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The high capacity and low latency of optical connections are ideal for supporting the current and future communication services, 

including 5G and beyond. Although some of those services are already secured at the packet layer using standard stream ciphers, 

like Advanced Encryption Standard (AES) and ChaCha, secure transmission at the optical layer is still not implemented. To 

secure the optical layer, cryptographic methods need to be fast enough to support high-speed optical transmission and cannot 

introduce significant delay. Moreover, methods for key exchange, key generation and key expansion are required, which can 

be implemented on standard coherent transponders. In this paper, we propose Light Path SECurity (LPsec), a secure 

cryptographic solution for optical connections that involves fast data encryption using stream ciphers and key exchange using 

Diffie-Hellman (DH) protocol through the optical channel. To support encryption of high-speed data streams, a fast, general 

purpose Pseudo-Random Number Generator (PRNG) is used. Moreover, to make the scheme more secure against exhaustive 

search attacks, an additional substitution cipher is proposed. In contrast to the limited encryption speeds that standard stream 

ciphers can support, LPsec can support high-speed rates. Numerical simulation for 16-QAM, 32-QAM and 64-QAM show that 

LPsec provides sufficient security level while introducing negligible delay only. 

1. INTRODUCTION

Optical networks are vulnerable to a variety of attacks 

such as eavesdropping, physical infrastructure attacks, 

interception, and jamming (refer to [1] for a survey on the 

topic). Most of the previous works focused on the upper 

layers, leaving the optical layer for pure transport. However, 

the security of the optical layer should not be overlooked, as 

building a secure platform on top of an unsecure one is a 

risky practice. 

Designing a security solution involves combining multiple 

technologies for key distribution and data encryption and 

decryption, among others. For the former, although Quantum 

Key Distribution (QKD) provides secure key agreement and 

initial experimental deployments of QKD are being currently 

reported (see, e.g., [2]), it is not expected to be available in 

the short term. With regard to encryption, there are several 

solutions, from stream ciphers (each incoming plaintext digit 

is encrypted sequentially) to block ciphers (where plaintext 

digits are grouped into blocks and then encrypted together). 

Salsa20 and ChaCha [3] are examples of stream ciphers and 

Advanced Encryption Standard (AES) [4] is the most 

extended block cipher. However, one of the main challenges 

for securing the optical layer is that encryption and 

decryption need to operate at line speeds of 100s of Gb/s and 

should not introduce any meaningful delay to the optical 

transmission; otherwise, this would negatively impact the 

supported services. 

In this regard, some works have already proposed 

encryption solutions for the optical layer. In the context of 

passive optical networks, the authors in [5] proposed the 

optical spectral phase and delay encoding technique, where 

the optical signal is split into multiple spectral slices that are 

multiplexed after applying a delay and phase shift to produce 

the encrypted signal. However, this method has a constraint 

of generating narrow spectral slices, putting stringent 

requirements on optical bandpass filters [6]. The authors in 

[7] reported a physical layer security method based on a 

piecewise chaotic permutation of symbols and subcarriers. 

The method relies on an initial key, thus requiring the 

implementation of a key exchange strategy. 

Chaos-based optical transmission is another technique for 

encryption in the optical domain, where the signal to be 
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encrypted is converted into a noise-like signal by applying 

broadband chaos as optical carrier [8]. The resulting chaotic 

signal is sent to the receiver and decryption can only be 

performed by separating the chaotic carrier from the data 

signal at the receiver. Recently, authors in [9] have shown 

the chaos-based encryption at the physical layer for 

wavelength-division multiplexing (WDM) networks, where 

a gaussian modulated constant-amplitude random-phase 

light is used to generate the chaotic signal for encryption. The 

same signal is required for decryption and is sent over the 

transmission fiber, which reduces fiber capacity. The 

decryption also requires the synchronization between the 

sent and received signal. The authors in [10] proposed chaos-

masking encryption techniques for long distance 

communication, where advanced digital signal processing is 

used to decrypt the signal. However, this scheme does not 

provide sufficient security if high confidentiality is required. 

In access networks, Optical Code Division Multiple 

Access (OCDMA) provides intrinsic confidentiality through 

multiple access interface noise [11, 12]. Nonetheless, 

eavesdropping by coded waveform analysis was reported in 

[13] and data interception by differential detection was 

reported in [14]. Optical steganography has been proposed 

and demonstrated for WDM systems [15-17]. This technique 

hides the signal from the eavesdropper, e.g., through 

dispersion, to avoid interception. Another option is to carry 

the signal in Amplified Spontaneous Emission (ASE) noise, 

as proposed in [18]. 

Some vendors implement AES at the Optical Transport 

Network (OTN) layer [19], where key exchange can be 

carried out using header bytes of the Optical Data Unit 

(ODU) frame. Note that such a solution brings the additional 

requirement of implementing OTN, in addition to the 

intrinsic complexity of AES. In this case, AES is used as a 

block cipher that encrypts blocks of 128 bits. 

In this paper, we propose LPsec, an approach that includes 

tailored solutions for both key exchange and 

encryption/decryption so they can be easily implemented at 

the optical layer. For the key exchange, we design a 

mechanism based on the Diffie-Hellman (DH) key exchange 

[20], where the initial public keys of the two end parties, i.e., 

the Transmitter (Tx) and the Receiver (Rx), are exchanged 

via the Software Defined Networking (SDN) controller and 

are periodically updated through the optical channel to 

enhance the security level. For encryption, we rely on two 

ciphers: i) a traditional stream cipher that uses a symmetrical 

key and ii) permutations of symbols. Each cipher has its 

drawbacks, but when combined they provide the required 

security level to encrypt data at 100s of Gb/s. Besides, LPsec 

exhibits negligible transmission delay. 

The rest of the paper is organized as follows. Section 2 

provides the necessary background on cryptography 

describing substitution ciphers, followed by the discussion of 

stream ciphers, block ciphers and key exchange mechanisms. 

Next, our proposal to secure optical connections (LPsec) is 

presented, where the proposed encryption scheme is 

described, and the key exchange is outlined. Section 3 

presents the details of key exchange, including the initial one 

and the periodic key updates. Then, the symmetric key 

generation and its expansion are detailed. Security analysis 

based on the Pseudo-Random Number Generator (PRNG) is 

also discussed. Section 4 details the building blocks of 

LPsec, including optical encryption and key management. As 

the operations are governed by Finite State Machines (FSM), 

their construction at the Tx and Rx are also discussed. 

Illustrative results are presented in Section 5, including the 

introduced delay and security level against several attacks. 

Finally, Section 6 draws the main conclusions of this work. 

2. SECURE OPTICAL LAYER 

This section first introduces some basic cryptographic 

concepts, such as ciphers, key extension, and key exchange 

[21], that are used in the rest of the paper. Next, the 

cryptographic techniques that we are proposing to implement 

for securing the optical layer are described. 

A. Background on Cryptography 

In cryptography, a cipher is an algorithm that transforms a 

plaintext message (m) into a ciphertext (c) (encryption), and 

vice versa (decryption). There are several types of ciphers, 

e.g., a substitution cipher encrypts units (e.g., each letter in a 

text) of plaintext by replacing them with the ciphertext with 

the help of a key. The receiver performs the inverse process 

to recover the original plaintext. Although the number of 

substitution alphabets might be large, substitution ciphers 

can be broken by frequency analysis. 

To show that a cryptosystem is secure, mathematical 

modeling and proofs are used to verify that it satisfies a set 

of security properties. In particular, the One-Time Pad (OTP) 

cipher shows perfect security, as proved by Shannon in [22]. 

OTP encrypts m using a key (k) with the same length of m 

(denoted as n), by just implementing a bitwise XOR 

operation. Two important properties of XOR are: i) if k is 

uniformly distributed on {0,1}n then, the ciphered message 

m⊕k is also uniformly distributed; and ii) the inverse 

operation (decryption) consists on applying the XOR 

function with the same (symmetric) key k, i.e., m⊕k⊕k = m. 

Although OTP shows perfect security, it does not fit well for 

stream ciphers, where the length of the messages tends to 

infinite. Semantic security provides a weaker notion of 

security that allows to build secure ciphers that use 

reasonably short keys. That entails splitting the data stream 

into chunks of data of predefined size. However, k cannot be 

reused from one data chuck to another, as that would reduce 

the security level. Nonetheless, k can be extended using a 

cryptographically secure PRNG to generate a sequence of 

stream keys (ks). 
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Fig. 1. Optical communication system considered for the implementation of LPsec. 
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Fig. 2. Overview of LPsec. Example of 16-QAM LUT for encoding (a), 
encryption / decryption (b), and frame structure for periodical LUT and key 
synchronization (c). 

Salsa and ChaCha are fast and secure stream ciphers that 

are appropriate for practical use and variants of them are being 

used in widely deployed protocols, such as Transport Layer 

Security (TLS) [23]. The PRNGs use a 256-bit seed, a 64-bit 

nonce, and a 64-bit counter to form a 512-bit block to create 

up to 264 512-bit pseudo random blocks. The design of these 

stream ciphers is highly parallelizable to speed-up encryption 

[3]. Block ciphers can be used as well to build a stream cipher; 

one popular block cipher is AES. In AES, an input block of 

128 bits is processed as a 4×4-byte matrix. The AES algorithm 

performs 10, 12 or 14 rounds depending on the size of the 

cipher key (128, 192 or 256 bits). The process begins with the 

expansion of the initial key to produce a series of keys used in 

each round. At every round, the encryption begins by adding 

the round key as a XOR cipher followed by a non-linear byte 

substitution through a predetermined substitution table. Then, 

rows shifting followed by a mixing of columns and round key 

addition are performed. The procedure is repeated until 

completing the required number of rounds. Decryption is 

performed in the inverse manner. 

The DH key exchange is a solution to exchange keys 

between two parties, Alice and Bob, that want to establish a 

secure communication channel. Both parties generate private 

(integer) keys kp (i.e., ka and kb) and their related public keys 

kP (i.e., kA and kB). The public keys are shared over the 

insecure channel and each party computes the symmetric key 

k that is used for data encryption using their own private key 

kp and their counterpart’s public key kP. 

B. Implementing LPsec in an Optical Coherent System 

LPsec requires extending the standard coherent transponder 

with optical encryption and decryption blocks, as well as with 

some key management functionalities (see Fig. 1). In addition, 

cryptographic blocks need to operate at line speeds and should 

not introduce any significant delay to data transmission. To 

achieve such an objective, optical encryption should be based 

on simple operations performed on the input bit stream. The 

main design aspects of the cryptographic techniques proposed 

in this paper are analyzed hereafter. 

As previously introduced, the encryption is based on two 

nested ciphers that provide a high security level. The outer 

cipher is a substitution cipher that relies on a Lookup Table 

(LUT) used for the substitution of bits before sending it to the 

modulator. This creates a ciphered gray map constellation 

through LUT permutations of incoming bits as suggested in 

Fig. 2a. Note that there are M! permutations in an M- 

Quadrature Amplitude Modulation (QAM) system (e.g., there 

exist more than 244 permutations in a 16-QAM system) and 

thus, we can use a random key (kl) of the appropriate length 

(i.e., 44 bits in the example), to select the permutation of the 

LUT. The inner cipher is a stream cipher that encrypts data 

chunks of predefined size based on a cryptographically secure 

PRNG to generate a sequence of stream keys (ks). The 

proposed encryption system is sketched in Fig. 2b, where 

output ciphertext c2 is produced by the combination of the 

inner stream cipher E1 and the outer substitution cipher E2. 

Note, however, that the sequence of stream keys ks = [ksj] 

generated by the PRNG from a given key k cannot be infinite 

as this would reduce the security level of E1. In addition, the 

LUT should be periodically regenerated to minimize the 

vulnerability of E2. In consequence, we limit the lifetime of 

keys k and kl, e.g., to 1 sec., which entails new keys being 

periodically generated at the Tx and exchanged with the Rx. 

Specifically, the DH key exchange method is used to generate 

the symmetric key k. The Tx and Rx generate a random 

private/public pair of keys ({<kr, kR>} and {<kt, kT>}) and 

exchange their public keys (kT, kR) with the other party. The 

initial key exchange can be facilitated by the SDN controller, 

which, once the optical connection is computed and 

established in the network [33], can collect the public keys 

and send them to the counterpart. However, symmetric keys 

should have a short lifetime and they need to be frequently 

updated, which makes the SDN not a suitable option. 

In our approach, we perform a partial key exchange, where 

only the Tx generates a new pair of keys <kti, kTi>, as well as 

a new key kli for the next period i. Next, both the public key 

kTi and the new permutation LUT(kli) are sent to the Rx 
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through the optical channel. We propose to use a special frame 

(henceforth called Key exchange Frame, KxF) for the key 

exchange, (see Fig. 2c). A KxF is generated by the Tx and sent 

to the Rx periodically. The KxF includes a header of a fixed 

size that allows the Rx to detect its arrival. Because the Rx is 

not synchronized with the Tx for key exchange, any 

occurrence of the header pattern in the data stream must be 

prevented at the Tx side. Otherwise, the Rx would follow an 

erroneous key exchange procedure that will stop data 

transmission. The solution is to add escape bit sequences to 

break any KxF header pattern in the input data. To this end, 

two Finite State Machines (FSM) at the Tx and the Rx sides 

add and remove such escape bit sequences to/from the plain 

bit stream. Note that the occurrence of errors in the KxF is 

critical. In case errors still remain after the FEC decoding 

stage and impact the KxF, the decryption process should be 

restarted. For this very reason, the KxF includes a cyclic 

redundancy check (CRC). 

The next sections detail the design of LPsec, how keys are 

generated and exchanged, and how the FSMs are defined and 

particularized. 

3. KEYS AND SECURITY LEVEL 

This section first details the key exchange process, 

including the initial exchange and the periodical updates. The 

generation and expansion of symmetric keys is detailed next, 

after which security level of the system is studied. 

A. Key Exchange 

As introduced in Section 2, an initial key exchange is 

performed through the SDN controller and then, the Tx 

updates the Rx with the keys to be used through the optical 

channel. Fig. 3 presents a sequence diagram detailing the 

computation performed by the Tx and Rx, as well as the 

messages exchanged through the control plane and the data 

and messages sent over the encrypted optical channel. 

The initial key exchange is carried out at connection set-up 

through the SDN controller (messages 1-5 in Fig. 3), which 

collects the public key of the Rx (1) and sends it to the Tx (2). 

The Tx generates a pair of private and public keys and a 

random key kl0, which is used to generate the initial LUT 

permutation. In addition, the Tx generates the symmetric key 

k0 with its private key and Rx’s public key. Key k0 is used at 

this time to generate the particular KxF header pattern that 

will be used for key exchange on the optical channel. Both 

FSMTx and FSMRx must be generated for that specific pattern. 

Before sharing the LUT, it is encrypted with symmetric key 

k0 and sent together with the Tx public key to the SDN 

controller (3), which shares them with the Rx (4). Upon the 

reception, the Rx generates the symmetric key k0 with its 

private key and Tx public key, generates the FSM, and 

decrypts the LUT. The Rx replies to the SDN controller when 

it is ready to start the secure communication and the SDN 

controller notifies the Tx (5), which generates a new set of 

private and public keys, the LUT, and the symmetric key for  
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Fig. 3. Connection set-up and secure optical transmission 

the next time interval. Then, the Tx replies to the controller 

that it is also ready, and the initialization phase concludes. At 

this time, the secure optical connection is established. 

Once the initialization phase ends, the secure optical 

transmission phase begins and continues until the connection 

is torn down. At the starting time, the Tx updates the LUT and 

public key (6). Note that such exchange is encrypted using the 

nested encryption used for data transmission; in this case, keys 

ks0 (extended from symmetric key k0) and kl0 are used for 

ciphers E1 and E2, respectively (6). 

For the sake of clarity, we denote with subindex i the keys 

that participate in key exchange at the starting of time period 

i. This entails that during every time period i-1, the Tx 

generates the set of public and private keys (<kti, kTi>), the 

symmetric key ki, and the random key kli (and the permutation 

of the LUT). Then, at the start of time interval i, the Tx 

updates the Rx, which computes symmetric key ki. The 

exchanged keys will be in place during time period i+1. In 

particular, key exchange i and all data transmitted during time 

period i are encrypted using keys i-1. 

B. Symmetric Key Generation and Expansion 

In the standard DH key exchange, two large prime numbers 

(p and g) are publicly selected. When Alice and Bob want to 

setup a secure communication channel, they generate private 

keys kp, which are used to compute their public keys kP, as: 

𝑘𝑃 = 𝑔𝑘𝑝  𝑚𝑜𝑑 𝑝 (1) 

After the public keys are exchanged, each party computes 

the symmetric key k for data encryption/decryption, as: 

𝑘 = 𝑘𝐵
𝑘𝑎  𝑚𝑜𝑑 𝑝 = 𝑘𝐴

𝑘𝑏  𝑚𝑜𝑑 𝑝 (2) 

Similarly, in LPsec, Tx and Rx exchange their public keys 

kT0 and kR0 through the SDN controller during the initial key 

exchange phase. Next, the Tx computes a new pair of keys 

every period and updates the Rx with the new public key kTi.  

𝑘𝑅0 = 𝑔𝑘𝑟0  𝑚𝑜𝑑 𝑝 (3) 
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𝑘𝑇𝑖 = 𝑔𝑘𝑡𝑖  𝑚𝑜𝑑 𝑝    ∀𝑖 (4) 

Note that the Rx does not compute new public and private 

keys afterwards, and the initial pair <kr0, kR0> is used along 

the lifetime of the optical connection. Therefore, the 

symmetric key k that is used for the stream cipher is updated 

periodically (e.g., every 1 sec.) as:  

𝑘𝑖 = 𝑘𝑅0
𝑘𝑡𝑖  𝑚𝑜𝑑 𝑝 = 𝑘𝑇𝑖

𝑘𝑟0  𝑚𝑜𝑑 𝑝 (5) 

Once the symmetric key is computed, it is expanded using 

a cryptographically secure PRNG to produce keys long 

enough for the stream cipher to encrypt / decrypt a chunk of 

data. Therefore, if the size of each chunk of data is U [b] and 

the transmission speed is B [b/s] then the number of chunks 

per second, J, can be computed as: 

𝐽 =
𝐵

𝑈
 (6) 

Hence, each symmetric key ki generated for the time 

interval i, is expanded into J ksij keys that the stream cipher 

will use for chunks j in [0 .. J-1]; keys ksij are U bits long. For 

example, assuming that the size of data chunks is U=64 bits, 

the transmission speed is B=100 Gb/s, a new key is generated 

every 1 second, the PRNG needs to expand the symmetric key 

k into J=230.5 keys ksij per second (i.e., one key every 0.64 ns), 

each U bits long. Therefore, the PRNG must be fast enough to 

work at 100s of Gb/s line speeds, in order not to introduce 

meaningful delay to data transmission. 

C. Security Level and Encryption Speed 

Let us assume that, under the DH protocol, an eavesdropper 

(i.e., Eve) knows the value of p, g, and the public keys of Alice 

and Bob. To compute the symmetric key, Eve still needs to 

know the private keys of either Alice or Bob, or to solve the 

discrete logarithm problem [24], which is considered 

computationally hard when p is large. However, the security 

level of a stream cipher depends on the randomness of the 

PRNG for key expansion [21]. Recall that OTP shows perfect 

security since ciphertexts do not reveal any information of the 

related plaintext, so an adversary cannot distinguish between 

two ciphertexts mi and mj encrypted with key k selected at 

random. However, stream ciphers cannot attain perfect 

security because PRNGs are utilized, and the length of the 

generated keys are shorter than those of the messages. 

A PRNG is secure if an adversary cannot distinguish 

between a truly random sequence and the pseudo random 

sequence generated by the PRNG with a significant 

advantage. This is related to the computational feasibility of 

adversaries to perform predictions with a reasonable amount 

of time and memory. In practice, although standard stream 

ciphers based on Salsa20 and ChaCha produce high-quality 

PRNGs, they are not fast enough to be applied to optical 

transmission. In contrast, we use a general-purpose PRNG 

because of its high speed. To mitigate the impact of using a 

general-purpose PRNG only, an optical constellation-based 

substitution cipher is added. This approach is still not 

perfectly secure, as the distribution of the encrypted data is 

not uniform. Therefore, if the characteristics of the plain text 

are known, an adversary can apply frequency analysis and 

break the cipher. However, since the substitution cipher is fed 

with data encrypted using the XOR operation, frequency 

analysis will not provide useful information. As a 

consequence, this symbiotic relationship between the stream 

cipher and the substitution cipher results in a fast and secure 

cryptographic system. 

4. DESIGN OF LPsec 

In this section, we design the blocks for optical encryption 

/ decryption and key management in terms of interconnected 

modules, which are governed by FSMs. We define 

generalized templates for the FSMs governing Tx and Rx, 

which enables the definition of random KxF header patterns 

both in contents and length. The generation of specific FSMs 

is detailed. 

A. Optical Encryption / Decryption and Key Management 

Fig. 4 presents a detailed design of the Optical Encryption 

and Key Management block at the Tx and that for Decryption 

and Key Management at the Rx. The Tx receives as input the 

data bit stream. Each individual plaintext digit is temporarily 

stored in a register while being checked by the FSMTx to 

prevent KxF header patterns. The encryption and decryption 

blocks perform operations over sets of bits, named character 

(char), where their size (b) coincides with the number of bits 

per symbol of the M-QAM modulation format used for the 

optical signal, e.g., b = 4 bits/symbol for 16-QAM (note that 

M=2b). At every clock cycle during normal operation, the 

FSMTx reads one char from the input register (labeled Da in 

Fig. 4) and executes an internal state transition, which 

generates a tuple <Sh, Se, Xa> as output, where: i) Sh performs 

a char-size shift operation on the input register; ii) Se selects 

the input that is chosen as output in the selector; and iii) Xa is 

active during key exchange. In the case that a KxF header 

pattern is detected in the input data stream, an escape char is 

inserted, so the input esc in the selector will be chosen. At 

regular intervals, a new key exchange is initiated, so the Key 

Exchange module activates the Kx input on the FSMTx, and 

the KxF is transmitted instead of input data. Every char in the 

output of the selector is encrypted by stream cipher E1 using a 

char from key ks(i-1)j; the key register shifts one char every 

cycle and when it is empty a new key ks(i-1)j is expanded and 

loaded. Once a char is encrypted (c1), it is used as input for the 

LUT and the substituted char (c2) is generated. 

The Key Generator module is responsible for generating 

new keys. At every time interval, the module generates a new 

pair of Tx public and private keys and uses the public key 

from the Rx to generate a new symmetric key. It also 

generates a new random key and selects the LUT permutation. 

The generated keys and LUT are sent to: i) the Key Exchange 

module that packs the LUT and the Tx public key in a KxF 

and activate the Kx signal to stop data transmission and start 

the key update; ii) the PRNG module that uses the symmetric  
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Fig. 4. Design of LPsec: Optical Encryption/Decryption and Key Management at the Tx/Rx. 

key for expanding stream keys for the next chunk of data; and 

iii) the LUT module that uses the new LUT to update its 

contents. 

At the Rx, the inverse process is performed. Every c2 char 

received enters in the LUT and the original char c1 is 

generated, which is then decrypted using a char from key ks(i-

1)j. The FSMRx inspects the plain chars (input m) in the search 

of escape chars being inserted by the Tx and generates a tuple 

<Se, Ld, Fl, LdF, FLd, Cl> as output. The plain chars are 

chosen at the output of the selector (signal Se) and can be 

temporarily stored in an output register (signal load, Ld) until 

a decision is made to send them as output bit stream (signal 

flush, Fl) or ignore them (signal clear, Cl). For convenience, 

the signals Load and Flush (LdF) and Flush and load (FLd) 

are defined. When the KxF header pattern is detected, the 

stored chars are ignored and the payload of the KxF is sent to 

the Key Management module. On the contrary, if an escape 

character is detected, it is ignored by choosing the esc output 

in the selector, and the output register is flushed.  

When a KxF header pattern is detected, the Key 

Management module receives it and announces the FSMRx its 

end (signal Xa). The Key Management module will then 

distribute the received LUT to the LUT module and generate 

the new symmetric key to be distributed to the PRNG module. 

B. Generalized FSM Templates  

Specific FSMs need to be defined for the Tx and the Rx as 

a function of the generated KxF header pattern, which is 

generated at random during the initial key exchange phase. 

For the sake of the generalization of the FSMs, the header 

pattern is generated guaranteeing that any char does not 

appear more than once. In this way, the specific FSMs can be 

easily built from predefined parameterized templates by 

specifying the size of the header pattern and the specific chars.  

Fig. 5a illustrates a graph representing the parameterized 

template of FSMTx, where the n-char header pattern is 

specified by the char sequence H = <h0, h1,.., hk,.., hn-1, hn>. In 

the graph, states STx define the outputs (OTx) for Sh, Se, and Xa 

signals, while transitions among states are performed based 

on the char in the input Da and Kx (ITx). Normal operation is 

represented by states Si, whereas key periodical key exchange 

is represented by states Si’. The graph consists of n+1 Si and n 

Si’ states, where Si represents the state where i chars in the 

header sequence and in the right order have been detected. A 

value ‘-’ in one of the inputs means whatever other value, 

different than those specified for the rest of transitions leaving 

from that state. State S0, the initial state, and state S1 are the 

most frequently transitioned, and many of the rest of the states 

have a direct transition to them. The remaining normal 

operation states account for partial header patterns found in 

the input data. State Sn is the one responsible for adding an 

escape character, and it has priority even in the case of a key 

exchange request (note that whatever the input from Sn-1 a 

transition to Sn is always made). 

Note that FSMTx adds an extra char when n-1 chars in the 

data stream coincide with those defined for the header. Hence, 

the probability of adding a new char can be defined as: 

𝑃𝑐ℎ𝑎𝑟_𝑎𝑑𝑑𝑒𝑑 =
1

2𝑏∙(𝑛−1)
 (7) 

Similarly, Fig. 5b presents a graph representing the 

parameterized template of FSMRx. States SRx define the 

outputs for Se, Ld, LdF, FLd, and Cl signals (ORx) (outputs are 

specified in the inner table in Fig. 5b), while transitions among 

states are performed based on the decrypted char m and the Xa 

inputs (IRx). So is the initial state and every transition to that 

state loads the received char and produces a flush on the 

output register. State Sn-1 is responsible for distinguishing 

between an escape char inserted by the Tx and the complete 

KxF header pattern. In the first case, the transition is to Sn, 

which discards that char and flushes the register. In the second 

case, the transition is to Sn’, which sends the payload of the 

KxF to the Key Management module and clears the output 

register. During the reception of the KxF payload, the Key 

Management module keeps the Xa signal active until all the 

chars have been received. In the meanwhile, transitions are to 

the state Sn’. When the complete KxF payload has been 

received, the FSM transitions to either state So or S1, and 

incoming chars are stored again in the output register. 

Both graphs can be particularized for any given length of 

the KxF header greater or equal to 3 by just adding as many 

Sk intermediate states as needed. 

C. FSM Particularization 

We now illustrate the easiness to particularize the FSMs 

given the n-char KxF header pattern H = <h0, …, hn-1> and the 

bits per symbol of the modulation format (b). The specific 

FSMs for Tx / Rx are defined by: i) the state-transition matrix 

(STM) of dimensions |S(·)|×2|I(·)|; and ii) the output matrix  
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Fig. 5. Graphs representing parameterized templates for FSMTx (a) and FSMRx (b). 
 

Algorithm 1. FSMTx Generation 

Input: H, b 

Output: STM, OM 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

17: 

18: 

19: 

20: 

Ch ← 2b; n ← |H|; |S| ← 2n+1 

S ← [i for i: 0..|S|-1)] 

STM ← [|S|] [2Ch] 

for i: 0..n-1 do 

for c: 0..Ch-1 do 

if i = n-1 then 

STM[i][c] ← S[n] 

STM[i][Ch+c] ← S[n] 

continue 

if i = n OR i = 2n then STM[i][Ch+c] ← S[2n] 

else if i < n then STM[i][Ch+c] ← S[n+1+i] 

else STM[i][Ch+c] ← S[n+i%n] 

if c = H[0] then STM[i][c] ← S[1] 

else if c = H[i%n] then STM[i][c] ← S[i%n +1] 

OM ← [|S|] 

for i: 0..|S|-1 do 

if i < n-1 then OM[i] ← [1, 2, 0] 

else if i = n then OM[n] ← [0, 1, 0] 

else OM[i] ← [0, 3, 1] 

return STM, OM 
 

 (OM) of dimensions |S(·)|×|O(·)|. Specifically, |STx| = 2·|H|+1, 

|SRx| = |H|+2, |ITx| = |IRx| = b+1, |OTx| = 3, and |ORx| = 7. 

Algorithm 1 presents the pseudocode to generate FSMTx. 

The algorithm first computes the number of different chars as 

a function b (for input Da) and the number of states, initializes 

vector S with the states, and the state-transition matrix STM 

(lines 1-3); note that the STM is initialized with all transitions 

to state S0. Next, the transitions for states are computed as 

follows (lines 4-14): 1) transitions from state Sn-1 are to Sn 

disregarding the value of Kx (lines 6-9); 2) whenever input Kx 

is active, transitions from state Si are to Si’ (lines 10-12); 3) 

whenever input Kx is not active, transition is to S1 if Da = h0 

or to state Si+1 when Da = hi (lines 13-14). The output matrix 

OM is filled (lines 15-19) and the generated FSMTx is 

eventually returned (line 20). 

5. ILLUSTRATIVE RESULTS 

We have implemented LPsec as a MATLAB-based 

simulation. In particular, we have integrated the encryption 

and decryption blocks in the Tx and Rx, as depicted in Fig. 1, 

where a single polarization 64 GBd optical signal was 

considered. Three different modulation formats are assumed: 

16-QAM, 32-QAM and 64-QAM. In this section, we present 

the obtained results to validate LPsec. 

A. Optical System Performance Analysis 

Let us first analyze the performance from the optical 

perspective. In the simulator, the signal was sampled and 

passed through a root-raised-cosine pulse shaper with roll off 

factor of 0.06. The signal was launched into a fiber channel 

with N spans, each being 80 km long. After every span, an 

optical amplifier with a noise figure of 4.5 dB compensates 

for fiber losses. Additive white Gaussian noise is added after 

each span to model ASE noise. For the simulation of the fiber 

channel, standard single mode fiber with the following 

parameters was considered: fiber loss α = 0.21 dB/km, 

dispersion D = 16.8 ps/(km-nm) and nonlinear coefficient γ = 

1.14 W-1km-1. A 216 pseudo-random sequence was used to 

generate the payload. The signal was propagated then using 

the symmetric split-step Fourier method, solving the non-

linear Schrödinger equation [25]. The signal was coherently 

received; it was down-sampled to 2 samples per symbol, and 

an ideal chromatic dispersion filter was used. 

We first analyzed the performance of the system with and 

without encryption to verify that encryption does not degrade 

the performance of the system. Fig. 6a shows the obtained 

results for 25 spans, where we observe that the BER remains 

the same with and without encryption for the selected 

modulation formats for different input powers. 

Once the optical performance was verified, we implemented 

convolutional forward error correction (FEC) encoding and 

decoding; FEC code rate of 2/3 was used for data encoding, 

whereas the Viterbi decoding algorithm was used at the 

receiver [26]. Fig. 6b presents the BER as a function of the 

number of spans and the inner table summarizes the maximum 

number of spans where the FEC corrected any transmission 

error. 
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Fig. 6: BER w/ and wo/ encryption (a) and BER vs 
number of spans with FEC (b) 

Fig. 7: Added Char Probability (a) and 
average delay (b) 

Fig. 8: Frequency of symbols w/o (a) and w/ 
encryption (b) 

 

B. Delay Introduced by the KxF and Escape Characters 

Next, we evaluate the delay introduced by the proposed 

KxF that allow exchanging the new LUT and Tx public key 

(but requires to stop the normal data transmission), as well as 

the additional escape chars added to avoid collisions of the 

transmitted data with the KxF; we assume 256-bit keys and 

8-bit CRC. Recall that the operations related to the pure data 

encryption involve XOR operations (performed in blocks of 

b bits according to the used modulation format) and LUT 

access; we assume that those do not introduce significant 

delay.  

Let us first analyze the probability of adding a new char as 

a function of the length of the header n for the considered 

modulation formats. Fig. 7a shows the results from plotting 

eq. (7), where the probability is below 0.4% and 0.024% even 

for lengths as short as 3 chars for 16-QAM and 64-QAM, 

respectively. Such probability is related to the average delay, 

so a longer header would further reduce the delay; however, 

it would also increase the size of the FSMs to be implemented 

in the Tx and the Rx; thus, a reasonable trade-off needs to be 

found. 

Fig. 7b shows the average delay introduced vs. header’s 

length (n), assuming time periods of 1 s., i.e., key exchange 

is performed every 1 s. First, we observe that the introduced 

delay is negligible, just a few ps even for n=3 and 16-QAM. 

Interestingly, when the header length is small, the probability 

of adding escape chars is higher and the average delay mainly 

depends on the number of chars added. However, as the 

header length increases, the average delay decreases to a 

point when the delay is mainly influenced by the KxF itself. 

In view of these results, n=4 char length is selected as it can 

provide a good balance between delay and simplicity. 

C. Frequency Analysis Attack 

In this section, we analyze how a frequency analysis can 

be used by an attacker in case a LUT substitution only is 

implemented (similar approach as in [7]). This will highlight 

why symmetric encryption is an important part of the optical 

encryption block. Suppose that an attacker can send a 

significant amount of data over the optical system, e.g., in the 

form of IP packets, and she/he can also eavesdrop on the 

transmitted signal. Then, the attacker could send packets 

filled with selected payloads, e.g., all 0’s and observe the data 

sent over the fiber. Because LUT just substitutes blocks of b 

bits of data, the attacker can then map the pattern in the 

payload of the injected packets with the symbols sent over 

the fiber. Fig. 8 shows an example of frequency analysis, 

where the symbols are sorted by its frequency of appearance 

to facilitate its representation. For this test, we have 

generated Ethernet frames of fixed size starting in 100 bytes 

until 1500 bytes. In the frame, the only part that was not 

randomly generated was the MAC and IP addresses, which 

represent a small proportion of bits that are predictable. Even 

with long frames, differences in the frequency of the symbols 

can be observed in Fig. 8a, which enables this attack  
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Fig. 9. Encryption time (a) and added delay (b) for a 16-QAM @32Gbaud 
optical system. 

regardless of how many different LUT permutations exist. 

Fig. 8b shows that the attack by frequency analysis will not 

succeed when data is encrypted with the symmetric key, due 

to the properties of the XOR operation. 

D. PRNGs Analysis for Stream Cipher 

When applying stream ciphers, the main consideration is 

the selection of PRNG, as discussed in Section 3.C. Standard 

stream ciphers (e.g., ChaCha or AES in counter mode) can 

be used to produce high-quality PRNG. The quality of a 

PRNG can be examined using some of the available 

empirical statistical tests; see, e.g., [27], [28]. However, 

standard stream ciphers can hardly be used for the speeds that 

are targeted at the optical layer and, in consequence, other 

options should be analyzed. Specifically, the 64-bit all- 

purpose PRNGs in [29] exhibits enough speed for the 

specific requirements of the optical layer. Such PRNGs pass 

many of the statistical tests and can partially fulfil the 

requirements to be used in cryptographic applications. From 

the set of PRNGs proposed in [29], we selected Xoshiro256+ 

as stream cipher.  

Let us first compare the speed of AES, ChaCha, and LPsec 

for a 32Gbaud 16-QAM system. For AES and ChaCha, the 

OpenSSL library was used and blocks of 128 bits for AES 

and 512 bits for ChaCha are considered for encryption. In 

contrast, Xoshiro256+ was integrated in the design of the 

optical encryption block in LPsec (see Fig. 4) and used as 

PRNG. Encryption times were computed on a stream of 

1GB. The tests were performed on an Intel® Core™ i7-4790 

CPU @ 3.60GHz using gcc version 9.3.0. O3 optimization 

was used in all the cases. 

Fig. 9a presents the obtained encryption times for AES, 

ChaCha and LPsec, where we observe that the latter reduces 

the encryption time of AES by 2 orders of magnitude, 

whereas ChaCha reduces the encryption time by a factor of 

about 30. Note that encryption time must be smaller than the 

time required to transmit a block. With the results from Fig. 

9a, AES can support up to 0.8 Gb/s, ChaCha up to 2.7 Gb/s, 

while LPsec can support up to 80 Gb/s, all using Intel® 

Core™ i7-4790 CPU. Of course, when those methods are 

implemented in specialized hardware, transmission times can 

scale several times, but these results show clearly the 

potential of LPsec. 

Let us now analyze the average delay introduced by each 

encryption method. Recall that AES works on blocks of 128 

bits, whereas ChaCha works on blocks of 512 bits and the 

encryption can only start when sufficient bits have arrived. 

Symmetrically, once a block has been encrypted, bits have to 

wait until they are actually transmitted to the destination. In 

contrast, LPsec works in groups matching the bits per symbol 

of the modulation format, so bits in the input bit stream have 

to wait half of the inverse of the baud rate, on average. Fig. 

9b presents the average delay introduced for each of the 

encryption methods, where we can observe the very low 

delay of LPsec. 

E. Security Level Against Exhaustive Search Attack 

Finally, let us explore the security level of LPsec in terms 

of exhaustive search or brute force attacks, where all possible 

keys are tested until the correct one is identified. For this 

attack, we assume the known-plain-text attack model, where 

a plain text along with the cipher text are known to the 

attacker; if the plain text has some repeated properties, like 

headers or identifiers in the communication, that is 

applicable on cipher text only attacks as well. 

The key length used in the encryption method will 

determine the strength of encryption with the longer keys 

being more difficult to crack. For instance, with a 256-bit 

key, the brute-force attack has a complexity of 2256. 

However, techniques like precomputation attacks are short-

cuts to the exhaustive search attacks and can greatly reduce 

such complexity [30]. Precomputation attacks exploit the 

birthday paradox (i.e., the probability that in a set of 

randomly chosen people, some pair of them will have the 

same birthday). The birthday attack is based on the fact that 

duplicate values or collisions appear much faster than 

expected. In general, if a system takes N different values, the 

first collision can occur after √N random values [31]. In 

practice, a precomputed table can be generated by the 

attacker in offline mode. E.g., for a 256-bit key system, the 

attacker can precompute a table with precomputed cipher 

texts by using only 2128 random key entries. Then, she/he 

eavesdrops on each message and checks whether the 

ciphertext appears in the table. If there is a collision, then the 

key is used in the encryption and arbitrary information can 

be added by the attacker till the key is valid. In this case, the 

workload for the attacker becomes 2128, which is much 

smaller than the default expected 2256.  

We have evaluated the key sizes in terms of 

precomputation attacks for LPsec. On the one hand, 

Xoshiro256+ generates 256-bit keys. Besides, the 

substitution cipher adds more complexity to the brute-force 

attack, e.g., key spaces of 44, 117, and 295 bits are produced 
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using 16, 32, and 64 -QAM, respectively, which results in 

total key sizes for LPsec of 300, 373, and 551. This means 

that the effective computation required by the birthday 

paradox is over 2150, which can be considered safe enough 

for the foreseeable future [32]. In conclusion, LPsec can be 

considered secure against exhaustive search attacks. 

6. CONCLUDING REMARKS 

A complete solution to add encryption at the optical 

connection level has been presented in this paper. The 

solution includes a mechanism for key distribution from the 

Tx to the Rx and two ciphers that, when combined, can 

provide the required security level and are able to work on 

100s of Gb/s data flows. The key distribution is performed 

using a Key exchange Frame that is sent periodically from 

the Tx to the Rx. Note that the proposed key exchange 

enables implementing security at the optical layer, although 

can be substituted as soon as other key exchange 

mechanisms, like QKD, become available. The Xoshiro256+ 

PRNG is used for symmetric key expansion, so as to provide 

keys that are used by the first XOR-based cipher. A second 

cipher based on LUT substitution improves the security 

level. The design of LPsec has been presented and is easily 

implementable on current coherent optical systems. 

Simulation results carried out for 16, 32 and 64-QAM 

signals show that LPsec has negligible impact on the 

performance of the optical transmission system. Moreover, 

the required periodical key exchange does not add any 

significant delays. The security against two well-known 

attacks, frequency analysis and exhaustive search, has been 

analyzed and it was shown that LPsec provides a high level 

of security against them. 

As a follow-up of this work, we are starting the 

implementation of some of the LPsec modules described in 

Section 4 in a hardware prototype aiming at experimentally 

demonstrating 100s Gb/s encryption speed. 
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