Sum of a random number of independent random
variables
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Sum of a random number of independent random
variables

Let N and X1, X5,...,X,, ... be independent random variables
such that:

» N takes nonnegative integer values.
» The variables X;, i > 1, are identically distributed.
We are interested in the sum
S=Xi+Xo+ -+ Xy

in which the number N of terms is random. (We take S = 0 if
N = 0 happens.)
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The characteristic function of the random variable S can be
obtained as follows:

Ms(w) = E (e"ws)
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Observe that E (¢“° | N = 0) = E (e™“?) = 1.
If N=k, k> 1, then
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Remark. A shortest way to formulate the previous calculation is as

follows:
o) =5 (¢5) =2 (2 (=)
where
E (ei“’s‘ /v) = (Mx(w))V
Therefore

Ms(w) = E ((Mx(@))") = Gu(Mx(«))
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Let Gn(z) = Y40 P(N = k) z* be the probability generating
function of N (considered here as a function of a complex variable

z).
Then

Ms(w) = (Mx(w))* B(N = k) = Gy (Mx(w))
k=0

> Notice that the composition Gy (Mx(w)) is well-defined,
because |[Mx(w)| < 1 for all w € R and Gy(z) converges for
all z € C such that |z| < 1.

Example 1

» Let the number N of costumers arriving at a service point be
a Po(\)-distributed random variable.

» Each arrival is randomly and independently served with
probability p.
(Hence an arrival is not served with probability g =1 — p.)

Let us determine the probability distribution of the number S of
served customers.
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Example 1

We have
S=X1+Xo+ -+ Xy,

where X; is the indicator random variable of the event “the i-th
arrival is served”. So X; ~ Be(p).

Moreover, '
Mx (w) = q+ pe'“, weR

Gn(z) =N zeC,

Example 1

Analogously, if R denotes the number of non-served customers,
then R ~ Po(\q).

» |t can be proved that S and R are independent variables.

» Notice how the convolution theorem applies. Indeed,

Ms(w) Mg(w) = AP(e—1) Ag(e™—1)
— AMpra)(e®—1) _ A(e“-1) _ V(o).

in accordance with the fact that S+ R = N.
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Therefore
Ms(w) = Gy (Mx(w)) = eM#=1) ,
z=q+pe'“

jw_ iw_
— eMatpe“—1) _ Ap(e—1)

This is the characteristic function of a Poisson random variable
with parameter A\p. Thus

S ~ Po(Ap)

Example 2

As a second example consider the following scenario.

» The number N of costumers arriving at a service point is a
Ge(p)-distributed.

» The service times X;, i > 1, are independent and
Exp(p)-distributed random variables.

Let S be total time of occupancy of the service point,

S=Xi+Xo+-+ Xy
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Example 2
Now u pz
M == =
x(@) p—iw’ w(z) 1—gz
Therefore
pz
s(w) = 6w (Mx(w)) = 1= et
p—iw
Pt 1p

We conclude that
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Expected values

» In Example 1 we have X ~ Be(p), N ~ Po(}), and
S ~ Po(Ap). Therefore

E(S) = Ap = E(N) E(X)

» In Example 2 we have X ~ Exp(u), N ~ Ge(p), and
S ~ Exp(up). Hence

= E(N) E(X)
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Expected values

We can obtain the expected value of S = Xy + Xo + -+ + Xy by
conditioning on N, that is to say, E(S) = E (E(S | N)).

We have

E(S|N=kK)=EX+Xo+ -+ Xe | N = k)
:E(X1+X2+-~-+Xk):km,

where m = E(X) is the common expected value of the variables X;.

Therefore E(S | N) = mN and so

E(S) = E(E(S | N)) = E(mN) = mE(N) = E(N) E(X).
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