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The weak law of large numbers

Theorem (WLLN)

Let X1,X2, . . . ,Xk , . . . be a sequence of independent and
identically distributed random variables with finite expectation m
and finite variance.

Set

X n =
X1 + X2 + · · ·+ Xn

n
, n � 1.

Then, for all ǫ > 0,

lim
n→∞

P
(∣

∣X n −m
∣

∣ � ǫ
)

= 0
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The weak law of large numbers

Proof: We know that E
(

X n

)

= m and Var
(

X n

)

= Var(X1)/n.

Applying Chebyshev’s inequality,

P
(
∣

∣X n −m
∣

∣ � ǫ
)

�
Var(X1)

n ǫ2

Therefore,

For all ǫ > 0 the following limit holds:

P
(∣

∣X n −m
∣

∣ � ǫ
)

→ 0 as n → ∞

The sequence of random variables
{

X n : n � 1
}

converges in
some sense to the limit value m = E(X1).
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Convergence in probability

Definition

The sequence of random variables X1,X2, . . . ,Xn, . . . converges in
probability to the random variable X if for all ǫ > 0,

P (|Xn − X | � ǫ) → 0 as n → ∞

Notation: Xn
P−→ X

Therefore, the sequence of sample means
{

X n : n � 1
}

converges
in probability to the common expected value m:

X n
P−→ m
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Example

Let X1,X2, . . . ,Xn, . . . be random variables such that

P(Xn = 0) = 1− 1

n

P(Xn = −1) = P(Xn = 1) =
1

2n
, n � 1

Let us show that Xn
P−→ 0.
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Example

We have to prove that P(|Xn| � ǫ) → 0 as n → ∞. Equivalently,
we have to prove that

P(|Xn| < ǫ) −→ 1 as n → ∞

◮ If ǫ > 1, then P(|Xn| < ǫ) = 1 for all n � 1.

◮ Otherwise, if ǫ � 1, then

P(|Xn| < ǫ) = P(Xn = 0) = 1− 1

n
−→ 1
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Probability as the limit of the relative frequency

An important consequence of the WLLN is the following one.

◮ Let A be an event with probability P(A).

◮ In each of n independent repetitions of the random
experiment, we observe weather or not A occurs. More
precisely, for 1 � k � n, let Xk be the indicator of the event
“A happens in the k-th repetition”.

Hence, E(Xk) = P(A), and, moreover,

X n =
X1 + X2 + · · ·+ Xn

n
= fn(A)

is the relative frequency of the event A.
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Probability as the limit of the relative frequency

Corollary

The sequence of relative frequencies {fn(A) : n � 1} converges in
probability to P(A):

fn(A)
P−→ P(A)

That is to say, for all ǫ > 0, P (|fn(A)− P(A)| � ǫ) → 0 as n → ∞
or, equivalently,

P (|fn(A)− P(A)| < ǫ) → 1 as n → ∞
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The standardized sample mean

Let X1,X2, . . . ,Xk , . . . be a sequence of independent and
identically distributed random variables such that E(Xk) = m and
Var(Xk) = σ

2, and let us consider the sequence of the
standardized sample means:

Zn =
X n −m

σ/
√
n

=
1√
n

n
∑

k=1

Xk −m

σ

=
(X1 + · · ·+ Xn)− nm√

n σ
, n � 1

Observe that E(Zn) = 0, Var(Zn) = 1, and X n = (σ/
√
n)Zn +m
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The standardized sample mean

If MZ (ω) is the characteristic function of Z1 = (X1 −m)/σ, then
the characteristic function Mn(ω) of Zn is given by

Mn(ω) = E

(

e iωZn

)

= E

(

e
iω 1

√

n

∑n
k=1

Xk−m

σ

)

= E

(

n
∏

k=1

e
i ω

√

n

Xk−m

σ

)

=

n
∏

k=1

E

(

e
i ω

√

n

Xk−m

σ

)

=

(

MZ

(

ω√
n

))n
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The standardized sample mean

The first terms of the series expansion of MZ (u) are:

MZ (u) = 1 + i E(Z )u +
i2 E(Z 2)

2
u2 + o(u2)

= 1− 1

2
u2 + o(u2),

where
o(u2)

u2
→ 0 as u → 0
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The standardized sample mean

Therefore,

Mn(ω) =

(

MZ

(

ω√
n

))n

=

(

1− 1

2

(

ω√
n

)2

+ o

(

ω√
n

)2
)n

=

(

1− 1

2
·
ω
2

n
+ o

(

1

n

))n
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The standardized sample mean

Taking logarithms and using that ln (1 + z) = z + o(|z |),

lnMn(ω) = n · ln

(

1− 1

2
·
ω
2

n
+ o

(

1

n

))

= n

(

−1

2
·
ω
2

n
+ o

(

1

n

))

= −1

2
ω
2 +

o(1/n)

1/n
−→ −1

2
ω
2 as n → ∞
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The standardized sample mean

(Remark)

We have proved that

Mn(ω) → e−ω2/2, as n → ∞,

where the convergence is pointwise for all ω ∈ R, and the limit
function M(ω) = e−ω2/2 is the characteristic function of a
standard normal random variable.

This kind of convergence (in terms of characteristic functions) can
also be understood in terms of distribution functions. We need a
result known as the continuity theorem

15 / 63

The continuity theorem

Let {Fn(x) : n � 1} be a sequence of probability distribution
functions, and let {Mn(ω) : n � 1} be the sequence of the
corresponding characteristic functions.

Theorem (Continuity Theorem)

1. If M(ω) = limn→∞Mn(ω) exists and is continuous at ω = 0,
then M(ω) is the characteristic function of some distribution
function F (x) and Fn(x) → F (x) at each point x where the
limit function F (x) is continuous.

2. If for some distribution function F (x), with characteristic
function M(ω), we have that Fn(x) → F (x) at each point x
where F (x) is continuous, then Mn(ω) → M(ω) for all ω ∈ R.
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The central limit theorem

Therefore, we have the following result.

Theorem (CLT)

Let X1,X2, . . . ,Xk , . . . be a sequence of independent and
identically distributed random variables such that E(Xk) = m and
Var(Xk) = σ

2. Let

Zn =
1√
n

n
∑

k=1

Xk −m

σ
, n � 1

Then, for all x ∈ R,

lim
n→∞

FZn
(x) = FN(0,1)(x) =

1√
2π

∫ x

−∞
e−t2/2 dt
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Convergence in distribution

Definition

1. We say that a sequence F1,F2, . . . ,Fn, . . . of distribution
functions converges to the distribution function F , written
Fn → F , if Fn(x) → F (x) at each point x where the limit
function F is continuous.

2. The sequence X1,X2, . . . ,Xn, . . . of random variables
converges in distribution to the random variable X if
FXn

→ FX .

Notation: Xn
d−→ X

Example. The Central Limit Theorem:

1√
n

n
∑

k=1

Xk −m

σ

d−→ N(0, 1) as n → ∞
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The central limit theorem

(Remark)

The CLT is sometimes expressed by saying that X n is
asymptotically normally distributed with mean m and variance
σ
2/n, in the following sense:

lim
n→∞

P
(

X n � x
)

1√
2π(σ2/n)

∫ x

−∞ e−(t−m)2/(2σ2/n)
= 1

The denominator is P(Yn � x), being Yn ∼ N
(

m, σ
2

n

)

.
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WLLN versus CLT

Example:

Let X1,X2, . . . ,Xn, . . . be a sequence of independent random
variables, each one uniformly distributed in [0, 1]. Hence,
E(Xn) = 1/2 and Var(Xn) = 1/12.

By the WLLN we know that, given α > 0,

P

(∣

∣

∣

∣

X n −
1

2

∣

∣

∣

∣

>
1

α

)

−→ 0 as n → ∞
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WLLN versus CLT

The CLT provides more detailed quantitative information.

P

(∣

∣

∣

∣

X n −
1

2

∣

∣

∣

∣

>
1

α

)

= 1− P

(

− 1

α
� X n −

1

2
�

1

α

)

= 1− P

(

−
√
12n

α
�

X n − 1/2

1/
√
12n

�

√
12n

α

)

≈ 2

(

1− FN(0,1)

(√
12n

α

))

◮ We have taken into account that
(

X n − 1/2
)

/
(

1/
√
12n

)

converges in distribution to a standard normal. Thus, its
distribution function can be approximated by FN(0,1).
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De Moivre-Laplace Theorem

If each Xk is a Bernoulli random variable with parameter p, then

Sn = X1 + X2 + · · ·+ Xn

follows a Bin(n, p) distribution with expected value np and
variance npq.

Hence, the CLT implies

Theorem (De Moivre-Laplace)

Let Sn ∼ Bin(n, p). Then

Sn − np√
npq

d−→ N(0, 1) as n → ∞
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A local version of the CLT

Theorem

Let X1,X2, . . . ,Xk , . . . be independent identically distributed
random variables with zero mean and unit variance, and suppose
that their common characteristic function MX (ω) satisfies
∫∞
−∞ |MX (ω)|

r dω < ∞ for some integer r � 1.

Then the density fn(u) of

Un =
(X1 + X2 + · · ·+ Xn)√

n

exists for n � r and

fn(u) →
1√
2π

e−u2/2 as n → ∞, uniformly on R
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Example: sum of uniform random variables

Suppose that each variable Xi is uniform on [−
√
3,
√
3] so that

E(Xi ) = 0 and Var(Xi ) = 1.

The common characteristic function is

MX (ω) =

∫ ∞

−∞
e iωx fX (x) dx

=
1

2
√
3

∫

√
3

−
√
3
e iωx dx =

sin
(√

3 ω
)

√
3 ω
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Poisson’s theorem

Another application of the continuity theorem is the following
result.

Theorem (Poisson)

If Xn ∼ Bin (n,λ/n), then Xn
d−→ Po(λ).

Proof:

MXn
(ω) =

(

1− λ

n
+

λ

n
e iω

)n

=

(

1 +
λ(e iω − 1)

n

)n

→ eλ(e
iω−1) as n → ∞
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Convergence in distribution: a result

Theorem

Let X1,X2, . . .Xn . . . and X be random variables taking
nonnegative integer values. A necessary and sufficient condition for

Xn
d−→ X is

lim
n→∞

P(Xn = k) = P(X = k) for all k � 0

For example, by Poisson’s theorem and this result, we have that for
all k � 0, if n → ∞, then

(

n

k

)(

λ

n

)k (

1− λ

n

)n−k

−→ e−λ
λ
k

k!
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Convergence in mean square

Given a probability space (Ω,F ,P), let us consider the vector
space H whose elements (vectors) are the random variables X such
that E(X 2) < ∞ (i.e., with a finite second order moment).

◮ We can define an inner product in H by 〈X ,Y 〉 = E(XY ).

◮ The norm induced by this inner product is ‖ X ‖=
√

〈X ,X 〉,
that is, ‖ X ‖=

√

E(X 2)

◮ Moreover, a distance between points (random variables) of H
can be considered:

d(X ,Y ) =‖ X − Y ‖=
√

E

(

(X − Y )2
)
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Convergence in mean square

Definition

The sequence X1,X2, . . . ,Xn, . . . converges in mean square to the
random variable X if d(Xn,X ) → 0 as n → ∞.

Equivalently,
E
(

(Xn − X )2
)

→ 0 as n → ∞

Notation: Xn
2−→ X

Example: The sequence of sample means X n converges in mean
square to the expected value m, because

E

(

(

X n −m
)2
)

= Var
(

X n

)

=
Var(X1)

n
→ 0
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Convergence in r -mean

More generally,

Definition

The sequence X1,X2, . . . ,Xn, . . . converges in r -mean to the
random variable X if

E (|Xn − X |r ) → 0 as n → ∞

Notation: Xn
r−→ X
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Example

Consider the sequence X1,X2, . . . ,Xn, . . ., such that











P(Xn = 0) = 1− 1

n

P(Xn = −1) = P(Xn = 1) =
1

2n

, n = 1, 2, 3, . . .

Let us prove that Xn
r−→ 0 for any r > 0.

Proof: We have to show that E (|Xn|
r ) → 0 as n → ∞.

Indeed,

E(|Xn|
r ) = 0 · P(Xn = 0) + 1 · (P(Xn = −1) + P(Xn = 1))

=
1

2n
+

1

2n
−→ 0
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Almost surely convergence

◮ Given a sequence X1,X2, . . . ,Xn, . . . of random variables, the
sequence {Xn(ω) : n � 1} is, for each outcome ω of the
random experiment, a numeric sequence of real numbers.

◮ If X is a random variable and X (ω) is the numerical value
taken by X if the outcome is ω, then it makes sense to
consider the event

{ω ∈ Ω : Xn(ω) → X (ω) as n → ∞}
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Almost surely convergence

Definition

The sequence X1,X2, . . . ,Xn, . . . converges almost surely (or with
probability 1) to the random variable X if

P ({ω ∈ Ω : Xn(ω) → X (ω) as n → ∞}) = 1

Notation: Xn
a.s.−→ X

(Remark)

Xn
a.s.−→ X if and only if the set

N = {ω ∈ Ω : Xn(ω) �→ X (ω) as n → ∞}

is a null event, that is to say, P(N) = 0.
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Strong laws of large numbers

Theorem (SLLN)

Let X1,X2, . . . ,Xk , . . . be a sequence of independent and
identically distributed random variables and set

X n =
X1 + X2 + · · ·+ Xn

n
, n � 1

Then
X n

a.s.−→ m as n → ∞
for some constant m, if and only if E(|X1|) < ∞. In this case,
E (X1) = m.
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Uniqueness

Theorem

Let X1,X2, . . . ,Xn, . . . be a sequence of random variables. If the
sequence converges

◮ almost surely,

◮ in probability,

◮ in r -mean,

◮ in distribution,

then the limiting random variable (distribution) is unique
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Uniqueness

For example, let us prove the uniqueness of the limit in the case of
almost sure convergence.

Suppose that Xn
a.s.−→ X and Xn

a.s.−→ Y and let

NX = {ω : Xn(ω) �→ X (ω) as n → ∞}

NY = {ω : Xn(ω) �→ Y (ω) as n → ∞}

So we have that
P(NX ) = P(NY ) = 0
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Uniqueness

Let ω ∈ NX ∩ NY = NX ∪ NY . Then

|X (ω)− Y (ω)| � |X (ω)− Xn(ω)|+ |Xn(ω)− Y (ω)| −→ 0

So, if ω ∈ NX ∪ NY , then X (ω) = Y (ω) ; hence, if X (ω) �= Y (ω),
then ω ∈ NX ∪ NY .

Thus

P(X �= Y ) � P(NX ∪ NY ) � P(NX ) + P(NY ) = 0

That is,
X = Y with probability 1
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Relations between the convergence concepts

Theorem

The following implications hold:

◮

(

Xn
a.s.−→ X

)

=⇒
(

Xn
P−→ X

)

◮

(

Xn
r−→ X

)

=⇒
(

Xn
P−→ X

)

for any r � 1.

◮

(

Xn
P−→ X

)

=⇒
(

Xn
d−→ X

)

◮ If r > s � 1, then
(

Xn
r−→ X

)

=⇒
(

Xn
s−→ X

)

All implications are strict.
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Relations between the convergence concepts

With additional hypothesis some converse implications also hold.

Theorem

◮ If c is a constant, then
(

Xn
d−→ c

)

=⇒
(

Xn
P−→ c

)

◮ If Xn
P−→ X and there exists a constant C such that

P(|Xn| � C ) = 1 for all n, then Xn
r−→ X for all r � 1.

◮ If Pn(ǫ) = P (|Xn − X | > ǫ) satisfies
∑

n Pn(ǫ) < ∞ for all

ǫ > 0, then Xn
a.s.−→ X
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Relations between the convergence concepts

For instance, let us consider the proof of the implication

(

Xn
d−→ c

)

=⇒
(

Xn
P−→ c

)

Hence, assume that Xn
d−→ X where X = c is a “constant”

random variable with distribution function

FX (x) =

{

0, x < c

1, x � c
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Relations between the convergence concepts

If ǫ > 0 is a fixed number, we have that

P(|Xn − c | > ǫ) = 1− P(c − ǫ � Xn � c + ǫ)

= 1− (FXn
(c + ǫ)− FXn

(c − ǫ) + P(Xn = c − ǫ))

� 1− FXn
(c + ǫ) + FXn

(c − ǫ) −→ 0,

because

FXn
(c + ǫ) → FX (c + ǫ) = 1, FXn

(c − ǫ) → FX (c − ǫ) = 0

Therefore,

Xn
P−→ c
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Example

Consider the sequence X1,X2, . . . ,Xn, . . . such that

P(X1 = 1) = 1,

P(Xn = 1) = 1− 1

n2
, P(Xn = n) =

1

n2
n � 2

Let us prove that the sequence converges almost surely to 1.

45 / 63

Example

We have that

Pn(ǫ) = P(|Xn − 1| > ǫ) =

{

0, n = 1

1/n2, n � 2

Therefore
∞
∑

n=1

Pn(ǫ) =
∞
∑

n=2

1

n2
< ∞

Hence
Xn

a.s.−→ 1
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Operations with limits

Theorem

◮ If Xn
a.s.−→ X and Yn

a.s.−→ Y , then Xn + Yn
a.s.−→ X + Y .

◮ If Xn
P−→ X and Yn

P−→ Y , then Xn + Yn
P−→ X + Y .

◮ If Xn
r−→ X and Yn

r−→ Y for some r > 0, then
Xn + Yn

r−→ X + Y .
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Cramer’s Theorem

Theorem (Cramer)

Suppose that Xn
d−→ X and Yn

P−→ a, where a is a constant. Then

◮ Xn + Yn
d−→ X + a.

◮ Xn − Yn
d−→ X − a.

◮ Xn · Yn
d−→ X · a.

◮ Xn/Yn
d−→ X/a, for a �= 0.
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Operations with limits

Theorem

Let Xn
d−→ X and Yn

d−→ Y . If Xn and Yn are independent
random variables for all n and, moreover, X and Y are

independent, then Xn + Yn
d−→ X + Y .

Proof:
It suffices to proof that MXn+Yn

(ω) → MX+Y (ω) as n → ∞
(pointwise). Thus, it suffices to proof that

MXn
(ω)MYn

(ω) → MX (ω)MY (ω)

But this is a simple consequence of MXn
(ω) → MX (ω) and

MYn
(ω) → MY (ω).
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Continuous functions

Theorem

Let Xn
P−→ a, where a is a constant. Suppose, further, that g is a

continuous function at point a. Then

g(Xn)
P−→ g(a) as n −→ ∞.
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Continuous functions

Proof:
Given ǫ > 0 there exists δ > 0 such that |g(x)− g(a)| < ǫ if
|x − a| < δ. Hence,

{|g(Xn)− g(a)| � ǫ} ⊆ {|Xn − a| � δ}

and so
P(|g(Xn)− g(a)| � ǫ) � P(|Xn − a| � δ)

But P(|Xn − a| � δ) → 0, because Xn
P−→ a. Therefore

P(|g(Xn)− g(a)| � ǫ) → 0, that is

g(Xn)
P−→ g(a) as n −→ ∞
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Delta method

Theorem

Let

(a) {an : n � 1} be a sequence of real numbers such that
an → ∞ as n → ∞, and an �= 0 for all n,

(b) {Xn : n � 1} be a sequence of random variables an θ be a

real number such that an(Xn − θ)
d−→ N(0,σ),

(c) g be a real function with a continuous derivative in an interval
that contains θ and such g ′(θ) �= 0.

Then
an (g(Xn)− g(θ))

d−→ N
(

0, |g ′(θ)|σ
)
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Shorokhod’s representation theorem

Theorem

Let X1,X2, . . . ,Xk , . . . and X be random variables such that

Xn
d−→ X as n → ∞.

Then there exists a probability space (Ω′,F ′,P′) and random
variables Y1,Y2, . . . ,Yk , . . . and Y , which map Ω

′ into R, such
that:

◮ Y1,Y2, . . . ,Yk , . . . and Y have the same distribution functions
that X1,X2, . . . ,Xk , . . . and X , respectively.

◮ Yn
a.s−→ Y .
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Borel-Cantelli lemmas

Given a sequence of events A1,A2, . . . ,An, . . ., let

Bn =

∞
⋃

k=n

Ak , n � 1

Notice that B1 ⊇ · · · ⊇ Bn ⊇ Bn+1 ⊇ · · · is a decreasing sequence
of events.

The limit of the sequence B1,B2, . . . ,Bn, . . . is

lim
n→∞

Bn =
∞
⋂

n=1

Bn =
∞
⋂

n=1

∞
⋃

k=n

Ak
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Borel-Cantelli lemmas

Definition

Given a sequence of events A1,A2, . . . ,An, . . ., the event A⋆

defined by

A⋆ =

∞
⋂

n=1

∞
⋃

k=n

Ak

is called the limit superior of the sequence and is denoted by
lim supn An.

◮ Notice that ω ∈ A⋆ if and only if ω belongs to infinitely many
of the events An. That is, the event A⋆ = lim supn An

happens if and only if infinitely many of the events An occur.
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Borel-Cantelli lemmas

Theorem (Borel-Cantelli lemmas)

Let A1,A2, . . . ,An, . . . be a sequence of events and A⋆ its limit
superior. Then

◮ P(A⋆) = 0 if
∑∞

n=1 P(An) < ∞.

◮ P(A⋆) = 1 if
∑∞

n=1 P(An) = ∞ and the events A1,A2, . . . are
independent.

Corollary (zero-one law)

Let A1,A2, . . . ,An, . . . be a sequence of independent events and let
A⋆ be its limit superior. Then either P(A⋆) = 0 or P(A⋆) = 1
according as

∑∞
n=1 P(An) converges or diverges, respectively.
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Borel-Cantelli lemmas

For example, the proof of the first Borel-Cantelli lemma is:

P(A⋆) = P

(

lim
n→∞

Bn

)

= lim
n→∞

P(Bn)

= lim
n→∞

P

(

∞
⋃

k=n

Ak

)

� lim
n→∞

∞
∑

k=n

P(Ak) = 0

because
∑

n P(An) converges by hypothesis.
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Examples

Example 1.

Let X1,X2, . . . ,Xn, . . . be a sequence of random variables such that

P(Xn = 0) =
1

n2
, P(Xn = 1) = 1− 1

n2
n � 1

Let An = {Xn = 0}, n � 1.

◮ Since
∑

n P(An) < ∞, the first Borel-Cantelli lemma implies
that P(A⋆) = 0. Thus, there is a 0 probability that {Xn = 0}
happens infinitely often.

◮ Therefore P(Xn = 1 for all n suficiently large) = 1. We
deduce that limn→∞ Xn = 1 (with probability 1).
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Examples

Example 2.

Now, let X1,X2, . . . ,Xn, . . . be independent random variables such
that

P(Xn = 0) =
1

n
, P(Xn = 1) = 1− 1

n
n � 1

Let An = {Xn = 0}, n � 1.

◮ Since
∑

n P(An) = ∞ and the events An are independent, the
second Borel-Cantelli lemma implies that, with probability 1,
infinitely many of the events An = {Xn = 0} occur.

◮ Analogously, the probability that An = {Xn = 1} occurs
infinitely often is also 1, because

∑

n P(An) = ∞ and the
events An are independent.

◮ Hence, with probability 1, limn→∞ Xn does not exist.
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Examples

Example 3.

Let a fair coin be tossed infinitely many times and denote by A⋆

the event “heads occurs infinitely often”. Thus, A⋆ = lim supn An,
where An is the event “the n-th toss lands heads”.

◮ Since the events An are independent, the second
Borel-Cantelly lemma implies P(A⋆) = 1, because
∑∞

n=1 P(An) =
∑∞

n=1(1/2) = ∞.

◮ What happens if P(heads) = ǫ, being ǫ > 0 a very small
number. Is it still true that “heads will occur infinitely often”?

Again, P(A⋆) = 1, because
∑∞

n=1 P(An) =
∑∞

n=1 ǫ = ∞.
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Examples

Example 4.

Now, let Pk be a given pattern (of heads and tails) of length k , for
instance P6 = HHTTHT.

Fact

If a coin with P(heads) = p, 0 < p < 1, is tossed infinitely many
times, the probability of observing Pk infinitely often is 1, no
matters how large is k.
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Examples

Proof: Let An be the event “the pattern Pk is observed between
the [(n − 1)k + 1]-th and the [nk]-th toss, n � 1”.

◮ If An happens infinitely often, then it is true that the pattern
Pk is observed infinitely often.

◮ The events An are independent, because if i �= j , then Ai and
Aj correspond to two non-ovelapping sequences of tosses.

◮ P(An) = ǫ, where ǫ = pr (1− p)k−r , being r the number of
heads in the pattern Pk . If k is large, then ǫ is very small, but
we have ǫ > 0.

◮ By the second Borel-Cantelli lemma, we conclude that
P(lim supn An) = 1, because

∑∞
n=1 P(An) =

∑∞
n=1 ǫ = ∞.

So, with probability 1, the pattern Pk occurs infinitely often.
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The infinite monkey theorem

Theorem

A monkey hitting keys at random on a typewriter keyboard for an
infinite amount of time will almost surely type any given text, such
as the complete works of William Shakespeare.

In fact, the monkey would almost surely type every possible finite
text an infinite number of times.

Proof: see Wiquipedia:

https://en.wikipedia.org/wiki/Infinite monkey theorem
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