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Abstract
Robots performing manipulation tasks require the accurate location and orientation of an ob-
ject in space. Previously, at the Robotics Laboratory of IOC-UPC this data has been generated
artificially. In order to automate the process, a perception module has been developed for pro-
viding task and motion planners with the localization and pose estimation of objects used in
robot manipulation tasks. The Robot Operating System provided a great framework for incor-
porating vision provided byMicrosoft Kinect V2 sensors and the presentation of obtained data to
be used in the generation of Planning Domain Definition Language files, which define a robots
environment. Localization and pose estimation was done using fiducial markers along with
studying possible enhancements using deep learning methods. Perfectly calibrating hardware
and setting up a system play a big role in enhancing perception accuracy and while fiducial
markers provide a simple and robust solution in laboratory conditions, real world applications
with varying lighting, viewing angles and partial occlusions should rely on AI vision.
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1 Introduction
The Robotics Lab at the Institute of Industrial and Control Engineering (IOC-UPC) currently,
amongst others, operates the follwing robots:

• YuMi, a dual arm collaborative robot made by ABB and intended for use in manufactur-
ing environments where humans and cobots can work with direct interaction or in close
proximity. The safety of a mutual working environment is provided by torque sensors
in YuMi’s joints and software which don’t allow it to exceed certain forces, lightweight
materials and rounded edges. At the IOC YuMi is placed on a fixed table and perform
various object manipulation tasks using its 2 arm manipulators, each one having 7 axis
Figure 1.1b.

• TiaGo robot manufactured by PAL Robotics which has a mobile base, an extendable torso
and one armmanipulator. Its sensor suite consisting of a 270 degree lidar, RGB-D camera
etc. allow it to perform a wide array of perception, manipulation and navigation tasks.
In the laboratory it is used for mapping and various manipulation tasks including object
transportation between work areas Figure 1.1a.

• Madar, mobile dual-arm robot manipulator, it consists of an advanced omni-directional
mobile base developed at UPC and two UR5 manipulators from Universal Robots on a
steel frame along with batteries, an on-board computer and an RGB-D camera for percep-
tion Figure 1.1c.

The increasing complexity of everyday manipulation tasks necessitates the development of a
robot that is competent, reliable, and autonomous in order to perform a variety of manipulation
operations in industrial and free-world situations. To solve complex manipulation challenges,
robotic systems must use Task and Motion Planning (TAMP), which identifies a distinct series
of symbolic actions and a motion plan solution for each. Task planning alone is unaware of the
geometric limits imposed by the environment but itworks effectively to generate a symbolic plan
for vast state spaces. In order to complete it, motion planning is concerned with determining
motion solutions or, in the event of a failure, reporting geometric restrictions for each given task
[6]. As a result, a mix of task and motion planning is essential for successfully guiding robots
toward optimal manipulation solutions. If an assumption is made that the integration of task
andmotion planning is perfect, with one of themain challenges becomes to develop an effective
method of interacting and exchanging information with the robots surroundings, in particular
obtaining accurate locations and orientations of object which will be included in manipulation
tasks [26].
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(a) (b)

(c)

Figure 1.1: Available robots at the IOC robotic lab.

Typically, the task planning domain is described by the Planning Domain Definition Language
(PDDL), which is used to standardize the configuration of AI task and motion planning tasks.
PDDL files are used to define the world environment, properties of objects, initial states and
goals alongwithways of changing theworld. Objects, Predicates, Initial-State, Goal-Specification,
and Actions are the primary components of PDDL. In the planning world, objects are things.
Predicates are the true or untrue characteristics of things in the world. The initial-state of the
term is the state in which planning starts. The term "Goal-Specification" refers to the objective
that must be accomplished via planning. Actions are the means through which the world’s
status may be altered. In PDDL, planning tasks are organized in two files: a domain file that
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contains Predicates andActions, and a problemfile that containsObjects, Initial-State, andGoal-
Specification [11].

While all of these robots are designed to work in a dynamic environment with some of them
having their own perceptionmodules, currently at the IOC lab task planning domain and prob-
lem files are designed manually with respect to a task description. This means that the planner
is called once at the beginning of execution and the PDDL files stay the same throughout one
task implementation.

In order to incorporate a dynamic state environment, change or add tasks and allow the robot
to re-generate PDDL files on the go, a perceptionmodule is to be developed. Themission of this
module will be to provide information regarding the environment, object states, robot localiza-
tion and to fill in artificially created segments of the PDDL files. One important thing to note is
that Lab 2 at the IOC is designed to be a large shared workspace between robots and humans,
and thus with people walking freely in the working area and possibly interacting with robots,
caution has to be taken to insure that robots are aware of human presence as well as the location
and orientation of objects.

1.1 Objectives
Themain objective of this project is to develop a perceptionmodule to collect information about
the robot’s initial state, its surroundings and states of objects of interest and present them in the
best possible way within the ROS framework, it can be divided into 2 main groups:

• Robot localization with respect to a global fixed reference frame

• Identification and object pose estimation for the objects of interest

Thewhole systemhas to bemademodular in order to allow addition ofmore cameras, advanced
machine learning algorithms which would provide various data and other sensors. Further-
more, documentation with instructions on use and possible expansion has to be provided.

The secondary objectives is the exploration of deep learning techniques for:

• Detection of humans and congestion levels currently in the working area using an AI vi-
sion system

• The detection of a 6-DOF pose estimation of objects

This study aims to provide the motion task planner with all the necessary data regarding a
robots environment which would allow it to continuously generate PDDL files and execute
tasks without the need for artificial data to be added in order to describe the robot environ-
ment. Firstly, enhancement of current methods which use fiducial markers will be undergone,
along with developing the general framework of the module and subsequently deep learning
algorithms will be implemented to enhance the 6-DOF object pose estimation and to determine
laboratory congestion levels. The goal is for the ROS framework to incorporate and control all
segments of the robotics lab with the perception module being only one part. It presents the
ideal structure to implement separate modules to which all agents could have access.

All of the data will be collected using already available cameras and sensors within the lab.
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It is assumed that only one camera will be used for estimating each object pose and different
cameras will not have overlapping fields of view which could cause singularities at certain an-
gles.
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2 Literature review

2.1 6 Degree of freedom pose estimation
Visual tracking is often restricted in range, prone to mistakes, takes a long time to analyze, and
exhibits faulty behavior as a result of mathematical instability [15]. To overcome these flaws, a
rigorous methodology is necessary.

The objective of the 6D pose estimation job is to determine an object’s rotation and translation
in relation to a known coordinate frame (e.g. a robot sensor frame). Because rotation and
translation each have three degrees of freedom, the state of a rigid object may be completely
represented by six values in the six-dimensional pose representation. This provides robot agents
with a compact knowledge of the objects in their surroundings, and 6D posture estimation is
critical for a variety of robot manipulation tasks, where pose-relative actions may be performed
based on the object’s stance.

With the fast advancement of deep learning techniques over the last several years, many deep
networks have been developed to predict the posture of 6D objects using RGB or RGB-D ob-
servations. Unlike object identification and segmentation, however, 6D posture estimation is
an area where traditional approaches based on surface matching remain competitive. And the
majority of deep techniques have a limited capacity to generalize to new objects [10].

2.1.1 Pose estimation using fiducial markers

Among the approaches utilized, vision-based techniques provide benefits for augmented re-
ality applications since their registration may be very precise and there is no latency between
the movements of actual and virtual scenes. These techniques, however, suffer from a high
processing cost and a lack of resilience. To overcome these limitations, one of the solutions is
a robust camera pose estimate approach based on monitoring calibrated fiducials in a known
three-dimensional environment. The camera location is dynamically calculated using the Or-
thogonal Iteration Algorithm. [12].

Fiducial markers are used to create a visual reference point inside a scene. They’re simple to
construct and simple to utilize. When implemented properly, retrieving these markers from a
scene may assist in camera calibration, localization, tracking, mapping, and object recognition.
These uses are made feasible by the camera geometry [20].

While conventional Fiducial markers provide very precise findings, they may not always op-
erate well in real contexts. These natural settings specify the conditions under which the pose
estimation method should function. Possible sources of interference in detection and classifica-
tion applications include scaling, possible occlusions between the objects, motion blur caused
by a non-fixed camera or moving objects, and off-axis viewing, which is defined as viewing a
display from an angle greater than one degree away from the center.

Many fiducial marker libraries exist like ARTag, AprilTag, ArUco and STag [7], varying in their
design, size and robustness, but in the lab at IOC-UPC, currentlyArUco tags are in use and they
will be used in the scope of this project.
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2.1.2 Deep learning pose estimation methods

Deep Learning object pose estimation methods rely on large sets of labeled data and 3D com-
puter generated models for objects within those datasets. Unlike conventional methods which
locate a known 2D fiducial marker and using the marker size and description along with know-
ing the intrinsic camera parameters artificially generate a 3Dmarker frame, deep learningmeth-
ods provide a 3D bounding box for detected objects and its orientation in space [28].

Using synthetic data for trainingdeepneural networks for roboticmanipulation holds the promise
of an almost unlimited amount of pre-labeled training data, generated safely out of harm’s way.
One of the key challenges of synthetic data, to date, has been to bridge the so-called reality gap,
so that networks trained on synthetic data operate correctly when exposed to real-world data
[29].

A significant technological issue in estimating 6D object posture from RGB-D images is maxi-
mizing the use of the two complementing data streams, RGB images and depth fields [5]. Pre-
viously published work either extracted RGB and depth information independently or used
expensive post-processing procedures, limiting their performance in extremely congested envi-
ronments and real-time applications.

Although many algorithms exist, trying to bridge the fore mentioned issues, by finding new
ways to integrate RGB-D data and create realistic artificial data, one framework has been devel-
oped by Google calledMediapipewhich relies solely on RGB data and uses a large set of real data
[4].

2.2 MediaPipe
MediaPipe is a Google-developed open-source framework for building multimodal (video, au-
dio, or any time series data) and cross-platform (i.e. Android, iOS, web, and edge devices)
machine learning pipelines. It has been tuned for performance with end-to-end on-device in-
ference inmind. Mediapipe is currently in active development and includes a number of demos
that can be run immediately upon installation. [25]

While OAK-D uses the Intel Myriad X visual processing unit for inference, in order to comply
with space limitations, MediaPipe models are made to be run on either a computer CPU or on
a dedicated GPU for maximum performance. In the case of this project, testing was performed
on a student laptop CPU in a PyCharm environment while the main implementation is to be on
a PC in the lab running Debian OS and using the Nvidia RTX 2060 graphics processing unit for
best performance.

The most significant distinction between theMediaPipe and OAK-D frameworks is as follows:

1. OAK-Dmodels are developed by training deep learning neural network while MediaPipe
uses manually annotated data to train conventional machine learning models.

2. OAK-D uses depth clouds along with RGB images to train their models which are thus
more computationally expensive to run in real time, on the other hand MediaPipe uses
only precisely labeled RGB data [17]
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Figure 2.1: Trained Mediapipe models

Someof the available pre-trainedmodels for various applications can be seen in Figure 2.1.Firstly,
MediaPipe Handswas selected as the model which would be the most useful and innovative for
passing inputs to agents within the laboratory using the perception module. It could be a ba-
sis for hand gesture control and a form of human-robot interaction and teleoperation as well
as the overlay of digital material and information over the actual environment in augmented
reality [16]. Moreover, if the algorithm could sense the position and movement of a human
hand, an assumption was made that it could be able to preform equally on humanoid robot
end effectors. One of the possible doubts towards robustness of this model was that it is a par-
ticularly difficult computer vision problem, since hands often occlude themselves or one other
(e.g., finger/palm occlusions and hand shaking) and lack high contrast patterns, also there is
a difference in skin tone between humans and obvious differences when comparing palms of
a human and a humanoid robot. MediaPipe Hands is a solution for high-fidelity hand and fin-
ger tracking. It uses machine learning (ML) to predict a hand’s 21 3D landmarks from a single
shot. Whereas existing state-of-the-art systems depend heavily on sophisticated desktop envi-
ronments for inference, this solution operates in real time on a mobile phone and even scalable
to many hands [31].

MediaPipe Hands makes use of a machine learning pipeline comprised of numerous models
cooperating:

• A palm detection model that acts on the whole picture and produces a bounding box for
an orientated hand.

• A hand landmark model that acts on the palm detector’s cropped picture area and pro-
vides highly accurate 3D hand feature points.

When the palm detection model finds bounding boxes (anchors) around hands in its field
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of view, the hand landmark model is deployed which conducts exact keypoint localization
of 21 three-dimensional hand-knuckle coordinates inside the observed hand areas by regres-
sion, which is a type of direct coordinate prediction. The model acquires a consistent internal
representation of hand poses and is hence resilient to partly visible hands and self-occlusions.
Figure 2.2 shows hand landmarks used in inference, which were also previously manually an-
notated on a large number of images in order to have a labeled data set for supervised learning
[22].

Figure 2.2: MediaPipe Hands hand landmarks
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3 Hardware and Software Used

3.1 Hardware
A visual AI system’s capacity to make judgments based on two factors is known as spatial AI.

• Visual Perception refers to an AI’s ability to visually "see" and "understand" its surround-
ings. A camera attached to a processor running a neural network for object detection, for
example, can detect a cat, a person, or an automobile in the scene the camera is viewing.

• Depth Perception is the AI’s capacity to determine how far away objects are. Human eye-
sight inspired the concept of Spatial AI. We perceive our surroundings with our eyes.
Furthermore, people use two eyes (i.e. stereo vision) to judge distances.

Depth perception is obtained using stereo camera pairs, infra red sensors and lidar, one of the
most affirmed RGB-D cameras is the Microsoft Kinect which has initially been launched more
than 10 years agowhile one of themost modern is the Luxonis OAK-D sensor, featuring a state of
the art vision processing unit. These two cameras have been selected to be used in the perception
module framework and while their main benefit is the ability to obtain depth fields, their RGB
cameras also make them great tools for working with traditional 2D images.

3.1.1 Microsoft Kinect 2

Microsoft Kinectwas first designed as amotion controller accessory forXbox video game systems
[32], differing from rivals (such as Nintendo’sWii Remote and Sony’s PlayStationMove) in that
it did not need physical controllers. The devices initially included RGB cameras, infrared projec-
tors, and detectors that map depth using structured light or time of flight calculations, allowing
for real-time gesture recognition and body skeleton identification, among other capabilities.
Additionally, they had microphones for speech recognition and voice control [9].

Figure 3.1: Kinect V2 sensor.

The Microsoft Kinect V2 is a 3D sensor that consists of an RGB camera with a resolution of
1920x1080 pixels, an infrared camerawith a resolution of 512x424 pixels, and an infrared emitter.

The on-board electronics calculate the distance between the sensor and each point in the scene
observed by the camera using Time of Flight (ToF) technology and, in particular, the intensity
modulation approach [1]. The precision with which such distances are determined is depen-
dent on the distance itself and may reach values of around 1.5 mmwhen the point is near to the
sensor (about 1 m).
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The Kinect sensor can be easily integrated with the Robot Operating System environment by
using the IAI Kinect2 package [30], developed by Wiedemeyer, Thiemo, which interprets data
obtained from theKinect on-board computer and publishes it in ROS, including the camera view
and depth fields.

3.1.2 OAK-D

A company called Luxonis recently launched an OpenCVAI kit which includes one of the avail-
able cameras, at the IOC lab OAK-D is used, and a built in visual processing unit which when
combined with their open source github repository become a very useful tool. At a high level
the OAK-D consist of the following important components:

• 4K RGB camera placed at the center and used mainly for visual perception

• Stereo camera pair used for depth perception

• Intel Myriad X visual processing unit (VPU) which is essentially the brain of the modules.
It is a powerful processing unit designed specifically for running advanced neural network
models for visual perception along with creating a depth field using raw data obtained
from the stereo pair cameras in real time.

The best thing about utilizing an OAK-D or OAK-D Lite is that it doesn’t require any external
gear or software. It has a seamless experience thanks to the integration of hardware, firmware,
and software. The API (Application Programming Interface) used to program the OAK-D is
called Depth-AI. It’s cross-platform, so it doesn’t matter what operating system is installed.
[23] On the other hand, its main competitor, the Intel Realsense Depth Camera D435 works only
as a sensor, requires at dedicated graphical processing unit along with least a mini-PC (ex.
Raspberry PI) in order to process the data and doesn’t have as many specific ready to use ap-
plications.

Unlike other depth cameras that utilize structured light (projecting a grid onto the subject to
observe how it deforms) or time of flight (measuring the time it takes light to travel to and from
the subject), the Oak-D operates similarly to the way our brain does by measuring the offset
from our eyes.

3.2 Software

3.2.1 ROS

Robot Operating System is an open-source middleware suite for robots. It is not a complete op-
erating system but rather a collection of software packages for developing robot applications, it
provides services for a heterogeneous computer cluster, including hardware abstraction, low-
level device control, implementation of commonly used functionality, message passing between
processes, and package management. A graph architecture is used to describe running sets of
ROS-based processes. Processing occurs in nodes that may receive, post, and multiplex sensor
data, control, status, planning, actuator, and other signals [13]. Despite the critical importance
of responsiveness and low latency in robot control, ROS is not a real-time operating system
(RTOS). However, it is feasible to connect ROS with real-time programming. The develop-
ment of ROS 2 focused on overhauling the ROS API that would use contemporary libraries and
technologies for basic ROS functionality and include support for real-time code and embedded
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hardware, although it still doesn’t have nearly as many packages as the original, more andmore
developers are contributing and it is set to replace ROS by 2025.

Main components of a ROS framework are:

• Nodes represent single processes running on the ROS graph, every node has a name and
is registered with the ROS master before it can start performing actions. Nodes with the
same names can exist within different namespaces (domains). Nodes are the center of
the ROS framework, they are able to send and receive data, subscribe and publish data to
topics, receive and send requests for services and actions.

• Topics are referred to as buses because they are the conduits viawhich nodes transmit and
receive messages. Additionally, topic names must be unique inside their namespace. A
node must publish to a topic in order to send messages to it, whereas it must subscribe in
order to receive messages. The sorts of messages that may be sent on a topic are many and
can be set by the user. These messages may include sensor data, motor control directives,
condition information, or actuator commands, among other things.

• Services are operations that a node may do which produces a single outcome. As such,
services are often used for tasks with a specified start and finish point, such as shooting a
single-framephotograph [3], rather than processing velocity instructions to awheelmotor
or odometer data from a wheel encoder. Nodes advertise and connect to one another’s
services.

• ROS tf is a package that enables the user to maintain a history of numerous coordinate
frames. tf stores the connection between coordinate frames in a time-buffering tree struc-
ture and enables the user to convert points, vectors, and other objects between any two
coordinate frames at any desired time point. tf messages have the format of translation in
x,y,z coordinates and rotation specified as a quaternion or as roll, pitch and yaw.

In order to incorporate Kinect2 and OAK-D sensors into the ROS environment, ROS bridges
needed to be used for each of them. A ROS bridge enables two-way communication between
ROS and an external device. The information from the sensors is translated to ROS topics. In the
same way, the messages sent between nodes in ROS get translated to commands to be applied
in one of the sensors [30].

3.2.2 Aruco ROS and Aruco Broadcaster

In order to be able to work withAruco tags in ROS it was decided to use a package developed by
Pal Robotics calledAruco ROS [21]. Specifically one part of the packagewas critical,Aruco marker
publisher identifies fiducial markers of a certain library and specification and publishes related
data in a set of ROS topics. It takes the Aruco library, marker dimensions, and raw image from
camera as inputs while, for this project, the following output data was found the most useful:

• List of identified markers

• Location of markers w.r.t. camera

• Markers orientation in space

• Resulting image after superimposing marker boundaries and orientation on top of raw
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image

While Aruco_ros publishes a lot of useful data in its topics, another step is needed in order to
incorporate fiducial marker locations and orientations into the system. Aruco broadcaster [14] is
a package used to publish the tf between the camera and each fiducial marker in the /tf topic so
it will be added to the rqt tree and allow each agent in the system to automatically have access
to this data. Additionally, visualization in RVIZ is a lot more intuitive. This will be explained in
more detail in section 4.
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4 Localization and object pose estimation using fiducial markers

4.1 Working area description
The data seen in Figure 4.1 should be provided by the perception module in order to comply
with the task and motion planning framework currently employed at IOC-UPC [1].

Figure 4.1: Object data file used currently at IOC

The IOC Robotics lab is currently divided into 3 working areas:

• Chess table Figure 4.2a

• YuMi table Figure 4.2b

• Bookshelf area Figure 4.2c
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(a) (b)

(c)

Figure 4.2: IOC Robotics Lab 2 working areas

The two tables will be covered by Microsoft Kinect 2 cameras while items on the bookshelf will
be located using an RFID module developed by another project as the area is:

• Overcrowded, so it would be difficult for the perception module to take into account an
image of the whole are and provide accurate data

• It would be hard to place a camera close enough to provide an acceptable image with not
so much noise

4.2 Camera Calibration and Localization
Mapping of the lab was done using a TiaGo robot and the /world frame origin was set as one
corner of the room. ROS is organized in such a way that in order for all agents within a system
to know their spatial relationship, one /world coordinate system is defined and connected to the
coordinate frames of all agents via transforms, using the tf package.

In order to link the /world frame with the working areas, it was decided to publish static trans-
forms, as the tables had fixed locations and orientations, specifying the relationship between
working area origins and the /world frame origin (aka corner of the room) as in Figure 4.6d

Working area origins were defined as following (represented by red dots on figures):
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• Chess table origin - Center of chess board Figure 4.3a

• YuMi table origin - Midpoint of table edge closest to the robot Figure 4.3b

(a) (b)

Figure 4.3: Working area origins (denoted by red dots)

Subsequently, as cameras give the location of detected objects w.r.t. their location, Kinect sensors
needed to be localized with respect to the working area origins (ROS tf automatically generates
a transform tree and if frames are connected in any way, their tf is known, thus camera frame
w.r.t. world would also be known).

Before using Kinect sensor cameras for obtaining any accurate data, they need to be calibrated.
As Kinects have an RGB camera, a stereo pair for depth sensing and an IR camera, each module
has to be calibrated separately. Calibration is done using a built-in Microsoft package by pro-
viding it with a series of images of a standardized checkerboard (Figure 4.4). In order to get
the best possible precision, 100 images were taken for each module of each camera with the
checkerboard being placed in a wide range of positions, orientations and distances from the
camera [27].

Figure 4.4: Camera calibration checkerboard
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Calibration software built byMicrosoft is then run and it produces configuration files which are
loaded at each start of the Kinect sensors. In ROS, this data is published by the kinect2_bridge in
the specific /camera_info topic for each sensor as can be seen in Figure 4.5.

Figure 4.5: Kinect calibration data obtained from /camera_info topic.

Camera localization was performed using fiducial markers, specifically Aruco tags by applying
the table calibratorROSpackagewhich takes into account a number of specifically placedmarkers
and by knowing their specifications can deduce the camera location, in detail the process went
ass follows:

1. 8 Aruco tags from Aruco main library have been printed alongside chess board in various
orientations

2. Aruco tag size and location and orientation known w.r.t. chess board center

3. Data from first two points fed into table calibrator package along with raw image from
Kinect camera

4. table calibrator package outputs position and orientation data of camera w.r.t. chess board
center

The Kinect sensor can not by itself identify and locate aruco tags, therefore the following two
packages had to be used:

• Aruco marker publisher 3.2.2

• Aruco broadcaster 3.2.2

4.3 Perception Module
In order to simplify the perception module initiation, one launch file has been created called
perception_module.launch Figure 4.6. Each segment is explained in the following part:
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(a)

(b)

(c)

(d)

Figure 4.6: Perception module launch file

Firstly, in order to be able to runmultiple Kinect2 sensors on one PC, each one has to have a ROS
bridge initiated which is done by using their serial numbers. These serial numbers, along with
names for the two cameras currently in use, have been defined as ROS arguments, so they can
be specified at launch, with default values corresponding to the current setup (Figure 4.6a).

Following this, we have two similar segments, corresponding to the two working areas (Fig-
ure 4.6b and Figure 4.6c), each one having its own namespace to avoid data being sent to the
wrong places, allow the same fiducial marker and camera packages to work simultaneously
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without unwanted interactions and make accessing data more intuitive.

If we break down each one of them, we can see they consist of 3 things:

• Kinect2 ROS bridge start for arguments specified at the top

• Aruco marker publisher executable run

• Aruco broadcaster executable run for Aruco markers specified and taking into account the
camera localization w.r.t. working area origin (specified in .yaml configuration files as in
Figure 4.7)

Figure 4.7: Aruco broadcaster configuration file for kinect_Chess

Also, remapping needs to be done to avoidmixing of data as all packageswere previouslymade
to be used only with one source of raw image, camera or sensor.

Finally, static transforms have been published for providing the working area origin locations
and orientations with respect to the global /world origin as can be seen in Figure 4.6d.
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When this launch file is run, the following sequence is initiated:

• The resulting image, published by Aruco marker publisher, can be seen in RVIZ for each of
the cameras. It displays all of the detected Aruco tags on top of the raw image along with
the x,y and z axis of each tag frame in blue green and red respectively Figure 4.8(in these
images data for all of the Aruco tags is displayed, in order to reduce the load, ones used
for localization can be omitted).

(a) (b)

Figure 4.8: Camera view for both tables (Aruco_marker_publisher/result topic)

• Topics published by Aruco marker publisher for Kinect2 sensor at YuMi table can be seen in
Figure 4.9.
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Figure 4.9: Topic list

• By implementing ROS tf, all of the marker frames, camera frames, local world frames (at
each working area) and the global /world frame have been connected so a robot localized
with respect to the world frame can know the position of each Aruco tag on a table. The
rqt tree of connections between frames can be seen in Figure 4.10.
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Figure 4.10: rqt tree of transforms between frames

• The tf connections can better be visualised in RVIZ, where the frames are shown in space
Figure 4.11a. A clear correlation can be seen if compared to Figure 4.11a, which is a photo
of the library taken at the approximate corresponding location to the viewpoint in RVIZ
Figure 4.11b.
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(a) Relationship between frames presented in RVIZ.

(b) tf representation visualized on third person lab image.

Figure 4.11: Frames visualization

In the future, the lab will probably be adding more cameras to the perception module, thus one
of the keypoints is that the system is modular and cameras can be added or removed easily.
Running the perception_module.launch file can be done with default parameters, as it was done
in the initial test, where Kinect_Chess and Kinect_YuMi are selected or by specifying different
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Kinect serial numbers and names for the cameras. The camera names define the namespaces
and must be consistent throughout the system initialization, including the service which will
be described later.

Currently the system is detecting Aruco tags and obtaining their pose which is then published
as a tf. Each of these markers represents an object, as they will be a part of each item meant for
robot manipulation. One example is given in Figure 4.12:

(a) (b) (c)

Figure 4.12: Fiducial marker placement on objects.

Use of fiducial markers is a fairly simple way of obtaining high accuracy, especially in the small
distances as in the scope of this project. In the case that another strategy would be used to
estimate the 6-dof object pose one of the beneficial notions is that the whole system could stay
the same, where only the source of object pose estimation would be different and as long as it
could be provided in the format of x,y,z translation and roll,pitch,yaw it would be very simple
to interchange between the two methods.

An example of a PDDL file which would need to be filled in by data the perception module
obtains is shown below. It is an obj_list.xml file used previously in testing at the IOC lab which
specifies the same data as in Figure 4.1 for each object, in this case 2 objects. As mentioned
previously, this data was generated artificially to resemble an object being detected by theKinect
cameras, the perception module will automate this process.
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Listing 1: Example obj_list.xml file
1 <?xml version=" 1 . 0 " ?>
2 <Object >
3 <Index>1</Index>
4 <ArucoID>101</ArucoID>
5 <FrameID>Kinect_Camera</FrameID>
6 <ObjectName>OBJECTA</ObjectName>
7 <NodeName>Kinect</NodeName>
8 <Pose>x=1.032 y=0.123 z=0.245 wx=0.9 wy=0.2 wz=0.3 w=0.6</Pose>
9 </Object>

10 <Object>
11 <Index>2</Index>
12 <ArucoID>102</ArucoID>
13 <FrameID>Kinect_Camera</FrameID>
14 <ObjectName>OBJECTB</ObjectName>
15 <NodeName>Kinect</NodeName>
16 <Pose>x=1.032 y=0.123 z=0.245 wx=0.9 wy=0.2 wz=0.3 w=0.6</Pose>
17 </Object>

All parts of the project until now focused on publishing the needed data in ROS topics, but this
would not be enough as it would be too complicated for the agent to navigate through the maze
of topics and published data each time it would require an object location, pose etc. In order
to present the data in a more user friendly way, it was decided to develop a ROS service which
would collect all of the desired data. This service would have the task of returning the data in
its own message type for each call an agent places for an object.

4.4 Perception Service
The most appropriate way of presenting the data was decided to be using a newly created ser-
vice message for the perception service (Figure 4.14). The request and response part of the
message are separated by the dashed line where the top part represents the request, in this case
a name of the object the agent calling the service is searching for, while the bottom part shows
the response, assembled by the following parts:

• twist variable of the type geometry_msgs/Twist Figure 4.13 contains the transform between
the camera frame and object frame in the form of a twist with linear displacement and
angular rotation components.
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Figure 4.13: geometry_msgs/Twist

• parent_frame variable is a string containing the first predecessor in the rqt tf tree (aka the
parent frame) of the object frame, in this case it gives us the frame of the camera which
located the object.

• location variable gives us the name of the working are where the object is located in the
form of a string.

• object_found tells the agent if the object could be located using the assigned cameras (when
starting the perception module) or not, also as a string.

• aruco_id variable is an integer which lets the user know what is the Aruco tag id assigned
to this object.

Figure 4.14: Service message construction

The launch file (Figure 4.15) for the perception module server (perception_service_server.launch)
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is relatively simple but it contains key arguments which will be explained in the next part of the
report.

Figure 4.15: Perception service server launch file

The perception module server currently has the capacity to manipulate data from 4 cameras
but this could easily be upgraded with simple changes to the code, if there was a need for
expansion, although a hardware bottleneck would exist but this will be discussed in detail in
the Conclusions part of the report.

By default all camera arguments are set to null which means no cameras are used. If a fixed
system is configured this could be changed to start the same cameras every time or the user can
specify each time which cameras should be taken into account. Camera selection and activation
is done by setting one of the arguments to the camera name, for example in the current fixed
system camera_1 should be set by default to Chesswhile camera_2 should be set to YuMi.

When the perception service server is launched it internally activates the cameras whose ar-
guments values have been set to something other than null and subscribes to the according
"/kinect_"+cameras[x]+"/aruco_marker_publisher/markers_list" topic, where cameras[x] is the cam-
era id. The above mentioned topic exist for each camera and is used to publish all Arucomarker
IDs found by each camera.

By knowing which aruco_id is located by which camera and as the camera fields of view do not
overlap, the aruco_id location is deduced.

The rqt tree of ROS tf s consists, in this case, of a complete tree where each frame is intercon-
nected, although there are some differences in accuracy. Because the table working area frame
origins have been determined by manually measuring distances from the Lab corner (/world
frame origin), and they are on the scale of around 10 meters, if we take into account an error
of ±1.5 percent due to tape measurement miscalibration and human error we end up at an
absolute error of around 15cm which is unacceptable in the manipulation tasks. This is why
cameras have been located using software and precisely located Aruco tags and the accuracy of
the camera frame to working area frame tf s is a lot more accurate.

The important thing to consider is that working area frames are localized onew.r.t. the other via
the /world frame and thus it is very important to provide agents with the tf data from the exact
camera which located the Aruco tag to the Aruco tag itself. Still the problem remains of robot
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localization with respect to the working area but this will be discussed in the testing segment.

With the above statements considered, the service has been programmed to locate each object
and create a listener all tf s published between each locatedAruco id and their parent frame (aka
frame of the camera that located it).

There are two ways to obtain the service output:

1. By using the rosservice call command which requires the user to specify the object of in-
terest name and returns all of the data from the response part of the service message, as
shown in Figure 4.16.

Figure 4.16: Data displayed in terminal when perception service is called

2. Another option is to launch the perception service client using the roslaunch perception_module_pkg
perception_service_client command which also requires the specification of object name
along with if the user desires a .csv file to be created containing all of the data for each
object. The service client has pre-programmed return commands to present data to the
user in a more understandable way for humans.

When the service is called in either way, it loads the object_data.csv file and uses it to determine
which aruco tag id corresponds to the object name input by the user. For example as it can be
seen in Figure 4.16, an agent calls the service to locate the object called helicopter so the service
accesses the database and finds that this name corresponds to aruco_id_501, thus the system
only the marker id and from then on treats the object as that Aruco id so all following actions
are performed easily.

The secondway of calling the service generates a .csv file which contains all of the data obtained
by the perceptionmodule alongwith data from the object_data.csvfile. As the perceptionmodule
works only with fiducial markers which have been glued to certain objects, it can not know
the exact dimensions and provide accurate data for the object itself. Robots, when performing
grasping tasks, need to do it in such way that the object is secured within the end effector and
doesn’t slip or fall. Thus, the object_data.csv file contains one key field for each object, this is the
location and orientation of the Aruco tag with respect to each object center of mass.

Finally, when creating a PDDL file, an agent should call the service for an object and proceed to
use solely the .csv file which will contain all of the data needed.
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4.5 Testing
Before starting the perception module, each camera used in the system needs to be localized
using tablecalibrator from the tablesens package. This has been done in the following steps:

1. The position and list of all fiducial markers to be used in the camera localization have been
defined with respect to the working area origin in a .yaml file Figure 4.17.

Figure 4.17: .yaml file used to define Aruco markers used in localization of kinect_Chess

2. Kinect sensor to be calibrated is started byusing the roslaunch iai_kinect2 kinect2_bridge.launch
command to publish a raw image.

3. In another terminal, Aruco marker publisher (subsubsection 3.2.2) from the aruco_ros pack-
age is run to detect all visible Aruco tags (fiducial marker size has to be specified, in this
case it is 0.45cm) Figure 4.18.

Figure 4.18: Aruco marker publisher

4. In the third terminal, tablecalibrator from the tablesens package is run which uses the de-
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tectedmarker information and their position in the real world to obtain a transfer between
the camera frame and working area frame in the format x,y,z translation and qx,qy,qz,qw
quaternion through 31 iteration (Figure 4.19).

Figure 4.19: kinect_Chess localization output

5. Finally, this transform has to be published using a static transform publisher. To automate a
launch, this transform is written in the ns_marker_publisher.launch file. The static transform
is publishedwhen the perceptionmodule launch file runs themarker_publisher nodewhere
the camera_loc argument specifies which camera location is being defined Figure 4.20.

Figure 4.20: Camera static transform publisher.

Testing of each segment of the perception module has been performed in order to assure its
proper functioning:

The Perception module has been launched for cameras kinect_Chess and kinect_YuMi by setting
the parameters camera1_name and camera2_name accordingly Figure 4.21. Although there is an
option to change the camerax_ids, currently the setup is constant and thus they have been preset
in the launch file itself.

Figure 4.21: Launch of perception module and defining camera names

Alternatively, in the case that a system is constantly or most of the time setup in the same way,
the perception module can be launched by specifying default parameters within the launch
file and running the roslaunch perception_module_pkg perception_service_server.launch command
without any parameters. The system is currently setup for 2 Kinect sensors with the camerax_id
parameters used to give the Kinect bridge information about sensors which have to be started
in the form of their serial numbers. In the case that a regular RGB camera needs to be used in
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the perception module, the user would need to comment the line containing defining the sensor
from the camerax_id parameter in the launch file, and like before, define the camera namewithin
the launch file or as a parameter when running the roslaunch command.

Figure 4.22 shows a real time representation of the data published by the perception module in
RVIZ including:

• The view from both cameras with each Aruco superposed on the image

• Visualization of transforms between all frames

Figure 4.22: Complete RVIZ output.

Next, in another terminal, the perception service server was launched for the cameras started
in the previous step Figure 4.23.

Figure 4.23: Launch of perception module and defining camera names

When launching the service server, the user has the options to select in which working ares
the service should look for objects by setting camera_x parameters to names of cameras in the
system, this will then start listeners and subscribers for adequate topics. By default, all cameras
are set to null which means no cameras should be taken into account and no subscribers or
listeners are to be initialized.

In order to make the service as user friendly as possible and functioning continuously (without
crashes), it has to be able to respond to a variety of 3 outputs:

• Case 1: Service called for object existing in database and currently locatedwith previously



Development of Perception Module for Robotic Manipulation Tasks pàg. 39

selected cameras Figure 4.24.

Figure 4.24: Service call output for found object.

• Case 2: Service called for object existing in database but currentlyNOT located by selected
cameras Figure 4.25.

Figure 4.25: Service call output for known object that could not be located.

• Case 3: Service called for object not defined in database Figure 4.26.

Figure 4.26: Service call output for object that doesn’t exist in the database.

4.6 Testing scenarios
The perception module functionalities have been demonstrated using the following setup:

• Perception module launched for Kinect_YuMi and Kinect_Chess

• Perception service launched for Kinect_YuMi and Kinect_Chess

• object_data.csv from used to provide data to service Figure 4.27.



pàg. 40 Memòria

• Firstly, objects placed in Scenario 1.

• Subsequently, objects placed in Scenario 2.

Figure 4.27: Object data used for testing

All objects used for testing are symmetrical and fiducial markers have been placed on them in
such a way that the object COG frame z-axis is exactly the same as the fiducial marker frame z-
axis and thus the only adjustment needed is to translate the xy plane. Please not that the camera
frame z-axis and fiducial marker z-axis are opposite to each other and object center of gravity
frame location has been expressed in its according aruco_marker frame and thus is negative.

The dataset in Figure 4.27 is only a template used for testing and would be expanded to accom-
modate more objects and more accurate data.

4.6.1 Scenario 1

Initial setup of objects was the following:

• Objects red_can, blue_can, jar placed at Chess table

• Objects wooden_block_1 and wooden_block_2 placed at YuMi table

Where the perception module was able to identify each object as can be seen in Figure 4.28
showing camera images with overlaid fiducial marker frames,

(a) (b)

Figure 4.28: Detected objects as seen by the perception module initially.
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and the frames were visulized in RVIZ as in Figure 4.29.

Figure 4.29: Initial setup frames visualized in RVIZ.

The next step was to verify proper functioning of the perception service:

1. Service has been called for an object within Chessworking area.

Figure 4.30: Service called for object jar.

2. Service has been called for an object within YuMi working area.

Figure 4.31: Service called for object wooden_block_1.
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As it can be seen in figures above, the service correctly looks up data from object_data.csv and in
accordance with the perception module, presents the service message output.

4.6.2 Scenario 2

To determine if the perception module is functioning properly, some of the objects have been
moved in the following way:

• Objects wooden_block_1 placed at Chess table.

• Objects orange_can, jar placed at YuMi table.

• Objects red_can, wooden_block_2, blue_can placed at YuMi table.

Again, the perception module was able to identify each object as can be seen in Figure 4.32
showing camera images with overlaid fiducial marker frames,

(a) (b)

Figure 4.32: Detected objects as seen by the perception module initially.

and the frames were visualized in RVIZ as in Figure 4.33.
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Figure 4.33: Moved setup frames visualized in RVIZ.

The next step was, again, to verify proper functioning of the perception service but there were
a few differences:

• Object orange_can has not been defined in the object_data.csv database file.

• Some of the objects which have been defined in the database, are currently not in any of
the working areas.

1. Service has been called for the object jar which is now in YuMi working area.

Figure 4.34: Service called for object jar.

2. Service has been called for the red_can object which is currently not in any of the working
areas.
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Figure 4.35: Service called for object red_can.

3. Service has been called for the orange_can object which, although apparently visible at
table YuMi, has not been defined in the object database.

Figure 4.36: Service called for object orange_can.

If the user desires that the perception service generates a .csv file containing data for all of the
visible objects, the service client must be launched with the following arguments:

• object_name="all"

• generate_csv="yes"

For scenario 2, the generated .csv file is presented in Figure 4.37. This file contains the most
important information, for the agent, about each located object:

• Object_name and aruco_id which are taken from the object database.

• location of the object, meaning the working are at which it has been spotted.

• parent_frame with respect to which the location of the object is defined.

• Translational and rotational parameters defining the transform between parent_frame and
the object center of gravity frame. This data is generated by combining the transform
between the camera frame and the fiducial marker frame with the transform between the
object COG frame and the fiducial marker frame. As it can be seen in the example of the
jar object, the only difference is in the z axis translation, positive in the camera frame but
negative in the fiducial marker frame as their z axis are opposite to each other.
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Figure 4.37: Data for all located objects.

For the sequence of requested objects in subsubsection 4.6.1, the service server gives the follow-
ing output (Figure 4.38):

1. In the parameter section, displays which cameras are being used.

2. Notifies the user that the service is ready.

3. Goes through the database until the desired item has been found.

4. Lets the user know if and where the object has been located.

Figure 4.38: Service server output in terminal.

One of the biggest concerns, with regards to the system accuracy, is distance from the camera
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to the table at table_YuMi. In previous figures representing images from the cameras it can be
seen that at table_YuMi the working area takes only around 60% of the cameras field of view and
thus in some occasions the perception module could not identify fiducial markers. With object
jar placed on the table (Figure 4.39b), the system doesn’t recognise it, but when it is placed on
top of another object (Figure 4.39a), it is clearly identified. Thus, the obvious solution would
be to to position the camera closer to the working area but as in this way it could come within
reach of robot YuMi, different possibilities will be discussed in the Conclusions section.

(a) (b)

Figure 4.39: Variability in object detection at table_YuMi
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5 Estimation of congestion levelswithinwork area usingOAK-D frame-
work

The OAK-D, which is built on open source tools such as OpenCV, takes advantage of numerous
advancements in computer vision since the release of the Kinect, allowing users to integrate var-
iousmachine learningmodels that assist developers in identifying not only poses and locations,
but also types of objects, emotions, and other computer vision tasks. Luxonis git repository is
where all of the trained models, specifically optimized for the OAK-D, are available [18]. The
segments luxonis/depthai, luxonis/depthai-python are where the main, thoroughly testedmachine
learningmodels can be foundwhile luxonis/depthai-experiments is used for very advanced exper-
imental projects in beta testing. Additionally, there is a section called luxonis/depthai-ml-training
which contains useful training scripts in the case a user wants to train a NN from scratch in the
desired format.

The OAK-D instructions were found to be very intuitive with basic packages and being installed
and run without problems, the only required software was Python3 and OpenCV. The required
packages have been installed on a PC at the IOC lab and calibration of all cameras was done, as
with the Kinect2 sensors, in order to acquire the best performance from NNmodels.

Many of the availablemodels could find a use in thewhole perceptionmodule but the following
were shortlisted with consideration to the project scope:

• Human pose detection - Algorithm for estimating the pose of a human which could be
very useful for giving directions, signals or other input to a robot or for predicting hu-
manmotion but unfortunatelywas not accurate enough and became very computationally
heavy when more than one person came into cameras field of view (Figure 5.1).

Figure 5.1: Human pose

• People tracker - Trained model for tracking the number of people which enter and leave
the area observed by the camera

• Crowd counting - A very computationally expensive algorithmwhich estimates the num-
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ber of people in crowds (Figure 5.2)

Figure 5.2: Crowd counting

• Mask detection - Algorithm used for detecting all human faces within field of view and
then identifying if they are covered by masks

After careful consideration and testing of almost all of the availablemodels itwas concluded that
although the OAK-D module has amazing capabilities with respect to its size, the processing
power available can not be compared to a dedicated GPU in a PC and even with all of the
models being maximally optimized for use on such a platform, not all of them are useful in
real life applications due to inference speeds being as low as 1 FPS (Crowd counting). The
people tracker model was selected to be a useful inclusion for the perception module in order
to determine congestion levels within the laboratory based on which robots would adapt their
safety margins, acceleration and speed of movement and manipulation. Further testing was
undergone in the PyCharm environment but as it was considered an additional functionality to
the perception module, it was left for future implementation with the current focus being on
object pose estimation.
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6 6-DOFObject pose estimationby applyingMediaPipemachine learn-
ing solutions

The Handsmodel has been tested using images from a laptop webcam and running it solely on
the laptop CPU which was proven to be substantial enough in order to get a reasonable 25FPS
(reduced when markers visualized on image). As can be seen in Figure 6.1, the model works
very well in reduced lighting circumstances (a and b), partial occlusions (c and d) and overlaps
(a) along with being able to process more than one hand at a time (with a slight reduction in
FPS).

(a) (b)

(c) (d)

Figure 6.1: MediaPipe Hands testing in various situations (framerate shown in top left corners)

Although, MediaPipe Hands has many possible implementations, it was decided to focus on
improving the previously developed framework for object pose detection by making it more
robust and cancelling the need for fiducial markers.

Google andMediaPipe provide a tool calledObjectron, a real-time 3D object identification solution
for ordinary items (also can be run on mobile devices). It recognizes and estimates the pos-
tures of objects in two-dimensional (2D) photos using a machine learning (ML) model trained
on the Objectron dataset (which is also provided). While two-dimensional prediction (a well
studied area) gives just two-dimensional bounding boxes, three-dimensional prediction cap-
tures an object’s size, position, and orientation in the environment, which is the data a robots
needs in order to be able to manipulate this object successfully. Whereas 2D object recognition
is quite established and frequently used in industry, 3D object detection from 2D photography
is a difficult issue to solve owing to a lack of data and the variety of looks and forms of items
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within a category.

To identify ground truth data, a unique annotation tool has been developed by Google for use
with augmented reality session data that enables annotators to easily label objects’ 3D bounding
bounds. Again, all data used to train the ML models has been manually annotated by placing
bounding boxes over identified objects in separate frames of example videos.

Objectron currently provides trained models for the following objects:

• Shoe

• Chair

• Cup

• Camera

and a data set of 15000 annotated video clips supplemented with over 4 million annotated im-
ages for training new models in the following categories:

• Bike

• Book

• Bottle

• Cereal box

• Laptop

Training models can be done in PyTorch or Tensorflow environments.

While training newdeep learningmodels is out of the scope of this project, the already available
ones were put to use. Firstly, each model was tested in the PyCharm environment. Figure 6.2
shows testing performed on the most reasonable object for the use case at hand, a cup.

(a) (b) (c)

Figure 6.2: MediaPipe Objectron testing in various situations for object Cup(framerate shown in
top left corners)
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Obtained results varied with respect to lighting and object orientation as can be seen from the
overlaid bounding box orientation. Nevertheless, considering in which circumstances the per-
ception module will be implemented, it was decided to focus on improving the model for ma-
nipulation of cups.

While the algorithm performed very well in good lightning and from the most recognizable
angles as can be seen in Figure 6.2a and Figure 6.2b, in the specific use case of the IOC Lab, the
cameras are placed directly above the working areas, as they have been optimized for working
with fiducial markers and from this angleMediaPipe Objectron doesn’t perform in a satisfactory
manner (Figure 6.2c).

When an object and its pose are detected,Objectron outputs the bounding box coordinates (Fig-
ure 6.3), size and center, this data can be used in ROS to publish a tf with respect to the camera
frame. In order to use this transform, the following limitations would have to be taken into
account and overcome:

• It would need to have a fixed offset because the bounding box center will not be exactly
the same as the object center of mass (location where the robot would grasp the object).

• If the object is a cup, it needs to be grasped from a certain side

• A large safety margin will is needed as pose estimation is not as precise as with fiducial
markers

• Detection accuracy varies with respect to side from which camera sees the object

Figure 6.3: Objectron testing for object of type Cup in PyCharm environment

The MediaPipe framework would be significant upgrade to the current perception module but
it would need to be trained for objects manipulated within the IOC Robotic Lab, currently a
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complying MediaPipe dataset exist only for plastic bottles.

During the attempt to integrateMediaPipe with ROS, software limitations were encountered:

• Bazel [8] compiler would need to be installed in the version 4.7.2+

• Bazel version would need to comply to the gcc at the computer where it is being installed
(as some PCs in the lab are running gcc 8while other use gcc 10)

• AdditionalMediaPipe packages would need to be installed

and in order to overcome them certain changes would need to be made to one of the computers
by the administrators at IOC-UPC.
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7 Cost Analysis
This project took 32 weeks to complete, averaging four hours each day in the period from Octo-
ber 2021 until February 2022. During Christmas and the whole month of January, the student
was working from home and thus only his working costs and personal laptop consumption are
included in this periods estimates. With five working days per week, the total project hours are
450, of which 120 are dedicated to the personal laptop setup and student work hours.

A PC workstation, two Microsoft Kinect V2 sensors, one OAK-D camera, and a personal laptop
comprise the hardware. Because the project was developed at the Institute of Industrial and
Control Engineering’s (IOC-UPC) Robotics Lab, the depreciation cost of theworkstation and all
sensors and cameras utilized has been included. The useful life of a workstation and a personal
laptop is estimated to be five years when used for ten hours a day, five days a week. This results
in an 13050 hours of useful life. The workstation PC is used for 50% of the project hours spent
in the lab, and the personal laptop is utilized for the other 50% of the project hours spent in
the lab and at other places. The student’s working hours are regarded to be equal to the overall
project hours. ETSEIB proposes that students be paid an hourly rate of 8 euros. Supervision
and meetings with the project’s director and other laboratory employees will be considered 45
hours in total, at an average cost of 30 €/h.

Electricity usage is calculated for each hardware component that was utilized. The average cost
of electricity in 2021 is assumed to be 0.21 €/kWh. The personal laptop’s projected energy usage
is 120.5W, which equates to 27 kWh during a 225-hour period. The workstation PC’s projected
energy usage is 550W, which equates to 123.750 kWh during a 225-hour period. Following that,
the Kinect Cameras used 12 W each for 60 hours, which equals 0.72 kWh in total.

COST CALCULATION Item Fixed Cost (AC) Life Expectancy Variable Cost (AC) Utilization Time Cost to Project (AC)

Hardware Equipment
Workstation PC 1,400 13,050 0.107 225 24.075
Personal Laptop 700 13,050 0.0536 225 12.06
Kinect Sensors 600 26,280 0.022 120 2.64

Electricity
Consumption

Workstation PC
- -

0.042 225 9.45
Personal Laptop 0.014 225 3.15
Kinect Sensors 0.0024 120 0.288

Student Working Hours - - - 8 450 3,600
Supervisor Working Hours - - - 30 45 1,350

Total Cost 4,992.2

Table 1: Cost calculations

Calculations from Table 1 above add up to a total project cost of 4,992.2 AC.
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8 Environmental and Social Impact
This section debates the social and environmental impacts of robot perception and computer
vision topics considered and worked on during this project:

8.1 Social Impact
Throughout history and culture, robots have been envisioned as coworkers. As a result of this
idea, a new family of devices called collaborative manufacturing robots enables human and
robot employees to collaborate on industrial activities. Their introduction enables us to get a
greater understanding of how people interact with and perceive a robot "coworker" in a real-
world situation, which may help shape the design of these goods.The findings of a paper by
Alison Sauppe and Bilge Mutlu [24] indicates that, even in this high-risk industrial environ-
ment, employees see the robot as a social entity and depend on clues to comprehend its activi-
ties, which is crucial for workers to feel comfortable while working near the robot. These results
advance our knowledge of human-robot interactions in real-world contexts and have significant
design implications. Computer vision itself allows robots to understand human cues aswell and
adapt their behaviour in order to generate a safer environment and more pleasant workspace
for everybody.

According to economists, the wide societal benefit of increasing computer vision should be an
increase in people’s material well-being. Computer vision development comprises incorporat-
ing perceptual and interpretation knowledge into newgadgets that expand the extent and depth
of human capacity. Although, automating repetitive work using computer vision would bur-
den society with increased population and unemployment, I think people are still the ’ultimate
resource. [2]

Some tasks are inevitably performed more efficiently by robots and computer vision is one of
the main fields of research widening this spectrum of tasks. Even in this research paper, the
aim was to replace data input by humans with data obtained from the perception module.

Another interesting point is that with enhancements in computer vision and robot reasoning,
they will begin to understand the world in a more human way and this might become a privacy
issue.

8.2 Environmental Impact
Advancements in the field of computer vision will inevitably lead to greater capabilities of in-
dustrial and humanoid robots and thus more robots will be produced and operated every year.
Industrial robots are substantial consumers of electrical energy but as they are generally able to
work in the dark and without heating or cooling, the overall costs of fully automated manufac-
turing plants could be lower. Moreover, with the implementation of renewable energy sources
energy consumption this might not be a thing to worry about.

Bigger problems could arise in the manufacturing and recycling of batteries for mobile robots
and vehicles as we are yet to enter a phase of mass production of such batteries to be used every
day.

In the scope of this project tests which would require many trials and errors are now eliminated
and agents can locate objects successfully, thus less electrical energy is wasted.
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Conclusions
The developed perception module manages to fully accomplish all of the objectives set at the
project initialisation:

• Successfully identifies objects, localizes them and determines their pose using fiducial
markers

• Provides agents with the data needed to generate PDDL files, regarding objects within the
working area

• Makes use of ROS framework to publish obtained data and provide a service, thusmaking
it readily available for agents within the laboratory system

• Is of a modular design and provides an intuitive way to add, remove or exchange cameras
between working areas

• Is a good basis for expansion and addition of other pose estimation methodologies

With regards to the perception module object pose estimation using fiducial markers, the fol-
lowing could be considered for improvement by future work:

One of the issues discovered while testing the perception module was that the Kinect sensor
was placed too high for robust fiducial marker detection at table_YuMi. In order to solve this
problem, the following ideas are proposed:

1. Positioning the camera closer to the working area

2. Using larger fiducial markers

3. Using a different library of fiducial markers

The first option has to be rejected as currently the camera is placed just out of reach for robot
YuMis manipulators and thus if the camera was to be brought closer, a chance of it getting hit
and damaged would exist.

Regarding the second option, this could be feasible but only for larger objects as the fiducial
markers currently being used (size=0.45cm) exactly fit the top of a cans and wooden boxes
being manipulated by the robots.

Finally, each Aruco marker library divides the size of a marker into white or black boxes (ex.
4x4, 7x7, 8x8 etc), a combination of which is unique for each marker. If the division is higher
(Figure 8.1b), the number of possible combinations and unique markers rises but in the case of
the object data base at IOC Laboratory there isnt a need for a large number of unique markers
and thus the whole system was to switch to Aruco Dictionary 4x4 (Figure 8.1a) the perception
module accuracy would increase.
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(a) (b)

Figure 8.1: Aruco markers from 2 different libraries.

Currently, agents within the Robotic lab are localized by mapping the area and using the room
corner (/world) frame as global reference frame. As working area local origins have beenmanu-
ally determined with respect to the global reference frame, the accuracy at which the robots are
provided with object locations rely on these transforms. Due to this, pose estimation data tends
to be less accurate. A solution to overcome this issue would be to have the robots perform the
same localization as the cameras do, using fiducial markers printed and fixed on tables, each
time they approach a working area to perform a manipulation task.

Many possibilities exist for expansion on the developed framework basis in order to provide
more robust object localization and pose estimation along with other functionalities, some of
which have been discussed in this project.

In order to incorporate MediaPipe Objectron, currently identified steps have been described in
section 6 while the incorporation of OAK-D algorithms could be done by installing required
packages and using the OAK-DROS bridge [19] provided by the luxonis team, but asmentioned
previously, this has to be done by one of the administrators at IOC-UPC as students do not have
access.
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Appendix
Listing 2: ns_marker_publisher.launch file

1 <launch>
2
3 <arg name="markerSize " default=" 0 .045 "/> <!−− in m −−>
4 <arg name=" cam_loc " default=" kinect_Chess "/>
5 <arg name=" ref_frame " default=" kinec t2_rgb_opt i ca l_ f rame "/> <!−−

leave empty and the pose wi l l be published wrt param parent_name −−>
6
7 <node pkg=" aruco_ros " type=" marker_publisher " name=" aruco_marker_publisher ">
8 <remap from=" / camera_info " to=" /$( arg cam_loc )/ k inec t2 /hd/ camera_info "

/>
9 <remap from=" /image " to=" /$( arg cam_loc )/ k inec t2 /hd/ image_color_rec t " />

10 <param name=" image_ i s _ r e c t i f i ed " value=" True "/>
11 <param name=" marker_size " value=" $( arg markerSize ) "/>
12 <param name=" reference_frame " value=" $( arg ref_frame ) "/> <!−− frame

in which the marker pose wi l l be re fe red −−>
13 <param name=" camera_frame " value=" k inec t2_rgb_opt i ca l_ f rame "/>
14 </node>
15
16 <node pkg=" t f 2 _ r o s " type=" s t a t i c _ t r ans fo rm_pub l i she r " name="

camera_broadcaster " args=" 0 .0818692 −0.172355 0 .809997 0 .996293
−0.000445324 0 .00422562 −0.0859181 /$( arg cam_loc )/world /$( arg cam_loc )
_rgb_opt ica l_ frame "/>

17
18
19 </launch>

Listing 3: ns_marker_publisher.launch file
1
2 <launch>
3
4
5 <arg name=" camera1_id " default=" 004625445247 "/>
6 <arg name=" camera2_id " default=" 007266745247 "/>
7 <arg name=" camera3_id " default=" nul l "/>
8
9 <arg name=" camera1_name " default=" kinect_YuMi "/>

10 <arg name=" camera2_name " default=" kinect_Chess "/>
11 <arg name=" camera3_name " default=" nul l "/>
12
13
14
15
16
17 <group ns=" $( arg camera1_name) ">
18
19 <include f i l e=" $( f ind tab l e sens )/ launch/ kinect2_br idge_hq . launch ">
20 <arg name=" sensor " value=" $( arg camera1_id ) "/>
21 </include>
22
23 <include f i l e=" $( f ind aruco_ros )/ launch/ns_marker_publisher . launch ">
24 <arg name=" cam_loc " value=" $( arg camera1_name) "/>
25 </include>
26
27



pàg. 62 Memòria

28 <node name=" aruco_broadcaster " pkg=" aruco_broadcaster " type="
aruco_broadcaster " output=" screen "/>

29 <param name=" camera_loc " value=" $( arg camera1_name) "/>
30 <rosparam f i l e=" $( f ind aruco_broadcaster )/ conf ig / table_YuMi . yaml " command="

load "/>
31 <!−− <remap from=" / aruco_marker_publisher /markers " to=" /$( arg camera1_name)/

aruco_marker_publisher /markers " />
32 −−>
33
34 </group>
35
36
37
38
39
40 <group ns=" $( arg camera2_name) ">
41
42 <include f i l e=" $( f ind tab l e sens )/ launch/ kinect2_br idge_hq . launch ">
43 <arg name=" sensor " value=" $( arg camera2_id ) "/>
44 </include>
45
46 <include f i l e=" $( f ind aruco_ros )/ launch/ns_marker_publisher . launch ">
47 <arg name=" cam_loc " value=" $( arg camera2_name) "/>
48 </include>
49
50 <node name=" aruco_broadcaster " pkg=" aruco_broadcaster " type="

aruco_broadcaster " output=" screen "/>
51 <param name=" camera_loc " value=" $( arg camera2_name) "/>
52 <rosparam f i l e=" $( f ind aruco_broadcaster )/ conf ig / p l 2 e s a i i . yaml " command="

load "/>
53 <!−− <remap from=" /$( arg camera2_name)/ aruco_marker_publisher /markers " to=" /

aruco_marker_publisher /markers " />
54 −−>
55
56 </group>
57
58
59
60 <!−−
61 <group ns=" $( arg camera3_name) ">
62
63 <include f i l e=" $( f ind tab l e sens )/ launch/ kinect2_br idge_hq . launch ">
64 <arg name=" sensor " value=" $( arg camera3_id ) "/>
65 </include>
66
67 <include f i l e=" $( f ind aruco_ros )/ launch/ns_marker_publisher . launch ">
68 <arg name=" cam_loc " value=" $( arg camera3_name) "/>
69 </include>
70
71 <node name=" aruco_broadcaster " pkg=" aruco_broadcaster " type="

aruco_broadcaster " output=" screen "/>
72 <param name=" camera_loc " value=" $( arg camera3_name) "/>
73 <rosparam f i l e=" $( f ind aruco_broadcaster )/ conf ig / p l 2 e s a i i . yaml " command="

load "/>
74 <remap from=" /$( arg camera3_name)/ aruco_marker_publisher /markers " to=" /

aruco_marker_publisher /markers " />
75
76
77 </group>
78 −−>
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79
80
81 <node pkg=" t f 2 _ r o s " type=" s t a t i c _ t r ans fo rm_pub l i she r " name="

tf_between_kinect1_world " args=" 3 2 0 0 0 0 /world /$( arg camera1_name)/
world "/>

82 <node pkg=" t f 2 _ r o s " type=" s t a t i c _ t r ans fo rm_pub l i she r " name="
tf_between_kinect2_world " args=" 4 3 0 0 0 0 /world /$( arg camera2_name)/
world "/>

83
84 <!−− <node pkg=" t f 2 _ r o s " type=" s t a t i c _ t r ans fo rm_pub l i she r " name="

tf_between_kinect2_world " args=" 4 3 0 0 0 0 /world /$( arg camera2_name)/
world "/> −−>

85
86 </launch>

Listing 4: ns_marker_publisher.launch file
1
2 <launch>
3
4
5 <arg name=" camera_1 " default="Chess "/>
6 <arg name=" camera_2 " default="YuMi"/>
7 <arg name=" camera_3 " default=" nul l "/>
8 <arg name=" camera_4 " default=" nul l "/>
9

10
11 <node name=" percept ion_server " pkg=" perception_module_pkg " type="

percep t ion_se rv i ce_se rve r " output=" screen "/>
12 <param name=" camera_1 " value=" $( arg camera_1) "/>
13 <param name=" camera_2 " value=" $( arg camera_2) "/>
14 <param name=" camera_3 " value=" $( arg camera_3) "/>
15 <param name=" camera_4 " value=" $( arg camera_4) "/>
16
17
18 </launch>
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