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Abstract

Abstract

In recent years, there has been a growing trend in the use of Artificial Intelligence (AI) for

processing medical images, more particularly in the classification of such images. Thus, using

Deep Learning (DL) models that are able to classify medical images, one can build systems that

can greatly help doctors to get a diagnosis.

The development of such systems for rare diseases is challenging, mainly because of the lack

of a huge amount of data to study them. One of such diseases is collagen VI-related muscular

dystrophy. The work presented below, combines machine learning models and data extracted from

patients to implement an automatic diagnosis of collagen VI-related muscular dystrophies.

The Computer-Aided Diagnosis (CAD) system works on images of fibroblast cultures obtained

from a confocal microscope and relies on a DL model based on a Convolutional Neural Network

(CNN) to classify patches of such images in two classes: the negative class is denoted ’control’

which corresponds to healthy subjects and the positive class is called ’patient’ from persons affected

by a collagen VI-related muscular illness. Once this classification is done, it is used to generate

an overall diagnosis on a query image using a majority voting method.
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Introduction

1 Introduction

1.1 Motivation

Deficiencies in the structure of collagen VI are a common cause of neuromuscular diseases with

manifestations ranging from the Bethlem myopathy to the severe Ullrich congenital muscular

dystrophy. Their symptoms include proximal and axial muscle weakness, distal hyperlaxity, joint

contractures, and critical respiratory insufficiency, requiring assisted ventilation and resulting in

a reduced life expectancy. Moreover, the skin and other connective tissues where collagen VI

is abundant are also affected [1][2]. As described in the Online Mendelian Inheritance in Man

(OMIM)[3] database entries 254090 and 158810, the collagen VI structural defects are related to

mutations of three main genes, namely genes COL6A1, COL6A2, and COL6A3. As in all diseases

caused by dominant mutations, where there is not a complete absence of a main protein, and

where the effect of a genetic variant on the protein structure is not evident, collagen VI defects

are difficult to diagnose. Thus, before any genetic analysis, the standard technique for the diagnosis

of collagen VI-related dystrophies is the analysis of images of fibroblast cultures [4] (see Fig.1.1).

Several aspects of the images, such as the orientation of the collagen fibers, the distribution of

the collagen network, and the arrangement of cells in such network, are taken into account by

the specialists to identify potential patients. However, this evaluation is only qualitative, and the

regulatory agencies would not approve any treatment (such as, for instance, gene editing via the

CRISPR technology) without an objective methodology to evaluate its effectiveness [5]. Thus,

there is an imperative need for accurate methodologies to quantitatively monitor the effects of

any possible new therapy. The work presented is intended to meet the need for precise techniques

to quantitatively evaluate the impacts of any new treatment.

In this context, the availability of Computer Vision (CV) technologies offers the possibility to

implement systems to support the diagnosis process. In a previous project, in 2017 researchers

from the Institut de Robòtica i Informàtica de Barcelona (IRI) and from the Hospital Sant Joan

de Déu developed the first Computer-Aided Diagnosis (CAD) system [6] for dystrophies caused by

defects in the structure of collagen VI from images of fibroblast cultures obtained with a confocal

microscopy. This CAD software implemented classical CV tools to identify high level features

in the input images. Such features were then used to identify images similar to the input ones

on a database with healthy subjects labeled as ”controls” and subjects affected by collagen VI

muscular dystrophy labeled as ”patients”. The images in this database were generated by doctors

specialized in collagen VI defects. This database was also used to train a Convolutional Neural

Network (CNN) to complement the results of the classical approach.

10



Introduction

Figure 1.1: Confocal microscopy images of fibroblast cultures. Left: Image of a control subject. Center: Image
from a patient with the Bethlem myopathy. Right: Image from a patient of the Ullrich muscular dystrophy. In the
three images, the network of collagen is shown in green and the fibrolast nuclei in blue.

Despite the Hospital Sant Joan de Déu is the national center of reference for dystrophies related

with collagen VI defects, the availability of the confocal microscope and its use to capture images

of fibroblast cultures is relatively recent. Thus, the main limitation of the previous CAD software

was the small size of the database with correctly classified patients and controls. However, from

2017 until now, the database has been significantly extended and this offers the possibility of

notably improving the performance of such system.

1.2 Objective

The objective of this project is to develop a new CAD system to automatically classify images of

fibroblast cultures obtained with a confocal microscope. It must be:

• Accurate: The system must generate a low number of missclassification, i.e., false positives,

or false negatives.

• Robust: The accuracy must be maintained over the whole database available nowadays,

not only on the reduced database used to generate the first CAD system.

Moreover, the developed solution must be integrated in the software currently used in the

hospital to support the diagnosis of new cases of collagen VI deficiencies and to monitor the

evolution of the patients. This monitoring is performed by obtaining scores for the different

features extracted. In addition, a measure called ’Goodness’ provided by the CNN is used to

quantitatively evaluate the subject under study.

The objective of this project is challenging since the variety of the cases recently included in

the database is significant. To address this challenge, we will rely on Deep Learning technologies.

From all these technologies, a pretrained CNN such as Efficientnet will be used. Deep Learning

is providing exciting solutions for the identification, classification, and quantification of patterns

in medical images. The key feature of Deep Learning is the exploitation of hierarchical feature
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representations learned solely from data, instead of handcrafted features mostly designed based

on domain-specific knowledge.

The project has been carried out at the Universitat Politècnica de Catalunya (UPC) with the

Image Processing Group (GPI) at the Department of Signal Theory and Communications (TSC),

jointly with the Institut de Robòtica i Informàtica de Barcelona (IRI) and in collaboration with

the Hospital Sant Joan de Déu.

This document is structured as follows. Section 2 describes the previous CAD system for

collagen VI muscular dystrophies, which is the starting point of this project. Then, Section 3

describes the DL approach proposed in this project and Section 4 includes the results obtained

with this approach. Section 5 details the project budget and, finally, Chapter 6 summarizes the

conclusions and proposes future implementations to improve the system.

12
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2 Previous Work

As mentioned in the introduction, this project departs from the first CAD system for dystrophies

caused by defects in the structure of collagen VI. Therefore, before focusing on the work done in

this project, we will describe the previous work. This existing system analyses images of fibroblast

cultures obtained with a confocal image. Thus, we will first describe the process used to obtain

such images. Then, we will describe the two CAD approaches already developed. While the first

one is based on classical computer vision tools, the second one relies on the use of a CNN.

Figure 2.1: View of the interface of the proposed automatic diagnostic software.

The figure shows the CAD system interface. To run it, the images to be analyzed must be

selected. The current image can be seen on the right side in large size. The left part is dedicated

to show bloxpots of the features extracted by the classical approach. In the lower left part,

there is a button that allows to run the inference with the Convolutional Neural Network (CNN).

When executed, it will open a window where the prediction on each of the image patches will be

displayed. In the lower right part, cases with similar features to the current image are shown.

2.1 Image Acquisition

To obtain the training images, samples from the forearm were obtained from patients, as well

as from age-matched controls. Primary fibroblasts cultures were established using standard pro-

cedures [4]. Patient and control samples were treated in parallel, with 25 µg/mL of L-ascorbic

acid phosphate magnesium (Wako Chemicals GmbH, Neuss, Germany) for 24 hours. After that

time, cells were fixed with 4% paraformaldehyde in phosphate-buffered saline solution. Collagen

VI was detected by indirect immunofluorescence using a monoclonal antibody (MAB1944, Merck,

13
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Germany) and fibroblast nuclei were stained using 4,6-diamidino-2-phenylindole (Sigma Chemical,

St. Louis, USA).

Images of the samples with 1024x1024 pixels were obtained with a Leica TCS SP8 X White

Light Laser confocal microscope with hybrid spectral detectors (Leica Microsystems, Wetzlar,

Germany), an HCX PL APO 20x/0.75 dry objective, and the confocal pinhole set to 1 Airy

unit. Collagen VI was excited with an argon laser (488 nm) and detected in the 500-560 nm

range. Nuclei were excited with a blue diode laser (405 nm) and detected in the 420–460 nm

range. Appropriate negative controls were used to adjust confocal settings to avoid non-specific

fluorescence artifacts. The detector gain and offset values were adjusted to use the entire dynamic

rate of the detector (12 bits), but avoiding oversaturated voxels. Sequential acquisition settings

were used to avoid inter-channel cross-talk. Ten sections of each sample were acquired every 1.5

µm along the focal axis (Z-stack) and combined into an intensity projection to form a single image.

Finally, the training images were labelled either as control for healthy subjects or patient for

individuals affected by collagen VI muscular dystrophy by a team of expert doctors. For this

reason, it can be safely assumed that there is no noise or incorrectness in the labels of the data

used for training the proposed system.

2.2 Classical Approach

The fist CAD system developed to identify images with defects in the collagen VI relied on

classical computer vision tools. A total of nine high-level features have been defined relying on

the experience of the doctors. These features are:

• The orientation of the collagen fibers.

• The noise in the images.

• The mean intensity.

• The intensity mode.

• The porosity, defined as the size of the wholes in the collagen network.

• The number of cell nuclei in the image.

• The shape of the cell nuclei.

• The number and size of the collagen aggregates (i.e., spots in the image with high concen-

trations of collagen).

• The lacunarity, which is a fractal measure of how patterns fill space.

14
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Figure 2.2: Overview of the proposed automatic diagnosis system using the classical approach.

Figure 2.3: ROC of classical approach.

The characteristics are used in a k-Nearest Neighbours (kNN) search to identify similar cases

in the available database. The proposed diagnostic (see figure 2.2) is based in the number of

cases/patients retrieved in such query. The classification accuracy of this approach was about

88% with and Area Under the Curve (AUC) of 90% (see figure 2.3).

2.3 Deep Learning Approach

The previous approach was complemented with a classification approach relying on a CNN. Since

this approach is the starting point of this project, we will describe it in detail, including the data

augmentation procedure, the architecture used to classify patches of the input images, the majority

voting system used to classify images, and, finally, the results obtained with this approach.
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Figure 2.4: Overview of the proposed automatic diagnosis system using a majority voting on the individual patches
decisions of the CNN model. the system also provides a detailed visualization of the diagnosis.

2.3.1 Data Preprocessing

Since the image acquisition procedure is complex and time-consuming, and we are dealing with a

rare disease, the available samples are limited. For this reason, to generate enough data to train

the CNN, the data augmentation scheme described next was used.

The data was augmented by splitting the available full-size images into small, non-overlapping

patches. Each patch was used as an independent input to train the CNN model. The patch size

was of 64x64 pixels, which was enough to capture the main features of the input images, i.e., a

significant portion of the collagen network and several nuclei or parts of them. Moreover, the use

of such small patches allowed to generate enough data for training and testing.

Since input images were of 1024x1024 pixels, 256 patches were generated from each image.

Each patch was further transformed to get even more variations of the data. The patches were

rotated clockwise by 90, 180, 270 and 360 degrees and every rotated patch was flipped horizontally.

Thus, eight different variations of each original patch were generated and, consequently, each input

image produced 2048 training patches for the CNN. Since initially we had 276 images, with the

proposed data augmentation process, the training and testing sets included, respectively, 56320

and 14336 patches, without taking into account the rotated and mirrored patches. The patches

were normalized so that they had zero mean and unit variance. Normalization reduces the effect of

possible noise in the images and improves the learning process avoiding its premature convergence.

2.3.2 CNN

A CNN architecture suitable for the addressed problem was identified. To this end, two concepts

were considered: the size of the network (with a small/large number of convolution kernels)

and the abstraction level (with increasing/decreasing sizes of the subsequent layers of the CNN).

Experimentally, small CNNs with a decreasing number of features provided the best results. The

proposed architecture is detailed in Table 2.1 and is similar to the one in [7], which has already

been proven to be particularly adequate for image classification. However, the proposed network

is smaller, since the classification task addressed here is simpler than the one addressed in [7].

16



Previous Work

Layer Type Number of neurons (output layer) Kernel size Stride
1 Convolution 64x64x128 3x3 1
2 Max Pooling 32x32x128 2x2 2
3 Convolution 32x32x64 3x3 1
4 Max Pooling 16x16x64 2x2 2
5 Convolution 16x16x32 3x3 1
6 Max Pooling 8x8x32 2x2 2
7 Fully Connected 150 - -
8 Fully Connected 2 - -

Table 2.1: Details of the CNN architecture proposed to classify the 64x64 pixels image patches.

Table 2.1 provides a schematic representation of the CNN architecture finally used to classify

the patches of the fibroblast images. In this architecture, each image patch is passed through

three convolutional layers (layers 1, 3, and 5), which include the application of ReLU activation

functions after the kernel computation. The first convolution layer defines 128 feature maps of size

64x64, the second one defines 64 feature maps of size 32x32, and the last one defines 32 feature

maps of size 16x16. The reduction in the size of the feature maps is obtained with max-pooling

layers (layers 2, 4, and 6), with a stride of 2 following the convolution layers. After the feature

generation layers, the classification is implemented with two fully-connected layers (layers 7 and 8).

The first one has 150 neurons followed by a ReLU activation function and trained with a dropout

mechanism with probability 0.5. The second fully connected layer has 2 neurons, whose output

is truncated into a single binary output by a sigmoid activation function to provide the final

classification.

2.3.3 Majority voting

The DL approach provides a score for each patch in the test image. The goodness of the overall

image is obtained with majority voting, i.e., it is the percentage of patches classified as CONTROL

class. This final score, thus indicates quantitatively how much the image resembles that of a

healthy person, being 100% a healthy person and 0% a completely sick person.

Figure 2.5: Visualization of the diagnosis of a given fibroblast culture image. Each patch of the image is colored
according to its probability of belonging to the control class. The system also gives an overall score computed as
the percentage of patches classified as control in the image.
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2.3.4 Results

The following is a summary of the results obtained in this first version, which will serve as a

reference for the current work being carried out.

First of all, the configuration of the hyperparameters with which the best results were obtained

will be explained. The batch size was set to 32. Overall, every epoch required around 2 minutes

to finish and under 10 epochs are necessary to converge. The function loss used is the categorical

cross entropy which is used in multi-class classification tasks. These are tasks where an example

can only belong to one out of many possible categories, and the model must decide which one. For

training the Neural Network (NN) Adam optimizer was used, with a learning rate of α = 0.01,

an exponential decay rate for the first moment estimates of β1 = 0.9, an exponential decay rate

for the second moment estimates of β2 = 0.999, and ϵ = 10−8 to prevent any division by zero. In

order to evaluate the different models, a 5-fold cross-validation was carried out.

In this confusion matrix (Figure 2.6), the quantity of patches accurately and mistakenly clas-

sified corresponding to the control class is in the first row, i.e. 7585 patches correctly classified

as control, and 530 false positives (fp), i.e. the inputs incorrectly classified as patient. The clas-

sification of patients is given in the second row, where 102 are false negatives (fn), i.e., inputs

incorrectly classified as control, and 6119 are true positives (tp), i.e. inputs correctly classified as

patient. In the majority voting system, the accuracy is perfect and, thus, the confusion matrix is

trivial and not given here.

Figure 2.6: Confusion matrix of the test set for the model trained with the 64x64 image patches
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The approach proposed in the first CAD generates features that capture the latent patterns

in the images and, consequently, it outperforms the other alternative approaches. It achieves an

accuracy of 95%, a precision of 92%, a sensitivity of 98%, a specificity of 93%, and an F1 score of

95%. This outstanding performance at the level of patches is the basis of the perfect classification

obtained with the majority voting scheme.

19



A CNN to Detect Collagen Deficiencies

3 A CNN to Detect Collagen Deficiencies

This project arises from the necessity of considering the extended dataset of fibroblast cultures

that has been compiled at the Juan de Déu Hospital from 2017 till now. Thus, we first describe

this dataset and then present the limitations of the previously developed CNN to correctly classify

this dataset. We also describe the attempts we made to extend this CNN. Finally, we describe

the CNN architecture proposed in this project, which is an adaptation of the smaller member of

the EfficientNet family of CNN models.

3.1 The New Dataset

The available dataset includes fibroblast culture images. In particular:

• 28 cases labeled as control

• 28 cases labeled as patient

• 11 cases labeled adult control

• 12 cases labeled adult patient

Adult cases tend to be milder since patients with severe cases rarely survive the adolescence.

Usually, samples from a potential patient and for a control are obtained on the same day. The

samples are analyzed together. In this way, each patient has a control associated with him/her,

which is contrasted to check that the sample processing has been correct and also serves the

specialists to compare them with each other. Thus, for each case, there is the date at which the

samples were obtained and the LIF files obtained with the confocal microscope. The LIF is a

multi-image (i.e., each file can contain more than one image), multi-plane (i.e., each image can

include several layer) file format. In our case, for each case there are, on average, about 10 LIF

files each containing a single image and where each image includes 10 planes obtained from the

same sample, but at different distances from the objective (i.e., in the Z direction).

The first step was to convert each of these LIF files to a format where the image can be

displayed. On one hand, this will help to understand how the images are and to draw a good

preprocessing strategy for the network to be able to generalize correctly. On the other hand, this

will facilitate the final integration of the software, i.e., to show the subdivision of the image into

patches and to know their prediction through a color code.

The conversion format of choice is Tagged Image File Format (TIFF), although it is also known

as TIF. This format works very well for images such as those processed in this work, since it is a

lossless raster format, which allows us to store very high quality images. On the other hand, the

generated files have a larger size than if they were saved in another format such as JPEG or PNG.
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For the development of this project there was no inconvenience in having so many large files

stored, since there was enough memory available. Besides, what was really needed was to have

high quality images to feed the network.

The conversion between the two formats was carried out using MATLAB software. As men-

tioned in the image acquisition section, 10 sections every 1.5 µm along the focal axis (Z-stack)

were performed for each sample. These sections are stored in the LIF file and projected against

the XY plane to generate a single image that combines the information from all 10 planes. The

dynamic range of each of these planes is 12 bits, i.e. from 0 to 4095, but when saved in TIFF

format, this range is 8 bits, i.e. from 0 to 255. A noteworthy feature, as mentioned in section 2,

is that despite being RGB images, there are only two channels different than 0. The red channel

is not used, but has not been deleted either, since the results are just as good with it as without

it. The green channel shows the collagen while the blue channel shows the cells of the sample.

During the creation of the TIFF images, there were 3 cases that could not be completely

processed. These cases corresponded to the oldest extractions, dated 2017, where the dynamic

range of the planes was 8 bits instead of 12 as was the case for the rest of the images. For the

first version, these cases were discarded because it was thought that they could alter the trained

model. After an analysis of MATLAB documentation it was found that the dynamic range of the

image did not matter as it was always stored in 8 bits. It was decided to incorporate the images

of these 3 cases, but it turned out that there was also a difference in the size of the planes, while

all the others were 1024x1024, these three were 800x800.

In addition, it was decided to find out why these cases contained a different number of pixels if

the size of the samples extracted from people were similar. The pixel resolution of both 800x800

and 1024x1024 images was then checked and, it was found that while resolution in the former was

0.97µm , resolution in the latter was 0.7579µm:

0.97µm

0.7576µm
·800 pixels ≈ 1024 pixels (1)

It can then be concluded that the sample size is the same, but a different number of pixels are

used to cover it. The three cases could be rescaled, but it was decided not to do so since it only

affected 3 cases and furthermore, it was assumed that making such modifications could negatively

affect the learning of the network.

The following will explain how the adult cases contained in the dataset will be treated. Unfor-

tunately, people suffering from this disease do not have a very long life expectancy. When there is

a reference to adult cases, the patients are most often teenagers or adults at a young age. Usually

these people present low symptomatology.
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Initially, adult cases were not treated and only pediatric cases were processed. How the adult

cases were incorporated and what results were obtained will be explained later.

Discarding the cases mentioned above, those with different image resolution and adults, the

dataset contained 227 TIFF images labeled as control and 257 images labeled as patients.

A process common to all the experiments detailed below was data augmentation. More specif-

ically, how patches were generated from each of these images in order to increase the number of

data so that the network would be able to train without overfitting. In addition to the creation

of patches, other on-the-fly processing was also applied to generate new patches.

To detect potential problems in the dataset, it was proposed to use the model that had been

used so far and which had a 95% accuracy. In this way, it would be known at the patch level

which ones were not being classified correctly, at the image level those that presented a greater

error and finally those cases that were not classified according to the annotated class.

Figure 3.1: Accuracy of new dataset at image level

The image 3.1 shows for each of the classes, in blue the control class and in red the patient

class, and at the image level, the accuracy obtained. The accuracy per image is no more than the

percentage of correctly classified patches. The boundary between the 2 classes is 50%, i.e. if an

image has 50% or more correctly classified patches it implies that the prediction and the actual

label are equal. It can be observed that while the control class does not have a large number of

misclassified images, about 25 images, the patient class does have a large number of misclassified

images, about 120 images.
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Figure 3.2: Accuracy of new dataset at subject level

The figure 3.2 shows for each of the classes, in blue the control class and in red the patient

class, and, at the subject level, the accuracy obtained. Each person has a set of images extracted

from his samples, generally about 10. The accuracy per image is nothing more than the percentage

of correctly classified images. The boundary between the 2 classes is 50%, i.e. if a person has 50%

or more of correctly classified images it implies that the prediction and the actual label are equal.

It can be observed that while the control class has only 1 misclassified subject, the patient class

has up to 8 misclassified subjects.

Looking at the graph 3.2, it was decided to discard those cases at the subject level that were

worst classified although it was not convenient to discard all misclassified cases as this way the

network would not be able to learn about the new cases presented in this dataset.

Therefore, on the previous graph, a threshold was established where those who had an accuracy

above it were considered as correct cases to be trained and those who were below it were discarded.

The hospital doctors were contacted to consult the 5 worst cases (threshold < 20%). Their

response was to discard these cases as they were rare patients.

The worst classified case corresponds to a patient that presents a secondary phenotype. The

following worst classified case corresponds to a young adult and as mentioned above, adult cases

are not included in the dataset. The third one, is the same patient of the first case (secondary

phenotype). The fourth and fifth cases are the same pediatric patient which has a rare or new

mutation.
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All the cases mentioned above are rare cases which are best not considered in the training

(at least the 3 most misclassified). The other two are from the same person who is an atypical

malignant (possibly a non-standard mutation). Although it could be interesting to consider them

because the model would see more examples, finally it was decided not to include them.

Not all cases correspond to a different person, although at the beginning it was considered

that each sample in the dataset was from a unique subject. In the case of the cases labeled as

controls, many of them came from the same repeated person. In the case of the cases labeled as

patients, this also occurred but to a lesser extent. This is because the tests were repeated to see

how the disease progressed and to be able to analyze its evolution.

Despite the fact that there are repeated individuals, the hospital specialists assured that the

processing of the samples is repeated each time they are analyzed with the confocal microscope.

Thus, even if the samples are the same or come from the same person, the LIF files are generated

anew each time.

After observing that some people were repeating themselves, it was decided to give a unique

identifier to each person to take into account how the dataset was actually distributed. In this

way, better conclusions could be drawn from the results. Especially when it came to detecting

misclassified cases.

After unique identification, the dataset contains 5 different pediatric people labeled as controls

and 20 pediatric people labeled as patients. Regarding the adult cases, all the cases labeled

as control correspond to the same person while in the patients, there are 9 different people.

Furthermore, the persons in the borderline cases also have other cases whose person-level accuracy

is above the stated threshold separating borderline and non-bankable cases. For this reason 2 cases

also had to be discarded, making a total of 7 cases discarded, 4 of them were from the same person

where 3 were already considered doubtful cases, 2 where 1 was considered a rare case and 1 was

already considered doubtful.

All these cases are considered as doubtful, but they should be considered part of the training

at some point when a model with good accuracy was obtained. It would be good to add them to

see if the classification becomes poor or if the network is able to capture small details and get a

good accuracy on them. This project cannot be limited to re-learn (a bit better and with a bit

more generality) what the previous network already knew, the idea here is to try to learn more

things (to have a good accuracy even in doubtful cases). Once a clear network structure that

works well was obtained, the next step is to work with the doubtful ones (or at least with some

of them).

While this identification was being carried out, some cases that were mislabeled were also

modified. Specifically, a control case and a patient corresponding to the same date were not
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pediatric but were adult cases. In addition, on another date, a case labeled as a control was not

a control but was a patient.

Once doubtful cases have been ruled out, the cleaned dataset was distributed as follows:

• 28 cases labeled as CONTROL

• 21 cases labeled as PATIENT

• 11 cases labeled ADULT CONTROL

• 12 cases labeled ADULT PATIENT

This distribution is represented by 221 images corresponding to control individuals and 199

images labeled as patients. The total amount of images from patients that have been discarded

is 57. As it can be seen, the dataset is more or less balanced so there is no need to apply any

technique to balance it

3.2 Limitations of the Previous Network

The next step was to re-train the CNN, but now using the new dataset provided by clinicians at

the hospital, and whose distribution was explained in the first part of this section 3.1.

For the development of this experiment, the entire dataset was used. It consisted of 477

TIFF images and contained both classes in a more or less equal proportion. It was divided in

a proportion of 80% to train the architecture and 20% for testing purposes. After running this

experiment, it was observed that the metrics obtained with the test set were not acceptable (see

section 4.1).

This is where this training task, which in principle should not present a great difficulty, was

complicated. The first step proposed to detect the source of errors was to use only those images

that were present in both the old dataset and this new dataset. Since the names of the files were

not the same in both sets, it was not possible to know exactly which images belonged to both

sets, although it was known approximately between which years they were included. So from the

new dataset only images up to 2018 were taken.

By training this subset, the network was able to generalize correctly since the metrics obtained

resembled those obtained in the previous section 2.3.4 where the old set was used for retraining.

It was then considered the possibility that the data was not completely well labeled and, in

addition, there were some cases that were abnormal. All the comprehensive analysis that was

performed has already been explained in the previous section 3.1 in more detail.
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In the experiments performed until then, a single training stage was performed and the metrics

were obtained on a specific set of test images. In order to avoid relying on a fixed training-

test partition, k-Fold cross-validation [8] was used to compute the model performance in a more

robust way. Cross-validation is a resampling method used to evaluate AI models on a restricted

information set. The procedure has a single parameter called k that alludes to the quantity of

groups or folds that a given information set is to be split into. This technique is basically used to

estimate the skill of a machine learning model on unseen data. That is, to use a limited example to

estimate how the model is expected to perform in general when used to make predictions on data

not used during the training of the model. It is a popular strategy since it is easy to comprehend

and in light of the fact that it produces by and large outcomes in a less biased or less hopeful

estimate of the model skill than other techniques, like a straightforward train/test split.

The general procedure is as follows:

1. Shuffle the dataset randomly.

2. Split the dataset into k groups.

3. For each unique group:

(a) Take the group as a hold out or test dataset.

(b) Take the remaining groups as a training dataset.

(c) Fit a model on the training set and evaluate it on the test set.

(d) Retain the evaluation score and discard the model.

4. Summarize the skill of the model using the sample of model evaluation scores.

It is vital to see that every observation in the data test is assigned to a singular group and

stays in that group for the duration of the procedure. This implies that each example is offered

the chance to be used in the hold out set 1 time and used to train the model k-multiple times.

Figure 3.3: kfold cross-validation method
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3.3 Using Larger Patches

At this point we had a model that, in spite of having decreased the accuracy with respect to

the model we had until then, was much more robust since we had managed to see many more

examples. The objective of obtaining a much more robust model than the previous one had been

achieved, but the purpose now was to try to improve the metrics based on a good optimization of

the parameters, both the hyperparameters of the network and the processing of the input data,

as well as to offer a good visualization of the training to know where to focus the efforts.

So far, size 64 patches have been used mainly for two reasons. The first is that the full image

size of 1024 is divisible by the patch size 64, and this makes it easier to create patches without

overlapping and occupying the entire image. Secondly, it allows to create enough data for the

network to be able to train correctly without generating too much overfitting. But now that the

number of images has grown to more than 100 for each of the two labels, one could think of using

larger patch sizes. For example, they could be increased to 128x128 so that the network would not

learn such local details and would be able to extract somewhat more global features. Furthermore,

it was demonstrated that the classical approach, which works with the entire image size, worked

better than the CNN in the new dataset. Note that the ideal patch size for training the network

if there were enough images would be the size of the image itself.

For this experiment we have used the same number of images as in the previous section, but

since the patch size has doubled, the number of pixels per patch is quadrupled, so there are now

fewer patches to train. Still, it is possible to train the network to generalize correctly without

generating overfitting. In the same way as in the previous experiments, in this one the Kfold

technique has also been used to see if the results obtained were more or less constant regardless

of the test set used.

So far there are two models obtained with the old network, the one where the input size

was 64x64 and the one with the input size of 128x128 and also the model using the Efficientnet

(see section 3.4) network. So with these 3 models it is not possible to compare which of the

two networks performs better since, as seen with the first two models, only increasing the input

size already improves the metrics. Therefore, for comparison, the experiment of training the old

network with 224x224 patches is performed. In this way, both networks can be compared equally

as long as the hyperparameters used are the same.

3.4 A New Architecture

The old network offers reasonable results, but not as good as the ones obtained with the small

dataset available when it was developed. To improve these results, one should extend the network

(adding more layers), optimize the hyperparameters, or use another network. This is where

Efficientnet[9] appears. EfficientNet is family of networks which work very well for classification

tasks.
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3.4.1 The EfficientNet Family

Convolutional Neural Network are commonly developed at a fixed resource budget, and then

scaled up to obtain better accuracy if there are more resources available. This can be done by

adding more layers to the baseline model. In [9], the authors systematically study the model

scaling and identify that carefully balancing network depth, width, and resolution can lead to

better performance. This process of expansion is not easy to understand and there are many ways

to do it. The most common is to raise their depth or width. Another less common, is to scale

up models by image resolution. Based on this observation, what they propose is a new scaling

method that uniformly scales all dimensions of depth/width/resolution using a simple yet highly

effective compound coefficient. They demonstrate the effectiveness of this method on scaling up

MobileNets and ResNet.

In most cases, CNN architectures are either too large, too deep, or have an extremely high

resolution. Increasing the dimensions initially improves the model, but it soon saturates, and

the model created simply has more parameters and is thus inefficient. Nevertheless, scaling up

depth, width and resolution in a more systematic manner can improve the performance without

saturating. Efficientnet applies that scaling method to a baseline network consisting of MBConv

blocks, the basic building block that also makes up MobileNetV2. These blocks are a type of

residual block used for image models that use an inverted structure for efficiency reasons.

Architectures such as EfficientNet are particularly useful for using deep learning on the edge,

as it reduces computational cost, battery usage, and also training and inference speeds. This kind

of model efficiency ultimately enables the use of deep learning on mobile and other edge devices.

The family of models is efficient and produces better outcomes with a significantly lower number

of parameters. The models of this architecture go from 0 to 7 and the main differences is the

number of sub-blocks that contain each model and the input resolution.

Figure 3.4: EfficientNet-B0 baseline network – Each row describes a stage i with Li layers, with input resolution
hHi, Wi and output channels Ci

To go significantly further, they utilize neural engineering search to design a new baseline

network and scale it up to get a family of models, called EfficientNets, which accomplish much
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better accuracy and efficiency over past CNN. Specifically, their greater model, EfficientNet-B7,

accomplishes state-of-the-art 84.3% top-1 accuracy on ImageNet, while being 8.4x smaller and 6.1x

quicker on inference than the best existing CNN. Their EfficientNets likewise transfer well and

achieve state-of-the-art accuracy on CIFAR-100 (91.7%), Flowers (98.8%), and 3 other transfer

learning datasets, with a significant degree less parameters.

Because training EfficientNet on ImageNet dataset takes a huge amount of resources and several

techniques that are not a part of the model architecture itself. Hence the Keras implementation,

which is the one that has been used for this project, by default loads pre-trained weights obtained

via training with AutoAugment[10].

3.4.2 EfficientNet on Collagen VI Images

The idea was to use Efficientnet to see what possibilities it offered, not only in accuracy but also in

training/inference times and resources consumption. In the event that this network did not offer

good results, other pre-trained network options would be explored to see if they perform better

than the current network. For example, the possibility of using VGG16[11] or its larger version

VGG19, InceptionV3[12] or ResNet50[13], among others, has been considered.

All models of the Efficientnets family are accessible for both Tensorflow and Pytorch. For this

situation it has been decided to use Tensorflow since the old version is implemented in this library

and it was consistent to continue using it.

For the development of this work, the smallest model (EfficientNetB0) has been chosen since

it is also the one with the smallest size and therefore the training times are shorter. This model

takes input pictures of shape (224, 224, 3), and the input data should range between 0 and 255.

The first layers are liable for normalizing the input data. Consequently, the patches to be made

should have this size. If not, the first layers of this architecture consist of a preprocessing of the

data that, among different changes, plays out a rescaling so the input size is 224x224x3.

As mentioned, this architecture has already been pretrained on a dataset called ImageNet.

For that reason these networks can be retrained in 3 distinct ways. Assuming you have a huge

set, you can train from scratch, that is, with an arbitrary initialization of weights. The remaining

two options are more interesting for the case under study, since they start from weights that have

already been trained on another set of images as discussed above. On the one hand there is a

technique called fine tuning[14] where all the layers of the network are trained and the weights

of all of them are updated as the training progresses. On the other, there is transfer learning[15]

where the Effcientnet layers are locked so that the assigned weights are not updated in the training.

Only the output layers are adjusted. In this way, faster training is achieved.

In this work the last two options have been tested, since training from scratch does not take

advantage of the learning obtained from the pretraining.
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Since the case at hand is a binary case, the output of our network must be 2. But as previously

mentioned when the Efficientnet architecture was defined, it has been trained with 1000 classes,

which implies that the last layer contains 1000 outputs. That is why an adaptation is needed to

be able to have a network that works for this work. As figure 3.4 shows the last layers must be

removed and replaced by others that are suitable for this case. When the model is intended for fine

tuning or transfer learning, the Keras implementation provides an option to remove the top layers.

As this network is implemented using Tensorflow library, the lower layers cannot be eliminated

one by one (corresponding to stage 9 from figure 3.4). Instead, all 3 layers must be completely

delated and then added individually by convenience. Replacing the top layer with custom layers

allows using EfficientNet as a feature extractor in a transfer learning workflow. In this project

they have been replaced by a Global Average Pooling (GAP) layer followed by a dense layer that

contains 2 outputs, one for each class (see table 3.1).

Stage Type Output Shape Param
1 Input Layer [(None,224, 224, 3)] 0
2 efficientnetb0 (None, None, None, 1280) 4049571
3 Global Average Pooling (None, 1280) 0
4 Dense (None, 2) 2562

Table 3.1: Details of the Efficientnet CNN architecture proposed to classify image patches.

As in the previous experiments, the Kfold technique was also used in this one to see if the

results obtained were more or less constant regardless of the test set used. Once similar results

are obtained for the different test sets, a single training can be performed to try to obtain the best

metrics and the final model to be integrated with the software.

3.5 Integration

This section describes how the CNN is merged with the software that brings together both the

classical approach and the DL approach. The way the CNN approach works is to take the image

that is passed to it, generate patches from it and make a prediction on each one of them. Each

patch of the image is colored according to its probability of belonging to the control class. In this

regard, cyan is used to frame patches with more than 90% probability of belonging to the control

class, steel blue is used for patches with probability between 70% and 90%, yellow for patches with

probability between 50% and 70%, orange for patches with probability between 30% and 50%,

and finally red for patches with less than 30% of probability of belonging to the control class. The

percentage of these that are classified as control class is called goodness and is a measure of how

quantitatively an image resembles a control image.par

Although the integration has not been very costly since the main script was already done, some

adjustments had to be made to make the new version compatible. On the one hand, the patch

generation had to be adapted since before they were made without overlap and with a size of
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64x64 and now, patches of 224x224 with overlap must be generated. Furthermore, the number of

patches has to be a reasonable value so that a failure in one of them does not affect the goodness

too much. Moreover, as these patches are displayed in the software next to the original image, a

value has to be chosen that allows to visualize the patches in a clear way and to understand which

areas of the image may be more difficult to classify.

Figure 3.5: Visualization of the diagnosis of a given fibroblast culture image.The system also gives an overall score
computed as the percentage of patches classified as control in the image.
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4 Results

To analyze the methods explained in section 3 a set of experiments has been performed. It should

be noted that not all the results of the implementations mentioned in the previous section will

be shown. This is because there have been procedures that despite being useful for the progress

of the project, produced poor results. Thus, no results will be given for the method proposed to

replicate results of the previous network (although it must be said that the results obtained were

very similar) nor for the old network trained with the whole new training set.

The dataset used to develop the following experiments contains 221 images in TIFF format

labeled as control and 199 images labeled as patients. Data augmentation is applied to each of

these images in order to have much more data available. All techniques have been explained in

section 3.

Before starting to explain the experiments that have been carried out, some hyperparameters

that have been used in all of them will be explained.

Log loss =
1

N
·

N∑
i=1

−(yi ·log(pi) + (1− yi)·log(1− pi)) (2)

First of all, the loss function used is the binary cross entropy (equation 2). The loss function

indicates the quality of the model predictions. Binary cross entropy looks at each of the predicted

probabilities to the actual class performance which can be 0 or 1. That implies how close or far

it is from the actual value. This loss function is appropriate when working with binary tasks.

It is also known that too little training for too few epochs will mean that the model will

underfit the training, validation and test datasets. Too much training for too many epochs will

imply that the model will overfit the training data set and perform poorly on the validation and

test sets. A trade off is to train on the training dataset yet to quit training right when execution

on a validation dataset begins to degrade. This simple, effective, and generally used way to deal

with training neural networks is called early stopping.

During training, the model is evaluated on a validation dataset after every epoch. If the

performance of the model on the validation dataset begins to degrade (for instance, loss begins

to increase or accuracy begins to decrease), the training process is stopped. Also a trigger for

stopping the training process must be chosen. The trigger will use a monitored performance

metric to decide when to stop training. More elaborate triggers might be needed in practice. This

is because the training of a neural network is stochastic and can be noisy. Plotted on a graph, the

performance of a model on a validation dataset may go up and down many times. This means

that the first sign of overfitting may not be a good place to stop training. The trigger chosen

for this work is to stop after a decrease in performance observed over a given number of epochs,

specifically after 10 epochs.
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4.1 Training patches of size 64x64

The first experiment was to train the old network with an input size of 64x64x3. By having an

image size of 1024x1024x3, it was not necessary to overlap the generated patches because there

were enough patches to train and evaluate correctly. Thus, 256 patches were generated for each

image in the new dataset resulting in a total of 122112 patches.

The optimizer used was the Adam. The Adam optimizer is a stochastic gradient descent

method based on adaptive estimation of first and second order moments. The learning rate is

equal to 0.001. The exponential decay rate for the first moment was set to 0.9. While the

exponential decay rate for the second moment was set to 0.999. The last parameter for this

optimizer is epsilon which is used to avoid any division by zero and the value is 10-8.

Another important hyperparameter to choose is the batch size. Batch size is a term used in

deep learning and refers to the number of training examples used in an iteration. Usually the

size is smaller than the total number of examples contained in the training set. The two main

advantages are that less memory is needed during training and that networks are trained faster

with mini-batches. Conversely, the smaller the batch the less accurate the estimate of the gradient

will be. For this experiment a batch size equal to 256 has been used.

As mentioned in the section, the kfold method was used for training and testing. In this case,

it was decided to use k=5.

Although in the paper presented for the previous work it was stated that less than 10 epochs

were needed for the model to converge. For this project it has been decided to train for many

epochs in order to have the best possible results. The total number of epochs was 30 and each

epoch takes approximately 2 minutes 13 seconds to run.

Figure 4.1: Accuracy with input size 64x64
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As can be seen in the graph 4.1, the average accuracy obtained in the 5 folds is 85%. This

represents a drop of 10% with respect to the same architecture, but with the dataset until 2018.

Furthermore, as mentioned above, we have been able to obtain a much more robust model as we

have trained with many more examples.

Figure 4.2: Confusion matrix of the test set for the model trained with the 64x64 image patches.

Figure 4.2 gives the confusion matrix of the system diagnosis performance on the 64x64 patches

from the test set. In this confusion matrix, the number of patches correctly and incorrectly

classified as belonging to the control class is in the first row. From a total of 6656 control patches

in the test set, 5166 are true negatives (tn), i.e., the patches correctly classified as control, and

1490 are false positives (fp), i.e., the patches incorrectly classified as patient. The classification of

patients is given in the second row, where 1025 are false negatives (fn), i.e., the patches incorrectly

classified as control, and 8959 are true positives (tp), i.e., the patches correctly classified as patient.

On this confusion matrix, three metrics such as accuracy, precision and recall can be calculated,

which help to better understand the system. For this experiment and on this confusion matrix an

accuracy of 84.9% is obtained. The recall gives a value of 89.7%, while the precision is 85.7%.

ROC is a probability curve and AUC represents the degree or measure of separability. It tells

how much the model is capable of distinguishing between classes. The higher the AUC, the better

the model is at predicting 0 classes as 0 and 1 classes as 1. In other words, the higher the AUC,

the better the model is at distinguishing between patients with the disease and no disease.
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Figure 4.3: ROC with input size 64x64

The graph 4.3 shows the ROC curves obtained for each of the folds. Moreover, the mean ROC

curve of the 5 folds has also been computed, which has a mean AUC of 0.92. Despite having a

lower accuracy than its previous model, the AUC value has been reduced by 0.03 points.

4.2 Increasing patch size

For this second experiment, the choice of hyperparameters is the same except for the input

size. The purpose of this experiment is to check if a larger patch size provides better metrics than

in the previous experiment. That is why the patch sizes are now 128x128x3.

If the same method were used to generate patches as in the previous experiment, 64 patches

would be created for each image, for a total of 26880 patches. This value is not sufficient if one

wants to train a network that is able to generalize correctly. Therefore, many more patches have

to be generated. This is done by applying an overlap when generating them. It can be thought of

as a window that slides over the image and extracts 128x128 patches. The overlap that has been

applied is 50%, which generates a total of 70650 patches.

The optimizer used is Adam with a learning rate of 0.001, batch size is equal to 256. The kfold

technique was also used in this experiment to obtain more robust metrics. The total number of

epochs used for this experiment is 30 but with larger input sizes, the duration per epoch has been

increased to 4 minutes 47 seconds on average.
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Figure 4.4: Accuracy with input size 128x128

As it can be seen in the figure 4.4 an average accuracy of 91.45% has been obtained in the

5 folds. This increase of approximately 6% compared to the previous experiment confirms that

using a larger input size helps the network to generalize better. It can be assured that by using

larger patches, the network looks at more global details and not as local as when experimenting

with 64x64 size patches.

Figure 4.5: Confusion matrix of the test set for the model trained with the 128x128 image patches.

In the confusion matrix observed above Figure 2.3, the quantity of patches accurately and

mistakenly named having a place with the control class is in the first row.i.e. the patches correctly

classified as control, and 842 are false positives (fp), i.e. the patches incorrectly classified as

patient. The classification of the class patients is given in the second row, where 486 are false

negatives (fn), i.e., the patches incorrectly classified as class control, and 7389 are true positives

(tp), i.e. the patches correctly classified as class patient.
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Figure 4.6: ROC with input size 128x128

Observing the ROC figure 4.6, it can be seen that in this case the curve tends to go more

towards the point (0, 1) than in the previous experiment. This implies an increase in the AUC

which, as shown in the legend, has an average AUC of 0.97.

4.3 Training Efficientnet

The next proposed experiment is to change the architecture used to a pre-trained CNN. The

proposed network is the Efficientnet in its smallest model since this is sufficient to be able to

train satisfactorily. The input size of this model is 224x224x3. Since the size of 224 pixels is not

divisible by that of the complete image (1024 pixels), that is why when extracting patches it is

necessary to do it with overlap. If not, those patches that are located to the right of the image and

in the lower part would contain black pixels since it would be accessing areas outside the image.

In addition, if this overlap were not applied, only 16 patches would be extracted for each image

making the total dataset small to be able to train. In the case of this work, an overlap of 174

pixels (approximately 77%) has been applied so that in such a way it can have enough samples

to train and test with large enough sets. Exactly 400 patches are being sampled for each image,

making the dataset resulting in a total of 168000 patches.

The first experiment performed with this configuration was using the Adam optimizer and

with a learning rate of 0.001. The constant learning rate is the default learning rate setting in

the Adam optimizer in Keras. However, it is often useful to reduce the learning rate as training

progresses when training deep neural networks. This reduces the step size at each iteration while

moving toward a minimum of a loss function as epochs are passed. This allows one to train much

faster at the beginning and at the end take smaller steps to approach the minimum of the loss

function. The way to modify the learning rate during training is by using a scheduler. For the

development of this experiment the time-based decay has been used. This implies that the value
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of the learning rate is modified after each epoch according to the following expression:

εn+1 = εn ·(
n

n+ εn
) (3)

, with εn = 0.01 and where n is the total number of epochs.

Two experiments were carried out using the Efficientnet. In the first one, the whole network

has been trained without freezing the already trained layers. The batch size chosen for this

experiment is 128.

In order to show robust results, it is not enough just to perform a single training and show

the metrics obtained from it. What is proposed is to perform 10 independent trainings where the

test set is different in each of them and then show the mean over these 10 trainings.

Figure 4.7: Accuracy with EfficientnetB0

The graph 4.7 shows that the system is able to achieve an average accuracy in the 10 training

sessions of 97.8%. It can be concluded that using for this project a network that has been

previously pre-trained has a better performance than training the old network from scratch. It

is also observed that increasing the input size causes the accuracy to increase, this trend already

happened in the experiment using 128x128 patches.
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Figure 4.8: Confusion matrix of the test set for the model trained with EfficientnetB0.

In Figure 4.8, the confusion matrix is calculated with test set for the model trained with the

EfficientnetB0. when the accuracy is calculated, the result is a 97.78%, which indicates that

the network does perform very well in classifying correctly the majority of patches. The precision

obtained is 98.1%, while the recall is 97.4%. It can be concluded that it is the model that performs

best with a low number of missclassification, i.e., false positives, or false negatives.

Figure 4.9: ROC using EfficientnetB0

In the ROC curve obtained in this experiment, it can be observed that the curve is practically

the ideal curve, which approaches the vertex (0, 1). It can be affirmed, observing results different

from those already mentioned, that this CAD system offers a very good classification. It can also

be observed that the AUC for this experiment is practically 1.
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Figure 4.10: Precision-Recall curve using Efficientnet on the test set.

In the Precision-Recall curve (see figure 4.10) obtained in this experiment, it can be observed

that the curve is practically the ideal curve, which approaches the vertex (1, 1). It can be affirmed,

observing results different from those already mentioned, that this CAD system offers a very good

classification because it maintain both a high precision and high recall across the graph. It can

also be observed that the AUC for this experiment is practically 1.

The second experiment that has been carried out with the Efficientnet has frozen the

already trained layers and only the layers that were added at the end are trained to adapt it to

our case. The total number of epochs was 30 and each epoch takes approximately 212 seconds

to run. Since in this experiment the layers of the EfficientnetB0 have been frozen, the weights

associated with its neurons are not updated and this makes the execution time up to 6 times

shorter compared to the experiment in which the whole network was trained.

Figure 4.11: Accuracy with freezing the EfficientnetB0 layers.
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It can be seen graph 4.11 that the average accuracy obtained in the kfold is 82.7%. Therefore,

it is concluded that applying the transfer learning technique for this task does not offer optimal

results. This is understandable since the dataset used to train the Efficientnet and the one used

in this project are very different so it is also necessary to train the pre-trained network to learn

features from the images of our dataset.

Figure 4.12: Confusion matrix of the test set for the model trained with EfficientnetB0 freezing its layers.

Figure 4.12 gives the confusion matrix of the system diagnosis trained on the Efficientnet and

freezing its layers from the test set. In this confusion matrix, the number of patches correctly

and incorrectly classified as belonging to the control class is in the first row. From a total of 2592

control patches in the test set, 2161 are true negatives (tn) and 431 are false positives (fp). In the

second row, 448 patches are false negatives (fn) and 2306 are true positives (tp).

Figure 4.13: ROC with freezing the EfficientnetB0 layers.
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The graph 4.13 shows the ROC curves obtained for each of the folds. Moreover, the mean

ROC curve of the 5 folds has also been computed, which has a mean AUC of 0.90.

4.4 Comparison between networks

In order to compare the old network with the Efficientnet, an experiment has been performed

where the hyperparameters are the same. The only difference, as mentioned above, is the archi-

tecture used. Although it is difficult to surpass the results obtained with the Efficientnet, it is

interesting to know how much difference there is between the models in terms of accuracy and

execution time.

Figure 4.14: Accuracy with input size 224x224 with old network.

Observing the graph it can be said that the average accuracy obtained in the 5 folds is 92.3%.

This value is closer to the result obtained in the experiment where this same network was trained

with 128x128 patches than to the result obtained with the EfficientnetB0 with fine tuning. It can

be concluded that for the task we are dealing with in this project, the use of a pre-trained network

such as EfficientnetB0 has a better performance than the previously used network.
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Figure 4.15: Confusion matrix using old network and input patches of 224x224.

As can be seen in the confusion matrix 4.15, the number of true negatives is 1939, while the

number of false positives is 167. In the bottom row, it can be seen that there are 298 patches

classified as negative class and 2861 patches correctly classified as positive class.

Figure 4.16: ROC with input size 224x224 with old network.

The graph 4.16 shows the ROC curves obtained for each of the folds. Moreover, the mean

ROC curve of the 5 folds has also been computed, which has a mean AUC of 0.96.

4.5 Training with the whole Dataset

The last experiment performed was to train Efficientnet with the entire dataset, i.e., taking

the pediatric patients used in the previous experiments and adding those that were discarded. In

total there were 477 images of which 221 belonged to controls and 256 to patients.
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Figure 4.17: Confusion matrix using Efficientnet on the test set.

Figure 4.17 gives the confusion matrix of the system diagnosis performance on the test set

when training the Efficientnet on the whole dataset, including the doubtful subjects. From a total

of 3146 control patches in the test set, 3080 are true negatives (tn) and 66 are false positives (fp).

The classification of patients is given in the second row, where 453 are false negatives (fn) and

4145 are true positives (tp). On this confusion matrix, three metrics such as accuracy, precision

and recall can be calculated, which help to better understand the system. For this experiment

and on this confusion matrix an accuracy of 93.3% is obtained. The recall gives a value of 98.4%,

while the precision is 90.1%.

Figure 4.18: ROC using Efficientnet on the test set.

In the ROC curve obtained in this experiment, it can be observed that the curve is practically

the ideal curve, which approaches the vertex (0, 1). It can be affirmed, observing results different
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from those already mentioned, that this CAD system offers a very good classification. It can also

be observed that the AUC for this experiment is practically 1.

Figure 4.19: Precision-Recall curve using Efficientnet on the test set.

Figure 4.19 shows the Precision-Recall curve on the test set obtained when Efficientnet is

trained with the whole dataset. A good classifier like this one maintain both a high precision and

high recall across the graph, and will “hug” the upper right corner in the figure below. The AUC

for this curve is 0.99, slightly less than the previous P-R curve (see figure 4.10)

As it can be seen, the accuracy when training with the whole dataset has decreased by 2% with

respect to the model where doubtful cases were discarded. Even so, a model with similar metrics

to the model of the previous version is obtained.It is proposed to use the best model obtained

with the EfficientnetB0 to predict on the whole dataset and to extract a confusion matrix at the

individual level. Each person has associated TIFF images, in general 10 images, then a prediction

is made on each of these images and the majority voting method is applied to determine the

final class of the person. Once the class is obtained for each person, the confusion matrices are

extracted.
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Figure 4.20: Confusion Matrix at person level without counting doubtful cases.

In figure 4.20, the confusion matrix is given by the dataset that does not contain the borderline

cases. If the accuracy is calculated, 92.9% is obtained. It can be seen that there are 2 subjects

who are predicted to be ill when labeled as controls. The precision obtained is 90%. Despite being

an error, labeling a healthy person is not a serious problem. The serious problem is in the person

who has been predicted as belonging to the control class when in fact it is a subject labeled as

sick. This error causes a recall of 94.7%.

The 7 doubtful cases that had been ruled out for training are added below.

Figure 4.21: Confusion Matrix at person level counting doubtful cases.

46



Results

In figure 4.21, the confusion matrix is calculated with the data set containing the borderline

cases. If the accuracy is calculated, 83.3% is obtained, which indicates that the network does

not perform very well in detecting these rare cases. It can be observed that there are still 2

subjects who are predicted to be ill when labeled as controls. The precision obtained is 90.9%.

It is observed that the people predicted as controls when they are sick subjects has grown. This

means that most of the doubtful cases are being classified as healthy persons. This classification

results in a recall of 76.9% which represents a very serious error since the system does not allow

to correctly classify rare cases of rare mutations or secondary phenotypes.

Finally, we wanted to check what happened if a prediction was made on the set containing

images of adults. These images, being different from those of the pediatric cases, cannot be mixed

to train a single model that makes predictions about the two types of subjects. If this were done,

it would result in a model that would not be able to correctly classify either the pediatric or adult

cases. That is why we propose to compute the confusion matrix on this set of adults and observe

what the network trained with pediatric cases predicts.

Figure 4.22: Confusion Matrix at person level of adult cases.

As can be seen in figure 4.22, the model is able to correctly predict 15 cases, 7 cases for the

positive class and 8 for the negative class, making the accuracy at the individual level of 65.2%.

These results are very poor for this type of task. In terms of precision, 70% is obtained. The

problem relies in the recall of 58.3% which causes sick people to be predicted as healthy subjects;

this can be caused because patient subjects can be mild sick cases.
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5 Budget

This project consists of an improvement of a system capable of making an automatic evaluation

of collagen IV deficiencies, so no prototypes are designed or built. When computing the total costs

only the software and material used will be considered.

The budget includes, not only the income for the manpower devoted to the project but also

the exceptional expenses performed for the fulfilment of the project as well as the proportional

part of the annual expenses of the business based on the time the development has taken.

The entire project has been developed in Python, the text editor used is Pycharm which is a

free software to interpret that language and Matlab which has a license fee. So to carry out the

work, it has been needed the material shown in table 5.1:

Concept Estimated cost

Computer 1200e

GPI Server 0.35e/h1

Matlab Student License 35e

Table 5.1: Material costs of the project.

As it has been developed in the author’s house due to the existence of COVID-19, no office or

space has been rent and its costs have been null. The manpower cost is in table 5.2:

Concept Cost/hour Hours dedicated Total cost

Junior Engineer 13e/hour 550 hours 7150.00e

Senior Engineer 60 e/hour 52 hours 3120.00e

Table 5.2: Human costs of the project.

Adding the manpower cost to the material costs, both shown in tables 5.1 and 5.2 respectively,

we have the total budget needed to make this project. So, the total cost has a value of 15325e

approximately.

Due to the fact of working on a simulations-based project, the computed total cost is not

that high. This means that, although making an investment is needed to cover the required

payments and proceed with the study of the project, it is economic viable. When comparing the

costs produced by the project with the technology advance that it can provide, its relation is

proportional. So as the impact of this study is that important, the cost estimated it coherent, and

therefore feasible.

1The cost has been estimated through the Google calculator.
Total number of hours = 2000
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6 Conclusions and Future Development

The first version of the software used a CNN created by the author himself[6], which was

developed with a total of 276 images corresponding to the two classes. As there were few images,

it was decided to divide them into patches so that more data could be generated and used to

train the network. The size of these patches was 64x64. After analysis and optimization of

hyperparameters, a model was obtained that was able to correctly classify 95% of the patches,

which means that practically all images, if not all, were correctly classified.

This system works well for images that resemble those with which the network was trained, but

if inference is made on weird cases it may not get the class right and therefore may not perform

the automatic diagnosis well. That is why it was necessary to retrain this model with new cases

so that it is able to correctly classify many new cases.

Therefore, in this work it has been decided to retrain the network with many more cases that

have been collected in the last few years. In addition, an exhaustive analysis has been developed

to try to improve the existing network and to obtain better metrics. To improve the previous

CAD system, we relied on Deep Learning technologies.

In this project we have proposed and experimented with pre-trained networks to see if they

offer better results than those obtained in the previous version. For this task we have used the

Efficientnet, a state of the art network that offers better results than other pre-trained networks.

The best model obtained has been using the smallest model of the Efficientnets family, the Effi-

cientnetB0, which has provided an average accuracy of 97.84% in 10 training iterations.

With this model, the objectives set at the beginning of the project have been met. On the

one hand, a more robust system has been obtained since it has been trained with about 200 more

images. On the other hand, we have achieved a more accurate model than the previous version,

which results in a low number of missclassification, i.e., false positives, or false negatives.

Some conclusions can be drawn from the work carried out. The two architectures used have

been built for different purposes. While the old network was built specifically for this project

and adapted to it, the Efficientnet aims at a more general classification since it was trained with

1000 different classes. That is why while the former started from randomly initialized weights, the

latter already had weights associated with it. In this way, it has been proved that, for this work,

the pre-trained network has achieved higher metrics than those obtained with the old network.

Moreover, although the set of images has been expanded with respect to that used in the first

version of the software, it is still insufficient to train the network with complete images. That

is why a very interesting strategy to generate new data is to generate patches from them. Also

the EfficientnetB0 is constrained to work with 224x224 images. In this way, a sufficient amount

of data is obtained to avoid overfitting and underfitting and to obtain a satisfactory performance
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without having to rescale the original images.

Although several methods and techniques have been developed in order to have a model capable

of correctly predicting this disease, there are some studies that are still pending and that it would

be interesting to develop in order to draw more conclusions when diagnosing this disease.

As mentioned above, each LIF image obtained by the confocal microscope contains several

image planes of the sample. In our development, a projection of these planes is applied to obtain

a single TIFF image. It would be interesting, instead of projecting all the planes in a single

image, to be able to work with each of these planes separately to obtain multichannel images. For

example, if this image contains 10 planes, an image with 20 channels would be obtained and fed

to the network for training.

On the other hand, in the data set provided by the hospital, there was also a group of images

with higher resolution. These images differed from the ones used in this project in the number

of planes extracted per sample in addition to the resolution. While in the ones used to develop

this project, the magnification was 20x, the high resolution ones have a 100x magnification. As

mentioned above, in the 20x images, 10 2D planes are obtained. The 100x images represent a

volume of the sample taken from the subject’s forearm. As this set was small, it was thought

that it would be difficult to work well with, but in the future, when more images can be obtained,

it would be good to be able to develop a model to deal with these images as, according to the

doctors, they contain much more information than those considered so far.
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[2] S. R. Lamandé and J. F. Bateman. “Collagen VI disorders: Insights on form and function

in the extracellular matrix and beyond”. In: 71-72 (2018), pp. 348–367. doi: https:

//doi.org/10.1016/j.matbio.2017.12.008.

[3] J. S. Amberger, C. A. Bocchini, F. Schiettecatte, A. F. Scott, and A. Hamosh. “,

OMIM.org: Online mendelian inheritance in man (OMIM® ), an online catalog of

human genes and genetic disorders”. In: 43 (2014).

[4] C. Jimenez-Mallebrera, M. Maioli, J. Kim, S. Brown, L. Feng, A. Lampe, K. Bushby, D.

Hicks, K. Flanigan, C. Bonnemann, C. Sewry, and F. Muntoni. “A comparative analysis

of collagen vi production in muscle, skin and fibroblasts from 14 Ullrich congenital

muscular dystrophy patients with dominant and recessive col6a mutations”. In: 16.9

(2006), 571–582. doi: https://doi.org/10.1016/j.nmd.2006.07.015.

[5] K. Anthony, V. Arechavala-Gomeza, L. E. Taylor, A. Vulin, Y. Kaminoh, S. Torelli,

L. Feng, N. Janghra, G. Bonne, M. Beuvin, R. Barresi, M. Henderson, S. Laval,

A. Lourbakos, G. Campion, V. Straub, T. Voit, C. A. Sewry, J. E. Morgan, K. M.

Flanigan, and F. Muntoni. “Dystrophin quantification”. In: 83.22 (2014), 2062–2069,

doi=https://doi.org/10.1212/WNL.0000000000001025.
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