approach, only
parallel target or parallel target data di-
rectives perform data mapping and distribution, which forces
execution directives, like parallel for distribute
or parallel for target, to align to them or vicev-
ersa via the align modifier. Our approach preserves the
semantics of the current OpenMP specification, and makes
the target spread data directives independent from the
target spread executable directive, meaning they are
both allowed to map and distribute data. This imposes on
the programmer the duty of ensuring that both distributions
match, but maintains the flexibility that the current standard
offers.

We also noticed that in their model, distribution and
alignment are performed in the scope of the map clause,
which allows different variables to be mapped and distributed
in different ways, as well as aligned to different loops
inside the parallel target region. However, the list of targeted
devices is rather applied at the directive level. This means the
programmer is given the flexibility to shape the distribution
at will but has to work always with the same device list.
Moreover, dependencies via a depend clause, which is
not addressed in their paper, if implemented, would have

to implant similar modifiers inside the clause scope, which
introduces more complexity to an already complex OpenMP
specification.

During the design process of our proposal we also exper-
imented with a similar setup, even letting the programmer
determine the device list per map clause. Nevertheless we
realized this level of customization would impose serious
restrictions for further extension of the model e.g. arising
ambiguities for the dependencies support, which are impor-
tant to reduce unnecessary global barriers. For that reason,
we discarded such model and moved all the distribution
customization from the map clause to the directive level,
which then applies to all the mappings associated to it. In
case the programmer needs different mappings, they can
be fully expressed using unstructured data constructs like
target enter/exit data spread, where the list of
devices for each construct can be different too (see lines 2
and 9 of Listing 8):

Listing 8: Mapping variables in different ways with multiple
target data spread directives.

1 #pragma omp target enter data spread \
2 devices(2,0) \
3 range(1:N-2) \
4 chunk_size(4) \
5 nowait \
6 map(to:A[omp_spread_start-1:omp_spread_size+2])
7
8 #pragma omp target enter data spread \
9 devices(1,3) \

10 range(100:M) \
11 chunk_size(10) \
12 nowait \
13 map(to:B[omp_spread_start:omp_spread_size])

Finally, some of the syntax proposed by the
referenced authors does not clearly integrate
with the current OpenMP standard, e.g. how the
parallel for distribute would compose with the
existing teams distribute parallel for, or how
would target enter data, target exit data
or target update could be employed together with
parallel target, just to mention a few.

In summary, in our research we have tended towards
preserving the current semantics of OpenMP by adding new
directives designed to look as natural extensions of the
existing ones, which make them easier to learn, and with the
ulterior goal of making the implementation of multi-GPU
code a less tedious and error-prone task.

V. USE CASE: SOMIER MINI-APP

We tested the performance and usefulness of the
new target spread directive set against the existing
target directive set in the Somier mini-app, for which we
implemented three different versions that will be detailed
later in this section2. The Somier mini-app simulates a grid
of springs. To do so, for each time step it performs the
computation of four variables stored in the cells of a three-
dimensional grid:

2https://repo.hca.bsc.es/gitlab/rtorres/target-spread-benchmarks/-
/tree/master/kernels/somier

• Forces.
• Acceleration.
• Velocities.
• Positions.
While most of the kernels only need the local cell infor-

mation to perform operations, the forces kernel is a stencil
computation that uses the neighbour cells. This requires the
use of halos between buffers and between chunks in the
outermost dimension.

An additional kernel computes centers using the positions
in a reduction operation. We currently do not support a
reduction clause yet, so we implemented a manual re-
duction for this kernel.

For our experiment, we used GPUs as the accelerator
device, due to their widespread use and availability in the
HPC centers. The three implementations were compiled
using our modified version of the Clang/LLVM compiler and
were run on the Barcelona Supercomputing Center’s CTE-
POWER cluster, using a node with up to four NVIDIA V100
GPUs with CUDA 10.1. Each accelerator has 16 gigabytes
(GBs) of global memory. The underlying operating system
was Red Hat Enterprise Linux Server version 7.5.

There has been a variety of studies on the problem of work
distribution among multiple accelerators with OpenMP, e.g.
[22], [23]. There, for example, the authors tried to provide a
handful of distribution strategies that could eventually fit to
real-world programs where the distribution of data is more
complex than simply splitting the data among the available
devices. But sometimes, certain problems require migrating
data between accelerators, which could cause that, in the
long run, the gained parallelism does not compensate the
generated overhead. In other situations, the intensiveness
of computation might differ from accelerator to accelerator,
leading to imbalance when a static scheduling strategy is
used. Mitigating such effects would require implementing a
dynamic scheduling strategy.

It is not in the scope of this paper the study of such com-
plex techniques. That is why we chose a scenario in which
the problem was too big to fit at once in the accelerators’
memory but could be split in a relatively easy manner into
smaller parts that fit into them, and which can be distributed
in a straightforward way using the round-robin strategy of
the static scheduling of target spread.

In order to reflect these conditions, we set the problem
size to approximately ten times the memory capacity of each
GPU (8 bytes ×12003 × 3× 4 = 154.5 GB):

• Each cell of the grid stored a double precision floating
point value of 8 bytes.

• Each dimension of the 3D grid had a size of 1200 cells.
• Each of the 4 variables of the problem required 3 3D-

grids.
The number of time steps was set to 31.

A. Implementation 1: One buffer at a time

This corresponds to straightforward implementation that
aims to distribute a buffer among the available GPUs using

their full memory capacity.
1) Baseline implementation with target directives: Listing

9 depicts a simplified view of the process using the existing
target based directives. The problem is split into buffers
that fully occupy the device memory (line 2). Due to the fact
that buffers are processed in a sequential way, there is no risk
of overlapping halo memory, so one GPU can be used safely.
The data are mapped to the device (line 5), making them
available beforehand for the computation, where we deploy
the intra-device parallelism using combined directives. As
mentioned above, the computation consists of more than one
kernel: forces, accelerations, velocities, positions and centers
(lines 10, 15 and 20). Finally, we update host data with the
results of the computation (line 23).

Listing 9: Baseline implementation of One Buffer strategy
with target directives.

1 /* process 1 buffer at a time */
2 for(int buffer_start=0; i<N; i+=buffer_size)
3 {
4 /* map data from host to devices */
5 #pragma omp target enter data \
6 device(0) map(...)
7
8 /* perform kernel computations in device */
9 // forces kernel

10 #pragma omp target teams distribute parallel for \
11 device(0) map(...)
12 for(int i=buffer_start;i<buffer_start+buffer_size;i++)
13 ...
14 // accelerations kernel
15 #pragma omp target teams distribute parallel for \
16 device(0) map(...)
17 for(int i=buffer_start;i<buffer_start+buffer_size;i++)
18 ...
19 // other kernels
20 ...
21
22 /* map data from host to devices */
23 #pragma omp target exit data \
24 device(0) map(...)
25 }

2) Implementation with target spread directives: The
target spread version (see Listing 10) introduces some
minor changes to the baseline version. First, the problem is
split into buffers that sum up for the total amount of memory
of the devices. Secondly, the chunk size for each GPU is sim-
ply calculated as the size of the current buffer divided by the
number of devices (line 5); this parameter is needed by the
chunk_size (line 11 and 37) and spread_schedule
(line 18 and 25) clauses of the target spread directive
set in order to guide the static distribution among the GPUs,
which is then performed automatically. Finally, data are
mapped now to more than one device (line 12, 19, 26 and
38).

The depend clause makes it possible to synchronize
kernels at the chunk level. The nowait clause and the
enclosing taskgroup areas make sure that mapping and/or
computation occur asynchronously among devices, but forces
synchronization at exit from the group.

It is important to mention that the coherence between the
mappings of the different directives is the programmer’s
responsibility, e.g. the range and chunk_size
configurations of the target enter data spread

directive should respectively match the loop range
and spread_schedule configurations of the
target spread directive.

Listing 10: One Buffer implementation with target spread
directives.

1 /* process 1 buffer at a time */
2 for(int buffer_start=0; i<N; i+=buffer_size)
3 {
4 /* each device gets a chunk from a buffer */
5 int chunk=buffer_size/num_devices;
6
7 /* map data from host to devices asynchronously */
8 #pragma omp taskgroup
9 {

10 #pragma omp target enter data spread \
11 range(buffer_start:buffer_size) chunk_size(chunk) \
12 devices(1,0,3,...) map(...) nowait
13 }
14
15 /* perform computation in devices asynchronously */
16 // forces kernel
17 #pragma omp target spread teams distribute parallel for\
18 spread_schedule(static, chunk) \
19 devices(1,0,3,...) map(...) nowait \
20 depend(out:...)
21 for(int i=buffer_start;i<buffer_start+buffer_size;i++)
22 ...
23 // accelerations kernel
24 #pragma omp target spread teams distribute parallel for\
25 spread_schedule(static, chunk) \
26 devices(1,0,3,...) map(...) nowait \
27 depend(in:...) depend(out:...)
28 for(int i=buffer_start;i<buffer_start+buffer_size;i++)
29 ...
30 // other kernels
31 ...
32
33 /* map data from host to devices asynchronously */
34 #pragma omp taskgroup
35 {
36 #pragma omp target exit data spread \
37 range(buffer_start:buffer_size) chunk_size(chunk) \
38 devices(1,0,3,...) map(...) nowait
39 }
40 }

B. Implementation 2: Two Buffers

This implementation assumes that by processing two half
buffers at a time, we increase the probability of overlapping
in time transfers and computations from different buffers,
which in theory would reduce the execution time. However,
we have no control on when the overlap could happen.

Listing 11 depicts a simplified view of the process. In this
version, instead of using a full buffer size, we used a half of
it (line 2). In that way, we can process two half buffers at
the same time without running out of memory in the devices.
The taskloop directive makes possible to process multiple
half buffers at the same time, while its num_tasks clause
limits the number of simultaneous half buffers to two (line 5).
The rest works similar to the previous version.

At a certain point, a GPU could be receiving data from
two consecutive buffers at the same time. If we had only
one GPU, the halo memories might overlap in space and
the runtime will detect it as an explicit extension of an
array, which is forbidden in OpenMP. In order to avoid
this situation, more than one GPU has to be used, this way
the round-robin schedule makes sure there is always a gap
between the array sections mapped to a particular device.

Listing 11: Two Buffers implementation with target spread
directives.

1 /* split buffers into half buffers */
2 int half_size=buffer_size/2;
3
4 /* process 2 half buffers at a time */
5 #pragma omp taskloop num_tasks(2)
6 for(int half_start=0; i<N; i+=half_size)
7 {
8 /* each device gets a chunk from a half buffer */
9 int chunk=half_size/num_devices;

10
11 /* map data from host to devices asynchronously */
12 #pragma omp taskgroup
13 {
14 #pragma omp target enter data spread \
15 range(half_start:half_size) chunk_size(chunk) \
16 devices(1,0,3,...) map(...) nowait
17 }
18
19 /* perform computation in devices asynchronously */
20 // forces kernel
21 #pragma omp target spread teams distribute parallel for\
22 spread_schedule(static, chunk) \
23 devices(1,0,3,...) map(...) nowait \
24 depend(out:...)
25 for(int i=buffer_start;i<buffer_start+buffer_size;i++)
26 ...
27 // accelerations kernel
28 #pragma omp target spread teams distribute parallel for\
29 spread_schedule(static, chunk) \
30 devices(1,0,3,...) map(...) nowait \
31 depend(in:...) depend(out:...)
32 for(int i=buffer_start;i<buffer_start+buffer_size;i++)
33 ...
34 // other kernels
35 ...
36
37 /* map data from host to devices asynchronously */
38 #pragma omp taskgroup
39 {
40 #pragma omp target exit data spread \
41 range(half_start:half_size) chunk_size(chunk) \
42 devices(1,0,3,...) map(...) nowait
43 }
44 }

C. Implementation 3: Double Buffering

The rationale behind this implementation is to gain more
control over the overlap by dispatching memory transfers
from host to device at the same time with kernel computa-
tions.

Similar to the previous version, it works with two half
buffers to avoid running out of memory in the devices,
but instead of using a taskloop, it employs a recursive
routine. Listing 12 depicts a simplified view of the process.
We start processing the first half buffer (line 5), which
calls the recursive routine (line 9) performing the following
operations:

1) Data transfer from host to device (line 17).
2) Recursive call with next buffer data (line 25) embedded

in a task (line 24) for asynchronous execution.
3) Kernel computations (line 30 and on).
4) Data transfer from device to host (line 49)
Notice that, due to the task directive in line 24, the kernel

computations in line 30 and on, do not wait for the called
function in line 25 to finish; instead they start executing
immediately. This has the intention to dispatch serialized
transfers from host to device, while increasing the chances
of overlapping to the kernel computations.

Listing 12: Double Buffering implementation with target
spread directives.

1 /* split buffers into half buffers */
2 int half_size=buffer_size/2;
3
4 /* call the routine for the first time */
5 foobar(half_start, half_size, ...);
6
7 ...
8
9 void foobar(int half_start, int half_size, ...)

10 {
11 /* each device gets a chunk from a half buffer */
12 int chunk=half_size/num_devices;
13
14 /* map data from host to devices asynchronously */
15 #pragma omp taskgroup
16 {
17 #pragma omp target enter data spread \
18 range(half_start:half_size) chunk_size(chunk) \
19 devices(1,0,3,...) map(...) nowait
20 }
21
22 /* the routine calls itself inside an asynchronous task */
23 if(half_start+half_size < total_size){
24 #pragma omp task
25 foobar(half_start+half_size, half_size, ...);
26 }
27
28 /* perform computation in devices asynchronously */
29 // forces kernel
30 #pragma omp target spread teams distribute parallel for\
31 spread_schedule(static, chunk) \
32 devices(1,0,3,...) map(...) nowait \
33 depend(out:...)
34 for(int i=buffer_start;i<buffer_start+buffer_size;i++)
35 ...
36 // accelerations kernel
37 #pragma omp target spread teams distribute parallel for\
38 spread_schedule(static, chunk) \
39 devices(1,0,3,...) map(...) nowait \
40 depend(in:...) depend(out:...)
41 for(int i=buffer_start;i<buffer_start+buffer_size;i++)
42 ...
43 // other kernels
44 ...
45
46 /* map data from host to devices asynchronously */
47 #pragma omp taskgroup
48 {
49 #pragma omp target exit data spread \
50 range(half_start:half_size) chunk_size(chunk) \
51 devices(1,0,3,...) map(...) nowait
52 }
53 }

VI. RESULTS

A. target vs target spread in One Buffer implementation
For this comparison, the target based implementation

targeting one GPU was used as baseline. The other imple-
mentation used the target spread directives targeting
one, two and four GPUs (Table I). The reported numbers
correspond to the total execution time of the program,
measured with the operating system tool time.

TABLE I: Execution times for the One Buffer implementa-
tion ((B) stands for baseline).

Directive target (B) target spread
GPUs 1 1 2 4
Time 17m40.231s 17m38.932s 13m15.486s 8m22.019s

The results showed that using one GPU, the baseline
implementation and the one based on the new directives

have similar execution times. This indicates that a negligible
overhead is introduced by using these new directives.

Adding up a second GPU showed approximately 1.4X
overall speedup, while the usage of four GPUs raised it
to more than 2X. However, it is important to notice that,
internally, the kernel computations had near to linear speedup
when more GPUs were added to the configuration. This
suggests the occurrence of a communication bottleneck in-
troduced when transferring data to and from multiple GPUs,
which downgrades the overall speedup of the program.

B. One buffer vs Two buffers vs Double buffering
Due to the mentioned risk of overlapping halo memory,

the Two Buffers and Double Buffering versions could not
be tested with any of the directives using only one GPU,
so a comparison with the target based directives was not
feasible. For this reason, the baseline in this case is the One
Buffer version based on target spread (see Table II).

With two GPUs, the One Buffering version seemed to be
faster than the other two (Figure 2), while with four GPUs,
the three versions showed more similar execution times.

TABLE II: Execution times for the different Somier imple-
mentations ((B) stands for baseline).

Directive target spread
GPUs 2 4

One Buffer (B) 13m15.486s 8m22.019s
Two Buffers 14m29.599s 8m26.674s

Double Buffering 14m4.230s 8m51.176s

Fig. 2: Time comparison of the Somier implementations.

In order to understand this behavior, we analyzed the
profiling traces obtained with NVIDIA’s tool nsys3. The anal-
ysis showed that the execution time was mainly dominated
by memory transfers and not by kernel computations (see
Figures 3a, 3b and 3c).

3https://docs.nvidia.com/nsight-systems/UserGuide/index.html

Fig. 3: 10 seconds of NVIDIA’s nsys traces showing memory
transfers from host to four GPUs and vice-versa (in green
and red) and kernel computations (in blue).

(a) One Buffer implementation.

(b) Two Buffers implementation.

(c) Double Buffering implementation.

A deeper look into the single-GPU level of the traces of
both Two Buffers and Double Buffering implementations (see
Figure 4) showed the following:

• The five kernel computations were not executed sub-
sequently, but interleaved with data transfers from a
different buffer.

• Overlap of computation and transfers from different
buffers happened in vary rare occasions.

• Transfers from different buffers did not overlap.

Fig. 4: Sample of a trace showing transfers and computations
in a single GPU.

The interleaving of transfers and computations could be
generated by an inadequate granularity of the memory trans-
fers, i.e. having 4 variables represented by 3 separated grids
implies making 12 sequential calls to the underlying CUDA
memory copy API per mapped chunk. Added to this is the
fact that the kernel computation is small compared to the
transfers and it is compound by multiple kernels.

VII. DISCUSSION

The usage of the target spread directives has al-
lowed us to deploy a multi-device version of the Somier
mini-app without having to explicitly write the code to
coordinate the worksharing among the devices, and without
adding up to a significant overhead. Instead, we only had
to modify the baseline version written with the existing
target directives, by using the new target spread
directives, which share a similar syntax, and are supported
by additional clauses that make it possible to specify the
involved devices, the distribution strategy, the range and the
chunk size.

A detailed look at the code will show that the ker-
nel computation is compound by multiple kernels syn-
chronized at the chunk level with the usage of de-
pendencies among subsequent target spread direc-
tives. These synchronization is not yet possible with
target enter/exit data spread, for the imple-
mentation of the depend clause on these directives is still a
work in progress. Therefore, one must ensure the whole data
are available before the computation, which is only possible
by adding a barrier that synchronizes all devices. To do so,
we opted for the usage of taskgroup over taskwait,
because the former forces synchronization only among the
tasks of the group, while the latter does it for all the
tasks of the parent parallel region. However, such barrier is
preventing that chunks already present in the device memory
can be used immediately by the kernel computations: all
chunks in all devices must have been copied in order to
start calculations.

Such synchronization configuration lowered the chances
of overlapping computation and transfers when two half
buffers at a time were being processed. Moreover, data
transfers dominated the time, while the kernel computations
were really short, hence being interleaved with, rather than
overlapped to the transfer operations.

At the end, dispatching the kernel computation together
with the data transfers in the Two Buffers and Double
Buffering versions decreased the overall performance of the
program.
target enter/exit data spread create unstruc-

tured data transfers, meaning they can happen anywhere
in the code, and the mappings are not directly related
to each other. In contrast, structured data transfers like
target data spread create a scope during which the
mappings are valid. The choice of using unstructured instead
structured data transfers was motivated by two factors:

• Unstructured data transfers can be done asynchronously.
• The mapping at enter and exit can be different, which

is important when working with halos.

VIII. CONCLUSIONS

In this paper we have presented a new set of directives
for multi-device targeting in OpenMP, implemented on top
of the popular LLVM compiler. We have shown as well
how a single-GPU implementation of the Somier micro-app
can be converted to multi-GPU code by using this new set
of directives and its corresponding support clauses, which
spares the time required to explicitly implement a multi-
GPU version by hand using the existing target directives.
Experimentation showed that executing this new code in a
cluster node with 4 GPUs was 2 times faster than doing
the same with the baseline single-GPU code. This demon-
strates the suitability of the proposed approach, whose model
can serve as a guideline for future OpenMP specifications.
However, currently the implementation does not support
dependencies, which harms this particular approach requiring
strong synchronization constructs (i.e., taskgroup).

IX. FUTURE WORK

We are aware that there are two fronts susceptible for
improvement: implementation and experimentation.

The immediate step of our research efforts is the
implementation of the support for dependencies in the
target enter/exit data spread directives, which
will be useful for synchronizing data transfers with ker-
nel computations at the chunk level, making the enclosing
taskgroup directive no longer necessary. This feature will
effectively eliminate the gaps in time where some of the
devices remain idle while waiting for the full transfer to
finish. They will be easily expressed in a similar fashion
to the mappings and with the same semantics for the array
sections (see Listing 13).

Listing 13: Future support for dependencies in target spread
data directives (Not implemented in red, already imple-
mented in blue).

1 #pragma omp target enter data spread \
2 devices(1,3) \
3 range(100:M) \
4 chunk_size(10) \
5 nowait \
6 map(to:B[omp_spread_start:omp_spread_size]) \
7 depend(out:B[omp_spread_start:omp_spread_size])
8
9 #pragma omp target spread \

10 devices(1,3) \
11 spread_schedule(static, 10) \
12 nowait \
13 map(B[omp_spread_start:omp_spread_size]) \
14 depend(in:B[omp_spread_start:omp_spread_size])
15 for(...)

Recall that at the moment and by default, the us-
age of the nowait clause with this new set of direc-
tives makes the kernels/transfers run asynchronously until
the next barrier, which is not implied in the mentioned
target spread constructs. If synchronization is needed
right after the construct, taskwait or taskgroup must
be employed. A future design choice would be to create an
implicit taskgroup for the target spread directives
that forces synchronization at the end of the construct, but
conveys also the implementation of the support for the
nogroup clause, in case the programmer needs to cancel
such barrier. However, having a nowait nogroup clause
combination could be misleading.

We believe there is room for developing more static
scheduling strategies, for example, one that allows irregular
chunk sizes. Dynamic scheduling is also an important issue
that must be addressed in order to mitigate the slowdown
cause by load imbalance. Once they are implemented, we
will integrate them into the syntax of the target spread
data transfer directives via the spread_schedule clause.

The support for reduction clauses among devices would
facilitate even more the implementation of complex algo-
rithms that perform this kind of operations.

From the side of the experimentation, research has to
be done on problems where the computation dominates the
execution time over the data transfers, in order to see if
a double buffering implementation performs better. Another

relevant kind of problems are those where the load balancing
is an issue, in order to evaluate how poorly the static round-
robin schedule performs, and what are the characteristics that
a dynamic schedule should have.

REFERENCES

[1] T. Shimizu, “Supercomputer Fugaku: Co-designed with application
developers/researchers,” in 2020 IEEE Asian Solid-State Circuits Con-
ference (A-SSCC), pp. 1–4, 2020.

[2] TOP500, “TOP500 Supercomputers 2021,” 2021.
https://www.top500.org/lists/top500/2021/11/ (visited 2022-01-21).

[3] F. Gagliardi, M. Moreto, M. Olivieri, and M. Valero, “The interna-
tional race towards exascale in europe,” CCF Transactions on High
Performance Computing, vol. 1, 04 2019.

[4] OpenMP Architecture Review Board, “OpenMP Application Pro-
gram Interface version 4.0,” 2013. https://www.openmp.org/wp-
content/uploads/OpenMP4.0.0.pdf (visited 2022-01-20).

[5] C. Shen, X. Tian, D. Khaldi, and B. Chapman, “Assessing One-to-
One Parallelism Levels Mapping for OpenMP Offloading to GPUs,”
in Proceedings of the 8th International Workshop on Programming
Models and Applications for Multicores and Manycores, PMAM’17,
(New York, NY, USA), p. 68–73, Association for Computing Machin-
ery, 2017.

[6] R. Torres, V. Kale, A. Malik, T. Scogland, R. Ferrer,
and B. Chapman, “Support in OpenMP for Multi-
GPU Parallelism.” SC21 Research Poster, Nov. 2021.
sc21.supercomputing.org/proceedings/tech poster/poster files/rpost111s2-
file3.pdf.

[7] P. Unnikrishnan, J. Shirako, K. Barton, S. Chatterjee, R. Silvera, and
V. Sarkar, “A Practical Approach to DOACROSS Parallelization,”
in Proceedings of the 18th International Conference on Parallel
Processing, Euro-Par’12, (Berlin, Heidelberg), p. 219–231, Springer-
Verlag, 2012.

[8] J. Shirako, P. Unnikrishnan, S. Chatterjee, K. Li, and V. Sarkar, “Ex-
pressing DOACROSS Loop Dependences in OpenMP,” in OpenMP
in the Era of Low Power Devices and Accelerators - 9th International
Workshop on OpenMP, IWOMP 2013, Canberra, ACT, Australia,
September 16-18, 2013. Proceedings (A. P. Rendell, B. M. Chapman,
and M. S. Müller, eds.), vol. 8122 of Lecture Notes in Computer
Science, pp. 30–44, Springer, 2013.

[9] M. Maroñas, X. Teruel, and V. Beltran, “OpenMP Taskloop De-
pendences,” in OpenMP: Enabling Massive Node-Level Parallelism
- 17th International Workshop on OpenMP, IWOMP 2021, Bristol,
UK, September 14-16, 2021, Proceedings (S. McIntosh-Smith, B. R.
de Supinski, and J. Klinkenberg, eds.), vol. 12870 of Lecture Notes in
Computer Science, pp. 50–64, Springer, 2021.

[10] C. Lattner, “LLVM: An Infrastructure for Multi-Stage Optimiza-
tion,” Master’s thesis, Computer Science Dept., University of
Illinois at Urbana-Champaign, Urbana, IL, Dec 2002. See
http://llvm.cs.uiuc.edu.

[11] Message Passing Interface Forum, “A message-passing interface stan-
dard version 3.0,” 2012.

[12] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar, “X10: An object-oriented
approach to non-uniform cluster computing,” in Proceedings of the
20th Annual ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, OOPSLA ’05, (New
York, NY, USA), p. 519–538, Association for Computing Machinery,
2005.

[13] Cray Inc., “Chapel Language Specification. Version 0.984,” 2017.
[14] B. L. Chamberlain, S. J. Deitz, D. Iten, and S.-E. Choi, “User-Defined

Distributions and Layouts in Chapel: Philosophy and Framework,”
in Proceedings of the 2nd USENIX Conference on Hot Topics in
Parallelism, HotPar’10, (USA), p. 12, USENIX Association, 2010.

[15] T. A. El-Ghazawi, W. W. Carlson, T. L. Sterling, and K. A. Yelick,
UPC: Distributed Shared-Memory Programming. Wiley-Interscience,
2003.

[16] V. Kale, W. Lu, A. Curtis, A. M. Malik, B. M. Chapman, and O. R.
Hernandez, “Toward Supporting Multi-GPU Targets via Taskloop and
User-Defined Schedules,” in OpenMP: Portable Multi-Level Paral-
lelism on Modern Systems - 16th International Workshop on OpenMP,
IWOMP 2020, Austin, TX, USA, September 22-24, 2020, Proceedings

(K. Milfeld, B. R. de Supinski, L. Koesterke, and J. Klinkenberg,
eds.), vol. 12295 of Lecture Notes in Computer Science, pp. 295–309,
Springer, 2020.

[17] K. Matsumura, M. Sato, T. Boku, A. Podobas, and S. Matsuoka,
“MACC: An OpenACC Transpiler for Automatic Multi-GPU Use”,”
in Supercomputing Frontiers (R. Yokota and W. Wu, eds.), (Cham),
pp. 109–127, Springer International Publishing, 2018.

[18] R. Xu, S. Chandrasekaran, and B. Chapman, “Exploring programming
multi-GPUS using OpenMP and OpenACC-based hybrid model,”
Proceedings - IEEE 27th International Parallel and Distributed Pro-
cessing Symposium Workshops and PhD Forum, IPDPSW 2013, 05
2013.

[19] G. Ozen, S. Mateo, E. Ayguadé, J. Labarta, and J. Beyer, “Multiple
Target Task Sharing Support for the OpenMP Accelerator Model,”
in OpenMP: Memory, Devices, and Tasks (N. Maruyama, B. R.
de Supinski, and M. Wahib, eds.), (Cham), pp. 268–280, Springer
International Publishing, 2016.

[20] G. Ozen, E. Ayguadé, and J. Labarta, “On the Roles of the Program-
mer, the Compiler and the Runtime System When Programming Ac-
celerators in OpenMP,” in IWOMP 2014. Lecture Notes in Computer
Science, vol. 8766, 09 2014.

[21] Y. Yan, J. Liu, K. W. Cameron, and M. Umar, “HOMP: Automated
Distribution of Parallel Loops and Data in Highly Parallel Accelerator-
Based Systems,” in 2017 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pp. 788–798, 2017.

[22] Y. Yan, P.-H. Lin, C. Liao, B. R. de Supinski, and D. J. Quinlan,
“Supporting multiple accelerators in high-level programming models,”
in Proceedings of the Sixth International Workshop on Programming
Models and Applications for Multicores and Manycores, PMAM
’15, (New York, NY, USA), p. 170–180, Association for Computing
Machinery, 2015.

[23] M. Nakao, H. Murai, and M. Sato, “Multi-accelerator extension in
openmp based on pgas model,” in Proceedings of the International
Conference on High Performance Computing in Asia-Pacific Region,
HPC Asia 2019, (New York, NY, USA), p. 18–25, Association for
Computing Machinery, 2019.

