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Abstract—This paper proposes a novel parallel execution
model for Bidirectional Recurrent Neural Networks (BRNNs), B-
Par (Bidirectional-Parallelization), which exploits data and con-
trol dependencies for forward and reverse input computations.
B-Par divides BRNN workloads across different parallel tasks
by defining input and output dependencies for each RNN cell in
both forward and reverse orders. B-Par does not require per-
layer barriers to synchronize the parallel execution of BRNNs.
We evaluate B-Par considering the TIDIGITS speech database
and the Wikipedia data-set. Our experiments indicate that B-
Par outperforms the state-of-the-art deep learning frameworks
TensorFlow-Keras and Pytorch by achieving up to 2.34× and
9.16× speed-ups, respectively, on modern multi-core CPU ar-
chitectures while preserving accuracy. Moreover, we analyze in
detail aspects like task granularity, locality, or parallel efficiency
to illustrate the benefits of B-Par.

Index Terms—Deep neural network (DNN), Bidirectional re-
current neural networks (BRNNs), Long-short term memory
(LSTM), Gated Recurrent Units (GRU), Task Parallelism

I. INTRODUCTION

Bidirectional Recurrent Neural Networks (BRNNs) [1] are
an evolution of the well-known Recurrent Neural Networks
(RNNs) [2]. BRNNs are composed of two parallel RNN mod-
els: the first model processes input data in forward order, while
the second RNN does so in reverse order. This combination
of forward and reverse input data processing allows BRNNs
to simultaneously capture future and past information for each
time instance, which improves the accuracy over unidirectional
RNNs. BRNNs are a popular choice for Automatic Speech
Recognition (ASR) [3], language translation [4], handwriting
recognition [5], medical events detection tasks [6] and image
captioning [7]. Furthermore, BRNNs have been widely used in
combination with convolutional neural networks (CNNs) [8],
[9]. With the advent of attention and transformer models,
BRNNs are used as complimentary to attention and trans-
former models [10], [11] targeting scenarios like language
understanding [12], name entity recognition [13], and recom-
mendation systems [14]. In certain scenarios, BRNNs outper-
form transformer models [15], [16]. BRNNs are a fundamental
building block of emerging deep learning workloads.

BRNNs high accuracy comes at the cost of a large number
of training parameters and very complex data and control
dependencies. These dependencies span across the forward
and reverse orders of input processing and complicate the

parallel execution of BRNN workloads. Indeed, state-of-the-art
deep learning frameworks apply per-layer barriers that produce
severe CPU starvation and seriously limit the performance of
BRNN workloads on a large number of CPU cores [17].

We propose B-Par, a novel parallel execution model for
Bidirectional Long Short Term Memory (BLSTMs) [18] and
Gated Recurrent Units (BGRUs) [19] networks. B-Par con-
ceives BRNN workloads as a computational graph where
nodes represent computation and edges identify data and
control dependencies between them [20]. A run-time system
software orchestrates the parallel execution of BRNNs across
multi-core CPU devices by scheduling computing pieces as
soon as their data or control dependencies are fulfilled. B-Par
significantly improves the performance of state-of-the-art deep
learning frameworks since it does not need per-layer barriers
to synchronize the parallel execution. B-Par does not require
the programmer to express the parallel execution schedule
explicitly at the source code level, since it is managed at
run-time by the system software. Programming environments
like OpenMP [21] and OmpSs [22] support the definition of
input and output dependencies between tasks and the dynamic
management of them. We implement B-Par using OmpSs.

B-Par currently focuses on multi-core CPU systems. While
GPUs match with the computation requirements of the
DNN training workloads, many-core CPUs also deliver high
floating-point operations per second (flop/s) rates and consti-
tute fundamental building blocks of high-performance comput-
ing clusters [23], [24]. For example, the Fugaku system [25],
which is ranked first by the November 2021 Top 500 list [26]
and entirely based on many-core CPU chips, delivers 2.78
Tflop/s per socket while the Summit [27] system delivers
5.37 Tflop/s per GPU. The importance of efficiently using
multi-core CPUs to process deep learning frameworks is also
motivated by the low latency, they display for small batch
sizes and the large number of many-core CPUs that would
otherwise be idle during off-peak periods of infrastructures
like cloud computing servers or high-performance computing
clusters. For example, FBLearner [28] of Facebook uses many-
core CPUs to run DNN training and inference workloads.
Also, leading companies use CPUs to run real-time inference
workloads [17], [29], [30] in contexts like mobile devices [31]
and some extreme environments, e.g., space and defense
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industries [32]. B-Par and the ubiquity of multi-core CPUs
have the potential to impact many RNN users.

The core contributions of this work are threefold:
• We propose B-Par, a parallel execution model for BRNN
workloads. B-Par exploits model parallelism and relies on
source-code annotations indicating input and output dependen-
cies across different BRNN compute kernels. B-Par does not
need per-layer barriers to synchronize the parallel execution
of BRNN workloads.
• We compare B-Par with state-of-the-art implementations of
bidirectional LSTMs and GRUs on two high-end computing
systems considering the TIDIGITS speech database [33], the
Wikipedia data-set [34], and a wide range of model param-
eters. B-Par reaches performance speed-ups up to 2.34× in
comparison to the most recent implementation of the state-of-
the-art Keras-TensorFlow-2.3.0 deep learning framework [35],
[36], and 9.16× in comparison to PyTorch-1.7.1 [37].
• We thoroughly analyze B-Par locality-awareness, task gran-
ularity, and memory consumption for different BRNN models.
This analysis demonstrates the benefits of the B-Par execution
model.

II. BACKGROUND ON BRNN
Bidirectional RNNs [1] are an evolution of traditional RNNs

that process input data in both forward and reverse directions
with two separate unidirectional RNNs. While conventional
RNNs and their variants can only use the previous context,
BRNNs exploit past and future information. BRNNs use the
basic RNN unit and its variants LSTM [18] and GRU [19] to
carry out their predictions. A BRNN model uses two sets of
weights and biases, one for forward order and one for reverse
order input processing.

Fig. 1 shows a 3-layer deep BRNN model with a sequence
length of three. BRNNs are composed of a unidirectional
RNN model for forward order input processing and another
unidirectional RNN model for reverse order input processing,
as shown in Fig. 1. Forward order uses inputs in sequence from
1 to n, whereas the reverse order uses the input sequence from
n to 1. Each square cell is composed of either an LSTM [38]
or a GRU cell [19]. Equations (1)-(6) define the computations
involved in each LSTM cell, and previous work [39] contains
detailed descriptions of all parameters.

ft = sigm(Wf ∗ [Xt, Ht−1] + Bf ) (1)
It = sigm(Wi ∗ [Xt, Ht−1] + Bi) (2)
C̄t = tanh(Wc ∗ [Xt, Ht−1] + Bc) (3)
Ot = sigm(Wo ∗ [Xt, Ht−1] + Bo) (4)
Ct = ft � Ct−1 + It � C̄t (5)
Ht = Ot � tanh(Ct) (6)

Equations (7)-(10) define GRUs cell computations:

Zt = sigm(Wz ∗ [Xt, Ht−1] + Bz) (7)
Rt = sigm(Wr ∗ [Xt, Ht−1] + Br) (8)
H̄t = tanh(Wh ∗ [Xt, Rt �Ht−1] + Bh) (9)
Ht = Zt � H̄t + (1− Zt)�Ht−1 (10)
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Fig. 1: Many-To-One BRNN model

Each forward and reverse order RNNs have a recurrent
hidden state whose activation value at time t, Ht, depends
on the hidden state value at time t − 1, Ht−1. These
cyclic dependencies complicate the practical implementation
of RNNs and motivate the need for unrolling RNNs to form
a directed acyclic graph. Each layer of the unrolled RNN
model uses the same weights and biases for each unrolled
RNN timestamp, although the outputs and the internal states
of each unrolled RNN timestamp display different values for
each timestamp. Therefore, while outputs and internal states
require one copy per timestamp, keeping just one copy of cells
weights and biases per layer is possible. This optimization
significantly reduces the working set size of RNN workloads,
and state-of-the-art deep learning frameworks adopt it like
Keras-TensorFlow [35], [36], or PyTorch [37].

Each RNN cell in forward and reverse order input pro-
cessing produces outputs H t and

←−
H t, respectively. BRNNs

combine the output of forward and reverse order cells, which
process the same input. BRNNs compute the final output of
each cell in forward order by using the following equation:

yt = merge(H t,
←−
H t) (11)

where the merge function combines outputs from forward and
reverse order processing cells. This combination can be carried
out via operations like summation, multiplication, average, or
concatenation. For each layer in deep BRNN models, the cell
output of merge (11) is fed to the next layer RNN cell in
forward order, and the corresponding cell in reverse order. For
example, the 1f3r cell in Fig. 1 feeds cells 4f and 6r. Several
merge operations combine reverse and forward order cell out-
puts and propagate this combination to following layer cells.

The most widely used BRNN variants are many-to-one
and many-to-many models. Many-to-one BRNN models have
the same number of inputs as their sequence length and
produce only one output. Such models are widely used for
sentiment analysis, recommendation systems, and forecasting



stock market, weather, or traffic [40], among other tasks. Fig. 1
represents a many-to-one BRNN model where the third layer
produces a single final output composed of the hidden state
outputs of cells 9f and 9r, followed by the merge function
defined in Equation (11).

Many-to-many BRNN models generally have several inputs
and outputs equivalent to the sequence length, although there
are some models for which the number of outputs is not
equivalent to the sequence length. Many-to-many BRNNs
models are commonly used in tasks as name entity recognition
or machine translation [4]. These models have more complex
data dependencies in the last layer than many-to-one models
because forward-order input processing cells producing the
final output must wait for all reverse order cells to produce
their corresponding outputs.

State-of-the-art deep learning frameworks, like Keras-
TensorFlow [35], [36], or PyTorch [37] apply per-layer bar-
riers between forward and reverse order RNNs. Each layer
sequentially performs either forward or reverse order RNNs
computations for each timestamp, and then merge the outputs
of the forward and reverse order RNNs. It imposes per-layer
synchronization points to enforce all merge operations of a
specific layer to finish before forward and reverse order cells
corresponding to the next layer start processing their input
data [17]. While these barrier synchronization points allow the
same code to handle BRNN models with different sequence
lengths and layer counts, they significantly undermine the
parallel performance of BRNN workloads. Indeed, the parallel
performance of deep learning frameworks on large core counts
is inferior when processing BRNN workloads, as Section IV
demonstrates.

III. THE B-PAR APPROACH

B-Par (Bidirectional-Parallelization) is a parallel execution
model for deep BRNNs. B-Par conceives BRNN forward
and backward propagation routines as graphs where nodes
represent computation and edges identify data and control
dependencies between them. B-Par executes two unidirectional
RNN models simultaneously, one model processes input data
in forward order, and another in reverse order. B-Par exploits
model parallelism on BRNN models by conceiving forward
and reverse order input computations in terms of multiple
sequential pieces of code, which we denote as tasks. A run-
time system software orchestrates the parallel execution by
considering dependencies between different computing rou-
tines and scheduling them across the various computing units
of parallel systems.

B-Par relies on the basic structure of deep BRNNs, where
a cell on a particular layer depends on a previous cell of the
same layer, its counterpart cell of the previous layer, and a
cell of the previous layer in reverse order. Orchestrating a
BRNN parallel training or inference via task dependencies
does not produce any accuracy loss compared to a sequential
execution. Like TensorFlow-Keras, B-Par also unrolls BRNNs
where weights and biases are shared among the same layer’s
RNN cells in forward and reverse order input processing
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Fig. 2: Many-To-One BRNN model forward and backward
propagation dependency graph

cells. Weights and biases are allocated in memory only once
per layer since they are shared across all unrolled RNN
timestamps in the same layer. Section III-A describes in detail
the B-Par approach when applied to many-to-one and many-
to-many BRNN models, while Section III-B describes our
implementation of B-Par.

A. Applying B-Par to BRNN Models

B-Par maps all computations corresponding to an RNN
cell into a single sequential task and orchestrates the parallel
run taking into account dependencies across tasks in forward
order input processing and reverse order input processing. We
consider the BRNN model represented in Fig. 1 to describe the
B-Par operation on many-to-one models. In Fig. 1, the forward
order cells appear on the left-hand side, while reverse order
input processing cells appear on the right-hand side of the fig-
ure. Arrows express the data dependencies between RNN cells.
B-Par forward propagation for many-to-one BRNNs processes
the reverse input processing cells in the sequential order of 1r,
2r, and 3r, and traverses forward order input processing cells
in the order of 1f , 2f , 3f . Once the forward and reverse order
outputs are computed, B-Par merges them in cells 1f3r, 2f2r,



3f1r following Equation (11) and considering operations like
sum, subtraction, average, or concatenation. Cells 1f3r, 2f2r,
3f1r are denoted as merge cells. B-Par repeats the same
process for the next layers except the last one. In the last layer
of many-to-one BRNNs, B-Par merges the output of the last
forward and reverse order processing cells: cells 9f and 9r,
in the example we display in Fig. 1. Importantly, B-Par keeps
the merge cells as separate tasks to eliminate dependencies
between forward and reverse order processing cells belonging
to the same layer. This separation permits B-Par to execute
forward and reverse order cells in parallel.

Fig. 2 represents the dependency graph concerning the
forward and backward propagations of the many-to-one BRNN
model illustrated in Fig. 1. Each graph node represents a se-
quential task that encapsulates all computations corresponding
to a single RNN cell. Tasks are created in the topological
order during the parallel run representing from top to bottom
for the forward propagation and from bottom to top for the
backward propagation. Black arrows represent dependencies
across the forward propagation, which starts from cells 1r and
1f . Arrows begin in cells producing a piece of data and finish
on cells consuming these data. For example, Fig. 2 shows
that cell 2r has two output dependencies on cells 2f2r and
3r in the case of forward propagation. Similarly, red arrows
appearing in Fig. 2 represent the backward propagation of
the many-to-one BRNNs model that appears in Fig. 1. The
backward propagation task dependency graph begins from the
bottom of the forward propagation dependency graph; that is,
it starts from cell 9f9r and proceeds in reverse order.

A many-to-many BRNN model is similar to the many-
to-one case except for the last layer. Many-to-many models
combine the forward and reverse order RNNs cell outputs to
produce N outputs, where N is the model’s sequence length.
Due to the last layer, many-to-many BRNNs models have
slightly higher numbers of tasks and complex dependencies
than the many-to-one BRNNs model.

B. Implementation of B-Par

Our implementation of B-Par is based on encapsulating
sequences of algebraic operations in sequential pieces of
work, called tasks, that have data dependencies across them.
These algebraic operations correspond to the mathematical
transformation required to update the state of RNN cells,
and are specified by Equations 1- 10. We use source code
annotations to define sequential pieces of work corresponding
to single RNN cells updates. These annotations specify all
input and output dependencies per task and are supported by
the most relevant parallel programming models [21], [22]. B-
Par runs on top of a run-time system software that dynamically
generates a task dependency graph by exploiting source code
annotations. The run-time system maintains a list of ready-
to-be executed tasks and assigns them to computing units as
soon as they become available.

A practical and general B-Par implementation requires sup-
porting any BRNN model featuring either BLSTM or BGRU
cells considering generic input and hidden dimensions, batch

Algorithm 1 B-Par Main Routines and Parameters
1: c f . List of algebraic operations to update all forward order cells
2: c r . List of algebraic operations to update all reverse order cells
3: start f , end f . Array of start and end indices of Forward cells in c f
4: start r, end r . Array of start and end indices of Reverse cells in c r
5: action . Forward or backward propagation
6:
7: function ForwardorderRNNs − ForwardPropagation(c f ,c r,

start f , end f )
8: Forward Propagation for Forward order RNN cells . Pseudo-code in

Algorithm 2
9:

10: function ReverseorderRNNs − ForwardPropagation(c r, start r,
end r)

11: Forward Propagation for Reverse order RNN cells . Pseudo-code in
Algorithm 3

12:
13: function ForwardorderRNNs − BackwardPropagation(c f ,c r,

start f , end f )
14: Backward Propagation for Forward order RNN cells
15:
16: function ReverseorderRNNs − BackwardPropagation(c r, start r,

end r)
17: Backward Propagation for Reverse order RNN cells
18:
19: function FwdBwdComputations(c,start,end,action)
20: for node← start to end do
21: if c[node]− > Child == TRUE then
22: algebra operation[c[node]− > op](c[node], action)

23:
24: function Merge Task(c f ,e f ,tmp c r,action)
25: #pragma omp task in(c f[e f-2], tmp c r) out(c f[e f])
26: FwdBwdComputations((e f-1),e f, c f, action)

sizes, or sequence lengths. For variable sequence length in
between batches, B-Par adjust the computation graph dy-
namically on run-time. Our implementation conceives BRNN
models as lists of algebraic operations that update either
reverse or forward order cells, which is a general abstraction
able to represent any BRNN. It requires abstract data structures
to represent and manage these lists of algebraic operations,
as well as pragma annotations describing complex and input-
specific dependencies.

1) Fundamental Data-Structures and Routines of B-Par:
B-Par implementation performs forward or backward propa-
gation using the two fundamental data structures: c f , which
contains the list of all necessary algebraic operations to
update all forward order cells, and c r, which does so for
reverse order cells. To properly index these lists of algebraic
operations, B-Par makes use of the start f and end f arrays,
which index the first and the last algebraic operation per each
RNN cell in c f , respectively, and start r and end r, which
are their counterpart arrays for c r. B-Par also considers an
action parameter to specify whether it is performing a forward
or a backward propagation. These 5 parameters are listed in
the first lines of Algorithm 1. Our B-Par implementation also
keeps the state of all its RNN cells in a data structure. We omit
this data structure in Algorithm 1 for pseudo-code readability
and simplicity purposes.

B-Par updates the RNN cells state by using four main rou-
tines: Forward propagation for forward cells, forward propaga-
tion for reverse cells, backward propagation for forward cells,
and backward propagation for reverse cells. Algorithm 1 lists
these four routines and their parameters in lines 7, 10, 13, 16.



Algorithm 2 Forward order RNNs - Forward Propagation
1: cell f = −1 . Identifier of forward order RNN cells.
2: cell r = 0 . Identifier of reverse order RNN cells.
3: for l← 0 to #layers do . Loop over all layers.
4: cell r = (l + 1) ∗ seq.length− 1
5: for u← 0 to #seq.length do . Loop over RNN cells of the same

layer.
6: + + cell f
7: s f = start f [cell f ], e f = end f [cell f ] . Start and end indices

of cell f
8: if u > 0 and l > 0 then
9: if l == (#layers -1) then

10: if u == (seq.length -1) then
11: #pragma omp task in(c f[s f-1], c f[end f[cell f- seq.length]])

out(c f[e f-9])
12: FwdBwdComputations(s f, (e f-9), c f, FWD)
13: #pragma omp task in(c f[e f-9], c r[end r[#layers × seq.length-

1]]) out(c f[e f])
14: FwdBwdComputations((e f-8), e f, c f, FWD)
15: else
16: #pragma omp task in(c f[s f-1], c f[end f[cell f- seq.length]])

out(c f[e f])
17: FwdBwdComputations(s f, e f, c f, FWD)
18: else
19: #pragma omp task in(c f[s f-3], c f[end f[cell f- seq.length]])

out(c f[e f-2])
20: FwdBwdComputations(s f, (e f-2), c f, FWD)
21: Merge Task(c f,e f,c r[end r[cell r], FWD)
22: else
23: if u = 0 and l > 0 then
24: if l == (#layers -1) then
25: #pragma omp task in(c f[end f[cell f- seq.length]]) out(c f[e f])
26: FwdBwdComputations(s f, e f, c f, FWD)
27: else
28: #pragma omp task in(c f[end f[cell f- seq.length]]) out(c f[e f-

2])
29: FwdBwdComputations(s f, (e f-2), c f, FWD)
30: Merge Task(c f,e f,c r[end r[cell r], FWD)
31: else
32: if u > 0 and l = 0 then
33: #pragma omp task in(c f[s f-3]) out(c f[e f-2])
34: FwdBwdComputations(s f, (e f-2), c f, FWD)
35: Merge Task(c f,e f,c r[end r[cell r], FWD)
36: else
37: if u = 0 and l = 0 then
38: #pragma omp task in(c f[s f]) out(c f[e f-2])
39: FwdBwdComputations(s f, (e f-2), c f, FWD)
40: Merge Task(c f,e f,c r[end r[cell r], FWD)
41: −− cell r

The two routines to perform forward propagation are described
in Section III-B2, and Algorithms 2 and 3 display their pseudo-
code. We do not show the pseudo-code of backward propaga-
tion routines since it is very close to their forward counterparts.
The four main routines for forward and backward propagation
make extensive use of the FwdBwdComputations function,
which appears in line 19 of Algorithm 1, and it is the funda-
mental kernel of B-Par. The FwdBwdComputations input
parameters are the c data-structure, which is an instantiation
of either c r or c f ; the start and end indices, which index
the initial and the final arithmetic operations of the RNN cell
being processed; and the action parameter, which describes
whether the propagation is either forward or backward. All
computations from start to end constitute a sequential task.

The FwdBwdComputations routine goes over all the
algebraic operations required to update the RNN cell (line 20
of Algorithm 1). The algebra operation carries out a specific
operation defined by c[operation]− > op, which is where
the c data structure holds the corresponding operations to be
performed. Equations 1- 10 define these algebra operations

Algorithm 3 Reverse order RNNs - Forward Propagation
1: cell f = 0 . Identifier of forward order RNN cells.
2: cell r = −1 . Identifier of reverse order RNN cells.
3: for l← 0 to #layers do . Loop over all the layers.
4: cell f = l ∗ seq.length− 1
5: for u← 0 to #seq.length do . Loop over RNN cells of the same

layer.
6: + + cell r
7: s r = start r[cell r], e r = end r[cell r] . Start and end indices

of cell r
8: if u > 0 and l > 0 then
9: #pragma omp task in(c r[s r-1], c f[end f[cell f]]) out(c r[e r])

10: FwdBwdComputations(s r, e r, c r, FWD)
11: −− cell f
12: else
13: if u= 0 and l> 0 then
14: #pragma omp task in(c f[end f[cell f]]) out(c r[e r])
15: FwdBwdComputations(s r, e r, c r, FWD)
16: −− cell f
17: else
18: if u > 0 and l = 0 then
19: #pragma omp task in(c r[s r-1]) out(c r[e r])
20: FwdBwdComputations(s r, e r, c r, FWD)
21: else
22: if u = 0 and l = 0 then
23: #pragma omp task in(c r[s r]) out(c r[e r])
24: FwdBwdComputations(s r, e r, c r, FWD)

depending on the particular RNN variant we are updating
(line 22). Algorithm 1 also defines the Merge Task function,
which corresponds to merge tasks. This routine relies on
the FwdBwdComputations but adds an additional pragma
annotation containing specific dependencies of merge tasks.

2) Routines to Compute Forward Propagation for Reverse
and Forward Order RNN Cells: For many-to-one BRNNs, Al-
gorithm 2 displays the high-level pseudo-code representation
of forward order RNNs for the case of forward propagation.
Forward order tasks are instantiated by different pragma anno-
tations, which specify the input and output dependencies of the
corresponding RNN cell. In forward order input processing,
B-Par handles the cells responsible for merging the output
of forward and reverse order input computations by calling
the Merge Task routine, defined in line 24 of Algorithm 1.
Every merge cell has input dependencies on both reverse and
forward order RNN cells, while the other forward order cells
have input dependencies only on forward order cells.

Algorithm 2 is composed of two main loops that traverse all
network layers and all RNN cells of each layer. We represent
these two loops in lines 3 and 5. Algorithm 2 implements
a complex heuristic depending on the layer and the cell’s
relative position within each layer, which variables l and u
describe. Depending on the u and l variables, Algorithm 2
defines different input and output dependencies before calling
the FwdBwdComputations routine, which performs the
algebraic transformations required to update the state of the
RNN cell that is being processed. Similarly, the Merge Task
has different dependencies depending on the specific layer and
cell we are updating.

Algorithm 3 contains the pseudo-code of the forward prop-
agation routine of reverse order cells. This pseudo-code has
a very similar structure as Algorithm 2 since it also traverses
all the layers of the model and all the cells of each layer.
Algorithm 3 is simpler than Algorithm 2 since it does not



deal with merge tasks. Forward propagation of reverse order
cells also requires the definition of all input and output
dependencies via pragma annotations. Algorithms 2 and 3
interact with each other such that the run-time system launches
layer-wise tasks consisting of forward and reverse order and
merge tasks, so on for the successive layers of BRNNs. We
do not provide the pseudo-code of the backward propagation
routines as it is very similar to their forward counterparts.

We specify input and output dependencies in terms of
pragma annotations, making it possible for the run-time system
software to dynamically represent the parallel workload via a
task dependency graph, where each task represents the update
of a single RNN cell. This parallel execution model simplifies
our implementation, increases its flexibility, and does not
impose any barrier synchronization point between network
layers. Our B-Par implementation can be trivially extended
to support data-parallelism by dividing a batch into multiple
mini-batches and processing each one of them in parallel. B-
Par combines the contribution of each mini-batch before com-
puting the weight updates. This is expressed at the source code
level by adding dependencies to tasks that compute gradient
updates. These dependencies enforce gradient synchronization
among model replicas.

IV. EVALUATION

This section evaluates the performance of B-Par against the
primary state-of-the-art deep learning frameworks supporting
BRNNs. It compares B-Par performance on many-core CPU
devices against state-of-the-art approaches running on either
many-core CPUs or GPUs, and it shows how the exploitation
of model parallelism that B-Par achieves without barrier points
provides very significant performance improvements.

A. Experimental Setup

Our experiments are performed on a dual-socket 48-core
Intel Xeon system and an Nvidia Tesla V100 GPU. Table I
summarizes the main aspects of our two experimental plat-
forms. The Intel CPU cache storage is as follows: L1D 32K;
L1I 32K; L2 cache 1024K; L3 cache 33792K. The L3 cache
is shared among the cores belonging to the same socket.
On the CPU system, we use the Intel optimized Tensor-
Flow [41] installation for our experiments and a PyTorch [42]
installation with all the Intel recommended optimizations.
Both TensorFlow-Keras and PyTorch support AVX512, MKL-
Parallel, and oneDNN which is an open-source, cross-platform
high-performance library of basic building blocks for deep
learning applications. Our experiments on the GPU system
consider versions of TensorFlow-Keras [35] and PyTorch [37]
that leverage cuDNN, a GPU accelerated deep learning library.
We show in Table II the specific software versions and related
libraries of our experimental setup.

TABLE I: Hardware Experimental Platforms
Computational Unit #CPUs Memory OS

2 Intel XEON Platinum 8160 @2.1 GHz 2× 24 96 GB SuSe Linux 12 SP2
Tesla V100 SXM2 40 16 GB Red Hat Enterprise Linux Server 7.5

TABLE II: Software Setup
Framework Version Python MKL oneDNN GCC CUDA CuDNN

Keras-TensorFlow 2.3.0 3.7.4 2019.04 1.6.0 8.1.0 10.2 8.0.3
PyTorch 1.7.1 3.7.4 2020.0.0 1.6.0 8.1.0 10.2 8.0.3

B-Par - - 2019.4 - 8.1.0 - -

TensorFlow-Keras: To achieve the best performance for
TensorFlow-Keras and PyTorch, we perform 64 experiments
for each model configuration with a combination of inter and
intra-threads from 1, 2, 4, 8, 16, 24, 32, 48. For oneDNN (ear-
lier MKL-DNN), the number of MKL threads is always equal
to intra-threads. Previous work [43] discusses the best possible
values for inter-, intra-, and MKL-threads for TensorFlow-
Keras by exhaustively sweeping the design space, although
they do not consider RNN or BRNN models. Settings from
Intel produce better performance for RNN and BRNN models
than these previous approaches and match our exhaustive
exploration [43]. When reporting execution time on 24 or
fewer cores, we restrict TensorFlow-Keras execution to a
single socket to avoid Non-Uniform Memory Access (NUMA)
effects. For TensorFlow-Keras, we always unroll BRNNs to
reduce the memory requirements of the training process as
described in Section II.

B-Seq: Besides TensorFlow-Keras, PyTorch, and B-Par, our
experiments consider a BRNN implementation that entirely
relies on data parallelism, B-Seq. It splits batches into mini-
batches that are processed in parallel. B-Seq only relies on
data parallelism and processes each mini-batch sequentially.
In contrast, B-Par relies on both data- and model-parallelism,
which means that it can split a batch into several mini-batches
and process each mini-batch in parallel. Both B-Seq and B-Par
use the same OmpSs runtime and unroll BRNNs.

TensorFlow-Keras, PyTorch, B-Seq, and B-Par experiments
use the same BRNN initial configuration. All experiments use
one thread per core. The OmpSs run-time system [22] is in
charge of dynamically scheduling the parallel tasks of B-Par
to the compute units. B-Par uses a breadth-first task scheduler
with a single global-ready queue. Breadth-first implements
a locality-aware mechanism that schedules tasks taking into
account their data dependencies. This mechanism schedules
a task to run on the same core as a predecessor if the task
accesses a piece of data that was already read or written
by the predecessor. We study the impact of this locality-
aware mechanism by comparing its performance in terms of
Instructions per Cycle (IPC), cache Misses per Kilo Instruction
(MPKI), and execution time with a task scheduler that does not
consider data locality. The ready queue is ordered following
a FIFO (First In, First Out) algorithm. B-Par is mapped to
MKL-Sequential, while TensorFlow-Keras and PyTorch use
MKL-Parallel and oneDNN.

Data-sets: We consider two different data-sets in our evalu-
ation: The TIDIGITS speech corpus data-set [33] and the real-
world text-corpus Wikipedia data-set [34]. TIDIGITS contains
speech, originally designed and collected to evaluate algo-
rithms for speaker-independent recognition of connected digit
sequences. Wikipedia is a data-set of 1.4 billion characters.



Many-to-one BRNNs deal with TIDIGITS, and many-to-many
BRNNs process the Wikipedia data-set to perform the next
character prediction problem.

B. Performance on Speech Recognition Task

We evaluate B-Par against TensorFlow-Keras and PyTorch
running on CPUs and GPUs, and B-Seq on CPUs, considering
a speech recognition task on the TIDIGITS data-set covering
a wide range of BRNN model sizes. We also evaluate in detail
the impact on the performance of model hyper-parameters.

Speed-up on CPUs: We compare single batch training
times of B-Par running on CPUs with TensorFlow-Keras and
PyTorch on CPUs and GPUs, and B-Seq on CPUs. Tables III
and IV report these results measured on 6-layer deep BRNNs
composed of LSTMs and GRUs, respectively. B-Par is always
faster than TensorFlow-Keras, PyTorch on CPUs for all the
different configurations. Training time includes the forward
and backward propagation plus the gradient update time per
batch. The first four columns present the considered model
configurations in terms of input dimension, hidden size, batch
size, sequence length, which define the number of trainable
parameters displayed in the fifth column.

B-Par significantly outperforms TensorFlow-Keras on CPUs
with a speed-up within the range of 1.50× (Table III con-
figuration: 256/256/1/10 ) to 2.34× (Table IV configura-
tion: 256/256/1/100), and PyTorch on CPUs with speed-ups
from 1.30× (Table III configuration: 256/256/1/2) to 9.16×
(Table III configuration: 256/1024/256/100). Large sequence
length and hidden size values allow B-Par to expose con-
siderably parallel workloads to the architecture and achieve
significant performance speed-ups.

Speed-up on GPUs: On GPUs, B-Par achieves speed-
up improvements up to 5.05×. B-Par is always faster than
TensorFlow-Keras and PyTorch when both batch size and
sequence length are smaller than 10. As the sequence length
increases, GPUs become more efficient since BRNN compu-
tations involve large matrix-matrix multiplications. PyTorch
executions on the GPU system become very inefficient when
there are more than 90Million model parameters. We leave
the corresponding entries of Tables III, and IV empty since
the executions of PyTorch often hung in these scenarios.

Next, we look into the five most relevant parameters that
impact the performance of BRNNs training and inference time:
hidden size, batch size, number of cores, data parallelism
(mini-batch size), and number of layers. We conduct the
subsequent experiments considering both 8-layer and 12-layer
deep BLSTM models keeping the sequence length set to 100
and input size to 256 unless explicitly stated otherwise. We
also demonstrate the potential of B-Par in terms of exploiting
data locality and reuse opportunities when a cache locality-
aware scheduler is applied. Finally, we show the overhead B-
Par incurs in task creation, scheduling, and synchronization
are negligible.

Varying number of cores and mini-batch size training:
Fig. 3 shows the scalability of B-Par on 8- and 12-layer
BLSTM models while using different mini-batch sizes and
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Fig. 4: Keras, B-Seq, PyTorch, and B-Par batch training
execution time on different CPU core counts.

cores against single core execution-time of B-Par using a mini-
batch size of 1. mbs:N signifies that batch size is divided
among N batches that run in parallel. B-Par is evaluated
considering mini-batch sizes of 1, 2, 4, 6, 8, 10, 12 on different
core counts. The best speed-up is seen on mbs:8 while using
all the 48 cores as this configuration exposes ample amounts of
parallelism to the underlying parallel hardware. Configurations
mbs:10 and mbs:12 show sightly worse performance than
mbs:8 since they incur more task creation overhead than the
mbs:8 configuration.

B-Par configurations mbs:1, mbs:2, and mbs:4 display a
performance degradation when run on 32 and 48 cores. NUMA
effects appear when our parallel experiments use the two
sockets of our experimental platform. There is no NUMA
effect when less than the 24 cores of a single socket are used.
B-Par configurations mbs:8 mbs:10, and mbs:12 improve their
performance when increasing the number of CPUs from 24 to
32 due to the large concurrency of these configurations, which
take advantage of the additional cores and provide additional
performance despite NUMA effects.



TABLE III: BLSTMs Training times and speed-up of B-Par on CPU against Keras(K), PyTorch(P) on CPU and GPU systems.

Model Configurations BLSTMs batch execution time (ms) Speed-up of B-Par-CPU wrt
Input
Size

Hidden
Size

Batch
Size

Seq
Len Parameters K-CPU K-GPU P-CPU P-GPU BSeq-CPU BPar-CPU K-CPU K-GPU P-CPU P-GPU

64 256 128 100 5.9M 1,770.76 123.79 3,215.68 590.5726 2,364.00 989.06 1.79 0.13 3.25 0.60
256 256 128 100 6.3M 1,770.15 132.67 3,956.06 590.2132 2,419.80 932.55 1.90 0.14 4.24 0.63

1024 256 128 100 7.8M 1,816.53 193.36 3,663.28 595.0635 2,726.55 1,149.55 1.58 0.17 3.19 0.52
256 256 1 2 6.3M 17.47 24.52 20.51 24.0476 20.21 14.94 1.17 1.64 1.37 1.61
256 256 1 10 6.3M 37.29 29.27 54.70 64.6389 60.76 24.80 1.50 1.18 2.21 2.61
256 256 1 100 6.3M 276.68 80.71 461.45 515.6153 439.25 143.21 1.93 0.56 3.22 3.60
64 256 256 100 5.9M 2,751.70 177.08 5,240.83 562.2858 4,262.18 1,566.60 1.76 0.11 3.35 0.36
64 1024 256 100 92.8M 28,489.52 1,276.98 147,839.40 - 71,038.30 17,378.61 1.64 0.07 8.51 -
256 256 256 100 6.3M 2,770.82 201.12 5,412.32 559.3186 4,352.02 1,581.97 1.75 0.13 3.42 0.35
256 1024 256 100 94.4M 28,571.33 1,316.64 143,332.02 - 71,715.42 15,640.74 1.83 0.08 9.16 -

1024 256 256 100 7.8M 2,893.43 303.52 5,713.00 558.8649 4,546.46 1,830.35 1.58 0.17 3.12 0.31
1024 1024 256 100 100.7M 28,721.38 1,497.25 117,934.39 - 71,521.05 16,143.40 1.78 0.09 7.31 -

TABLE IV: BGRUs Training times and speed-up of B-Par on CPU against Keras(K) and PyTorch(P) on CPU and GPU systems.

Model Configurations BGRUs batch execution time (ms) Speed-up of BPar-CPU wrt
Input
Size

Hidden
Size

Batch
Size

Seq
Len Parameters K-CPU K-GPU P-CPU P-GPU BSeq-CPU BPar-CPU K-CPU K-GPU P-CPU P-GPU

64 256 128 100 4.4M 1,246.98 125.36 2,726.72 604.0995 1,702.27 690.83 1.81 0.18 3.95 0.87
256 256 128 100 4.7M 1,254.30 153.45 2,303.21 605.8498 1,746.60 729.82 1.72 0.21 3.16 0.83

1024 256 128 100 5.9M 1,333.97 189.25 6,415.08 608.0237 1,950.52 856.44 1.56 0.22 7.49 0.71
256 256 1 2 4.7M 16.05 23.66 22.03 22.8991 12.77 9.43 1.70 2.51 2.34 2.43
256 256 1 10 4.7M 34.23 28.83 59.74 65.5189 39.12 18.39 1.86 1.57 3.25 3.56
256 256 1 100 4.7M 246.11 66.31 504.54 531.1096 313.68 105.17 2.34 0.63 4.80 5.05
64 256 256 100 4.4M 2,239.56 144.54 3,035.85 639.5767 3,060.31 1,160.42 1.93 0.12 2.62 0.55
64 1024 256 100 69.6M 26,210.06 986.15 32,303.64 - 42,322.66 15,020.14 1.74 0.07 2.15 -
256 256 256 100 4.7M 2,256.72 166.10 3,207.68 638.7488 3,120.84 1,277.92 1.77 0.13 2.51 0.50
256 1024 256 100 70.8M 26,111.23 1,019.34 50,828.08 - 41,752.00 13,156.51 1.98 0.08 3.86 -

1024 256 256 100 5.9M 2,359.49 292.00 6,118.97 635.2685 3,310.15 1,417.83 1.66 0.21 4.32 0.45
1024 1024 256 100 75.5M 26,253.30 1,157.89 41,555.13 - 43,156.39 13,741.52 1.91 0.08 3.02 -

Fig. 4 compares the performance of Keras, B-Seq mbs:8,
PyTorch and B-Par mbs:8, when we consider core counts
1, 2, 4, 8, 16, 24, 32, and 48. Since B-Seq just exploits
data parallelism, it cannot expose more than 8 parallel soft-
ware components to the multi-core architecture; hence B-Seq
achieves best execution time of 0.89 seconds when run on 8
cores. Increasing core count does not provide any benefit for
B-Seq. B-Par delivers much better performance than B-Seq
due to model-parallelism. The performance of B-Seq is similar
to Keras on 8 and 16 cores. However, Keras suffers from
NUMA effects when running on dual-socket configurations
on large core counts. As we consider core counts larger than
16, B-Par significantly outperforms TensorFlow-Keras and
PyTorch. Best execution time of B-Par is 0.44 seconds on
48 cores.

Varying hidden/batch size: Fig. 5 reports single batch
training time of B-Par, Keras-CPU, PyTorch-CPU, and B-
Seq for the 8-layer and 12-layer BLSTM models on batch
sizes varying from 128 to 1024, and a combination of 128
and 256 hidden states. We run these experiments considering
core counts 1, 2, 4, 8, 16, 24, 32, and 48. We report the
best execution time out of all core counts. B-Par consistently
outperforms Keras-CPU and PyTorch-CPU and achieves very
significant performance speed-ups within the 1.58 − 6.40×
range for all configurations. PyTorch performs worse among
all configurations.

Varying number of layers: Fig. 6 displays the single batch
execution time of training and inference for B-Par, Keras-
CPU, PyTorch-CPU, and B-Seq while varying the number of
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Fig. 5: B-Par, Keras, PyTorch and B-Seq on CPUs with
different batch and hidden state sizes.

layers. B-Par performs and scales the best with an increasing
number of layers for both training and inference time due
to the significant parallelism it exposes to the hardware. For
a 12-layer BLSTMs model, the speed-up achieved by B-Par
is 5.89× and 6.40× for inference and training, respectively.
B-Par does not impose per-layer barriers, which explains its
superior performance with respect to Keras and PyTorch,
particularly for the 12-layer model.

Cache locality impact: We evaluate the impact of the
locality-aware mechanism we describe in in Section IV-A.
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We consider an 8-layer BLSTMs model with 31.7Million
parameters that does not fit in the cache hierarchy of the CPU
system we describe in Section IV-A. We show our performance
measurements in Fig. 7. Locality-aware scheduling increases
the percentage of training time at which the execution delivers
an IPC ratio within the 1.5-2 interval from 5% to 29%, as
the left-hand-side histogram of Fig. 7 shows. A significant L3
MPKI reduction explains this improvement. Indeed, the right-
hand side histogram of Fig. 7 displays a drop from 28% to 10%
of the execution time portion where 20-30 L3 MPKI ratios are
observed. Finally, we observe that locality-aware scheduling
reduces average training batch time by 20% with respect to
locality-oblivious approaches.

Task-granularity: We measure the task granularity of B-
Par considering a BLSTM model with hyper-parameters Seq
Length=100, Batch Size=128, Input Size=64, and Hidden
Size=512. B-Par triggers a total of 368,240 tasks in this
scenario. The average working set size of tasks processing
a single LSTM cell is 4.71 MB, which does not fit the
cache hierarchy of the CPU system described in Section IV-A.
Merge tasks corresponding to Equation (11) have a much
smaller working set than LSTM tasks. Task granularity ranges
from 272.8 to 315,178.31 microseconds, while the average
duration is 13,052.23 microseconds. This granularity keeps

the B-Par overhead in terms of task creation, scheduling, and
synchronization ten times smaller than the total time spent in
actually running parallel tasks containing user-level code.

Memory Consumption: The working set size of B-Par
when considering an 8-layer-BLSTM model at mbs:6 without
per per-layer synchronization is 75.36 MB, while adding per-
layer synchronization reduces this size to 28.26 MB. This
difference is explained by the average number of tasks B-
Par processes in parallel when per-layer synchronization is
removed, 16, which is much larger than the average number
of active tasks when per-layer synchronization is enabled, 6.
The additional parallelism enabled by removing per-layer syn-
chronization increases the working set size of B-Par parallel
workloads while delivering large performance gains concern-
ing approaches requiring per-layer synchronization. However,
there is no data and accuracy loss between with and without
per-layer synchronization of B-Par execution.

C. Performance on Next Character Prediction

We consider the next character prediction problem on a real-
world Wikipedia text-corpus, where a many-to-many BRNN
model is used. We consider B-Par and Keras in this section.
We omit PyTorch since Tables III, IV indicate that Keras is
much faster than PyTorch on CPUs. Fig. 8 reports the single
batch training-time of B-Par and Keras-CPU for BLSTMs and
BGRUs. We vary the batch size and hidden size parameters.
B-Par achieves a maximum speed-up of 1.54×, 2.17×, 2.38×,
and 2.44× for 2, 4, 8, and 12 layers, respectively, with respect
to Keras across all the configurations that Fig. 8 displays.

V. RELATED WORK

BRNNs are typically accelerated using the same techniques
as basic RNN models [44], [45]. Techniques like pruning,
pipelining, batching, and choosing optimal data layouts are
standard techniques to accelerate both RNNs and BRNNs
models [46]. B-Par can be applied on top of these techniques
since it is an orthogonal approach. GPUs handle RNN work-
loads [47]–[49] via extensive exploitation of data parallelism.
B-Par is the first approach relying on both data and model
parallelism to accelerate BRNNs without imposing costly
barrier synchronization points.

ParaX [17] boosts the performance of deep learning on
many-core CPUs by effectively alleviating bandwidth con-
tention. While B-Par and ParaX are built on the same ob-
servation, that is, the poor performance of deep learning
frameworks due to per-layer synchronization points, ParaX
focuses on the memory bandwidth contention issue brought by
the fact that all threads leave the barrier synchronization point
at the same time. Instead, B-Par removes all barrier points
and exposes all possible sources of parallelism, either data or
model parallelism, to the parallel hardware.

Some previous approaches characterize RNNs workloads
and identify low data reuse as one of the main factors causing
low performance [50]. Section IV-B shows how the dynamic
scheduling approach of B-Par successfully exploits cache
locality and elegantly manages one of the leading performance
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issues of RNN workloads. As such, B-Par maximizes the
parallelism of BRNN workloads and exploites opportunities
for data reuse at the cache hierarchy level.

Recent work on RNNs acceleration primarily targets per-
formance improvements via compiler or run-time system op-
timizations [51] or scheduling computation graphs [52] only
for unidirectional RNNs. Chen et al. [53] perform compiler
optimization for RNNs and variants which only support uni-
directional RNNs. Efforts are being made by popular deep
learning frameworks like the PyTorch-1.6.0 beta release to
exploit model parallelism via simple fork-join parallel con-
structs [37]. Compiler approaches to accelerate DNNs do not
support bidirectional RNNs [53], and are orthogonal to B-Par.

There is scope for attention and transformer models com-
bined with BRNNs [10], [12], [54]. In Ezen-Can et al.
work [16], BLSTMs outperform transformer-based BERT
models for small corpus. Techniques such as reducing the
number of parameters in GRUs [55] and using momentum
with RNNs to handle the vanishing gradient problem [56] can
easily be leveraged by B-Par. CPU-based back-propagation is
shown to be significantly faster than GPUs in training models
composed of hundreds of millions of parameters [57]. B-Par
can accelerate this process. Moreover, B-Par can accelerate
BRNNs when combined with CNNs for sentiment analy-
sis [58], and BRNNs with attention models for Chatbots [11].

VI. CONCLUSION

This paper demonstrates that B-Par delivers good scalability
for the training and inference phases of BRNN models on

multi-core CPU devices. B-Par outperforms state-of-the-art
TensorFlow-Keras and PyTorch frameworks since it does not
impose barrier synchronization points between layers. We
provide experimental evidence on the benefits of using B-Par
on relatively large core counts by achieving up to 2.34× and
9.16× speed-ups concerning TensorFlow-Keras and PyTorch,
respectively. We also show strong scalability experimental
results concerning B-Par. This paper shows that BRNNs model
training and inference can achieve excellent performance on
multi-core CPUs, which complements the state-of-the-art ap-
proaches based on executing BRNNs models on GPUs. The
B-Par’s task-graph execution model could be easily applied to
a wide range of deep learning models, including transformers
and attention mechanisms.
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