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Abstract 

Recommender Systems aim to help customers find content of their interest by presenting them 

suggestions they are most likely to prefer. Reinforcement Learning, a Machine Learning 

paradigm where agents learn by interaction which actions to perform in an environment so as 

to maximize a reward, can be trained to give good recommendations. 

One of the problems when working with Reinforcement Learning algorithms is the 

dimensionality explosion, especially in the observation space. On the other hand, Industrial 

recommender systems deal with extremely large observation spaces. New Deep 

Reinforcement Learning algorithms can deal with this problem, but they are mainly focused on 

images. A new technique has been developed able to convert raw data into images, enabling 

DRL algorithms to be properly applied. This project addresses this line of investigation.  

The contributions of the project are: (1) defining a generalization of the Markov Decision 

Process formulation for Recommender Systems, (2) defining a way to express the observation 

as an image, and (3) demonstrating the use of both concepts by addressing a particular 

Recommender System case through Reinforcement Learning.  

Results show how the trained agents offer better recommendations than the arbitrary choice. 

However, the system does not achieve a great performance mainly due to the lack of 

interactions in the dataset. 
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1. Glossary 

RS: Recommender Systems  

ML: Machine Learning 

DNN: Deep Neural Network 

DRL: Deep Reinforcement Learning 

MDP: Markov Decision Process 

RL: Reinforcement Learning 

CNN: Convolutional Neural Network 

GPU: Graphics Processing Unit 

TPU: Tensor Processing Unit 

A2C: Advantage Actor Critic 

PPO: Proximal Policy Optimization 

TRPO: Trust Region Policy Optimization 

SB: Stable Baselines 

BC: Behavioral Cloning   
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2. Introduction 

Recommender systems (RS) aim to help customers find content of their interest by presenting 

them suggestions they are most likely to prefer. Indeed, humans tend to be less satisfied with 

the choices they make the more alternatives they have to choose from [4]. A RS can help 

reducing the number of options that are presented to the user. To do so, a Machine Learning 

(ML) based recommender model determines how similar videos and apps are to other things 

you like and then serves up a recommendation.  

They are present in the day to day of many people. Amazon recommends similar items to the 

ones the user has already bought, Netflix proposes new movies and shows, LinkedIn suggests 

jobs, …, all of them use recommender engines to help users discover new content.  

Helping users find content not only improves customer satisfaction, but also revenue for those 

business who do it. According to Google, 40% of app installs on Google Play and 60% of watch 

time on YouTube come from recommenders [11]. In other sites, like Amazon, it reaches 35% 

of what consumers purchase [16], while on Netflix up to two out of three hours streamed are 

discovered through their recommender system. [5] 

RS were firstly built based on either or both content-based filtering and collaborative filtering. 

Later, they started using Deep Neural Networks (DNN). More recently, Reinforcement 

Learning (RL) has also started to be used. In this project, we will go through RL based RS.  

2.1. Scope and methodology 

One of the problems when working with RL algorithms is the dimensionality explosion, 

especially in the observation space. New Deep Reinforcement Learning (DRL) algorithms can 

deal with this problem, but they are mainly focused on images. A new technique has been 

developed able to convert raw data into images, enabling DRL algorithms to be properly 

applied. Two projects have followed this line of research: Ferran Velasco used it to optimize 

industrial planning [9], while David Valero did it in a resource allocation problem [6]. This project 

will explore this line for a RS. 

The project will focus on how to express the recommendation problem in order to solve it 

through the RL framework. This includes both defining the RS problem from the RL 

perspective, and implementing the necessary code to, given a RS, express it in a format that 

later allows to implement the RL algorithms.  

First, RL will be introduced. This includes presenting RL inside the ML theory, explaining its 
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core ideas and formulating the problem as a Markov Decision Process (MDP). Also, how DNN 

can help dealing with dimensionality explosion will be addressed, including converting raw data 

into images. 

Then, an analysis of the main proposed solutions to the recommendation problem will be 

carried on. This includes inspecting the latest RL-based RS proposals thoroughly, presenting 

how they approach the problem and how they formalize it.  

After inspecting the state-of-the-art RL-based RS proposals and seeing how they formulate 

the problem, a generalization of the RS MDP formulation will be presented. 

Finally, a particular case will be solved through RL. 

2.2. Objectives 

RL problems are usually formulated as an MDP. MDP can be described in many ways. In fact, 

RL-based RS related works propose different MDP formulations for the recommender 

problem. The first objectives of this project are to find the elements in common that these 

formulations have and to propose a generalization that encompasses them.  

As it has been said, DRL algorithms can deal with dimensionality explosion, but they are mainly 

focused on images. To explode the advantages of these algorithms, data should be expressed 

as images. Hence, the second objective of this project is to express the problem state as an 

image, to later be able to use those algorithms.  

Finally, the last objective is to put into practice all these theoretical concepts solving a particular 

case through RL theory. That is to say: find a particular case of RS, formulate it using the 

proposed MDP generalization, express its states as images and train an RL algorithm to give 

proper recommendations. 
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3. Project management 

The objective of this chapter is to explain the aspects related to the management of the project, 

including how tasks are planned and managed, which methodologies and tools are used how 

much the development is expected to cost and which environmental impact has its 

development. 

3.1. Planification 

In order to achieve the goal and the objectives, the project is organized in several stages of 

development. Some stages, like the project management or the documentation, are developed 

throughout project. Others are dependent on each other and need the previous one to be 

completed before starting. Each stage includes several activities and has an assigned time of 

dedication. 

The project will begin on February 15, 2021 and its completion is scheduled for September 16, 

2021. The project is estimated to involve 720 hours of work, so the mean weekly dedication 

will be about 24 hours for a period of 30 weeks. 

The following sections are dedicated to explain each of the stages, including the activities 

involved and the dedication time.  

Project management 

Project management activities are those related to the definition of goals and objectives, with 

tasks planning itself, with the project follow up and others not related to the subject of work 

itself. This stage is estimated in 24 hours and includes the following activities: 

- PM 1. Scope, methodology and objectives definition. 

- PM 2. Planning. Task dedicated to defining, planning and organizing project stages 

and tasks. 

- PM 3. Economic analysis. 

- PM 4. Follow up meetings.   

State of the art study 

The objective of this stage is to study the theoretical concepts required to implement a RL 

based RS. The estimated time for this stage is 144 hours and includes the following activities: 

- SA 1. RL theory. Study the RL theory, including the MDP formulation. 

- SA 2. RS state of the art. Study common RS approaches, including those based on 
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RL. 

Problem formulation 

Based on the previous acquired knowledge, the objective here is to formulate the RS problem 

in order to be solved by the RL theory. The activities involved are estimated to be finished in 

24 hours and are the following: 

- PF 1. Recommender systems problem formulation. 

- PF 2. Recommender systems as MDP formulation.  

Proof of concept 

This stage consists of implementing a recommender system through reinforcement learning. 

This is the most time demanding task of the project, with a workload of 406 hours. The following 

activities are involved: 

- PC 1. Recommender system selection. Select a recommender system dataset (if 

possible, a real case) in which to apply RL theory. 

- PC 2. RS inside the MDP formulation. Define the case study inside the proposed MDP 

formulation. Implement the necessary code to, given the case study dataset, return the 

information as defined in an MDP and demanded by the RL framework. 

- PC 3. Algorithm implementation. Study the possible RL algorithms, select the algorithm 

for the case study and implement the necessary code. 

- PC 4. Learning process. Train the RL algorithm, including hyperparameters tuning. 

- PC 5. Results analysis. Analyze the obtained results and extract conclusions. 

Documentation 

The last phase of the project refers to the documentation tasks, for which about 120 hours are 

estimated. The following activities are involved: 

- DOC 1. Report writing. Write the project report. 

- DOC 2. Defense preparation. Prepare the documentation for the defense of the project. 

In order to represent the different scheduled stages and sets of tasks, a Gantt chart has been 

designed. A Gantt chart is a graphical tool whose objective is to expose the expected time of 

dedication for different tasks or activities over a given total time.  

The project Gannt diagram can be seen in Figure 1. 
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Figure 1. Project Gannt diagram 

3.2. Methodology 

Most of the activities previously described are too long to handle directly. Therefore, in the day 

to day work they will be divided into smaller tasks. In order to organize and prioritize them, the 

Kanban methodology will be used. In Kanban, tasks are visually placed in a board with to do, 

in progress and done columns. As a Kanban board, the GitHub project board will be used. As 

explained later, GitHub will also be used to host the code. A screenshot of the used Kanban 

board can be seen in Figure 2. 

 

Figure 2. Project Kanban board 
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3.3. Tools 

To make the project possible, in addition to the usual (Microsoft Office, ...), some specific tools 

have been used. 

3.3.1. Git and GitHub 

In order to track and manage the project code, a version control system will be used. Version 

control software keeps track of every modification to the code in a repository. If a mistake is 

made, one can turn back and compare earlier versions of the code to help fix the bug. The 

most widely used version control system is Git (https://git-scm.com/). As a code hosting 

platform, GitHub (https://github.com/) will be used. 

3.3.2. Visual Studio Code 

Visual Studio Code (https://code.visualstudio.com/) is a source code editor which runs on 

Desktop. It also works with Git, allowing staging files, committing, pushing or pulling from the 

GitHub repository.  

3.3.3. Google Colaboratory 

Google Colaboratory (or Colab) is a service that allows anybody to code and execute Python 

code through the browser. Colab notebooks are Jupyter notebooks hosted on Google’s cloud 

servers, allowing to use the power of Google hardware, including Graphics Processing Units 

(GPUs) and Tensor Processing Units (TPUs) [12].  

GPUs are optimized for training artificial intelligence and deep learning models as they 

can process multiple computations simultaneously thanks to their highly parallel architecture. 

Therefore, they will allow to train the DRL algorithm so much faster than if using a CPU. Also, 

Colab can be integrated with Git. 

3.4. Economic analysis 

The objective of this section is to define the budget of the project. Costs can be divided into 

three categories:  

- Staff. Research and development engineer (author) and director (college professor) 

salaries. 

- Tools. Tools used by the staff, including equipment and software. 

- Supplies. Supplies used by the equipment. 
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3.4.1. Staff cost 

According to LinkedIn, a Research and Development Engineer salary is around 32.000 €/year 

[18]. Meanwhile, according to the UPC transparency portal, a Head of Investigation salary 

earns around 41.000€/year [35]. Taking into account 1750 hours of annual work, salaries are 

18,29 €/h and 23,43 €/h, respectively. However, the cost for a Company is around 30% over 

the salary. Table 1 sums up the staff costs: 

Role Salary (€/h) Cost (€/h) Time (h) Total (€) 

R&D engineer 18,29 23,77 720 17.115,43 

Head of investigation 23,43 30,46 10 304,57 

Total    17.420,00 

Table 1. Staff budget 

3.4.2. Tools cost 

The main tool that has been used to develop the project is a laptop. As for software, two of 

those that have been used are paid licenses: Microsoft Office and Google Colaboratory.  

The laptop and the Microsoft Office package have not been used exclusively for the project. 

Therefore, only the time of use related to the project will be imputed. To do so, the following 

formula will be used: 

𝑐𝑜𝑠𝑡 =
𝑎𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 [€]

𝑢𝑠𝑒𝑓𝑢𝑙 𝑙𝑖𝑓𝑒 [𝑦𝑒𝑎𝑟𝑠]
𝑥 𝑡𝑖𝑚𝑒 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑎𝑏𝑙𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 [𝑦𝑒𝑎𝑟𝑠]  

As a useful life, 4 years will be considered. As time attributable to the project, 0,58 years (7 

months). Considering acquisition costs of 1400 € and 150 € for the laptop and the Microsoft 

Office, the costs attributable to the project are 204,17 € and 21,88 €, respectively. 

On the other hand, the Google Colaboratory subscription costs 8,76 €/month. In three months, 

the total amounts to 26,28€. Table 2 sums up the tools cost: 

 Tool Cost (€) 

Laptop 204,17 

Microsoft Office 21,88 

Google Collaboratory 26,28 

Total 252,33 

Table 2. Tools budget 
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3.4.3. Supplies cost 

In the case of this project, only the laptop’s electrical consumption can be directly attributable 

to the project. Table 3 sums up this cost: 

 

Equipment Consumption (KWh) Time spent (h) Cost KWh (€) Cost (€) 

Laptop 0,01 720 0,113 0,82 

Table 3. Supplies budget 

3.4.4. Final budget 

Taking into account the previous defined costs, the total budget amounts to 17.673,15€ (see 

Table 4). 

Concept Cost (€) 

Staff 17.420,00 

Tools 252,33 

Supplies 0,82 

Total 17.673,15 

Table 4. Final budget 

3.5. Environmental analysis 

The objective of this section is to analyze the environmental impact of the project, both that of 

the development itself and that of implementing the proposed solution. 

The development impact can be estimated as the sum of two impacts: the impact of the 

hardware used (in terms of manufacturing) and the impact of the activities carried out with it. 

The first one is also the sum of the manufacturing impacts of the laptop and the peripheric. On 

the other hand, this equipment has not been used only for this project but for many other tasks. 

Therefore, the impact is proportional to the use dedicated to the project of these devices in 

relation to their useful life. The impact of the activities comes mainly from the electrical 

consumption of these devices.  

Another relevant impact is the one caused by amount of computational power required to run 

RL training models on Google Colab. However, doing this training in the Cloud is more efficient 

in fact than running it on the local host. The cloud supports the operation of many products 
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simultaneously, allowing it to be more efficient in distributing resources among different users. 

Also, all the energy used by Google comes from renewable energy. 

It is difficult on the other hand to estimate the impact of the implementation at a high scale. 

Training RL agents from scratch is very inefficient at first, since the algorithm should find a 

solution of the problem with a priori no knowledge of the environment. However, if the proposed 

RL agent ends up giving better recommendations than actual systems, one could say people 

will spend less time looking for a recommendation and that would in fact save energy (taking 

into account that, for instance, people are no going to watch more movies because of the good 

recommendations given than if worse recommendations were done; otherwise the impact 

would increase). 
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4. Reinforcement learning 

Reinforcement learning (RL) is a machine learning (ML) paradigm where agents learn which 

actions to perform in an environment so as to maximize a reward. Agents are not told which 

actions to take, but instead must discover which of them yield the highest reward by trial-and-

error. In most cases, actions may affect not only the immediate reward but also the next 

situations and, through that, all subsequent rewards. Trial-and-error search and delayed 

reward are the two most important distinguishing features of reinforcement learning.  

Reinforcement learning is different from supervised learning, which learns from a training set 

of labeled examples and tries to extrapolate its responses so that it acts correctly in other 

situations. Although this approach may be useful when facing some situations (e.g., image 

classification), in interactive problems it is often impractical to obtain labelled examples 

representative of all the situations the agent has to deal with. It is also slightly different from 

unsupervised learning, which usually involves finding hidden structures in collections of 

unlabeled data. Despite finding those structures might be helpful in RL, it does not address the 

problem of maximizing a reward signal. 

4.1. Key concepts 

The agent and the environment continuously interact with each other. At each time step t, the 

agent receives an observation st
1 from the environment and takes an action at on it based on 

its policy π(at|st). One time step later, the agent receives a numerical reward rt+1 and a new 

observation st+1 from the environment. The goal of the agent is to improve the policy so as to 

maximize the cumulative reward, called return. 

 

Figure 3. Agent-environment interaction. Source: [34]  

 

1 In most literature, state and observation are used interchangeably and observation is denoted as s. 

However, it is important to distinguish between the state of the environment and the observation, which 

is the part of the environment state that the agent can see. The action and the policy are not conditioned 

to the state but to the observation of the state the agent has access to. 
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The key elements of the RL problem are the environment, which represents the problem to be 

solved, and the agent, which represents the learning algorithm. Beyond them, one can identify 

four other important elements: the policy, the reward signal, the value function and, optionally, 

the model.  

The policy defines the agent’s way of behaving at a given time. It represents a mapping from 

perceived states of the environment (observations) to actions to be taken when in those states. 

Policies can either be deterministic or stochastic.  

The reward signal defines the goal of the RL problem. On each time step, the environment 

sends to the agent a single reward indicating whether the action taken was good or bad for 

him. If the received reward is low, then the policy may be changed to select some other action 

in that situation in the future. In general, reward signals depend on the state of the environment 

and the action taken. The sum of rewards over time is called return, and is what the agent 

seeks to maximize. The return (Eq. 1) is the total accumulated return from time step t, where 

γ Є [0,1] is a discount factor that benefits immediate rewards with respect to the future ones.   

 𝑅𝑡 = ∑ 𝛾𝑘𝑟𝑡+𝑘

∞

𝑘 = 0

 Eq. 1 

The value function (Eq. 2) defines the total amount of reward an agent can expect to 

accumulate over the future, starting from a specific state. Whereas the reward signal indicates 

how good the previous action taken was, the value function indicates how good the current 

state is, after taking into account the states and rewards are likely to come from that point on. 

Similarly, the action value function (Eq. 3) is the expected return when choosing action a in 

state s.  

 
𝑉(𝑠) = 𝔼 [𝑅𝑡|𝑠𝑡 = 𝑠] Eq. 2 

 
𝑄(𝑠, 𝑎) = 𝔼 [𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎] Eq. 3 

Another element present in some RL systems is a model of the environment. The model gives 

response to questions about how the environment will behave. For instance, it might predict 

the next state and reward given the current state and a performed action. Methods for solving 

RL problems that use models are called model-based methods, whereas methods for solving 

those that do not are called model-free. To be useful, models have to be reasonably accurate. 

That’s why model-free methods can have advantages over model-based methods when the 

difficulty of the problem is to construct a sufficiently accurate model. 
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4.2. Model-free RL algorithms 

Model-free RL problems are usually approached in two ways: policy-based and value-based 

methods (also called Q-learning methods).  

In value-based methods, the action value function is approximated by 𝑄(𝑠, 𝑎;  𝜃), typically 

using an objective function based on the Bellman equation to optimize the parameters. This 

optimization is usually performed off-policy, which means the data used in the update was 

collected at any point during the training, regardless of which policy was followed at that time. 

The resulting policy is obtained by selecting the actions that yield the highest expected reward 

when being in a state 𝑠 (Eq. 4). 

 
𝑎(𝑠) = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑎  𝑄(𝑠, 𝑎; 𝜃) Eq. 4 

On the other hand, policy-based methods directly parameterize the policy as 𝜋(𝑎|𝑠;  𝜃) and 

update the parameters 𝜃 either by gradient ascent directly on the objective function (typically 

the expected reward), or by maximizing local approximations on the objective function also. 

This update is usually performed on-policy, which means the data used in the update was 

collected following the most recent policy. 

Policy-based methods directly optimize the policy, and they are usually more stable and 

reliable. Meanwhile, value-based methods indirectly optimize the agent by training the 

approximator to satisfy a separate objective function, and although not being stable, they are 

more sample efficient, since they can reuse data more effectively.  

4.3.  RL problem as a finite Markov decision process 

The problem of reinforcement learning is often presented as a finite MDP. MDP are a 

formalization of sequential decision-making problems, where actions influence not just the 

immediate states and rewards, but also the subsequent ones.  

An MDP is a 5-tuple, <  𝑆, 𝐴, 𝑅, 𝑃, 𝛾 >, where: 

- 𝑆 is the set of valid states 

- 𝐴 is the set of valid actions 

- 𝑅: 𝑆𝑥𝐴 → 𝑅 is the reward function, with 𝑟(𝑠, 𝑎) being the reward received when 

applying action 𝑎 in state 𝑠.  

- 𝑃: 𝑆𝑥𝑅𝑥𝑆𝑥𝐴 → 𝑃(𝑆) is the transition probability function, with 𝑝(𝑠′, 𝑟|𝑠, 𝑎) being the 

probability of transitioning from state 𝑠 into state 𝑠′ when applying action 𝑎, giving also 

a reward 𝑟.  
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- 𝛾 is the discounting factor for future rewards 

In a Markov decision process, the probabilities given by p completely characterize the 

environment’s dynamics. That is, the probability of each possible value for the state and the 

reward depends only on the immediately preceding state and action and not on the earlier 

ones. The state must include then information about all aspects of the past that are necessary 

for the future. If it does, then the state is said to have the Markov property. 

When an MDP has finite state, action and reward sets, it constitutes a finite MDP. Much of the 

RL theory is restricted to finite MDP.  

4.4. Examples 

RL algorithms were first limited to low-dimensional problems due to limitations in memory and 

computation capacity. They succeeded for instance in [10], where a neural network learned to 

play backgammon by playing against itself. One of the first success histories using RL mixed 

with deep neural networks was the development of an algorithm that could play a wide range 

of Atari 2600 video games directly from raw pixels [21][22]. Later on, it has also succeeded at 

sophisticated strategy games such as chess [31], Go [31][32] or Dota.   

They have also been applied in robotics, where control policies for robots can be learned 

directly from camera and sensor inputs. [1]  

4.5. Deep reinforcement learning 

Reinforcement learning algorithms often need to deal with high dimensional state and action 

spaces. This is known as the curse of dimensionality. Deep neural networks (DNN) can help 

overcoming these problems, since they can learn low-dimensional feature representations 

from high dimensional data and have strong function approximation properties. The application 

of DNN to RL is known as Deep Reinforcement Learning (DRL).  

One of the DNN architectures is the convolutional neural network (CNN). A CNN is an artificial 

neural network that uses convolutional layers to filter inputs for useful information. These layers 

combine a feature map (the input data) with a kernel (a filter) to obtain a transformed input 

map. It can be seen as a filter operation, where the kernel filters the input to obtain certain 

information.  

CNNs are composed of an input, an output, and one or more hidden layers. Hidden layers are 

a combination of convolution, pooling and normalization layers, among others. CNN are 

characterized by having the neurons of their layers arranged in three dimensions, allowing the 
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network to extract useful information from input data arranged accordingly. [24]  

Traditional ML techniques usually considered the input as a vector with independent features, 

where the order of features had no direct impact in the classification problem. As opposed, 

CNN can capture additional information by considering the positioning of neighboring pixels, 

uncovering hidden patterns and helping understand relationships between features. The 

second advantage is that hidden layers allow feature extraction and classification without 

additional techniques, directly from the raw elements. Third, CNN architectures find higher 

order statistics and nonlinear correlations. Another characteristic is that each convolution 

neuron processes data in its limited subarea, allowing a deeper network while keeping the 

number of neurons. Also, many of them share weights, which turns into a reduction in the 

memory use. The use of GPUs (Graphics Processing Units) also allows complex models to 

be trained in a much faster and affordable way. 

A lot of data is in a non-image form (a width x height x depth arrangement) and cannot be 

processed by CNNs. However, if non-image data is transformed into a well-organized image 

form, CNNs can be effectively used. This way of proceeding is explored in [17], where the 

researchers transform RNA sequences into 2D images to detect cancer in early stages by 

using CNNs. It is also used by [7] and [2], where the authors turn patient data also into 2D 

images to later generate fake patients though Generative Adversarial Networks (GANs). [30] 

 

 



Page 20  Memory 

 

5. Related work 

RS have been typically approached through content-based filtering, collaborative filtering or a 

combination of both. In the last years, these methods have started been substituted by DNN, 

since they can address most of their limitations. Recently, some papers introduced RL into this 

problem. The objective of this section is to explore the different methods RS are approached 

by, giving emphasis to the RL based ones.   

5.1. Content-based filtering 

Content-based filtering tries to predict about the interests of a user based on similar items the 

user likes. I.e., if user A watches a Star Wars movie, then the 

system can recommend other Star Wars movies to that user. 

To do so, the model relies on the user previous actions (the 

previous film watched) or explicit feedback (a rated film). Past 

interactions are usually stored in a feature matrix (see Figure 

4), where each row represents an item and each column a 

feature the items may or may not have (in the case of binary 

features). The user is also represented in this matrix. Most of 

the times, items and users’ features are embedded in a lower-

dimensional space vector (see Figure 5), where some latent 

structure can be captured.  

In order to provide relevant recommendations, the model uses 

a similarity measure to rate each candidate item against the user and then decides which item 

to recommend based on the scores among the candidates. A similarity measure is a function 

that takes two feature vectors and returns a scalar value 

indicating how similar these vectors are. Common similarity 

functions are the cosine, the dot product or the Euclidean 

distance. 

This kind of filtering can better capture the specific interests of 

a user and therefore recommend items that few users are 

interested in. Another advantage is that it does not need 

information about other users. In contrast, the feature 

representation requires some hand-engineering, which can 

limit how good the model is. Also, since it only gives 

recommendations based on past interactions, it is difficult for 

the model recommend items beyond them.  

Figure 4. Feature matrix 

example 

Figure 5. Previous feature matrix 

user and items represented in a 

lower dimensional space (2D) 
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5.2. Collaborative filtering 

Collaborative filtering can address some of the content-based filtering limitations by using 

similarities between users and items simultaneously. That is, 

it tries to predict about the interests of a user based on the 

interests of many other users. That is, if user A is similar to 

user B, and user B likes Star Wars movies, then the system 

can recommend Star Wars movies to user A. Like content-

based filtering, this method uses past interactions between 

users and items in order to produce new recommendations. 

These interactions are usually stored in a user-item feedback 

matrix (see Figure 6), where each row represents a user and 

each column an item. 

Collaborative filtering is usually approached through matrix 

factorization. This method tries to find an underlying model 

that explains the interactions in order to make new predictions. To do so, it assumes there 

exists a low dimensional space of features in which users and items can be represented such 

that the interaction can be obtained by computing the dot product of both feature matrices. 

Formally, given the feedback matrix 𝐴 in 𝑅𝑚𝑥𝑛, where 𝑚 is the number of users and 𝑛 is the 

number of items, the model learns: 

- A user embedding matrix 𝑈 in 𝑅𝑛𝑥𝑙, where row 𝑙 is the embedding for user 𝑢. 

- An item embedding matrix 𝑉 in 𝑅𝑚𝑥𝑙, where column 𝑚 is the embedding for item 𝑣. 

The embeddings are learned such that the product 𝑈𝑉𝑇 is a good approximation of the 

feedback matrix 𝐴 (see Figure 7). The problem can be solved by minimizing the mean square 

error (MSE), the squared Frobenius distance or through Singular Value Decomposition (SVD), 

among other methods. 

Figure 6. User-item feedback 

matrix example. 
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Figure 7. Matrix factorization optimization problem. Source: [3] 

However, in real applications the feedback matrix A can be very sparse, which makes these 

methods perform poorly. In contrast, other methods such as Weighted Matrix Factorization 

(WMF) decomposes the objective function into a weighted sum of two sums: one over the 

observed items and another one over the unobserved ones. Common algorithms used to 

minimize the objective function include Stochastic Gradient Descent (SGD) and Weighted 

Alternating Last Squares (WALS), an iterative method specialized for this particular objective.  

However, collaborative filtering has two main drawbacks:  

- The prediction for a given user-item pair is calculated through the dot product of the 

corresponding embeddings. If new users or items are added after training the model, 

the system can’t create an embedding for them. This issue can be addressed with 

heuristic methods. 

- Sometimes other information about users or items is available. These are called side 

features, and including them improves the model. A generalization of WALS allows to 

include these features by building a block matrix from the feedback matrix A together 

with the side features matrixes and solving it.  

5.3. Deep neural networks 

DNN models can address matrix factorization limitations. They suffer far less from the cold-

start problem, as they can easily give relevant suggestions to new users. They can also include 

side features through their layers, which can help capture specific interests and improve the 

relevance of the recommenders. [11] 
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One common approach is treating the problem as a multiclass prediction problem, where the 

input is the user query and the output is a vector whose values indicate the probability to 

interact with each item. A set of hidden layers map the input vector, denoted as 𝑥, to a more 

compact vector denoted by 𝜓(𝑥). Then, a softmax layer maps this vector to a probability 

distribution (see Figure 8). In order to train the model, a loss function compares the probability 

distribution with the ground truth. 

 

Figure 8. DNN schema. Input features are represented as x, while probability distribution is represented 

as p. Source: [11] 

Instead of learning one embedding per user, as in the matrix factorization model, the system 

learns a mapping from the user feature vector to an embedding.  

Another approach when using DNN in recommender systems consists on applying the same 

idea to the item side. That is, instead of learning one embedding per item, a neural network 

learns a nonlinear function that maps item features to an embedding. To do so, two neural 

networks are used: 

- One neural network maps user features 𝑥𝑢𝑠𝑒𝑟 to user embedding 𝜓(𝑥𝑢𝑠𝑒𝑟) ∈ 𝑅𝑑 

- One neural network maps item features 𝑥𝑖𝑡𝑒𝑚 to item embedding 𝜙(𝑥𝑖𝑡𝑒𝑚) ∈ 𝑅𝑑 

User and item embeddings are then used as inputs in a classification model that gives the 

interaction value for the user-item pair (see Figure 9). 
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Figure 9. Interaction user-item through user and item embedding into a classification model. Source: [3] 

YouTube uses DNN for video recommenders. Their system is comprised of two neural 

networks: one for candidate generation and another one for ranking. The candidate generation 

network uses user’s activity history to retrieve a small subset of videos from the initial set. To 

do so, the problem is treated as a multiclass prediction problem. The task of the DNN is to 

learn the user embeddings as a function of the user’s history and context that are useful for 

discriminating among videos with a SoftMax classifier. At serving time, the problem is reduced 

to a nearest neighbor search in the dot product space.  

In a second stage, candidate videos are sorted to present a few best recommenders list to the 

user. The ranking network accomplishes this task by assigning a score to each video according 

to a desired objective function using a rich set of features describing the video and user. [26]  

5.4. Reinforcement learning in recommender systems 

Previous approaches adopted a static view of the recommendation process, predicting a user’s 

immediate response to a recommendation without considering the sequential nature of the 

process and the long-term impact on the user future behavior. 

Not considering the sequential nature of the process can be limiting, since user choices might 

be sequential by nature. E.g., booking an apartment near the beach after seeing others that 

were already reserved. Moreover, optimal recommendations may depend not only on user’s 

past responses, but also on the order in which those responses were given. I.e., watching the 

sixth movie of the Star Wars saga after the fifth. [14] 

A good recommender system should not only bring good recommendations, but also keep 

users interacting with the system, maximizing the long-term benefit. Thus, modeling a system 

taking into account current recommendations impact on the future allows to trade off user 

satisfaction in the near-term for longer-term benefit. RL methods are trained estimating the 

present value with delayed rewards and their objective is to maximize the long-term cumulative 

rewards. Therefore, they identify suggestions with low immediate reward that can lead to 

greater rewards through future recommendations. [19] 
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Also, one of the aspects to be designed in RL problems is the reward function. Since it can be 

freely designed, it is possible to define models that can serve multiple objectives at a time, 

such as novelty or diversity. [40] 

As in general RL problems, there are mainly two kinds of RL methods for recommender: 

model-free and model-based. Model-free RL algorithms usually need to interact many times 

with the environment until the policy is trained enough to start providing the agent acceptable 

solutions. Doing those first interactions online is unfeasible in commercial systems, since 

recommenders with an under-trained policy would affect the user experience. A typical solution 

is learning off-policy from the logged implicit feedback. On the other hand, model-based RL 

methods aim to build a model to simulate the environment so that the agent can learn by 

interactions with it. These methods depend on the constructed simulator.  

This section aims to take a look at the different proposals for RS using RL, focusing not only 

on the proposed algorithms, but on how the problem is posed from the RL point of view. 

5.4.1. Model-based approaches  

To better simulate the environment and the reward, Chen et al proposed a GAN formulation. 

The Generative Adversarial User Model estimates the user behavior dynamics and the reward 

function simultaneously through a unified min-max optimization algorithm. Using this model as 

the simulation environment, a cascading DQN algorithm allows to obtain the recommender 

policy.  

When modeling the problem as an MDP, they proposed the state to be an ordered sequence 

of a user’s historical selected items represented by an embedding of their feature vectors. The 

action of the recommender will correspond to a subset of k items chosen from the available 

items at that time. Finally, the reward function will be based on the user’s long-term satisfaction 

after selecting the item when the subset was presented. [41] 

Bai et al proposed a similar approach in [42]. Their method, named Interactive Recommender 

GAN (IRecGAN), models user-agent interaction for offline policy learning through a generative 

adversarial network. Then, they use REINFORCE for the agent’s policy learning. 

To represent the state when modeling the problem, clicked items are first projected intro an 

embedding vector. The state is represented as an embedding of the click history, where the 

last embedding function can be GRU and LSTM.  Each action gives a recommendation list of 

k items. In the example provided, they considered the reward to be 1 if the user stayed in the 

recommender system and 0 otherwise. 
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5.4.2. Model-free approaches 

Zou et al. introduced a RL framework called FeedRec to directly optimize the user engagement 

(both instant and long-term) in feed streaming recommender. FeedRec includes two 

components: 1) a Q-Network with hierarchical LSTM (Long short-term memory) architecture 

takes charge of modeling complex user behaviors, and 2) a S-Network, which simulates the 

environment, assists the Q-Network and voids the instability of convergence in off-policy 

learning.  

When formulating the problem, they considered the interaction process between the user and 

the environment as the sequence 𝑥𝑡  =  {𝑢, (𝑖1, 𝑓1, 𝑑1), . . . , (𝑖𝑡 , 𝑓𝑡, 𝑑𝑡)}, where 𝑢 is the user 

information, it is the item from the recommendable item set, ft is the feedback provided by the 

user to the item 𝑖𝑡 and 𝑑𝑡 is the dwell time on the recommender. The state at time step 𝑡 is 

designed as the browsing sequence 𝑠𝑡  =  𝑥𝑡 − 1. The initial state only contains the user 

information. At each time step, st is updated with the previous state and the tuple of 

recommended item, feedback and dwell time. Action at is the recommender of item 𝑖𝑡. The 

action space is updated by removing recommended items. [19] 

Xin et al. propose a self-supervised reinforcement learning method for sequential 

recommender tasks. Their approach augments recommender models with two output layers: 

one for self-supervised learning and the other for RL. While the self-supervised layer with 

cross-entropy loss provides strong gradient signals for parameter updates, the RL layer which 

aims to introduce reward driven properties to the recommender. Based on such approach, 

they propose two frameworks namely Self-Supervised Q-learning (SQN) and Self-Supervised 

Actor-Critic (SAC). 

When formulating the problem, they considered the user-item interaction sequence as 𝑥1:𝑡 =

 {𝑥1, … , 𝑥𝑖 , . . . , 𝑥𝑡 − 1, 𝑥𝑡}, where 𝑥𝑖 is the index of the interacted item at timestamp 𝑖. The state 

of a user at timestamp 𝑡 can be represented as 𝑠𝑡  =  𝐺(𝑥1:𝑡) in 𝑆, where 𝐺 is a generative 

model that maps the input sequence into a hidden state. Also, they consider the action 𝑎𝑡 as 

recommending an item 𝑖 at time 𝑡. They propose a flexible reward scheme depending on the 

scenario; e.g., for video recommender, a reward based according to the watching time. [40] 

Ie et al. developed SlateQ, a novel decomposition technique for slate-based RL that allows for 

effective TD and Q-learning by estimating the long-term value (LTV) of a slate of items by 

directly using the estimated LTV of the individual items in the slate.  

When formulating the problem, they considered the state 𝑠𝑡 as the combination of user features 

(demographics, interests) and relevant user history or past behavior (items consumed, degree 

of engagement). As it has been said, they provide slates of items. Thus, an action 𝑎 

recommends a possible slate with 𝑘 items. As a reward, they measure the expected degree 
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of user engagement within the items in the slate. [8] 

Xiangyu Zhao et al. identified the importance of negative feedback (such as skipping an item) 

from the recommender procedure and provided an approach to capture it. They later proposed 

a deep reinforcement learning based framework (DEERS) that learns the optimal strategies 

by combining the negative feedback with the positive and tested it in an e-commerce scenario. 

When modeling the problem as an MDP, they considered the state 𝑠𝑡 as the recommender-

user interaction at time 𝑡, in chronological order. Instead of using product’s attributes, they 

treated each item as a word and the clicked items in one recommender session as a sentence. 

Then, they embedded those words intro a low-dimensional vector. As an action, they 

considered recommending one item to the user at time 𝑡. The recommender agent receives 

immediate reward according to the user’s feedback (click, skip or order the item). [38]  

In another paper, Xiangyu Zhao et al. introduced a principled approach to generate a set of 

complementary items and properly display them in a recommender page simultaneously. They 

proposed a framework for page-wise recommender, DeepPage, to address this approach. 

Their MDP formulation of the problem is very similar to one they presented in [38]. They 

proposed the same state space 𝑆 and the same reward approach. As for the action space, 

they considered recommending a list of items at each time t, where K is the number of items. 

[39]  

In [37], Xiangyu Zhao et al. proposed a similar approach that aimed to capture the relationship 

among recommended items and generate a list of complementary items to enhance 

performance. They propose a framework for list-wide recommenders based on DRL, LIRD, 

which can be applied in scenarios with large and dynamic item space. They also introduced 

an online user-agent interacting environment simulator, which can pre-train and evaluate 

model parameters offline before applying the model online. Their MDP formulation of the 

problem is the same as the one they presented in [38]. 

Chen et al. scaled a REINFORCE policy-gradient-based approach to learn the policy in an 

extremely large action space. They address biases when learning from logged data through 

incorporating a learned logging policy and a novel top-𝐾 off-policy correction. They conducted 

live experiments on YouTube.  

Their MDP formulation of the problem considered the state as the user historical interactions 

with the system, recording the actions taken by the recommender as well as user feedback 

(such as clicks or watch time). The action at consists on recommending a set of videos and 

the reward is based on the immediate user response to the received set. [20] 

Zheng et al. proposed a RL framework that applies a DQN structure and can take care of both 
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immediate and future reward. To help improving recommender accuracy, they considered user 

activeness as another form of user feedback. They propose also to apply a Dueling Bandit 

Gradient Descent in order to add some exploration while avoiding totally unrelated items. They 

deployed their algorithm in a commercial news recommender application. 

Their MDP formulation considered the state as a combination of context features and user 

features. Context features describe the context when the news request happens (time, 

weekday, …), while user features mainly describe the features of the news clicked by the user 

some timestamps before. The action 𝑎𝑡 consists on recommending a list of 𝑘 news. Finally, 

the reward takes into account immediate feedback (such as clicks) as well as future response 

(user activeness).  [13] 

5.4.3. Summary  

Table 5 summarizes both the model-based and the model-free approaches seen so far:  
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Author State Action Reward Algorithm Scenario 

Chen et al. [41] An embedding of the 

historical sequence (or a 

truncated M-step sequence) 

of items clicked by the user 

represented by their feature 

vectors.   

Recommending a 

subset of k items 

Based on user utility. 

Unknown schema. 

Deep Q Networks Movie, music, 

business, e-

commerce, news 

Bai et al. [42] Clicked items are projected 

intro an embedding vector. 

The state is represented as 

an embedding of the click 

history 

Recommending a 

subset of k items 

In the example they 

provide, an immediate 

reward of 1 is given if 

the session continues 

REINFORCE E-commerce  

Zou et al. [19] User’s information + user-

item interaction 

(recommended item, 

feedback and dwell time) 

updated every timestep 

Recommending an 

item 

A combination of 

instant metrics (clicks) 

and delayed metrics 

(scans and return 

time) 

Deep Q Networks E-commerce 

Xin et al. [40] An embedding of user-item 

interaction history 

Recommending an 

item 

Flexible reward 

scheme 

Deep Q Networks; a 

variation of SAC 

E-commerce 

Ie et al. [8] A combination of user 

features and past behavior 

(past recommenders, items 

consumed, degree of 

engagement) 

Recommending a 

subset of k items 

Expected degree of 

engagement 

TD YouTube 
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Xiangyu Zhao 

et al. [38] 

Recommenders-user 

interaction (in chronological 

order) embedded in a low 

dimensional vector 

Recommending an 

item 

Immediate reward 

according to the 

user’s feedback (skip, 

click or order) 

An approach based 

on Deep Q Networks 

E-commerce 

Xiangyu Zhao 

et al. [39]  

Recommenders-user 

interaction (in chronological 

order) embedded in a low 

dimensional vector 

Recommending a 

subset of k items 

Immediate reward 

according to the 

user’s feedback (skip, 

click or order) 

Deep Q Networks E-commerce 

Xiangyu Zhao 

et al. [37]  

Recommenders-user 

interaction (in chronological 

order) embedded in a low 

dimensional vector 

Recommending a 

subset of k items 

Immediate reward 

according to the 

user’s feedback (skip, 

click or order) 

Actor-Critic E-commerce 

Chen et al. [20]  User’s historical interactions 

with the system  

Recommending a 

subset of k items 

Based on user’s 

response (clicks, 

watch time) 

REINFORCE YouTube 

Zheng et al. 

[13] 

Context features 

(demographics, …) + user 

features (interactions in the 

last k periods) 

Recommending a 

subset of k items 

Immediate response + 

long-term response 

(user activeness) 

Deep Q Networks News 

Table 5. RL approaches to RS summary
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6. Problem formulation 

In the previous chapter one could see how the RL-based RS proposals had a common way of 

formulating the problem: as an MDP. However, an MDP can be defined in many ways, and 

not all the authors did it the same. The objective of this chapter is to provide a generalization 

of the MDP formulation able to englobe as many as the RL-based RS current state of the art 

proposals. 

First, the RS will be explained from a theoretical point of view. After that, the RS problem will 

be posed as a sequential decision-making problem, a necessary step to formulate it as an 

MDP. Finally, a generalization of the MDP formulation will be proposed, as well as how the 

previous state of the art articles can fit in this formulation.  

6.1. Recommender systems 

Recommender systems (RS) aim to help customers find content of their interest by presenting 

them suggestions they are most likely to prefer. To do so, an ML-based recommender model 

determines how similar videos and apps are to other things you like and then serves up a 

recommender 

Mathematically, the recommender problem can be stated as follows: there is a set of users 𝑈 

and a set of items to recommend 𝐼. Temporal horizon is represented by the set of periods 𝑇 =

 {1, … , 𝑚}. At time stamp 𝑡 ∈  𝑇, each user 𝑢 ∈  𝑈 is defined by a set of information 𝑠𝑢𝑡
; e.g., 

personal features, preferences, past seen items (including the feedback given to them), and 

so on. Each item 𝑖 ∈  𝐼 is also defined by a set of information 𝑠𝑖𝑡
. The recommender system 

has to, at a given time stamp 𝑡 ∈  𝑇, assign an item (or a badge of items) 𝑖 ∈  𝐼 to a user 𝑢 ∈

 𝑈, in order for that assignation to be the preferred according to a previously defined criteria 

(i.e., profit, user engagement, etc.).  

6.2. From sequential decision-making problems to MDPs  

As stated in chapter 3, MDPs are a formalization of sequential decision-making problems. In 

this kind of problems, the utility of the agent’s actions does not depend on single decisions, but 

rather on the whole sequence of the agent’s decisions. Moreover, much of the RL theory 

applies when the problem can be described as a finite MDP (an MDP with finite state, action, 

and reward sets). 

As stated before, classical recommender systems adopted a static view of the 
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recommendation process, treating it as a prediction problem. However, the process of 

generating recommendations can be better seen as a sequential decision-making problem. At 

a certain time, the RS decides which items suggests to the user, who chooses which of them 

to take. Once the user makes a choice, a new list of recommendations is presented to him, 

and so on. The system decides which recommendations to offer based on how users have 

responded to past recommendations and that's where the sequentiality of the process lies. 

Moreover, as stated before, the optimal recommendation may depend not only on past 

interactions, but in the order in which they were performed. 

Thus, the recommendation problem can be formulated as an MDP. The RS can be considered 

as an autonomous agent who is performing actions (giving recommendations) based on the 

environment’s state (user information, past recommendations, past response, item 

features, …), while maximizing a reward signal (making good recommendations to the user). 

Moreover, considering a finite set of available items to recommend, a finite set of user 

information and a limited reward, the problem can be defined as a finite MDP.  

6.3. MDP generalization 

As stated before, An MDP is by definition a five-tuple 𝑀 = < 𝑆, 𝐴, 𝑃, 𝑅, 𝛾 >, where 𝑆 is the set 

of states, 𝐴 is the set of actions, 𝑃 is the state-transition function, 𝑅 is the reward function and 

𝛾 ∈  [0, 1] is the discount factor. Making a generalization of the MDP-formulation can be 

reduced to generalizing the sets of states and actions and the reward function. The following 

generalization can be made: 

 

The state 𝑠 ∈  𝑆 can be generalized as the combination of user features (age, gender, 

demographic data, …) and past user-item interactions (seen items, response given, …). User 

features can be expressed as the initial set 𝑥0 and past user-item interactions (of the last 𝑡 −

𝑚 periods) as the sequence 𝑥𝑚:𝑡 =  {𝑥𝑚, . . . , 𝑥𝑡−1, 𝑥𝑡} where 𝑚 ∈ [1, t]  is a period and 𝑡 is the 

actual time stamp. The set including both type of features can be defined as 𝑥0:𝑡 =

 {𝑥0, 𝑥𝑚, . . . , 𝑥𝑡−1, 𝑥𝑡}. Finally, the state at time 𝑡 can be represented as 𝑠𝑡 = 𝑔(𝑥0:𝑡) where 𝑔 is 

an embedding function (it can be the identity function) that maps the input into a (usually) lower 

space. At each time step 𝑡, the set is updated with the old state and the new set of information. 

Previous RL-based RS articles [41], [40], [38], [39], [37], [42], [20] don’t consider user features, 

so they would have 𝑥0 empty. With respect to the length of the system-user interaction, [41] 

considers truncating the sequence to the last 𝑡 − 𝑚 periods, where 𝑚 is different from 1. 

Finally, [19], [8], [20], [13] don’t embed the information, which can be considered as embedding 

with an identity function. 
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On the other hand, actions available often depend on the state 𝑠, denoting 𝐴(𝑠) as the 

available actions when being in state 𝑠. The action 𝑎 ∈ 𝐴(𝑠) can be generalized as 

recommending one or more items 𝑖 from the item set 𝐼, that is, 𝑎 =  (𝑖1, … , 𝑖𝑛), where 𝑛 is the 

number of items recommended. 𝐴(𝑠) can be updated by removing up to 𝑛 recommended 

items from 𝐴(𝑠𝑡−1). Previous RL-based RS articles [41], [42], [8], [39], [37], [20], [13] consider 

recommending more than one item, while [19], [40] and [38] only provide one recommendation. 

 

Finally, the reward function must be generalized. This function, denoted as 𝑟(𝑠, 𝑎), provides 

the reward when taking action 𝑎 at state 𝑠. Depending on the recommender system scenario, 

different reward functions can be used. E.g., for video recommender, reward can be set 

according to the watching time, whereas in the e-commerce scenario, rewards can be given 

to purchase interactions. As it can be seen, the reward has a strong dependance on the 

application. Taking a look at previous commented articles, we can distinct between three 

approaches: rewarding based on instant, delayed, or a combination of both metrics. While [38], 

[39], [37] and [42] consider only immediate reward, only [8] considers delayed feedback alone. 

On the other hand, [41], [19], [20] and [13] combine both instant and delayed responses. 

Generally speaking, we will define the reward as a combination of instant feedback and long-

term feedback. 
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7. Building a recommender system  

In the firsts chapters one could see what RL consisted of, how the MDP formulation was key 

in the RL frame and in which ways RS are usually approached. Moreover, in the last one a 

general MDP formulation for the RS was proposed. The goal of this section is to put all these 

theoretical concepts into practice.  

The objective now is to build a RS by using the RL theory. Training from scratch a RL-based 

RS online is not feasible, as it would give poor recommendations to users for a long period of 

time. Instead, these systems are usually pretrained offline, from previous records, and then 

online. Learning from logged data is however subject to biases, since there’s only feedback on 

recommendations selected from the previous RS. 

The first part of this chapter will be dedicated to select and present the case study. After that, 

the selected problem will be expressed inside the proposed MDP generalization. Finally, the 

case will be solved through RL.   

7.1. Case study 

This section is devoted to select the case study and to explain what it consists of. 

7.1.1. Dataset selection 

In order to select a dataset, some criteria must be first established: 

- High number of features. As explained in 2., one of the objectives is to use DRL 

algorithms, which are mainly focused on images. These algorithms usually require a 

minimum image size. Moreover, the main advantage of CNNs is that is capable of 

extracting relationships in complex images where it seems there are none. In order to 

meet the algorithm requirements and to extract the truly potential of them a rich dataset 

is required.  

- Timestamp information. As explained in 4, one of the advantages of RL techniques is 

the possibility of capturing delayed rewards. Also, another one is that they can capture 

how the interests of the user vary along time. It is therefore essential to have the 

temporal information. 

- Real case scenario. Some datasets are specially constructed for education. If possible, 

a real case scenario would be preferred. 

Apart from the mentioned requirements, there are other aspects that should be taken into 

account: 
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- Number of interactions. RL algorithms usually need lots of interactions in order to learn, 

since they start from zero. Therefore, a high number of interactions is needed. 

However, too many interactions will take too much resources when training (RAM, 

processor, time) and might difficult the process of obtaining results. In addition, the 

number of features should be taken into account: it is not the same trying to learn 1 

feature with 10 interactions than 10 features with 10 interactions; the more features 

present, the more interactions needed.  

- Number of items. As with the number of interactions, a high number of items will require 

so many resources and therefore make the training process unapproachable. On the 

other side, RS are normally intended to recommend items from a large number of 

candidates. Again, this parameter has to be looked at together with the number of 

interactions and features.  

It is difficult in fact to establish right values for these two aspects. However, there’s the option 

of taking a small subsample of the dataset if the training gets to slow or the solutions don’t 

converge.  

Based on previous requirements and taken into account both the number of interactions and 

the action space dimension, nearly 15 datasets were selected as candidates. Finally, the 

following options were considered:  

- Retail Rocket. This dataset consists of a list of events (click, add to cart or purchase, 

along with the user, the item and the timestamp), a list of items properties and a 

category tree, from a real-world ecommerce website. This dataset was used by [40] to 

build a RS. The objective is to predict the item purchased. 

- Goodreads. This set consists of a list of user-book interactions (user, book, if is it read 

/ reviewed and the rating, although timestamp can be asked), books metadata 

(including author information, genres, and so many other features), and reviews 

metadata (including all the text written by the users about the books) from the book 

rating Goodreads app. The objective is to predict book ratings.  

- Trivago. This dataset consists of a list of sessions (including timestamp, user, action 

type, item, device, filters used, and some other), and a list of item features from the 

well-known platform Trivago. The objective is to predict the selected item.  It was 

published in the RecSys Challenge 2019 (https://recsys.trivago.cloud/). 

Table 6 shows the number of interactions, items and features each dataset presents: 

Dataset Field Interactions Items Features 

Retail Rocket  Ecommerce 2,76 M 400 K ~10 

Goodreads Books 229 M 2,36 M ~50 
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Trivago Accommodations 19 M 927K ~10 

Table 6. Candidate datasets comparison 

One of the advantages of the Retail Rocket set is that it has been used in one of the papers 

studied. Also, it has a reasonable number of features and items. With respect to Goodreads, 

the main strength this set presents is the rich information it presents. As a counterpart, it is 

perhaps a too complex set to start with. Regarding the Trivago dataset, one of the advantages 

is that, since it was released for the RecSys challenge, it is well-suited for building the RS. As 

in the Retail Rocket one, it has a reasonable number of features and items. In fact, the relation 

interactions/number of items is higher, which is better. Taking into account all the insights, the 

Trivago dataset is finally selected.  

7.1.2. Problem definition 

Trivago (https://www.trivago.es/) is a metasearch engine that compares and displays the 

accommodation offers and prices provided by numerous online booking websites. If a user 

clicks on a specific offer, Trivago receives a commission from the booking website. In total, 

trivago websites include a staggering 2.5 million hotels and other types of accommodation in 

190 countries. 

The data provided for the challenge is a small subset that consists of 1.202.064 sessions from 

730.803 users and metadata from 927.142 accommodations. Sessions contain information 

about different user actions: item search, filter usage, destination search, … The action in 

which the user clicks on a specific offer and then is redirected to the booking website is the 

click-out. At the time of a click-out, the engine is displaying the user 25 accommodations along 

with their prices and ordered by preferences. The objective is to predict these 25 

accommodations for a subset of sessions. 

Sessions are divided into a training and a test set. The training set contains sessions up to a 

specified time (split date). The test set contains information about sessions after the split date 

but is missing the information about the accommodations that have been clicked in the last 

part of the sessions. The required output is a list of 25 recommendations for each click-out 

ordered by preferences for the specific user. The higher the actually clicked item appears on 

the list, the better the recommendation engine performs. 

Figure 10 illustrates the problem setting and the separation of the data into training and test 

sets: 
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Figure 10. Problem setting schematic. Source: [28] 

7.1.2.1. Sessions actions 

Each session contains the following information: 

- User ID: identifier of the user. 

- Session ID: identifier of each session. 

- Timestamp: UNIX timestamp for the time of the interaction. 

- Step: step in the sequence of actions within the session. 

- Action type: identifier of the action that has been taken by the user. The user can take 

10 different actions: 

• click-out item: user makes a click-out on the item and gets forwarded to a 

partner website. 

• interaction item rating: user interacts with a rating or review of an item. 

• interaction item info: user interacts with item information. 

• interaction item image: user interacts with an image of an item. 

• interaction item deals: user clicks on the view more deals button. 

• change of sort order: user changes the sort order. 

• filter selection: user selects a filter. 

• search for item: user searches for an accommodation. 

• search for destination: user searches for a destination. 

• search for poi: user searches for a point of interest (POI). 

- Reference: reference value of the action taken. All actions involving interactions with 
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items (click-out, rating, info, image, deals and search for) have the item ID as the 

reference value. Change of sort order has as reference the sort order description; filter 

selection the filter description; search for destination, the destination name; and search 

for POI, the POI name. 

- Platform: country platform that was used for the search, e.g., trivago.es (SPAIN) 

or trivago.com (US). 

- City: name of the current city of the search context. 

- Device: device that was used for the search. 

- Current filters: list of pipe-separated filters that were active at the given timestamp. 

- Impressions: list of pipe-separated items that were displayed to the user at the time of 

a click-out. 

- Prices: list of pipe-separated prices of the items that were displayed to the user at the 

time of a click-out. 

A sample session is shown in Figure 11. 

7.1.2.2. Item metadata 

Item metadata includes information from every accommodation. Each of them includes the 

following information: 

- Item ID: identifier of the accommodation as used in the reference values for item related 

action types. 

- Properties: pipe-separated list of filters that are applicable for the given item. 

A sample of the item metadata is shown in Table 7: 

Item ID Properties 

32007 

Hotel|Country Hotel|Pool Table|Bathtub|Satisfactory Rating|Hiking Trail|Luxury 

Hotel|Terrace (Hotel)|Shower|Steam Room|Cot|Gym|Ski Resort|Good Rating|Table 

Tennis|Family Friendly|Horse Riding|Openable 

Windows|Restaurant|Solarium|Sauna|Bike Rental|Car Park|Central Heating 

Table 7. Item metadata sample. Source: [28] 

  

http://trivago.de/
http://trivago.com/
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Figure 11. Session sample. Source: [28]. In this session, a user from the US platform has used trivago on a desktop device. The actions in this session are 

the following:  

- action type: search for destination, reference: Barcelona, Spain: User searches for Barcelona, Spain. 

- action type: filter selection, reference: Focus on Distance: The ‘focus on distance’ filter is activated. At this point the current_filters column indicates 

that this is the only filter that is active. 

- action type: search for poi, reference: Port de Barcelona: User searches for a point-of-interest (POI), the Port de Barcelona. 

- action type: interaction item deals, reference: 40255: User viewed at the ‘More Deals’ button on item 40255. The ‘focus on distance’ filter is no 

longer activated. 

- action type: click out item, reference: 40225: The user clicks out on item 40225. The full list of displayed items and their associated prices can be 

seen in the ‘impressions’ and ‘price’ columns. 

- action type: search for item, reference: 81770: User searches for item 81770. 

- action type: interaction item info, reference: 81770: User interacts with the item information of item 81770. 

- action type: click out item, reference: 81770: User clicks out on item 81770. The full list of items and their associated prices can be seen in the 

‘impressions’ and ‘price’ columns.
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7.2. MDP formulation 

Once the problem to be solved has been selected and before using the RL theory to construct 

a RS for it, it is convenient to express it as an MDP. As explained in 4.3, RL theory is applicable 

when the MDP formulation is possible. In addition, an MDP generalization for RS problems 

was previously done. The goal of this section is to fit the MDP expression in the aforementioned 

generalization.  

As stated before, expressing a problem as an MDP means defining the five-tuple 𝑀 = <

𝑆, 𝐴, 𝑃, 𝑅, 𝛾 >, where 𝑆 is the set of states, 𝐴 is the set of actions, 𝑃 is the state-transition 

function, 𝑅 is the reward function and 𝛾 ∈ [0, 1] is the discount factor. As will be explained later, 

the RL algorithm will be limited to learn from the dataset and not the ground truth, which brings 

certain limitations. One of them is that 𝑃 is in fact already defined: the action determined by 

the algorithm will not affect the next state, which is already written on the next line in the dataset 

(anyway, defining 𝑃 would mean having a model of the problem, turning it into a model-based 

instead of a model-free). On the other side, 𝛾 is usually set to 0,99. Therefore, the MDP 

definition is reduced to defining 𝑆, 𝐴 and 𝑅.  

7.2.1. S definition 

S. In 6 the state at time 𝑡 was expressed as 𝑠𝑡 = 𝑔(𝑥0:𝑡), where 𝑔 was an embedding function 

and 𝑥0:𝑡 =  {𝑥0, 𝑥𝑚, . . . , 𝑥𝑡−1, 𝑥𝑡} with 𝑥0 being the union of user features and the sequence 

𝑥𝑚:𝑡 =  {𝑥𝑚, . . . , 𝑥𝑡−1, 𝑥𝑡} the past user-item interactions from time 𝑚 to 𝑡. 𝑆 was the superset 

that included all the possible states. 

In the particular case that concerns, there is no user features. Consequently, 𝑥0 would be 

empty. In addition, 𝑔 will be considered as the identity function, 𝑔(𝑥) = 𝑥. On the other hand, 

session steps can be considered as the past user-item interactions. As the objective is to 

predict click-outs, each state will be considered as the sequence 𝑠𝑡 = {𝑥𝑚, . . . , 𝑥𝑖 , … , 𝑥𝑡 , … , 𝑥ℎ}, 

where 𝑥𝑖 is the session step at instant 𝑖, 𝑡 is the last instant before the click-out, ℎ is the 

observation heigh and 𝑚 is an instant between 1 (first session step) and 𝑡 –  ℎ.  

On the other hand, and as pointed out in 2.2, in order to take profit of DRL methods, data 

(specially the observation) should be expressed as an image. That is, as a ℎ𝑥𝑤𝑥𝑐 matrix with 

values between 0 and 255, where ℎ, 𝑤 and 𝑐 are the height, the width and the number of 

channels, respectively. Therefore, 𝑥𝑖 is a row and there are at most ℎ in the state. If 𝑡 < ℎ, the 

state would be filled with ℎ − 𝑡 null rows. If, on the other hand, 𝑡 > ℎ, the first 𝑡 − ℎ user-item 

interactions would be removed. On the other side, 𝑤 depends on the length of 𝑥𝑖, determined 

by the number of features in a step.  
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If a session contains more than one click-out, first sequence would be from session step 1 (or 

𝑡 − ℎ in case the click-out step is greater than ℎ) until first session click-out step. Then, next 

state would be the past sequence plus the steps until the next click-out, including the first click-

out one. 

The number of columns (features), rows (interactions) and channels will be adjusted during 

the implementation. 

7.2.2. A definition 

In 6, the action 𝑎 was generalized as recommending one or more items 𝑖 from the item set 𝐼, 

that is, 𝑎 =  (𝑖1, … , 𝑖𝑛), where 𝑛 is the number of items recommended. Also, the action 

depended on the state. 𝐴 was the superset that included all the possible actions. 

In the case that concerns, the actual recommender system proposes 25 items before each 

click-out, without restricting any item depending on the state. In the case of the proposed RS, 

it will start by recommending 1 item to speed up training. Therefore, the action can be 

considered as 𝑎 =  𝑖, being 𝑖 the item recommended. The number of items present on the 

item set will be adjusted in the training section. 

7.2.3. R definition 

As stated in 6, the reward depends strongly on the application and is usually a combination of 

instant and delayed reward. As early mentioned, the algorithm will be in fact learning from a 

dataset. Therefore, the reward will be given whenever the proposed RL-based RS 

recommendations fit to the Trivago’s ones. The idea is to start with an instant reward and 

depending on the learning process try to add a delayed one to see the effects in the long-term.  

Regardless of whether 1 or 25 items are provided, the reward will be a sum of two parts: 

- +0.1 for each of the proposals (or the only proposal) inside the set of 25 candidates 

provided by Trivago. 

- If one of the proposals (or the only proposal) is the clicked-out item, an extra reward 

will be given depending on the index of that item in the 25 proposals given by Trivago. 

The maximum reward for this concept, obtained when the proposal is the clicked-out 

item, is 10.  
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7.3. RS Implementation 

Once the problem has been described as an MDP, the objective is to implement the RL-based 

RS. The implementation will be divided in the following phases: 

- Data preprocessing: includes the dataset reduction and the features encoding. 

- Environment implementation: includes implementing the necessary code to model the 

dataset as an RL environment.  

- Agent implementation: includes the algorithm selection and the integration with the RL 

environment. 

7.3.1. Data preprocessing  

As explained in 7.2.1, the state will be expressed as an image. Also, in 7.1.2.1 the information 

included in each session was detailed. The main objective of the preprocessing step is to 

transform the information included in each session into a numerical format in order to construct 

each state. Before, unnecessary information will be discarded as well as very short or very 

long observations, in order to simplify the training.  

7.3.1.1. Dataset reduction 

As stated in 7.1.2.1, the information provided by Trivago is divided in two sets: the training and 

the test set. Some useful stats from these sets are shown in Table 8: 

Feature Training set Test set 

Users 730.803 250.852 

Interactions  15.932.992 3.782.335 

Sessions 910.683 291.381 

Click-out actions 1.586.586 528.779 

Items 927.142 927.142 

Table 8. Train and test sets stats 

As it can be seen, the training set is composed by more than 900.000 recommendable items. 

This number of items makes the training unfeasible with the available resources. In fact, most 

of the RL examples pointed out in 4.4 have action spaces with less than 10 actions (in case of 

the Atari games [21], for instance). The idea then is to reduce the dataset to start with a smaller 

item set and increase the number of items progressively.  

In order to reduce the dataset to have a reduced item set, sessions interacted less than x times 
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in the training set will be removed. That is, those numeric references in the column “reference” 

that appear less than x times. The x parameter will be fixed during the training process. In 

order to have the same item set in both sets, sessions containing items not interacted x times 

in the training set have to be removed from the test set as well. 

Also, sessions with too few steps would mean lots of null rows in the observation and sparse 

information. In order to keep the observation richer in information, sessions with less than 10 

steps in the training have been removed.  

Finally, the last two columns of the dataset correspond to the impressions provided by Trivago 

and their prices whenever a click-out takes place. The price is probably a key element when 

choosing which accommodation to go on a vacation. Unfortunately, prices are not available for 

the whole item set at each time stamp but for a reduced subset of elements in certain moments. 

Moreover, putting this information in the state supposes adding too many cells but most of it 

empty (click-outs are a minority over the whole set of steps), and the number of cells they 

occupy is very high in relation to what the rest of the state does. Therefore, the price information 

is suppressed.  

With respect to the impressions, it is true that having past proposed items in the state could be 

useful and in fact some papers went in this direction (as pointed out in 5.4.2). However, adding 

this information has the same problem than adding the prices one. Therefore, training will be 

done without considering this column.   

7.3.1.2. Features encoding 

As stated in 7.2.1, state information has to be expressed in 0-255 cells. On the other hand, 

most of the information provided not only is not expressed in that range, but neither in numeric 

format. Therefore, the objective of this section is to encode the information provided in 0-255 

range cells. 

First a detailed analysis of the features provided has to be done, in order to see what type they 

are (numeric, text, ...) and what values they can take. Excluding impressions and prices, the 

dataset consists of 10 features. If no session is deleted because of low-interacted reference (x 

= 0), these features keep the following data:  

- User ID: 730803 unique users, expressed in alphanumeric format. 

- Session ID: 1202064 unique sessions, expressed in alphanumeric format. 

- Timestamp: time instants go from 1541030408 to 1541548799 (514.391 instants) in 

the train set and from 1541548807 to 1541721599 (172.792 instants) in the test set, 

expressed in numeric format. 

- Step: there are at most 3.522 steps per session, expressed in numeric format. 
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However, 99.4% of click-outs (the step when the observation is provided to the agent) 

happen to be before step 255.   

- Action type: the action can take up to 10 values, expressed in text format. 

- Reference: references can take two kinds of values: numeric and text. Numeric 

references correspond to the impressions present in the item set. As opposite, text 

references can correspond to sort order description, filter description, destination name 

and POI name. There are 927.142 numeric references, while only 36.404 text ones.  

- Platform: there are 55 different platforms, expressed in text format. 

- City: there are 34.752 different cities, expressed in text format. 

- Device: 3 types of devices are used, expressed in text format. 

- Current filters: filters are a special case. In total, there are 202 filters. 155 of them are 

the properties that appear assigned to the accommodations in the item metadata set 

and the other 47 are independent. Another particularity is that it is possible to have 

more than one active filter at a time, dramatically increasing the values that current 

filters cell can take.   

Once the features have been analyzed, they should be expressed in the aforementioned 

numerical range. Three kinds of features can be distinguished based on the data type they 

present:  

- Numerical data. This category includes: timestamp, step and numerical references. 

This information can be straightforward expressed in 0-255 range. Those values 

greater than 255 can be expressed in binary and again in decimal but grouped by 

bytes, since a byte can store up to 28 = 256 values (from 0 to 255, both included).  For 

instance, the number 1541030408 (lower timestamp) would result in the tuple (91, 218, 

66, 8) (see Figure 12). 

 

 

Figure 12. Numerical data encoding example 

And therefore occupy 4 cells. This step is done when constructing the observation, 

since the bytes each feature needs varies depending on the action space. 

- Text and alphanumerical data. This category includes: user ID, session ID, action type, 

text references, platform, city and device. In order to express this information in the 

desired numerical range, it is necessary first to express it as a number. One way is to 

encode each feature with values between 0 and n-classes. I.e., user IDs will go from 0 
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to 730.803-1 = 730.802. Then, they would be expressed in the same way than 

numerical data.  

- Binary data. This category is devoted to the current_filters column. Since many filters 

can be activated at a time, the idea is to construct a binary vector where each bit 

corresponds to a filter and a 1 or a 0 means whether the filter is active or not. Once the 

binary vector is constructed, it is expressed in decimal base grouped by bytes as 

explained before. 

7.3.2. Environment implementation  

One possibility is to construct the algorithm and the necessary framework to make it work from 

scratch, since most RL algorithms are publicly accessible. However, any change in the state 

size or the action space, not to mention an algorithm change, would imply lots of work. 

Therefore, it is out of scope. Instead, there are some libraries designed with this purpose. 

Above all, Gym stands out.  

Gym (https://gym.openai.com/) is a library created by OpenAI (https://openai.com/) for 

developing and comparing reinforcement learning algorithms. Gym was launched in 2016 with 

the aim of establishing a standard framework in which to express RL problems, so that 

environments were easy to set up and it would serve as a benchmarking tool, were published 

research could be reproduced and compared. 

The core gym feature is the Env, which is the environment interface. Gym provides a large set 

of environments, including Atari games, control tasks or physics engines such as MuJoCo. It 

also allows you to create your own environment, as in the case of this project. [25] 

A custom environment can be defined through the class Env. This class encapsulates an 

environment with arbitrary dynamics. The main methods that are going to be used are: 

- step(self, action): runs one timestep of the environment. Takes an action as an input 

and returns: 

• observation: the agent’s observation of the environment after executing 

previous action. 

• reward: the reward returned after executing previous action. 

• done: whether the episode has ended. 

• info: auxiliary information provided. 

- reset(self): resets the environment to an initial state and returns the initial observation. 

There are also a set of important attributes needed to define the environment: 

- action_space: the space object corresponding to valid actions. 

- observation_space: the space object corresponding to valid observations. 
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These two spaces should be of the class gym.spaces, that admits four possible type of spaces: 

- Box: the box space consists of a box in ℝ𝑛. Each interval has the form of one of {[𝑎, 𝑏],

[𝑎, ∞), (−∞, 𝑏], (∞, −∞)}. 

- Discrete: the discrete space consists of set of discrete actions.  

- MultiDiscrete: the multi discrete space consists of a series of discrete spaces with 

different number of values in each of them.  

- MultiBinary: the multi binary space consists of a n-shape binary space.  

- Tuple: a set of simpler spaces in tuple format.  

- Dictionary: a set of simpler spaces in dictionary format. 

In order to use the Gym library, it is necessary therefore to adapt the chosen dataset to its 

framework.  

7.3.2.1. Env attributes 

Regarding the attributes, the following has been considered:  

- observation_space: as pointed out in 7.2.1, the state (in fact, the observation of the 

state) is an ℎ𝑥𝑤𝑥𝑐 image with values compressed between 0 and 255 and where each 

line represents an interaction step between the user and the RS. Therefore, the space 

corresponding to all possible observations takes also this form. The observation_space 

will then be defined as a Box in ℝ3 where each interval takes values [0, 255]. The size 

of the image depends on the steps and features considered and will be set in the 

training.  

- action_space: as pointed out in 7.2.2, the action corresponds to recommending an item 

𝑖. Therefore, the space will be modeled as a Discrete where the number of items 

depends on the fraction of the dataset used.   

7.3.2.2. Env methods 

The interaction between the Env class and the datasets is managed with the ObserveDataset 

class. This class is responsible for sending the Env class all the information it needs: the 

observation of the environment, the previous action reward, and whether the goal was 

achieved. To do so, it processes the information contained in the set in order of appearance. 

It can process the training and the test set. 

Out of the methods that take part of the class, the following stand out: 

- Constructor. As input, the class takes the dataset used: the train or the test. Then, the 

following variables are initiated:  

• image_size: stores the observation size. Since the observation can include 
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more or less information depending on the number of features included, their 

size and the desired steps stored, it will vary during training. 

• items: stores the items dataset in a data structure. 

• sessions: stores the sessions dataset (either the train or the test one) in a data 

structure. 

• sessions_pointer: stores the row number of the first unprocessed interaction. 

Initial value is 0 

• obs: stores the observation of the environment in an array with the size of the 

image_size variable. Initial value is an image_size array with null values.  

• obs_pointer: stores the row number of the first empty row in the observation. 

Initial value is 0 

• true_impressions: stores the items (represented by their item ID) 

recommended by Trivago in the last observation processed in an array. Initial 

value is an empty array. 

• seen_users: stores the users (represented by their user ID) processed so far.  

- reset. Resets sessions_pointer, obs, obs_pointer and seen_users variables to their 

initial values. 

- done. Returns whether the last sessions line processed was the last in the sessions 

structure, and therefore, all the dataset information has been transferred to the agent. 

Since there is not a defined goal (as one can find in a game), this how the final state is 

defined.  

- reward. Returns the last executed action reward. It takes as input the action given by 

the algorithm (one or more recommended items) and compares it with the impressions 

proposed in the dataset in the last click-out step. 

- observation. Returns the environment’s current observation and the done signal (given 

by the done method). Before doing an observation, two situations can be presented to 

the agent: a new user comes in (in a new session) or the session in which the agent 

was continues (last click-out step was not the end of the session). In the first situation, 

the observation is restarted. That is because the observation of the environment 

encompasses only the last user-item interactions, not including what previous users 

did. After that, session steps are added to the observation in both situations. This 

addition is managed by two methods: 

• action_to_array: receives a session step, encodes each of its features in values 

from 0 to 255 and sorts them in an array whose length is equal to the number 

of columns in the observation (the second dimension of image_size).  

• add_actions_session: adds sessions steps to the observation until current 

session ends or there’s a click-out action. To do so, it successively calls the 

action_to_array method in the current session step and moves on into the next 

one, updating both sessions_pointer and obs_pointer. 
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If the previous method ended because there was a click-out, both the click-out 

reference and the impressions given by Trivago are stored in the true_impressions 

variable. Then, the done method is called and both the observation and the done signal 

are returned. As opposite, If the previous method ended because there were no more 

steps in the session and therefore the session ended in a non-click-out action, the 

observation method is called again.     

 

7.3.3. Agent implementation 

This stage includes the algorithm selection process and the integration of the selected 

algorithms in the Gym interface in the training script. 

7.3.3.1. Algorithm selection 

As explained in 4, there are basically two main approaches to train agents in model-free RL: 

policy-based and Q-learning methods. Policy optimization methods tend to be more stable and 

reliable. Also, Stable Baselines library allows one or the other algorithm to be used depending 

on its support for discrete/continuous actions and the possibility of training several 

simultaneous agents. Only Advantage Actor Critic (A2C), Deep Q Networks (DQN), Hindsight 

Experience Replay (HER) and Proximal Policy Optimization (PPO) support discrete action 

spaces. Out of them, A2C and PPO are on-policy algorithms. Therefore, these two are going 

to be used to train the RS agent. 

7.3.3.1.1 A2C 

The A2C algorithm is derived from policy gradient methods. These methods update the policy 

parameters θ in the direction ∇𝜃 𝑙𝑜𝑔 𝜋(𝑎𝑡|𝑠𝑡; 𝜃) 𝑅𝑡, which is an unbiased estimate of ∇𝜃 𝔼[𝑅𝑡] 

but has a high variance. One of the ways of reducing this variance is by subtracting a learned 

function of the state from the return. Usually, this function is a learned estimate of the value 

function, 𝑉(𝑠; 𝜃𝑣). The term 𝑅𝑡 − 𝑉(𝑠𝑡; 𝜃𝑣) can be then seen as the advantage of action at in 

state st, since Rt is an estimate of 𝑄(𝑎𝑡 , 𝑠𝑡). Therefore, the function parameters are updated in 

the direction given by Eq. 5. 

 
∇𝜃 𝑙𝑜𝑔 𝜋(𝑎𝑡|𝑠𝑡; 𝜃)(𝑅𝑡 − 𝑉(𝑠𝑡; 𝜃𝑣)) Eq. 5 

This architecture is known as actor-critic, where the policy is seen as the actor and the value 

function as the critic. The actor updates the policy parameters in the direction given by the 

critic. Some insights of the algorithm are: 

- The policy and the value function are modelled with neural networks (NN). Usually, 

non-output layers are shared. 
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- Both the policy and the value function are updated after n actions or when a terminal 

step is reached. 

- The gradient of the full objective function also includes an entropy regularization term 

to improve exploration over premature convergence to local minima [36]. 

The pseudocode of the algorithm can be seen in Figure 13.   

 

Figure 13. A2C pseudocode. Source: [36] 

7.3.3.1.2 PPO 

PPO is also derived from policy gradient methods. More specifically, it is derived from Trust 

Region Policy Optimization (TRPO). This algorithm updates the policy by taking the largest 

possible step that improves performance, while keeping the new and old policy close enough 

according to a distance measure. PPO has also some of the benefits of TPRO but is much 

simpler to implement.  

Let 𝑟𝑡(𝜃) denote the probability ratio  

 𝑟𝑡(𝜃) =
𝜋(𝑎𝑡|𝑠𝑡; 𝜃)

𝜋(𝑎𝑡|𝑠𝑡; 𝜃𝑜𝑙𝑑)
 Eq. 6 

The objective function PPO proposes is 

 
𝐿(𝜃) = 𝔼[𝑚𝑖𝑛(𝑟𝑡(𝜃)𝐴𝑡 , 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜀, 1 + 𝜀)𝐴𝑡]   Eq. 7 

Where the second term modifies the surrogate objective by clipping the probability ratio, 
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removing the incentive for moving it outside of the interval  [1 − 𝜀, 1 + 𝜀]. Finally, it takes the 

minimum of the clipped and unclipped objective, so the final objective is a lower bound of the 

unclipped one. This way, the change in 𝑟𝑡(𝜃) is ignored when it makes the objective improve 

and is included when it makes it worsen. Finally, 𝐴𝑡 = 𝐴(𝑠𝑡 , 𝑎𝑡; 𝜃𝑜𝑙𝑑 , 𝜃𝑣) is the advantage term 

defined in 7.3.3.1.1. The full objective function also includes an entropy regularization term to 

improve exploration, as with A2C. [29] 

The pseudocode of the algorithm can be seen in Figure 14.   

 

Figure 14. PPO pseudocode. Source: [33] 

7.3.3.2. Algorithm integration and training script 

If gym provides the environment part, Stable Baselines (SB) (https://github.com/DLR-

RM/stable-baselines3) provides the other main element in RL: the agent. Stable Baselines is 

a set of implementations of RL algorithms in PyTorch (https://pytorch.org/), an open-source 

machine learning framework. It was released with the aim of having reliable implementations 

of RL algorithms that serve as a basis for comparing performance in different environments 

and against new algorithms.  

One of the advantages of SB is that it relies on the OpenAI Gym interface, simplifying the 

algorithm integration process within the environment previously defined. This integration can 

be seen in the training script: 
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1. # Module import   
2. from stable_baselines3 import A2C, PPO   
3. from stable_baselines3.common.vec_env import *   
4. from stable_baselines3.common.env_util import *   
5. from stable_baselines3.common.monitor import Monitor   
6. from stable_baselines3.common.callbacks import EvalCallback   
7.    
8. # Variables definition   
9. n_items = 1342   
10. train_steps = 12846   
11. algorithm = PPO   
12.    
13. # Train environment definition 
14. env = RSEnv(n_items, 'train', 1)   
15.    
16. # Evaluation environment and callback definition   
17. eval_env = RSEnv(n_items, 'test')   
18. eval_env = DummyVecEnv([lambda: env])   
19. eval_env = VecTransposeImage(eval_env)   
20. eval_callback = EvalCallback(eval_env, n_eval_episodes = 1, eval_freq = 512)   
21.    
22. # Learning process   
23. model = algorithm('CnnPolicy', env, n_steps = 512, verbose = 1, seed = 1)   
24. model.learn(train_steps, callback = eval_callback)   

Figure 15. Training script 

As shown in Figure 15, the integration is straightforward. One can identify five sections in the 

training script: 

- Module import. The SB modules required for training are imported. 

- Variables definition. As mentioned in 7.3.1, the action space dimension will change in 

order to see the performance of the agent. This variable also affects the available 

training steps, since a reduction in the number of items means the deletion of the 

sessions with low interacted items. Both variables are set here. 

- Train environment definition. The custom Gym environment (defined in 7.3.2) is loaded 

specifying the number of items and the ‘train’ dataset.  

- Evaluation environment and callback definition. The goal of any ML model is not to 

succeed in the train data but in new data. The test set serves as a proxy for this new 

data. Also, one of the features of SB is the use of callbacks. A callback is a set of 

functions that will be called at defined stages of the training process. It can be used to 

monitor the training, to save models, to change parameters… In this case, the 

predefined EvalCallback will be used to periodically evaluate the policy on the test set 

and to save the model it performs best on it.  

- Learning process. The first line is devoted to the model construction. That is, the 

algorithm selection along with its parameters. Among all, the following stand out: policy, 

number of steps and seed: 

• Policy. As mentioned in 2.2, one of the objectives is to take advantage of the 
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CNNs when processing images. Therefore, CnnPolicy is selected as policy. 

• Number of steps: defines the number of steps to run per update. 

• Seed: specifies the seed for the pseudo random number generation. Using the 

same seed allows to compare trained models so that any change in 

performance cannot be attributed to the use of different numbers. Therefore, 

seed = 1 will be used in all the training process.  

The whole implementation can be found in the author’s code repository. [15] 

7.4. Results 

The objective of this section is to train the implemented RL-based RS and analyze the results 

obtained. 

As explained in  0, RL agents have been successful mainly when the action space was of an 

order of magnitude. Instead, the Trivago dataset has an action space with almost 930k 

possible actions if recommending one item at a time (otherwise the possibilities are nearly 

infinite). This requires a lot of computing power and makes the training process very time 

consuming. In order to accelerate the training process and taking into account that the priority 

is not to obtain accuracy or to solve this particular case but to demonstrate that it can be solved 

in this way, different reduced versions of the dataset have been used: a dataset with 524 items, 

another with 686 and last one with 924 items. These datasets are obtained when suppressing 

items interacted less than 1250, 1125 and 1000 times. 

With the selected dataset sizes, the features (encoded) fit in 45 columns: 1 for the step, the 

action type, the platform and the device; 2 for the user ID, the session ID and the city; 4 for the 

timestamp; 4 for the reference and 26 for the filters. In order to work with square images, the 

same value has been selected for the number of steps in the observation. Indeed, the average 

number of steps per click-out is near 18, so there’s a 150% margin. Since the first two 

dimensions of the matrix do not have very high values, 1 channel has been selected. 

Therefore, the state space is a 45x45x1 image.    

In order to measure how well an agent is performing, it will be compared against the random 

agent. This agent (which is in fact the algorithm before starting the training) will in the test set 

using different seeds, as the random numbers chosen have a major impact when the data set 

is reduced. 

In addition to training agents using RL, they have also trained using Behavioral Cloning (BC), 

an approach that combines RL and supervised learning. 
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7.4.1. Reinforcement Learning approach 

If reducing the action space to 524 items, results shown in Figure 16 are obtained.  

 

Figure 16. Episode reward obtained by different algorithms during the learning process for an action 

space of 524 items. RA stands for Random Agent. 

Figure 16 shows the reward obtained by the agents (including the random one) in the test set 

at different stages of the training process in the test set. These results allow several 

conclusions to be drawn.  

First, the agents trained through A2C and PPO outperform the random agent as long as the 

training is at an advanced stage. While the random agent’s reward is 24,87, A2C reaches 

115,4 and PPO’s best models earns over 65,3.  

Second; the reward increases over time. This means (along with the first conclusion) that there 

is a learning by the algorithm. It is common, on the other hand, to have large ups and downs 

in performance during training; RL is characterized by instability during training. 

Third; despite the performance achieved by the models, the results are not successful at all. 

In a data set with almost 1000 (957) observation-action pairs and taking into account the 

proposed reward signal, an accuracy of 100% would mean a reward close to 10,000. It is clear 

then that obtaining rewards between 40-60 is not satisfactory. 

Similar results are obtained when increasing the action space.  
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Figure 17. Episode reward obtained by different algorithms during the learning process for an action 

space of 686 items. 

 

Figure 18. Episode reward obtained by different algorithms during the learning process for an action 

space of 924 items. 

Figure 17 and Figure 18, show results for action spaces with 686 and 924 items, respectively. 

In the first one, PPO is the algorithm that achieves better results. While the random policy gets 

a reward slightly below 32, PPO reaches 231,5. On the other hand, A2C best model gets 47,8. 

Also, both algorithms perform better as timesteps advance.  

Similar results are obtained in the second one. Leaving aside the early timesteps, highly 

conditioned by the initial random policy values, the trend is bullish. It is easy to observe in the 

0

50

100

150

200

250

0 2000 4000 6000 8000 10000

Ep
is

o
d

e 
re

w
ar

d

Training steps

PPO

A2C

RA

0

10

20

30

40

50

60

0 2000 4000 6000 8000 10000 12000

Ep
is

o
d

e 
re

w
ar

d

Training steps

PPO

A2C

RA



Deep Reinforcement Learning for Recommender Systems  Page 55 

 

A2C algorithm, but it is also true in the PPO. Also, both algorithms end performing better than 

the random agent in the training last stages. 

These results (greater reward achieved with the trained algorithms than with the random agent, 

upward trend of the reward and relatively low performance of the agent) are maintained as the 

action space gets bigger. Also, they are kept independently of the observation size: changes 

in the number of steps in the observation or the distribution of the information by altering the 

number of channels result in the same patrons.  

The main reason for obtaining these results is the lack of data in the training set. On the one 

hand, the training set only contains feedback of the existing recommendations in the users’ 

historical records, which is sparse compared with the size of the action space of the RS. 

Moreover, this feedback only tells which item is selected by the user, meaning one item gets 

a 1 and the other ones all get a 0. This feedback is clearly not enough when training from 

interaction. On the other hand, even if this feedback was available, it may not be enough. 

The complete dataset (without reduction), for example, consists of 1.586.586 click-out actions 

(that is, 1,586,586 observation-action pairs) and 927.142 items. When training begins, the 

algorithm starts to sample actions based on a random policy: that is, the probability of 

recommending the correct element in the first action would be 1/927.142. Furthermore, this 

first success would be obtained on average after 927.142/2 = 463.571 attempts: almost 1/3 of 

the total training steps. However, this first boost would not be enough to train the policy on its 

own and the algorithm would continue to explore other alternatives. To the point that at the 

end of the training it would hit just over 1.586.586/927.142 = 1,71. Considering accepting as 

valid one of the 25 items proposed by Trivago, the number of hits would rise to not much more 

than 42,78. This is clearly insufficient considering the agent has to map from 45x45 

observations to 927.142 items. Reducing the action space by removing the less interacted 

items increases a bit the rate of success, but not to the point of solving this issue. 

This a common problem when facing RS: the data to learn from is very sparse. And on top of 

that, RL is known for being sample inefficient, limited by the need to explore the state space 

through trial and error. That means usually millions of interactions are needed for success. In 

fact, if starting from a random policy it needed few interactions, it would imply getting stuck at 

a local minimum, which is not desirable. 

Several articles speak of the difficulty of achieving good results using only RL. In [40], for 

instance, researchers affirm "due to the lack of sufficient data, directly generating 

recommendations from RL is difficult" and propose to apply their RL-based method in already 

built recommendation models. [19] also mentions the limitations for offline policy learning, 

especially when facing enormous action space. [37] also speaks about the problem of not 

having feedback for all possible items. 
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7.4.2. Behavioral Cloning approach 

As seen in 7.4.1, training a RL agent from scratch for this particular case has some difficulties. 

One approach for overcoming these limitations is to take advantage of the fact of having 

Trivago recommendations in each state, a priori better than random ones, to pre-train the agent 

with them and then finish training through RL. This is known as Behavioral Cloning (BC) and 

consists of using expert demonstrations (trajectories from a controller, from another trained RL 

agent, …) to pre-train RL policies as in a supervised learning problem, and therefore accelerate 

training. This alternative is pointed out in [40], among others.  

First, the train set will be divided into a pretrain and a train set. The pretrain set will be then 

used to generate expert observation-action pairs in a separate dataset. After that, the algorithm 

policy will be extracted and pretrained through supervised learning using the previously 

collected trajectories. Finally, the policy will be inserted back in the RL algorithm. 

For an action space of 524 items and using a 25% of the train dataset for pretraining, results 

before RL-training show an episode reward = 1803,7. After training through RL, the results 

seen in Figure 19 are obtained. 

 

Figure 19. Evolution of episode reward during training using BC and 524 items when pretraining with the 

25% of the set.  

As seen in Figure 19, reward decreases dramatically as timesteps advance either with A2C or 

PPO.  

With A2C, episode reward goes from 1803,7 to 53,4 in the first iteration. After that, reward 

drops continuously to 0,3. This model performs much worse than the one obtained without 
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pretraining (115,3). Indeed, it performs worse than the random agent. Therefore, the main 

conclusion is that the pretraining barely helps the RL A2C agent to get higher rewards. In fact, 

supervised learning alone clearly outperforms the results obtained through RL. 

Better results are obtained by using PPO. Although there is also a decrease in the first 

timesteps, after timestep = 4000 there’s a relative stabilization period where the reward is kept 

between 650 and 800. These models are better than the ones obtained without pretraining, 

where rewards went from 26,1 to 65,3 (in the stabilized period). Although one can say that 

pretraining before applying RL result in a better performance than without pretraining, the 

conclusion is the same as with the A2C algorithm: supervised learning clearly outperforms RL 

results. 

The difference in results between the PPO and A2C algorithms is mainly due to the objective 

functions of each of the algorithms. As explained in 7.3.3.1.2, PPO optimizes the performance 

while keeping the new policy close to the old one. A2C doesn’t try to keep policies close. 

As explained in 7.3.3.1.2, there is a parameter in the PPO objective function to limit how far 

the new policy can be from the old one. This parameter is called clip_range and can be tuned 

as desired (its default value, used in Figure 19, is 0,2). Also, there is an analog parameter, 

called clip_range_vf that limits the value function parameter optimization. In this case and since 

the expert trajectories achieve good results, it is interesting to keep both the new policy and 

the new value function as close as possible to the new one to see if the policy can be improved. 

Figure 20 shows PPO results for different clip_range and clip_range_vf values.  

 

Figure 20. Evolution of episode reward during training using BC and 524 items when pretraining with 

25% of the set, for some clip_range and clip_range_vf values. Model 1 has parameters clip_range = 0,2 

and clip_range_vf = 0,2; Model 2: 0,2 and 0,1; Model 3: 0,1 and 0,1; Model 4: 0,1 and 0,05; Model 5: 
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0,05 and 0,05. 

As seen in Figure 20, reducing the clip_range improves the model performance significantly. 

While when both values were 0,2 reward was stabilized over 650-800, lower values stabilize it 

over 1000-1200. Moreover, the stabilization phase is better defined and starts earlier (timestep 

= 3000). The best model is Model 4, which reaches a reward 𝑟 = 1233,5. On the other hand, 

reducing clip_range value below 0,1 does not bring any benefit. However, this improvement 

does not solve the problem and supervised learning alone continues to perform better alone. 

Similar results are obtained when dedicating different percentages to the pretraining phase. 

 

Figure 21. Evolution of episode reward during training using BC and 524 items when pretraining with the 

5% of the set. PPO hyperparameters are the optimal: clip_range = 0,1 and clip_range_vf = 0,05. 

Figure 21 shows results when dedicating only 5% of the dataset to the pretraining phase. As 

it can be seen, the performance also falls in the first steps and RL doesn’t improve the results 

obtained in the first stage. The performance loss is a bit higher compared to when pretraining 

with 25% of the set for the PPO algorithm (now is up to 60% compared to the 30% in Figure 

212). In the case of A2C, the performance loss is lower (90% compared to almost 100% in 

Figure 20). However, the final performance is below the one obtained without pretraining (43,1 

compared to 47,8).  
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Figure 22. Evolution of episode reward during training using BC and 524 items when pretraining with 

the 50% of the set. PPO hyperparameters are the optimal: clip_range = 0,1 and clip_range_vf = 0,05. 

As Figure 22 shows, increasing the percentage of steps dedicated to the pretraining phase 

does not solve the performance decrease. Although both algorithms finish the training with 

better results than the random agent, the decrease in performance is still notable. Increasing 

more the percentage of pretraining steps does not leave enough train steps in order for the 

performance to be stabilized. Anyway, it the same patron is reproduced.   

[23] says that it is unclear how to effectively use BC with RL, but points out that it may be 

because the two approaches are optimizing different objective functions. To address it, they 

propose a combined loss function that consists of an expert BC loss together with the losses 

of the other RL objective functions. The BC loss drives the actor’s actions (they propose an 

actor-critic architecture) towards expert trajectories by minimizing the actions predicted by the 

policy network and the expert ones.  

In a similar line, [27] affirms that this kind of forgetting when using RL is often caused by the 

entropy bonus present in the objective function, which encourages the agent to take actions 

randomly. Since those actions would not yield relevant rewards, pre-trained behavior would 

be erased. Instead, he proposes substituting the entropy bonus by a bonus that would keep 

those behaviors intact.  

On the other hand, the successful results obtained by using supervised learning satisfy in part 

one of the premises of the work. Leaving aside the part of interaction inherent to the RL, it is 

possible to learn (and obtain good results) from transforming the information into images and 

finding patterns on them. 
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8. Conclusions and further work 

RL-based RS stand out for: continuously updating recommendation strategies according to 

the evolution of user preferences and learning strategies to maximize long-term versus the 

short-term benefit.  

This project contributes to those systems mainly in two aspects. First, it proposes a general 

formulation of the Markov Decision Process for the RS case. The proposed formulation 

encompasses several formulations previously used by other researchers and facilitates the 

way to later apply RL.  

Second, it proposes to express the environment state as an image. This allows to take 

advantage of the full potential of the DRL algorithms. These algorithms work with CNN 

architectures, which can capture additional information by considering the positioning of the 

input values.  

Finally, it shows the application of these two proposals in a practical case. First, it describes 

the particular case according to the MDP generalization proposed. Then, it converts the 

information in the dataset into a numerical format to later on express the state as an image. 

Finally, it trains a reduced version of the system through RL. Results with reduced versions of 

the dataset show how the trained agent offers better recommendations than the arbitrary 

choice.  However, the system does not achieve a great performance mainly due to the lack of 

interactions. This can be caused in part due to the lack of feedback to not recommended items 

by the original RS. 

As mentioned, training a RS using RL from offline data is not straightforward. RL is sample 

inefficient and needs lots (millions) of interactions, especially when the action space is huge. 

That’s why it has been successful specially with low dimension action spaces and in 

environments such as videogames, where lots of interactions are available. As opposite, RS 

usually have high dimension action spaces and limited data is available.   

In order to succeed in RS by using RL, two possibilities stand out above the others: increase 

the available interactions by constructing a simulator based on previous logged data or pretrain 

the policy offline not from interactions but from logged data directly.  

[37] goes in the first direction. They propose an online user-agent interaction environment 

simulator that predicts a reward based on collaborative filtering techniques using the cosine 

function as similarity measure. [19], for instance, introduces a multi-head NN that models the 

environment and generates user responses. [8] and [38] also built a simulator. 

On the other hand, [40] directly takes user-item interaction pairs to train their proposed 
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methods SQN and SAC. In fact, they work can also be considered as a form of imitation 

learning, since part of their model is trained to imitate user actions. [13] also uses logged data 

to pretrain the policy and later on finish the training in an online mode. 

In the second approach was also included BC, whose objective was to pretrain the policy apart 

from expert demonstrations to later on update the policy by means of RL. However, its 

application is not easy since BC and RL try to optimize different functions. That leads to a 

decrease of performance in the second training stage.  

Further work can go in these two directions. 
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