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Abstract
Asubset S of vertices of a connected graphG is a distance-equalizer set if for every two
distinct vertices x, y ∈ V (G)\S there is a vertex w ∈ S such that the distances from x
and y to w are the same. The equidistant dimension of G is the minimum cardinality
of a distance-equalizer set of G. This paper is devoted to introduce this parameter and
explore its properties and applications to other mathematical problems, not necessarily
in the context of graph theory. Concretely, we first establish some bounds concerning
the order, the maximum degree, the clique number, and the independence number, and
characterize all graphs attaining some extremal values. We then study the equidistant
dimension of several families of graphs (complete and complete multipartite graphs,
bistars, paths, cycles, and Johnson graphs), proving that, in the case of paths and cycles,
this parameter is related to 3-AP-free sets. Subsequently, we show the usefulness of
distance-equalizer sets for constructing doubly resolving sets.
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1 Introduction

The notion of resolving set, also known as locating set, was introduced by Slater [40]
and, independently, by Harary and Melter [28]. This concept arises in diverse areas,
including location problems in networks of different nature (see [11]). For example, in
order to locate a failure in a computer network modeled as a graph, we are interested in
a subset of vertices S such that every vertex of the underlying graph might be uniquely
determined by its vector of distances to the vertices of S. Such a set is called a resolving
set of the graph, and the metric dimension of that graph is the minimum cardinality of
a resolving set.

Resolving sets and several related sets, such as identifying codes, locating-
dominating sets or watching systems, have been widely studied during the last decades
(see [3, 10, 18, 35]), as well as doubly resolving sets, a type of subset of vertices more
restrictive than resolving sets with multiple applications in different areas [11, 12, 15,
26, 31–33]. However, many recent papers [13, 16, 17, 24, 41, 43, 44] have turned
their attention precisely in the opposite direction to resolvability, thus trying to study
anonymization problems in networks instead of location aspects. For instance, the need
to ensure privacy and anonymity in social networks makes necessary to develop graph
tools such as the concepts of antiresolving set and metric antidimension, introduced
by Trujillo-Rasua and Yero [41]. Indeed, a subset of vertices A is a 2-antiresolving
set if, for every vertex v /∈ A, there exists another different vertex w /∈ A such that v
and w have the same vector of distances to the vertices of A. The 2-metric antidimen-
sion of a graph is the minimum cardinality among all its 2-antiresolving sets. With
the same spirit, this paper introduces new graph concepts that can also be applied to
anonymization problems in networks: distance-equalizer set and equidistant dimen-
sion. Furthermore, we shall see that these concepts have concrete applications in
mathematical problems, such as obtaining new bounds on the size of doubly resolving
sets of graphs, as well as a new formulation in terms of graphs of a classical problem
of number theory.

The paper is organized as follows. In Sect. 2, we define distance-equalizer sets and
the equidistant dimension and show bounds in terms of other graph parameters: order,
diameter, maximum degree, independence number, and clique number. Section 3 is
devoted to characterize all graphs attaining some extremal values of the equidistant
dimension. In Sect. 4 we study this parameter for some families of graphs: complete
and complete multipartite graphs, bistars, paths, cycles, and Johnson graphs. For the
particular cases of paths and cycles, we show that this parameter is related to 3-AP-
free sets. In Sect. 5, we obtain bounds for general graphs and trees on the minimum
cardinality of doubly resolving sets in terms of the equidistant dimension. Finally, we
present some conclusions and open problems in Sect. 6.

All graphs considered in this paper are connected, undirected, simple, andfinite. The
vertex set and the edge set of a graph G are denoted by V (G) and E(G), respectively.

The order of G is |V (G)|. For any vertex v ∈ V (G), its open neighborhood
is the set N (v) = {w ∈ V (G) : vw ∈ E(G)} and its closed neighborhood is
N [v] = N (v) ∪ {v}.
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Fig. 1 Black vertices form a distance-equalizer set of minimum size for P8

The degree of a vertex v, denoted by deg(v), is defined as the cardinality of N (v).
If deg(v) = 1, then we say that v is a leaf, in which case the only vertex adjacent to
v is called its support vertex.

When deg(v) = |V (G)|−1, we say that v is universal. Themaximum degree ofG is
Δ(G) = max {deg(v) : v ∈ V (G)} and its minimum degree is δ(G) = min {deg(v) :
v ∈ V (G)}. The distance between two vertices v,w ∈ V (G) is denoted by d(v,w),
and the diameter of G is D(G) = max{d(v,w) : v,w ∈ V (G)}. A clique is a subset
of pairwise adjacent vertices and the clique number of G, denoted by ω(G), is the
maximum cardinality of a clique of G. An independent set of G is a subset of pairwise
non-adjacent vertices and the independence number of G, denoted by α(G), is the
maximum cardinality of an independent set of G. For undefined terms we refer the
reader to [42].

For every integer n ≥ 1, let [n] = {1, 2, . . . , n}. We denote by Pn the path of order
n with vertex set [n] and edges i j with j = i+1 and i ∈ [n−1], and byCn the cycle of
order n, n ≥ 3, with vertex set [n] and the same edge set as Pn together with the edge
1n. Also, for every r , s ≥ 3, we denote by K1,r the star on r + 1 vertices with vertex
set {v} ∪ [r ], vertex v being called the center of the star, and edge set {vi : i ∈ [r ]}.
A bistar, denoted by K2(r , s), is a graph obtained by joining the centers of two stars
K1,r−1 and K1,s−1.

2 Distance-Equalizer Sets and Equidistant Dimension

Let x, y, w be vertices of a graph G. We say that w is equidistant from x and y
if d(x, w) = d(y, w). A subset S of vertices is called a distance-equalizer set for
G if for every two distinct vertices x, y ∈ V (G)\S there exists a vertex w ∈ S
equidistant from x and y. The equidistant dimension of G, denoted by eqdim(G),
is the minimum cardinality of a distance-equalizer set of G. For example, if v is a
universal vertex of a graph G, then S = {v} is a minimum distance-equalizer set of
G, and so eqdim(G) = 1. Also, a distance-equalizer set of P8 is shown in Fig. 1,
and it can be easily checked that P8 has no distance-equalizer set of size at most 4, so
eqdim(P8) = 5.

The following results are immediate but make it easier to prove subsequent results.

Lemma 1 Let G be a graph. If S is a distance-equalizer set of G and v is a support
vertex of G, then S contains v or all leaves adjacent to v.

Consequently,

eqdim(G) ≥| {v ∈ V (G) : v is a support vertex} | .

Proof No vertex is equidistant from a leaf and its support vertex, since every path from
a leaf to any other vertex goes through its support vertex. Hence, if v is not in S, then
all leaves hanging from v must be in S. ��
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Recall that a graph G is bipartite whenever V (G) can be partitioned into two
independent sets, say A, B, which are called its partite sets.

Proposition 1 Let G be a bipartite graph with partite sets A and B. If S is a distance-
equalizer set of G, then A ⊆ S or B ⊆ S. Consequently, eqdim(G) ≥ min{|A|, |B|}.
Proof The distance between two vertices in the same partite set is even, while the
distance between vertices of different partite sets is odd. Hence, there is no vertex
equidistant from two vertices belonging to different partite sets. Therefore, A ⊆ S or
B ⊆ S. ��

If G is a graph of order n, with n ≥ 2, then any set of vertices of cardinality n − 1
is obviously a distance-equalizer set. Hence, n − 1 is an immediate upper bound on
the equidistant dimension of nontrivial graphs. We next prove some upper bounds
involving classical graph parameters.

Proposition 2 For every graph G of order n ≥ 2, the following statements hold.

(i) eqdim(G) ≤ n − Δ(G) and the bound is tight if Δ(G) ≥ n/2;
(ii) eqdim(G) ≤ n − ω(G), if G � Kn, and the bound is tight if ω(G) ≤ n/2;
(iii) eqdim(G) ≤ n(D(G)−1)+1

D(G)
, and the bound is tight if D(G) = 2;

(iv) eqdim(G) ≤ n − α(G), whenever D(G) = 2, and the bound is tight if α(G) ≥
n/2.

Proof (i) Let v be a vertex of degree Δ(G). It is easy to see that the set
S = V (G)\N (v) is a distance-equalizer set of cardinality n − Δ(G), and so
eqdim(G) ≤ n − Δ(G).
To prove tightness, let Ha,b with a ≥ 1 and 0 ≤ b < a be the graph with vertex
set {v, v1, . . . , va, u1, . . . , ub} and edge set {vvi : i ∈ [a]} ∪ {vi ui : i ∈ [b]}.
This graph has order a + b + 1 and maximum degree a, so eqdim(Ha,b) ≤
b + 1 as we have just seen. Moreover, this graph is bipartite with partite sets
A = {v, u1, . . . , ub} and B = {v1, . . . , va}, and so by Proposition 1 we have that
eqdim(Ha,b) ≥ min{|A|, |B|} = b + 1 since b < a. Hence, Ha,b is a graph of
order a+b+1 andmaximumdegree a, with a ≥ a+b+1

2 and eqdim(Ha,b) = b+1,
showing that the given the bound is tight.

(ii) Suppose thatG is a non complete graph of order n. LetW be a clique of maximum
size ω(G). Thus, |W | = ω(G) < n. Since G is connected, there is at least one
vertex u /∈ W adjacent to a vertex w ∈ W . Hence, Δ(G) ≥ deg(w) ≥ |W | =
ω(G) and, by item (i), eqdim(G) ≤ n − Δ(G) ≤ n − ω(G).
To prove that the bound is tight for ω(G) ≤ n/2, consider for example the graph
Gr ,s of order n = r+s, for every r ≥ 2 and 1 ≤ s ≤ r , obtained by attaching a leaf
to s vertices of a complete graph of order r . Then, by Lemma 1, eqdim(Gr ,s) ≥ s.
Since the set formed by all except one leaves together with the support vertex of the
remaining leaf is a distance-equalizer set, we have eqdim(Gr ,s) = s = n − r =
n − ω(Gr ,s).

(iii) Let v be a vertex ofG for which there exists another vertex at distance D(G). For
every i ∈ [D(G)], let Vi be the set of vertices at distance i from v, and observe
that all vertices in Vi are equidistant from v. Also, there must exist a set Vi0 , with
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1 ≤ i0 ≤ D, having at least n−1
D(G)

vertices. Therefore, V (G)\Vi0 is a distance-
equalizer set, and consequently eqdim(G) ≤ n − n−1

D(G)
= n(D(G)−1)+1

D(G)
.

To prove that the bound is tight, consider the complete bipartite graph Kr ,r ,
for every r ≥ 2. These graphs have diameter 2 and, as we will see later,
eqdim(Kr ,r ) = r . Hence, eqdim(Kr ,r ) = r = 	 2r(2−1)+1

2 
.
(iv) Let W be an independent set of cardinality α(G). Then, the set S = V \W is a

distance-equalizer set. Indeed, note that the vertices not in S are the vertices in
W . If v,w ∈ W , then d(v,w) = 2, because v,w are not adjacent and D(G) = 2.
Hence, there is a vertex u /∈ W such that d(u, v) = d(u, w) = 1. Thus, S is a
distance-equalizer set and we obtain eqdim(G) ≤ |S| = n − α(G).
Finally, consider any complete bipartite graph Kr ,s , with s ≥ r . Then, Kr ,s has
order n = r + s, the independence number is α(Kr ,s) = s and, as we will see
later, eqdim(Kr ,s) = r . Hence, eqdim(Kr ,s) = n − α(Kr ,s).

��
The bound given in Proposition 2(i) is not tight for all values of Δ(G) and n, for

example when Δ(G) = 2 and n ≥ 7. Indeed, the only graphs satisfying Δ(G) = 2
are paths and cycles and, as it will be seen below, the equidistant dimension of paths
and cycles of order n ≥ 7 is at most n − 3.

3 Extremal Values

In this section we characterize all nontrivial graphs achieving extremal values for the
equidistant dimension, concretely, graphs G of order n ≥ 2 such that eqdim(G) ∈
{1, 2, n−2, n−1}. We also derive a Nordhaus–Gaddum type bound for the equidistant
dimension.

Theorem 1 For every graph G of order n ≥ 2, the following statements hold.

(i) eqdim(G) = 1 if and only if Δ(G) = n − 1;
(ii) eqdim(G) = 2 if and only if Δ(G) = n − 2.

Proof (i) If Δ(G) = n − 1, then eqdim(G) ≤ n − (n − 1) = 1 by Proposition 2(i),
and so eqdim(G) = 1. Conversely, if eqdim(G) = 1, then there exists a vertex v

such that S = {v} is a distance-equalizer set ofG.We claim that v has degree n−1.
Indeed, suppose on the contrary that there is a vertex u not adjacent to v. Then,
since there is at least one vertex w adjacent to v, we have d(v,w) = 1 �= d(v, u).
Hence, {v} is not a distance-equalizer set of G, a contradiction. Therefore, G has
maximum degree n − 1.

(ii) If G has maximum degree n − 2, then eqdim(G) ≤ n − (n − 2) = 2 by Propo-
sition 2(i), and eqdim(G) �= 1 by item (i). Hence, eqdim(G) = 2. Conversely,
suppose that eqdim(G) = 2 and let S = {u, v} be a distance-equalizer set of G.
We first prove that N (u)\{v} ⊆ N (v)\{u} or N (v)\{u} ⊆ N (u)\{v}. Suppose on
the contrary that N (u)\{v} � N (v)\{u} and N (v)\{u} � N (u)\{v}. Then, there
exist vertices x, y such that x ∈ N (u)\{v} and x /∈ N (v)\{u}, y ∈ N (v)\{u}
and y /∈ N (u)\{v}. Thus, vertices x, y verify that d(x, u) = 1 �= d(y, u) and
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d(y, v) = 1 �= d(x, v), contradicting that S is a distance-equalizer set. Without
loss of generality, we assume N (v)\{u} ⊆ N (u)\{v}.
Next, we prove that V (G) = N [u] ∪ {v}. Suppose on the contrary that there is
a vertex z /∈ N [u] ∪ {v}. Thus, d(z, u) ≥ 2 and d(z, v) ≥ 2. If N (v)\{u} is
nonempty, then for any vertex x ∈ N (v)\{u} we have d(x, u) = 1 �= d(z, u) ≥ 2
and d(x, v) = 1 �= d(z, v) ≥ 2, contradicting that S is a distance-equalizer set.
Otherwise N (v)\{u} is empty, and so v is a leaf with u as its support ver-
tex. Thus, for any y ∈ N (u)\{v}, we have d(y, u) = 1 �= d(z, u) ≥ 2 and
d(y, v) = 2 �= d(z, v) = d(z, u) + 1 ≥ 3, contradicting again that S is distance-
equalizer.
Finally, we have that Δ(G) �= n − 1 by the preceding item. Hence, v /∈ N (u) and
eqdim(G) = deg(u) = n − 2.

��
Theorem 2 For any graph G of order n, the following statements hold.

(i) If n ≥ 2, then eqdim(G) = n − 1 if and only if G is a path of order 2.
(ii) If n ≥ 3, then eqdim(G) = n− 2 if and only if G ∈ {P3, P4, P5, P6,C3,C4,C5}.
Proof (i) It is obvious that eqdim(P2) = 1. Conversely, if G is a graph with

eqdim(G) = n − 1, then Δ(G) = 1 by Proposition 2(i), and the only connected
graph with maximum degree equal to 1 is the path of order 2.

(ii) A straightforward computation shows that the graphs P3, P4, P5, P6, C3, C4, and
C5 have equidistant dimension equal to the order minus 2. Conversely, if G is a
graph with eqdim(G) = n − 2, then Δ(G) ≤ 2 by Proposition 2(i). As we have
seen above, the path of order 2 is the only connected graph with maximum degree
1. Hence, Δ(G) = 2, that is, G is a path or a cycle of order at least 3.
It is easy to see that in both cases the set [n]\{1, 3, 7} is a distance-equalizer set
whenever n ≥ 7, and so eqdim(G) ≤ n−3 but eqdim(G) = n−2. Therefore, 3 ≤
n ≤ 6 and consequently G ∈ {P3, P4, P5, P6,C3,C4,C5} since eqdim(C6) =
3 �= 6 − 2.

��
Corollary 1 If G is a graph of order n ≥ 7, then 1 ≤ eqdim(G) ≤ n − 3.

Now, we provide a Nordhaus–Gaddum type bound on the equidistant dimension.
Nordhaus–Gaddum type inequalities establish bounds on the sum of a parameter for
a graph and its complement. Recall that the complement of a graph G, denoted by G,
is the graph on the same vertices as G and two vertices are adjacent in G if and only
if they are not adjacent in G. Also, a graph G is doubly connected if both G and G
are connected. Note that nontrivial doubly connected graphs have order at least 4.

The following result is a direct consequence of Proposition 2(i).

Proposition 3 If G is a doubly connected graph, then eqdim(G) ≤ δ(G) + 1.

Theorem 3 If G is a doubly connected graph of order n ≥ 4, then 4 ≤ eqdim(G) +
eqdim(G) ≤ n + 1. Moreover, these bounds are tight.
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Proof First observe that a graph G satisfying eqdim(G) = 1 is not doubly connected.
Indeed, in such a case, by Theorem 1(i), it contains a universal vertex v that is an
isolated vertex inG.Hence, eqdim(G) ≥ 2 and eqdim(G) ≥ 2,wheneverG is doubly
connected, and the lower bound follows. The family of bistars G = K2(2, n − 2),
n ≥ 4, provides examples of graphs attaining the lower bound for every n ≥ 4. As we
will see in Theorem 4(iii) below, these graphs satisfy eqdim(G) = 2, and it is easy
to check that eqdim(G) = 2.

The upper bound is a direct consequence of Propositions 2(i) and 3, because

eqdim(G) + eqdim(G) ≤ n − Δ(G) + δ(G) + 1 ≤ n + 1.

The cycle C5 attains the upper bound, since C5 = C5 and, by Theorem 2(ii),
eqdim(C5) = 3. ��

4 Equidistant Dimension of Some Families of Graphs

In this section we study the equidistant dimension of some families of graphs, con-
cretely of complete, complete bipartite and completemultipartite graphs, bistars, paths,
cycles, and Johnson graphs.

4.1 Complete Graphs, Complete Multipartite Graphs, and Bistars

Recall that, for every positive integer n, the complete graph Kn is the graph of order
n in which every pair of vertices is connected by an edge. Also, the complete bipartite
graph Kr ,s , with r , s positive integers, is the bipartite graph with partite sets A, B
such that |A| = r and |B| = s, and edge set given by all pairs vu with v ∈ A and
u ∈ B. More generally, a complete p-partite graph, denoted by Kn1,...,n p , is a graph
with set of vertices A1 ∪ · · · ∪ Ap such that A1, . . . , Ap, which are called its partite
sets, are pairwise disjoint, verify |Ai | = ni ≥ 1, and two vertices are adjacent if and
only if they belong to Ai and A j , respectively, with i �= j . Note that complete bipartite
graphs are thus 2-partite graphs.

Theorem 4 Let n, r , s, p, n1, . . . , n p be positive integers such that n ≥ 2, s ≥ r ,
p ≥ 3 and n p ≥ · · · ≥ n1 ≥ 1. Then, the following statements hold.

(i) eqdim(Kn) = 1;
(ii) eqdim(Kr ,s) = r;
(iii) eqdim(K2(r , s)) = r;
(iv) eqdim(Kn1,...,n p ) = min{n1, 3}.
Proof (i) It is a direct consequence of Theorem 1(i).
(ii) By Proposition 1, eqdim(Kr ,s) ≥ r . Since both partite sets of Kr ,s are distance-

equalizer sets, we have eqdim(Kr ,s) = r .
(iii) Note that K2(r , s) is a bipartite graph with partite sets of cardinality r and s.

Hence, by Proposition 1, eqdim(K2(r , s)) ≥ r . Moreover, if A is the partite set
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of cardinality r , then A is a distance-equalizer set because it contains a vertex at
distance 1 from every vertex not in A.

(iv) If n1 = 1, then Kn1,...,n p has a universal vertex and eqdim(Kn1,...,n p ) = 1, by
Theorem 1(i).
If n1 = 2, then Kn1,...,n p has maximum degree equal to the order minus 2 and
eqdim(Kn1,...,n p ) = 2, by Theorem 1(ii).
Otherwise n1 ≥ 3, and so the maximum degree of Kn1,...,n p is at most the
order minus 3 and eqdim(Kn1,...,n p ) ≥ 3, by Theorem 1. Moreover, it is very
easy to verify that any set consisting of 3 vertices from different partite sets is
distance-equalizer. Thus, we conclude that eqdim(Kn1,...,n p ) = 3.

��

4.2 Paths

We next show that distance-equalizer sets and the equidistant dimension of paths are
related to 3-AP-free sets and the function r(n) introduced by Erdös and Turán [23].
A subset S ⊆ [n] is 3-AP-free if a + c �= 2b, for every distinct terms a, b, c ∈ S. The
largest cardinality of a 3-AP-free subset of [n] is denoted by r(n).

We begin by introducing some preliminary results. A subset of [n] is called even-
sum if all its elements have the same parity.

Proposition 4 Let S ⊆ [n] for some integer n. Then, S is a distance-equalizer set of
Pn if and only if [n]\S is a 3-AP-free even-sum set.

Proof Let us denote by A the set of vertices of Pn labeled with even numbers and by
B the set of vertices labeled with odd numbers. (Note that Pn is a bipartite graph and
A, B are its partite sets). Also, let S be a distance-equalizer set of Pn with |S| = r .
By Proposition 1, either A ⊆ S or B ⊆ S. Thus, if T = [n]\S = {t1, . . . , tn−r }, then
t1, . . . , tn−r have the same parity, that is, T is an even-sum set. Moreover, (ti + t j )/2
is the only vertex of Pn equidistant from ti and t j . Hence (ti + t j )/2 ∈ S, that is,
(ti+t j )/2 /∈ T . Then, T is a 3-AP-free set. Conversely, suppose that T = {t1, . . . , tn−r }
is a 3-AP-free even-sumset. Then, for all pair of vertices ti , t j ofT ,wehave (ti+t j )/2 ∈
[n]\T . Hence, S = [n]\T is a distance-equalizer set of Pn . ��
Corollary 2 For every positive integer n, it holds that

eqdim(Pn) = n − max{ |T | : T is a 3-AP-free even-sum subset of [n]}.

Proposition 5 [19] Let k1, . . . , kr , n be different positive integers. Then, one of the
sets {2k1 − 1, 2k2 − 1, . . . , 2kr − 1} or {2k1, 2k2, . . . , 2kr } is a 3-AP-free even-sum

set of [n] if and only if {k1, . . . , kr } is a 3-AP-free subset of
[
�n/2

]
.

The equidistant dimension of a path is derived from the results above.

Theorem 5 For every positive integer n, it holds that

eqdim(Pn) = n − r
(⌈n

2

⌉)
.
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Hence, obtaining the equidistant dimension of paths amounts to computing the
function r(n), which has been widely studied [5, 7–9, 22, 25, 27, 29, 37–39]. In fact,
many papers are devoted to obtain the values of r(n) in some specific cases (n ≤ 23
and n = 41 [23]; n ≤ 27 and 41 ≤ n ≤ 43 [39]; n ≤ 123 [21]), which allows us to
compute eqdim(Pn) in all those cases (see Table 1 for n ≤ 20 and n = 50). Also,
other works [5, 21, 37] provide bounds on r(n) that are useful to approach eqdim(Pn),
such as

n1−c/
√
log n < r(n) <

cn

log log n
.

Besides its relationship with the function r(n), the equidistant dimension of paths
is also related to a problem concerning covering squares of a chessboard by queens
proposed byCockayne andHedetniemi [19]. Indeed, the authors are interested in deter-
mining the minimum number of queens needed to be placed on the major diagonal of
a chessboard in order to reach all the remaining squares with a single chess movement.
More formally, a subset K ⊆ [n] is a diagonal dominating set if its |K | queens placed
in position {(k, k) | k ∈ K } on the black major diagonal of an n × n chessboard cover
the entire board. The minimum cardinality of a diagonal dominating set is denoted
by diag(n). It is proved in [19] that diagonal dominating sets are precisely the com-
plements of 3-AP-free even-sum sets, which combined with Proposition 4 leads us to
see that the distance-equalizer sets of Pn are the diagonal dominating sets in [n], and
consequently eqdim(Pn) = diag(n).

Finally, we do not know the exact value of the equidistant dimension of trees.
However, in this family of graphs, it looks that paths are those graphs needing more
vertices to construct a distance-equalizer set. Indeed, it is easily seen that, for every
pair of vertices of a path, there is at most one equidistant vertex. Hence, we believe
that the following conjecture holds true.

Conjecture 1 If T is a tree of order n, then eqdim(T ) ≤ eqdim(Pn).

4.3 Cycles

In this section, the equidistant dimension of cycles of even order is completely deter-
mined, while for cycles of odd order, lower and upper bounds in terms of r(n) are
given.

Theorem 6 For every positive integer n ≥ 3, the following statements hold.

(i) eqdim(Cn) =
⎧⎨
⎩

n
2 , for n even, n �≡ 0 mod 4;
3n
4 − 1, for n even, n ≡ 0 mod 4.

(ii) n−1
2 ≤ eqdim(Cn) ≤ n − r

(⌈
n+1
4

⌉)
, for n odd.

Proof Throughout this proof, for every i, j ∈ [n], we use the expression i+ j+n
2 to

represent the only integer in [n] modulo n whenever i+ j+n
2 is an integer. Thus, for
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every pair of vertices i, j ofCn , the vertices equidistant from them are i+ j
2 and i+ j+n

2 ,
whenever these values are integers. Hence, there is exactly one vertex equidistant from
i and j , when n is odd; there is no equidistant vertex from i and j , whenever n is even
and i , j have distinct parity; and there are exactly two vertices equidistant from i and
j , if n even and i , j have the same parity. Moreover, in this last case, the vertices
equidistant from i and j are antipodal.

(i) Let n be an even integer, and let us denote by A (resp., B) the set of vertices of
Cn labeled with odd (resp., even) numbers. As n is even, Cn is a bipartite graph
and, by Proposition 1, for every distance-equalizer set S, either A ⊆ S or B ⊆ S.
Hence, |S| ≥ n/2. We distinguish two subcases.

(a) Case n �≡ 0 mod 4.We claim that A is a distance-equalizer set (see an example
in Fig. 2a). Indeed, for every i, j ∈ [n]\A, the numbers i+ j

2 and i+ j+n
2 are

integers of different parity, because n is even but n �≡ 0 mod 4. Thus, either i+ j
2

or i+ j+n
2 belongs to A. Hence, A is a distance-equalizer set and eqdim(Cn) =

n/2.
(b) Case n ≡ 0 mod 4. Let S be a distance-equalizer set, and let us assume,

relabeling the vertices if necessary, that A ⊆ S. Thus, [n]\S ⊆ B. First,
we suppose that there is a pair of antipodal vertices in [n]\S ⊆ B. We can
assume without loss of generality that these vertices are n/2 and n. For every
i ∈ {2, 4, . . . , n/2− 2}, the only vertices equidistant from i and n − i are n/2
and n. Since n/2 and n are not in S, we derive that at least one of the vertices i
or n− i must be in S, for every i ∈ {2, 4, . . . , n/2−2}. Therefore, besides the
vertices from A, the set S contains at least n/2−2

2 vertices from B. Therefore,

eqdim(Cn) ≥ n

2
+ n/2 − 2

2
= 3n

4
− 1.

It is straightforward that the same bound holds if we suppose that there is no
pair of antipodal vertices in [n]\S ⊆ B.
Now, we consider the set S = [n]\{2, 4, 6, . . . , n/2+ 2} of size |S| = 3n

4 − 1.
It is easy to check that every pair of vertices not in S has a vertex in {n/2 +
3, n/2+ 4, . . . , n, 1} ⊆ S equidistant from them. Thus, we conclude that S is
a distance-equalizer set of minimum cardinality (see an example in Fig. 2b),
and so eqdim(Cn) = 3n

4 − 1.

(ii) Let n be an odd integer, and let S be a distance-equalizer set of minimum size.
Since any set of cardinality n−1 is a distance-equalizer set, we can assumewithout
loss of generality that n /∈ S. As n is an odd integer, n is the only vertex of Cn

equidistant from each pair of vertices i, n − i , with i ∈ {1, . . . , (n − 1)/2}, and so
at least one of them must be in S. Therefore, eqdim(Cn) ≥ (n − 1)/2.
To prove the upper bound, let S1 = {i : (n + 1)/2 < i ≤ n} and consider a
distance-equalizer set S2 of P(n+1)/2. We claim that S = S1 ∪ S2 is a distance-
equalizer set of Cn (see an example in Fig. 2c). Indeed, any two vertices i, j not
in S belong to [(n + 1)/2], and there is a vertex in S2 equidistant from then, since
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Fig. 2 The set of black vertices form a distance-equalizer set of the cycles a C10, b C12, and c, d C13. In
cases (a, b, d), the given distance-equalizer set has minimum cardinality

Table 1 Equidistant dimension
of some paths and cycles

n 3 4 5 6 7 8 9 10 11 12

r(�n/2) 2 2 2 2 3 3 4 4 4 4

eqdim(Pn) 1 2 3 4 4 5 5 6 7 8

eqdim(Cn) 1 2 3 3 4 5 5 5 7 8

n 13 14 15 16 17 18 19 20 50

r(�n/2) 4 4 4 4 5 5 5 5 10

eqdim(Pn) 9 10 11 12 12 13 14 15 40

eqdim(Cn) 9 7 11 11 12 9 13 14 25

S2 is a distance-equalizer set of P(n+1)/2. Hence,

eqdim(Cn) ≤ |S1| + |S2| = n − 1

2
+ eqdim(Pn+1

2
) = n − r

(⌈n + 1

4

⌉)
.

��

Note that the distance-equalizer set constructed in the proof of the preceding the-
orem for odd cycles is not necessarily of minimum cardinality. In Fig. 2c, d, the
distance-equalizer set described in the proof of the theorem and a distance-equalizer
set of minimum cardinality for C13 are shown.

In Table 1 the values of the equidistant dimension of Cn for n ≤ 20 and n = 50 are
given. Note that some of these values have been obtained with computer.

4.4 Johnson Graphs

Johnson graphs are important because of their connections with other combinato-
rial structures such as projective planes and symmetric designs [3]. Furthermore,
there exist different studies about geometric versions of these graphs because of their
multiple applications in network design (see for instance [4]). Due to these facts,
among others, properties of Johnson graphs have been widely studied in the literature:
spectra [34], induced subgraphs [2], connectivity [1], colorings [6], distances [20],
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automorphisms [36], andmetric dimension [3]. In this subsectionwe study the equidis-
tant dimension of Johnson graphs, obtaining an upper bound for several cases.

The Johnson graph J (n, k), with n > k ≥ 1, has as vertex set the k-subsets of a
n-set and two vertices are adjacent if their intersection has size k − 1. Thus, it can be
easily seen that the distance between any two vertices X ,Y is given by

d(X ,Y ) = |X\Y | = |Y\X | = k − |X ∩ Y |.

Consequently, a vertex U ∈ V (J (n, k)) is equidistant from vertices X and Y if and
only if |U ∩ X | = |U ∩ Y |.
Proposition 6 For any positive integer k, it holds that

eqdim(J (n, k)) ≤ n

whenever n ∈ {2k − 1, 2k + 1} or n > 2k2.

Proof Consider the vertices of J (n, k) as k-subsets of the n-set W = {0, . . . , n − 1}.
For each positive integer i , let Si = {i, i + 1, . . . , i + k − 1} ∈ V (J (n, k)) where
sums are taken modulo n (thus Si+rn = Si for any integer r ). We claim that the set
S = {S0, . . . , Sn−1} is a distance-equalizer set of J (n, k). Suppose on the contrary
the existence of two vertices X ,Y ∈ V (J (n, k))\S such that |Si ∩ X | �= |Si ∩ Y | for
every i ∈ {0, 1, . . . , n − 1}.

First, we assume that n > 2k2. For j, r integers, let T ( j, r) = { j, j + 1, . . . , j +
r} ⊆ W , where the sums are also taken modulo n. Let T = {T1, . . . , Ts} be the family
of sets T ( j, r) satisfying T ( j, r)∩(X∪Y ) = ∅, j−1 ∈ X∪Y and j+r+1 ∈ X∪Y .
Note that T is a partition of W\(X ∪ Y ) with at most 2k parts, by construction.
Moreover, |Ti | ≤ k − 1 for every i ∈ {1, . . . , s}, otherwise, if Ti = T ( j, r), where
r ≥ k, then |S j ∩ X | = |S j ∩ Y | = 0, which contradicts our hypothesis. Therefore,

n = |W | = |X ∪ Y | + |W\(X ∪ Y )| ≤ 2k + 2k(k − 1) = 2k2,

contradicting our assumption on n.
Now, suppose n ∈ {2k − 1, 2k + 1}. Let u = (u0, . . . , un−1) be the vector of

{−1, 1, 0}n such that ui = 1 if i ∈ X\Y ; ui = −1 if i ∈ Y\X ; and ui = 0 otherwise.
Observe that u has at most 2k nonzero components, and the same number of 1’s and
−1’s. Hence,

∑n−1
i=0 ui = 0. Let si = ∑i+k−1

j=i u j . Observe that si = |Si∩X |−|Si ∩Y |,
for every i ∈ {0, 1, . . . , n − 1}. Hence, si �= 0, for every i ∈ {0, 1, . . . , n − 1},
because no set Si is equidistant from X and Y . Next, we prove that si si+k < 0 for
every i ∈ {0, . . . , n − 1}. Indeed, we have that

si + si+k + ui+2k =
n−1∑
i=0

ui = 0, when n = 2k + 1;

si + si+k − ui =
n−1∑
i=0

ui = 0, when n = 2k − 1.
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Therefore, for n = 2k + 1,

si+k = −si − ui+2k ≤ −1 − ui+2k ≤ 0, if si > 0;
si+k = −si − ui+2k ≥ 1 − ui+2k ≥ 0, if si < 0

and for n = 2k − 1,

si+k = −si + ui ≤ −1 + ui ≤ 0, if si > 0;
si+k = −si + ui ≥ 1 + ui ≥ 0, if si < 0.

Hence, for every i ∈ {0, . . . , n − 1}, we have si si+k < 0 since si+k �= 0, and it can
be derived that si si+rk < 0, for r odd, and si si+rk > 0, for r even. Then, si si+nk < 0,
since n is odd, which is a contradiction since si+nk = si . ��

5 Using Distance-Equalizer Sets for Constructing Doubly Resolving
Sets

We now explore different relationships among distance-equalizer sets and doubly
resolving sets. To do this, we first need to formally define resolving sets. Indeed,
a subset S of vertices is a resolving set of a graph G if, for every pair of vertices
x, y ∈ V (G), there exists a vertex v ∈ S such that d(v, x) �= d(v, y). The metric
dimension of G, denoted by dim(G), is the minimum cardinality of a resolving set of
G. Observe that, on the one hand, a set of vertices can be at the same time resolving
set and distance-equalizer set. For example, it is easy to check that any independent
set S of cardinality three of a cycle of order 6 is both resolving and distance-equalizer.
However, in this case S is a distance-equalizer set of minimum cardinality, but S is
not a resolving set of minimum cardinality, since eqdim(C6) = 3 and dim(C6) =
2. On the other hand, there are graphs satisfying dim(G) = eqdim(G) with no
minimum resolving set being a distance-equalizer set. For example, the cycle or order
4 satisfies eqdim(C4) = dim(C4) = 2, but there is no set of cardinality two that is
both resolving and distance-equalizer because a resolving set on two vertices is formed
by two adjacent vertices and distance-equalizer sets of cardinality two are formed by
two non-adjacent vertices.

Doubly resolving sets were introduced in [11] as a tool for computing the metric
dimension of Cartesian products of graphs. Furthermore, different authors have pro-
vided interesting applications of doubly resolving sets on source location [15, 31],
algorithmic studies and relations with other graph parameters [12, 26, 32, 33].

We say that two vertices u, v doubly resolve a pair of vertices x, y ofG (or that {x, y}
is doubly resolved by u, v) if d(u, x)− d(u, y) �= d(v, x)− d(v, y). A set S ⊆ V (G)

is a doubly resolving set of G if every pair {x, y} ⊆ V (G) is doubly resolved by two
vertices of S (it is said that S doubly resolves {x, y}), and the minimum cardinality of
such a set is denoted by ψ(G). Observe that a doubly resolving set is also a resolving
set, and so dim(G) ≤ ψ(G).
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Proposition 7 For every graph G, it holds that

ψ(G) ≤ dim(G) + 2 eqdim(G).

Proof Let A be a resolving set, and let B be a distance-equalizer set. We next construct
a set C of vertices satisfying 0 ≤ |C | ≤ eqdim(G) and such that for every pair of
vertices x, y ∈ V (G), there exist u, v ∈ A ∪ B ∪ C doubly resolving x and y.

First, notice that if x, y ∈ B then x and y are doubly resolved by themselves, and
if x, y /∈ B, then x and y are doubly resolved by vertices u and v, where u ∈ A is a
vertex resolving x and y, and v ∈ B is equidistant from x and y. Hence, in both cases,
x and y are doubly resolved by a pair of vertices in A ∪ B.

Now, suppose that x ∈ B and y /∈ B. We claim that, for every x ∈ B there is
at most one vertex yx /∈ B such that x, yx are not doubly resolved by A ∪ B and
besides, in such a case, d(u, x) + d(x, yx ) = d(u, yx ) for every u ∈ A ∪ B. Indeed,
suppose that there exists y′ /∈ B such that the pair x, y′ is not doubly resolved by
A ∪ B. Then, for all u ∈ A ∪ B, the pair of vertices x, u ∈ A ∪ B does not doubly
resolve x, y′. Hence, d(u, x) − d(u, y′) = −d(x, y′). In a similar way, if y′′ is a
vertex such that y′′ /∈ B, y′′ �= y′ and the pair x, y′′ is not doubly resolved by
A ∪ B, then for all u ∈ A ∪ B we have d(u, x) − d(u, y′′) = −d(x, y′′). Therefore,
d(x, y′)−d(x, y′′) = d(u, y′)−d(u, y′′). Thus, for every pair of vertices u, v ∈ A∪B
we obtain d(u, y′)− d(u, y′′) = d(x, y′)− d(x, y′′) = d(v, y′)− d(v, y′′), implying
that y′, y′′ /∈ B are not doubly resolved by A ∪ B, which is not possible as we have
seen in the former paragraph. Consider the (possibly empty) set

C = {yx : x ∈ B, yx /∈ B and x, yx are not doubly resolved by A ∪ B}.

Then, 0 ≤ |C | ≤ |B| and, by construction, A ∪ B ∪ C doubly resolves x and y
whenever x ∈ B and y /∈ B. Therefore, the set S = A ∪ B ∪ C is a doubly resolving
set for G and, consequently, |S| ≤ dim(G) + 2 eqdim(G). ��

We think that the preceding bound can be improved as follows.

Conjecture 2 For every graph G, it holds that ψ(G) ≤ dim(G) + eqdim(G).

A graph attaining the upper bound given in the preceding conjecture is shown in
Fig. 3.

Although we have no proof of Conjecture 2, we next prove that it holds true for
trees.

Theorem 7 For every tree T , it holds that

ψ(T ) ≤ dim(T ) + eqdim(T ).

Proof Let S be the set of all support vertices of T . For every v ∈ S, consider the sets
of vertices Lv = {z : z is a leaf adjacent to v} and Tv = {v} ∪ Lv , and observe that
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Fig. 3 In this graph G,
ψ(G) = dim(G) + eqdim(G).
Black vertices, gray vertices and
the set of leaves are a
distance-equalizer set, a
resolving set and a doubly
resolving set of minimum
cardinality, respectively

the sets Tv are pairwise disjoint. First, note that it is well known that the set of leaves
of a tree T is the unique minimum doubly resolving set of T (see [11]). Hence,

ψ(T ) =
∑
v∈S

|Lv|.

Also, note that if W is a resolving set of T , then |W ∩ Lv| ≥ |Lv| − 1 for every v ∈ S
(see [30]).

LetW ′ be the union of a minimum resolving set and a minimum distance-equalizer
set of T .We claim that |W ′∩Tv| ≥ |Lv|, for every v ∈ S. Indeed, |W ′∩Lv| ≥ |Lv|−1,
since W ′ is a resolving set, and v ∈ W ′ or Lv ⊆ W ′, by Lemma 1. In any case,
|W ′ ∩ Tv| ≥ |Lv|.

Then,

ψ(T ) =
∑
v∈S

|Lv| ≤
∑
v∈S

|W ′ ∩ Tv| ≤ |W ′| ≤ dim(T ) + eqdim(T ).

��
Wefinish this sectionbyanalyzing lower andupper boundsondim(G)+eqdim(G).

Concretely, we are interested in the minimum and maximum value of dim(G) +
eqdim(G) for graphs of order n. First, note that for any nontrivial graph G of order n,

2 ≤ dim(G) + eqdim(G) ≤ 2(n − 1). (1)

The lower bound in (1) is attained only by the paths P2 and P3, by Theorem 1(i), and
the upper bound, only by the path P2, by Theorem 2(i). Hence, for every graph G of
order at least 4,

3 ≤ dim(G) + eqdim(G) ≤ 2n − 3.

In order to study this question, we consider the following functions defined for integers
n ≥ 4:

Σ(n) := max{dim(G) + eqdim(G) : |V (G)| = n}
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Fig. 4 The graph G3

σ(n) := min{dim(G) + eqdim(G) : |V (G)| = n}.

Proposition 8 For every integer n ≥ 4, the following statements hold.

(i) Σ(n) ≥ 3n
2 − 3;

(ii) σ(n) ≤ log2(n) + 2.

Proof (i) Consider the complete bipartite graph G = K	n/2
,�n/2, for which
dim(G) = n − 2 (see [14]), and eqdim(G) = 	n/2
, by Theorem 4(ii). Hence,
dim(G) + eqdim(G) = n − 2 + 	n/2
 ≥ 3n/2 − 3.

(ii) For every k ≥ 1, consider the graph Gk , with V (Gk) = A ∪ B ∪ C , where
A = {v}, B = {1, . . . , k}, C = {w : w is a binary word of length k} and two
different vertices x and y are adjacent in Gk if and only if one of the following
conditions hold (see an example in Fig. 4):

• one of the vertices is v;
• one of the vertices belongs to C , say x = w ∈ C , and the other one belongs to B,
say y = j ∈ B, and w has the digit 1 in the j th position.

Then, Gk is a graph of order n = 2k + k + 1. Moreover, A is a distance-equalizer
set since v is a universal vertex, and it is easy to check that A ∪ B is a resolving set.
Hence, dim(Gk) + eqdim(Gk) ≤ k + 2 ≤ log2(n) + 2. ��

6 Conclusions and Open Problems

In this paper, the notion of equidistant dimension as a parameter to evaluate sameness
in graphs is introduced. The value of this invariant in several families of graphs and
relations with other parameters has been provided. In Table 2, the equidistant dimen-
sion, metric dimension and minimum cardinality of doubly resolving sets of some
families of graphs are given. Also, all graphs reaching some extremal values of the
equidistant dimension have been characterized.

As future work, besides solving Conjecture 1 about the equidistant dimension of
trees, and Conjecture 2 about the relation of the equidistant dimension with doubly
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Table 2 Equidistant dimension and related parameters of some families of graphs

G Constraints eqdim(G) dim(G) ψ(G)

Pn n ≥ 2 n − r
(⌈

n
2

⌉)
1 2

n = 4k ≥ 4 3n
4 − 1 2 3

Cn n = 4k + 2 ≥ 6 n
2 2 3

n = 2k + 1 ≥ 5 ≤ n − r
(⌈

n+1
4

⌉)
2 2

Kn n ≥ 3 1 n − 1 n − 1

Kr ,s 2 ≤ r ≤ s = n − r r n − 2 n − 2

K1,n−1 n ≥ 4 1 n − 2 n − 1

K2(r , s) 3 ≤ r ≤ s = n − r r n − 4 n − 2

Kn1,...,n p p ≥ 3, n1 + · · · + n p = n min{3, n1, . . . , n p} n − p n − p

resolving sets, it would be interesting to relate distance-equalizer sets to other types of
sets of vertices such as dominating sets, cut sets or determining sets, for example. Also,
it could beof interest tofindother graph familieswhose equidistant dimension connects
with other problems, thus producing similar results as the relationship between the
computation of this parameter in paths and AP-3-free sequences. Finally, we could
perform new techniques that allow us to compute exact values for the equidistant
dimension of Johnson graphs.
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