
LPsec: A Fast and Secure Cryptographic System for
Optical Connections

M. IQBAL1, L. VELASCO1*, N. COSTA2, A. NAPOLI3, J. PEDRO2,4, AND M. RUIZ1
1Optical Communications Group, Universitat Politècnica de Catalunya, Barcelona, Spain.
2Infinera Unipessoal Lda, Lisbon, Portugal.
3Infinera Ltd., London, UK.
4Instituto de Telecomunicações, Instituto Superior Técnico, Portugal.
*Corresponding author: luis.velasco@upc.edu

The high capacity and low latency of optical connections are ideal for supporting the current and future communication services,

including 5G and beyond. Although some of those services are already secured at the packet layer using standard stream ciphers,

like Advanced Encryption Standard (AES) and ChaCha, secure transmission at the optical layer is still not implemented. To

secure the optical layer, cryptographic methods need to be fast enough to support high-speed optical transmission and cannot

introduce significant delay. Moreover, methods for key exchange, key generation and key expansion are required, which can

be implemented on standard coherent transponders. In this paper, we propose Light Path SECurity (LPsec), a secure

cryptographic solution for optical connections that involves fast data encryption using stream ciphers and key exchange using

Diffie-Hellman (DH) protocol through the optical channel. To support encryption of high-speed data streams, a fast, general

purpose Pseudo-Random Number Generator (PRNG) is used. Moreover, to make the scheme more secure against exhaustive

search attacks, an additional substitution cipher is proposed. In contrast to the limited encryption speeds that standard stream

ciphers can support, LPsec can support high-speed rates. Numerical simulation for 16-QAM, 32-QAM and 64-QAM show that

LPsec provides sufficient security level while introducing negligible delay only.

1. INTRODUCTION

Optical networks are vulnerable to a variety of attacks

such as eavesdropping, physical infrastructure attacks,

interception, and jamming (refer to [1] for a survey on the

topic). Most of the previous works focused on the upper

layers, leaving the optical layer for pure transport. However,

the security of the optical layer should not be overlooked, as

building a secure platform on top of an unsecure one is a

risky practice.

Designing a security solution involves combining multiple

technologies for key distribution and data encryption and

decryption, among others. For the former, although Quantum

Key Distribution (QKD) provides secure key agreement and

initial experimental deployments of QKD are being currently

reported (see, e.g., [2]), it is not expected to be available in

the short term. With regard to encryption, there are several

solutions, from stream ciphers (each incoming plaintext digit

is encrypted sequentially) to block ciphers (where plaintext

digits are grouped into blocks and then encrypted together).

Salsa20 and ChaCha [3] are examples of stream ciphers and

Advanced Encryption Standard (AES) [4] is the most

extended block cipher. However, one of the main challenges

for securing the optical layer is that encryption and

decryption need to operate at line speeds of 100s of Gb/s and

should not introduce any meaningful delay to the optical

transmission; otherwise, this would negatively impact the

supported services.

In this regard, some works have already proposed

encryption solutions for the optical layer. In the context of

passive optical networks, the authors in [5] proposed the

optical spectral phase and delay encoding technique, where

the optical signal is split into multiple spectral slices that are

multiplexed after applying a delay and phase shift to produce

the encrypted signal. However, this method has a constraint

of generating narrow spectral slices, putting stringent

requirements on optical bandpass filters [6]. The authors in

[7] reported a physical layer security method based on a

piecewise chaotic permutation of symbols and subcarriers.

The method relies on an initial key, thus requiring the

implementation of a key exchange strategy.

Chaos-based optical transmission is another technique for

encryption in the optical domain, where the signal to be

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. http://dx.doi.org/10.1364/JOCN.444398

2

encrypted is converted into a noise-like signal by applying

broadband chaos as optical carrier [8]. The resulting chaotic

signal is sent to the receiver and decryption can only be

performed by separating the chaotic carrier from the data

signal at the receiver. Recently, authors in [9] have shown

the chaos-based encryption at the physical layer for

wavelength-division multiplexing (WDM) networks, where

a gaussian modulated constant-amplitude random-phase

light is used to generate the chaotic signal for encryption. The

same signal is required for decryption and is sent over the

transmission fiber, which reduces fiber capacity. The

decryption also requires the synchronization between the

sent and received signal. The authors in [10] proposed chaos-

masking encryption techniques for long distance

communication, where advanced digital signal processing is

used to decrypt the signal. However, this scheme does not

provide sufficient security if high confidentiality is required.

In access networks, Optical Code Division Multiple

Access (OCDMA) provides intrinsic confidentiality through

multiple access interface noise [11, 12]. Nonetheless,

eavesdropping by coded waveform analysis was reported in

[13] and data interception by differential detection was

reported in [14]. Optical steganography has been proposed

and demonstrated for WDM systems [15-17]. This technique

hides the signal from the eavesdropper, e.g., through

dispersion, to avoid interception. Another option is to carry

the signal in Amplified Spontaneous Emission (ASE) noise,

as proposed in [18].

Some vendors implement AES at the Optical Transport

Network (OTN) layer [19], where key exchange can be

carried out using header bytes of the Optical Data Unit

(ODU) frame. Note that such a solution brings the additional

requirement of implementing OTN, in addition to the

intrinsic complexity of AES. In this case, AES is used as a

block cipher that encrypts blocks of 128 bits.

In this paper, we propose LPsec, an approach that includes

tailored solutions for both key exchange and

encryption/decryption so they can be easily implemented at

the optical layer. For the key exchange, we design a

mechanism based on the Diffie-Hellman (DH) key exchange

[20], where the initial public keys of the two end parties, i.e.,

the Transmitter (Tx) and the Receiver (Rx), are exchanged

via the Software Defined Networking (SDN) controller and

are periodically updated through the optical channel to

enhance the security level. For encryption, we rely on two

ciphers: i) a traditional stream cipher that uses a symmetrical

key and ii) permutations of symbols. Each cipher has its

drawbacks, but when combined they provide the required

security level to encrypt data at 100s of Gb/s. Besides, LPsec

exhibits negligible transmission delay.

The rest of the paper is organized as follows. Section 2

provides the necessary background on cryptography

describing substitution ciphers, followed by the discussion of

stream ciphers, block ciphers and key exchange mechanisms.

Next, our proposal to secure optical connections (LPsec) is

presented, where the proposed encryption scheme is

described, and the key exchange is outlined. Section 3

presents the details of key exchange, including the initial one

and the periodic key updates. Then, the symmetric key

generation and its expansion are detailed. Security analysis

based on the Pseudo-Random Number Generator (PRNG) is

also discussed. Section 4 details the building blocks of

LPsec, including optical encryption and key management. As

the operations are governed by Finite State Machines (FSM),

their construction at the Tx and Rx are also discussed.

Illustrative results are presented in Section 5, including the

introduced delay and security level against several attacks.

Finally, Section 6 draws the main conclusions of this work.

2. SECURE OPTICAL LAYER

This section first introduces some basic cryptographic

concepts, such as ciphers, key extension, and key exchange

[21], that are used in the rest of the paper. Next, the

cryptographic techniques that we are proposing to implement

for securing the optical layer are described.

A. Background on Cryptography

In cryptography, a cipher is an algorithm that transforms a

plaintext message (m) into a ciphertext (c) (encryption), and

vice versa (decryption). There are several types of ciphers,

e.g., a substitution cipher encrypts units (e.g., each letter in a

text) of plaintext by replacing them with the ciphertext with

the help of a key. The receiver performs the inverse process

to recover the original plaintext. Although the number of

substitution alphabets might be large, substitution ciphers

can be broken by frequency analysis.

To show that a cryptosystem is secure, mathematical

modeling and proofs are used to verify that it satisfies a set

of security properties. In particular, the One-Time Pad (OTP)

cipher shows perfect security, as proved by Shannon in [22].

OTP encrypts m using a key (k) with the same length of m

(denoted as n), by just implementing a bitwise XOR

operation. Two important properties of XOR are: i) if k is

uniformly distributed on {0,1}n then, the ciphered message

m⊕k is also uniformly distributed; and ii) the inverse

operation (decryption) consists on applying the XOR

function with the same (symmetric) key k, i.e., m⊕k⊕k = m.

Although OTP shows perfect security, it does not fit well for

stream ciphers, where the length of the messages tends to

infinite. Semantic security provides a weaker notion of

security that allows to build secure ciphers that use

reasonably short keys. That entails splitting the data stream

into chunks of data of predefined size. However, k cannot be

reused from one data chuck to another, as that would reduce

the security level. Nonetheless, k can be extended using a

cryptographically secure PRNG to generate a sequence of

stream keys (ks).

3

Optical Transmitter

Data In

Optical Receiver

SDN Controller

Optical Encryption
& Key Management

Digital
Modulator

RRC
FEC

encoding
DSP

Optical Decryption
& Key Management

Coherent
RX

FEC
decoding

Data Out

Fig. 1. Optical communication system considered for the implementation of LPsec.

2 6 14 10

3 7 15 11

1 5 13 9

0 4 12 8

Generate LUT permutation with Tx key
kli for ciphered Gray map constellation
(Substitution Cipher)

Bit
stream

PRNG

m
Inverse

LUT
LUT

Bit
stream

m=D1(ksi,c1)

ki PRNG ki

ksi ksi

Rx

(b)

(a)

Header
LUT generated with new private Tx

key (kli)
New Public Tx

Key (kTi)

(c)

c1=E1(ksi,m)

c2=E2(kli,E1(ksi,m))

c1=D2(kli,c2)

Tx

KxF CRC

Fig. 2. Overview of LPsec. Example of 16-QAM LUT for encoding (a),
encryption / decryption (b), and frame structure for periodical LUT and key
synchronization (c).

Salsa and ChaCha are fast and secure stream ciphers that

are appropriate for practical use and variants of them are being

used in widely deployed protocols, such as Transport Layer

Security (TLS) [23]. The PRNGs use a 256-bit seed, a 64-bit

nonce, and a 64-bit counter to form a 512-bit block to create

up to 264 512-bit pseudo random blocks. The design of these

stream ciphers is highly parallelizable to speed-up encryption

[3]. Block ciphers can be used as well to build a stream cipher;

one popular block cipher is AES. In AES, an input block of

128 bits is processed as a 4×4-byte matrix. The AES algorithm

performs 10, 12 or 14 rounds depending on the size of the

cipher key (128, 192 or 256 bits). The process begins with the

expansion of the initial key to produce a series of keys used in

each round. At every round, the encryption begins by adding

the round key as a XOR cipher followed by a non-linear byte

substitution through a predetermined substitution table. Then,

rows shifting followed by a mixing of columns and round key

addition are performed. The procedure is repeated until

completing the required number of rounds. Decryption is

performed in the inverse manner.

The DH key exchange is a solution to exchange keys

between two parties, Alice and Bob, that want to establish a

secure communication channel. Both parties generate private

(integer) keys kp (i.e., ka and kb) and their related public keys

kP (i.e., kA and kB). The public keys are shared over the

insecure channel and each party computes the symmetric key

k that is used for data encryption using their own private key

kp and their counterpart’s public key kP.

B. Implementing LPsec in an Optical Coherent System

LPsec requires extending the standard coherent transponder

with optical encryption and decryption blocks, as well as with

some key management functionalities (see Fig. 1). In addition,

cryptographic blocks need to operate at line speeds and should

not introduce any significant delay to data transmission. To

achieve such an objective, optical encryption should be based

on simple operations performed on the input bit stream. The

main design aspects of the cryptographic techniques proposed

in this paper are analyzed hereafter.

As previously introduced, the encryption is based on two

nested ciphers that provide a high security level. The outer

cipher is a substitution cipher that relies on a Lookup Table

(LUT) used for the substitution of bits before sending it to the

modulator. This creates a ciphered gray map constellation

through LUT permutations of incoming bits as suggested in

Fig. 2a. Note that there are M! permutations in an M-

Quadrature Amplitude Modulation (QAM) system (e.g., there

exist more than 244 permutations in a 16-QAM system) and

thus, we can use a random key (kl) of the appropriate length

(i.e., 44 bits in the example), to select the permutation of the

LUT. The inner cipher is a stream cipher that encrypts data

chunks of predefined size based on a cryptographically secure

PRNG to generate a sequence of stream keys (ks). The

proposed encryption system is sketched in Fig. 2b, where

output ciphertext c2 is produced by the combination of the

inner stream cipher E1 and the outer substitution cipher E2.

Note, however, that the sequence of stream keys ks = [ksj]

generated by the PRNG from a given key k cannot be infinite

as this would reduce the security level of E1. In addition, the

LUT should be periodically regenerated to minimize the

vulnerability of E2. In consequence, we limit the lifetime of

keys k and kl, e.g., to 1 sec., which entails new keys being

periodically generated at the Tx and exchanged with the Rx.

Specifically, the DH key exchange method is used to generate

the symmetric key k. The Tx and Rx generate a random

private/public pair of keys ({<kr, kR>} and {<kt, kT>}) and

exchange their public keys (kT, kR) with the other party. The

initial key exchange can be facilitated by the SDN controller,

which, once the optical connection is computed and

established in the network [33], can collect the public keys

and send them to the counterpart. However, symmetric keys

should have a short lifetime and they need to be frequently

updated, which makes the SDN not a suitable option.

In our approach, we perform a partial key exchange, where

only the Tx generates a new pair of keys <kti, kTi>, as well as

a new key kli for the next period i. Next, both the public key

kTi and the new permutation LUT(kli) are sent to the Rx

4

through the optical channel. We propose to use a special frame

(henceforth called Key exchange Frame, KxF) for the key

exchange, (see Fig. 2c). A KxF is generated by the Tx and sent

to the Rx periodically. The KxF includes a header of a fixed

size that allows the Rx to detect its arrival. Because the Rx is

not synchronized with the Tx for key exchange, any

occurrence of the header pattern in the data stream must be

prevented at the Tx side. Otherwise, the Rx would follow an

erroneous key exchange procedure that will stop data

transmission. The solution is to add escape bit sequences to

break any KxF header pattern in the input data. To this end,

two Finite State Machines (FSM) at the Tx and the Rx sides

add and remove such escape bit sequences to/from the plain

bit stream. Note that the occurrence of errors in the KxF is

critical. In case errors still remain after the FEC decoding

stage and impact the KxF, the decryption process should be

restarted. For this very reason, the KxF includes a cyclic

redundancy check (CRC).

The next sections detail the design of LPsec, how keys are

generated and exchanged, and how the FSMs are defined and

particularized.

3. KEYS AND SECURITY LEVEL

This section first details the key exchange process,

including the initial exchange and the periodical updates. The

generation and expansion of symmetric keys is detailed next,

after which security level of the system is studied.

A. Key Exchange

As introduced in Section 2, an initial key exchange is

performed through the SDN controller and then, the Tx

updates the Rx with the keys to be used through the optical

channel. Fig. 3 presents a sequence diagram detailing the

computation performed by the Tx and Rx, as well as the

messages exchanged through the control plane and the data

and messages sent over the encrypted optical channel.

The initial key exchange is carried out at connection set-up

through the SDN controller (messages 1-5 in Fig. 3), which

collects the public key of the Rx (1) and sends it to the Tx (2).

The Tx generates a pair of private and public keys and a

random key kl0, which is used to generate the initial LUT

permutation. In addition, the Tx generates the symmetric key

k0 with its private key and Rx’s public key. Key k0 is used at

this time to generate the particular KxF header pattern that

will be used for key exchange on the optical channel. Both

FSMTx and FSMRx must be generated for that specific pattern.

Before sharing the LUT, it is encrypted with symmetric key

k0 and sent together with the Tx public key to the SDN

controller (3), which shares them with the Rx (4). Upon the

reception, the Rx generates the symmetric key k0 with its

private key and Tx public key, generates the FSM, and

decrypts the LUT. The Rx replies to the SDN controller when

it is ready to start the secure communication and the SDN

controller notifies the Tx (5), which generates a new set of

private and public keys, the LUT, and the symmetric key for

SDN
Controller

Tx Rx

Conn.
Req {<kr0,kR0>}

1
2

<kR0>

<E1(k0,LUT(kl0)),
kT0>

{<kt0,kT0>,kl0}
k0= (kt0 kR0), LUT(kl0)
fsmTx(k0)

k0= (kT0 kr0)
fsmRx(k0)

<E1(k0,LUT(kl0)), kT0>
Rx ready

4

5
Tx ready

<kR0>

E2(kl0,E1(ks0,m)){<kt2,kT2>,kl2}
k2= (kt2 kR0)
LUT(kl2)

KxFE2E1(LUT(kl2), kT2)8

E2(kl1,E1(ks1,m)){<kt3,kT3>,kl3}
k3= (kt3 kR0)
LUT(kl3)

k2= (kT2 kr0)

k1= (kT1 kr0)

10 KxFE2E1(LUT(kl3), kT3)

Escape sequences added

KxFE2E1(LUT(kl1), kT1)6

Escape sequences added

7

9

In
it

ia
l K

ey
 E

xc
h

an
ge

Se
cu

re
 O

p
ti

ca
l T

ra
n

sm
is

si
o

n
an

d
 P

er
io

d
ic

al
 K

ey
 E

xc
h

an
ge

{<kt1,kT1>,kl1}
k1= (kt1 kR0), LUT(kl1)

Ti
m

e
P

er
io

d
 1

Ti
m

e
P

er
io

d
 2

3

Fig. 3. Connection set-up and secure optical transmission

the next time interval. Then, the Tx replies to the controller

that it is also ready, and the initialization phase concludes. At

this time, the secure optical connection is established.

Once the initialization phase ends, the secure optical

transmission phase begins and continues until the connection

is torn down. At the starting time, the Tx updates the LUT and

public key (6). Note that such exchange is encrypted using the

nested encryption used for data transmission; in this case, keys

ks0 (extended from symmetric key k0) and kl0 are used for

ciphers E1 and E2, respectively (6).

For the sake of clarity, we denote with subindex i the keys

that participate in key exchange at the starting of time period

i. This entails that during every time period i-1, the Tx

generates the set of public and private keys (<kti, kTi>), the

symmetric key ki, and the random key kli (and the permutation

of the LUT). Then, at the start of time interval i, the Tx

updates the Rx, which computes symmetric key ki. The

exchanged keys will be in place during time period i+1. In

particular, key exchange i and all data transmitted during time

period i are encrypted using keys i-1.

B. Symmetric Key Generation and Expansion

In the standard DH key exchange, two large prime numbers

(p and g) are publicly selected. When Alice and Bob want to

setup a secure communication channel, they generate private

keys kp, which are used to compute their public keys kP, as:

𝑘𝑃 = 𝑔𝑘𝑝 𝑚𝑜𝑑 𝑝 (1)

After the public keys are exchanged, each party computes

the symmetric key k for data encryption/decryption, as:

𝑘 = 𝑘𝐵
𝑘𝑎 𝑚𝑜𝑑 𝑝 = 𝑘𝐴

𝑘𝑏 𝑚𝑜𝑑 𝑝 (2)

Similarly, in LPsec, Tx and Rx exchange their public keys

kT0 and kR0 through the SDN controller during the initial key

exchange phase. Next, the Tx computes a new pair of keys

every period and updates the Rx with the new public key kTi.

𝑘𝑅0 = 𝑔𝑘𝑟0 𝑚𝑜𝑑 𝑝 (3)

5

𝑘𝑇𝑖 = 𝑔𝑘𝑡𝑖 𝑚𝑜𝑑 𝑝 ∀𝑖 (4)

Note that the Rx does not compute new public and private

keys afterwards, and the initial pair <kr0, kR0> is used along

the lifetime of the optical connection. Therefore, the

symmetric key k that is used for the stream cipher is updated

periodically (e.g., every 1 sec.) as:

𝑘𝑖 = 𝑘𝑅0
𝑘𝑡𝑖 𝑚𝑜𝑑 𝑝 = 𝑘𝑇𝑖

𝑘𝑟0 𝑚𝑜𝑑 𝑝 (5)

Once the symmetric key is computed, it is expanded using

a cryptographically secure PRNG to produce keys long

enough for the stream cipher to encrypt / decrypt a chunk of

data. Therefore, if the size of each chunk of data is U [b] and

the transmission speed is B [b/s] then the number of chunks

per second, J, can be computed as:

𝐽 =
𝐵

𝑈
 (6)

Hence, each symmetric key ki generated for the time

interval i, is expanded into J ksij keys that the stream cipher

will use for chunks j in [0 .. J-1]; keys ksij are U bits long. For

example, assuming that the size of data chunks is U=64 bits,

the transmission speed is B=100 Gb/s, a new key is generated

every 1 second, the PRNG needs to expand the symmetric key

k into J=230.5 keys ksij per second (i.e., one key every 0.64 ns),

each U bits long. Therefore, the PRNG must be fast enough to

work at 100s of Gb/s line speeds, in order not to introduce

meaningful delay to data transmission.

C. Security Level and Encryption Speed

Let us assume that, under the DH protocol, an eavesdropper

(i.e., Eve) knows the value of p, g, and the public keys of Alice

and Bob. To compute the symmetric key, Eve still needs to

know the private keys of either Alice or Bob, or to solve the

discrete logarithm problem [24], which is considered

computationally hard when p is large. However, the security

level of a stream cipher depends on the randomness of the

PRNG for key expansion [21]. Recall that OTP shows perfect

security since ciphertexts do not reveal any information of the

related plaintext, so an adversary cannot distinguish between

two ciphertexts mi and mj encrypted with key k selected at

random. However, stream ciphers cannot attain perfect

security because PRNGs are utilized, and the length of the

generated keys are shorter than those of the messages.

A PRNG is secure if an adversary cannot distinguish

between a truly random sequence and the pseudo random

sequence generated by the PRNG with a significant

advantage. This is related to the computational feasibility of

adversaries to perform predictions with a reasonable amount

of time and memory. In practice, although standard stream

ciphers based on Salsa20 and ChaCha produce high-quality

PRNGs, they are not fast enough to be applied to optical

transmission. In contrast, we use a general-purpose PRNG

because of its high speed. To mitigate the impact of using a

general-purpose PRNG only, an optical constellation-based

substitution cipher is added. This approach is still not

perfectly secure, as the distribution of the encrypted data is

not uniform. Therefore, if the characteristics of the plain text

are known, an adversary can apply frequency analysis and

break the cipher. However, since the substitution cipher is fed

with data encrypted using the XOR operation, frequency

analysis will not provide useful information. As a

consequence, this symbiotic relationship between the stream

cipher and the substitution cipher results in a fast and secure

cryptographic system.

4. DESIGN OF LPsec

In this section, we design the blocks for optical encryption

/ decryption and key management in terms of interconnected

modules, which are governed by FSMs. We define

generalized templates for the FSMs governing Tx and Rx,

which enables the definition of random KxF header patterns

both in contents and length. The generation of specific FSMs

is detailed.

A. Optical Encryption / Decryption and Key Management

Fig. 4 presents a detailed design of the Optical Encryption

and Key Management block at the Tx and that for Decryption

and Key Management at the Rx. The Tx receives as input the

data bit stream. Each individual plaintext digit is temporarily

stored in a register while being checked by the FSMTx to

prevent KxF header patterns. The encryption and decryption

blocks perform operations over sets of bits, named character

(char), where their size (b) coincides with the number of bits

per symbol of the M-QAM modulation format used for the

optical signal, e.g., b = 4 bits/symbol for 16-QAM (note that

M=2b). At every clock cycle during normal operation, the

FSMTx reads one char from the input register (labeled Da in

Fig. 4) and executes an internal state transition, which

generates a tuple <Sh, Se, Xa> as output, where: i) Sh performs

a char-size shift operation on the input register; ii) Se selects

the input that is chosen as output in the selector; and iii) Xa is

active during key exchange. In the case that a KxF header

pattern is detected in the input data stream, an escape char is

inserted, so the input esc in the selector will be chosen. At

regular intervals, a new key exchange is initiated, so the Key

Exchange module activates the Kx input on the FSMTx, and

the KxF is transmitted instead of input data. Every char in the

output of the selector is encrypted by stream cipher E1 using a

char from key ks(i-1)j; the key register shifts one char every

cycle and when it is empty a new key ks(i-1)j is expanded and

loaded. Once a char is encrypted (c1), it is used as input for the

LUT and the substituted char (c2) is generated.

The Key Generator module is responsible for generating

new keys. At every time interval, the module generates a new

pair of Tx public and private keys and uses the public key

from the Rx to generate a new symmetric key. It also

generates a new random key and selects the LUT permutation.

The generated keys and LUT are sent to: i) the Key Exchange

module that packs the LUT and the Tx public key in a KxF

and activate the Kx signal to stop data transmission and start

the key update; ii) the PRNG module that uses the symmetric

6

Sel

PRNG

m c1=E1(ksi-1j,m)
LUT(kli-1)

ki-1

ksi-1j

Optical Encryption
& Key Management

c2=E2(kli-1,E1(ksi-1j,m))

LUT(kli)

Bit
Stream

FSM
Tx

Key
Exchange

esc

Key Generator
{(kti+1,kTi+1), kli+1}

<LUT(kli), kTi>
ki

kR0

Kx

Da

Xa Se

KxFData Input Reg.

Key Reg.

@

Sh

m
Inverse

LUT(kli-1)

c2
c1=E1(ksi-1j,m)

PRNG ki-1

ksi-1j

Key Reg.

FSM
Rx

Sel

Key Management
{kTi+1, LUT(kli+1)}

ki

kr0

LUT(kli)

Key Generator
(kr0,kR0)

<Ld,Fl,LdF,FLd,Cl>

Se

Bit
Stream

Optical Decryption
& Key Management

KxF

esc
Da

Output Reg.
@

Xa

Fig. 4. Design of LPsec: Optical Encryption/Decryption and Key Management at the Tx/Rx.

key for expanding stream keys for the next chunk of data; and

iii) the LUT module that uses the new LUT to update its

contents.

At the Rx, the inverse process is performed. Every c2 char

received enters in the LUT and the original char c1 is

generated, which is then decrypted using a char from key ks(i-

1)j. The FSMRx inspects the plain chars (input m) in the search

of escape chars being inserted by the Tx and generates a tuple

<Se, Ld, Fl, LdF, FLd, Cl> as output. The plain chars are

chosen at the output of the selector (signal Se) and can be

temporarily stored in an output register (signal load, Ld) until

a decision is made to send them as output bit stream (signal

flush, Fl) or ignore them (signal clear, Cl). For convenience,

the signals Load and Flush (LdF) and Flush and load (FLd)

are defined. When the KxF header pattern is detected, the

stored chars are ignored and the payload of the KxF is sent to

the Key Management module. On the contrary, if an escape

character is detected, it is ignored by choosing the esc output

in the selector, and the output register is flushed.

When a KxF header pattern is detected, the Key

Management module receives it and announces the FSMRx its

end (signal Xa). The Key Management module will then

distribute the received LUT to the LUT module and generate

the new symmetric key to be distributed to the PRNG module.

B. Generalized FSM Templates

Specific FSMs need to be defined for the Tx and the Rx as

a function of the generated KxF header pattern, which is

generated at random during the initial key exchange phase.

For the sake of the generalization of the FSMs, the header

pattern is generated guaranteeing that any char does not

appear more than once. In this way, the specific FSMs can be

easily built from predefined parameterized templates by

specifying the size of the header pattern and the specific chars.

Fig. 5a illustrates a graph representing the parameterized

template of FSMTx, where the n-char header pattern is

specified by the char sequence H = <h0, h1,.., hk,.., hn-1, hn>. In

the graph, states STx define the outputs (OTx) for Sh, Se, and Xa

signals, while transitions among states are performed based

on the char in the input Da and Kx (ITx). Normal operation is

represented by states Si, whereas key periodical key exchange

is represented by states Si’. The graph consists of n+1 Si and n

Si’ states, where Si represents the state where i chars in the

header sequence and in the right order have been detected. A

value ‘-’ in one of the inputs means whatever other value,

different than those specified for the rest of transitions leaving

from that state. State S0, the initial state, and state S1 are the

most frequently transitioned, and many of the rest of the states

have a direct transition to them. The remaining normal

operation states account for partial header patterns found in

the input data. State Sn is the one responsible for adding an

escape character, and it has priority even in the case of a key

exchange request (note that whatever the input from Sn-1 a

transition to Sn is always made).

Note that FSMTx adds an extra char when n-1 chars in the

data stream coincide with those defined for the header. Hence,

the probability of adding a new char can be defined as:

𝑃𝑐ℎ𝑎𝑟_𝑎𝑑𝑑𝑒𝑑 =
1

2𝑏∙(𝑛−1)
 (7)

Similarly, Fig. 5b presents a graph representing the

parameterized template of FSMRx. States SRx define the

outputs for Se, Ld, LdF, FLd, and Cl signals (ORx) (outputs are

specified in the inner table in Fig. 5b), while transitions among

states are performed based on the decrypted char m and the Xa

inputs (IRx). So is the initial state and every transition to that

state loads the received char and produces a flush on the

output register. State Sn-1 is responsible for distinguishing

between an escape char inserted by the Tx and the complete

KxF header pattern. In the first case, the transition is to Sn,

which discards that char and flushes the register. In the second

case, the transition is to Sn’, which sends the payload of the

KxF to the Key Management module and clears the output

register. During the reception of the KxF payload, the Key

Management module keeps the Xa signal active until all the

chars have been received. In the meanwhile, transitions are to

the state Sn’. When the complete KxF payload has been

received, the FSM transitions to either state So or S1, and

incoming chars are stored again in the output register.

Both graphs can be particularized for any given length of

the KxF header greater or equal to 3 by just adding as many

Sk intermediate states as needed.

C. FSM Particularization

We now illustrate the easiness to particularize the FSMs

given the n-char KxF header pattern H = <h0, …, hn-1> and the

bits per symbol of the modulation format (b). The specific

FSMs for Tx / Rx are defined by: i) the state-transition matrix

(STM) of dimensions |S(·)|×2|I(·)|; and ii) the output matrix

7

S0

1,2,0

S1

1,2,0 Sk

1,2,0

Sn-1

1,2,0

h1,0

Si

Sh,Se,Xa

Da, Kx

-,0

h2, 0

-,0

-,0

h1,0

Sn

0,1,0

-,-

-,0

h1,0

Sn’
0,3,1

-,1-,0

-,1

Sk’
0,3,1

-,1
-,1

S0’
0,3,1

-,0

-,1

S1’
0,3,1

-,1

-,1

-,0

h1,0

-,1

-,0

hn-1,0

hn-1,0

h1,0

h1,0

S0

-,-

S2

Sk

Sn-1Sn

Sn’

hn,-

-,0

-,-

-,-

-,-

hn-1,-

h1,-

h1,-

h2,-

-,1

h1,-

h1,0

Si

m, Xa

(a) FSMTx (b) FSMRx

Si
Outputs

<Se,Ld,Fl,LdF,FLd,Cl>

S0 <2,0,0,1,0,0>

S1 <2,1,0,0,0,0>

S2 <2,0,0,0,1,0>

Sk <2,1,0,0,0,0>

Sn-1 <2,1,0,0,0,0>

Sn <1,0,1,0,0,0>

Sn’ <3,0,0,0,0,1>

-,-

h1,-

S1

-,-

h1,-

h2,-

h1,0

Fig. 5. Graphs representing parameterized templates for FSMTx (a) and FSMRx (b).

Algorithm 1. FSMTx Generation

Input: H, b

Output: STM, OM

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

Ch ← 2b; n ← |H|; |S| ← 2n+1

S ← [i for i: 0..|S|-1)]

STM ← [|S|] [2Ch]

for i: 0..n-1 do

for c: 0..Ch-1 do

if i = n-1 then

STM[i][c] ← S[n]

STM[i][Ch+c] ← S[n]

continue

if i = n OR i = 2n then STM[i][Ch+c] ← S[2n]

else if i < n then STM[i][Ch+c] ← S[n+1+i]

else STM[i][Ch+c] ← S[n+i%n]

if c = H[0] then STM[i][c] ← S[1]

else if c = H[i%n] then STM[i][c] ← S[i%n +1]

OM ← [|S|]

for i: 0..|S|-1 do

if i < n-1 then OM[i] ← [1, 2, 0]

else if i = n then OM[n] ← [0, 1, 0]

else OM[i] ← [0, 3, 1]

return STM, OM

 (OM) of dimensions |S(·)|×|O(·)|. Specifically, |STx| = 2·|H|+1,

|SRx| = |H|+2, |ITx| = |IRx| = b+1, |OTx| = 3, and |ORx| = 7.

Algorithm 1 presents the pseudocode to generate FSMTx.

The algorithm first computes the number of different chars as

a function b (for input Da) and the number of states, initializes

vector S with the states, and the state-transition matrix STM

(lines 1-3); note that the STM is initialized with all transitions

to state S0. Next, the transitions for states are computed as

follows (lines 4-14): 1) transitions from state Sn-1 are to Sn

disregarding the value of Kx (lines 6-9); 2) whenever input Kx

is active, transitions from state Si are to Si’ (lines 10-12); 3)

whenever input Kx is not active, transition is to S1 if Da = h0

or to state Si+1 when Da = hi (lines 13-14). The output matrix

OM is filled (lines 15-19) and the generated FSMTx is

eventually returned (line 20).

5. ILLUSTRATIVE RESULTS

We have implemented LPsec as a MATLAB-based

simulation. In particular, we have integrated the encryption

and decryption blocks in the Tx and Rx, as depicted in Fig. 1,

where a single polarization 64 GBd optical signal was

considered. Three different modulation formats are assumed:

16-QAM, 32-QAM and 64-QAM. In this section, we present

the obtained results to validate LPsec.

A. Optical System Performance Analysis

Let us first analyze the performance from the optical

perspective. In the simulator, the signal was sampled and

passed through a root-raised-cosine pulse shaper with roll off

factor of 0.06. The signal was launched into a fiber channel

with N spans, each being 80 km long. After every span, an

optical amplifier with a noise figure of 4.5 dB compensates

for fiber losses. Additive white Gaussian noise is added after

each span to model ASE noise. For the simulation of the fiber

channel, standard single mode fiber with the following

parameters was considered: fiber loss α = 0.21 dB/km,

dispersion D = 16.8 ps/(km-nm) and nonlinear coefficient γ =

1.14 W-1km-1. A 216 pseudo-random sequence was used to

generate the payload. The signal was propagated then using

the symmetric split-step Fourier method, solving the non-

linear Schrödinger equation [25]. The signal was coherently

received; it was down-sampled to 2 samples per symbol, and

an ideal chromatic dispersion filter was used.

We first analyzed the performance of the system with and

without encryption to verify that encryption does not degrade

the performance of the system. Fig. 6a shows the obtained

results for 25 spans, where we observe that the BER remains

the same with and without encryption for the selected

modulation formats for different input powers.

Once the optical performance was verified, we implemented

convolutional forward error correction (FEC) encoding and

decoding; FEC code rate of 2/3 was used for data encoding,

whereas the Viterbi decoding algorithm was used at the

receiver [26]. Fig. 6b presents the BER as a function of the

number of spans and the inner table summarizes the maximum

number of spans where the FEC corrected any transmission

error.

8

B
ER

Average Power [dBm]

5E-4

5E-3

5E-2

5E-1

-6 -4 -2 0 2 4

with encryption

w/o encryption

16-QAM

32-QAM

64-QAM

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

0 10 20 30

16-QAM

32-QAM

64-QAM

16-QAM 32-QAM 64-QAM

Max Spans 30 15 8

B
ER

spans

5%

6%

7%

8%

9%

0 2 4 6 8 10 12 14

100 bytes

500 bytes

1000 bytes

1500 bytes

5%

6%

7%

8%

9%

0 2 4 6 8 10 12 14

(a) Only LUT

(b) XOR+LUT

Symbol

Symbol

(a)

(b)

Fr
e

q
u

e
n

cy
 [%

]
Fr

e
q

u
e

n
cy

 [%
]

1E-12

1E-11

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

3 5 7 9 11

16-QAM
32-QAM

64-QAM

1E-18

1E-16

1E-14

1E-12

1E-10

1E-8

1E-6

1E-4

1E-2

3 5 7 9 11

A
ve

ra
ge

 D
e

la
y

[µ
s]

A
d

d
e

d
 C

h
a

r
P

ro
b

a
b

ili
ty

Header Length [chars]

Header Length [chars]

4

4

(a)

(b)

Fig. 6: BER w/ and wo/ encryption (a) and BER vs
number of spans with FEC (b)

Fig. 7: Added Char Probability (a) and
average delay (b)

Fig. 8: Frequency of symbols w/o (a) and w/
encryption (b)

B. Delay Introduced by the KxF and Escape Characters

Next, we evaluate the delay introduced by the proposed

KxF that allow exchanging the new LUT and Tx public key

(but requires to stop the normal data transmission), as well as

the additional escape chars added to avoid collisions of the

transmitted data with the KxF; we assume 256-bit keys and

8-bit CRC. Recall that the operations related to the pure data

encryption involve XOR operations (performed in blocks of

b bits according to the used modulation format) and LUT

access; we assume that those do not introduce significant

delay.

Let us first analyze the probability of adding a new char as

a function of the length of the header n for the considered

modulation formats. Fig. 7a shows the results from plotting

eq. (7), where the probability is below 0.4% and 0.024% even

for lengths as short as 3 chars for 16-QAM and 64-QAM,

respectively. Such probability is related to the average delay,

so a longer header would further reduce the delay; however,

it would also increase the size of the FSMs to be implemented

in the Tx and the Rx; thus, a reasonable trade-off needs to be

found.

Fig. 7b shows the average delay introduced vs. header’s

length (n), assuming time periods of 1 s., i.e., key exchange

is performed every 1 s. First, we observe that the introduced

delay is negligible, just a few ps even for n=3 and 16-QAM.

Interestingly, when the header length is small, the probability

of adding escape chars is higher and the average delay mainly

depends on the number of chars added. However, as the

header length increases, the average delay decreases to a

point when the delay is mainly influenced by the KxF itself.

In view of these results, n=4 char length is selected as it can

provide a good balance between delay and simplicity.

C. Frequency Analysis Attack

In this section, we analyze how a frequency analysis can

be used by an attacker in case a LUT substitution only is

implemented (similar approach as in [7]). This will highlight

why symmetric encryption is an important part of the optical

encryption block. Suppose that an attacker can send a

significant amount of data over the optical system, e.g., in the

form of IP packets, and she/he can also eavesdrop on the

transmitted signal. Then, the attacker could send packets

filled with selected payloads, e.g., all 0’s and observe the data

sent over the fiber. Because LUT just substitutes blocks of b

bits of data, the attacker can then map the pattern in the

payload of the injected packets with the symbols sent over

the fiber. Fig. 8 shows an example of frequency analysis,

where the symbols are sorted by its frequency of appearance

to facilitate its representation. For this test, we have

generated Ethernet frames of fixed size starting in 100 bytes

until 1500 bytes. In the frame, the only part that was not

randomly generated was the MAC and IP addresses, which

represent a small proportion of bits that are predictable. Even

with long frames, differences in the frequency of the symbols

can be observed in Fig. 8a, which enables this attack

9

10.15

3.02

0.10
0

2

4

6

8

10

12

AES ChaCha Opt. Encr.

1.02

4.02

0.05
0

1

2

3

4

5

AES ChaCha Opt. Encr.

En
cr

yp
ti

o
n

 t
im

e
 [

n
s/

b
yt

e
]

A
d

d
e

d
 d

e
la

y
[n

s]

0
4.5

(a)

(b)

LPsec

Fig. 9. Encryption time (a) and added delay (b) for a 16-QAM @32Gbaud
optical system.

regardless of how many different LUT permutations exist.

Fig. 8b shows that the attack by frequency analysis will not

succeed when data is encrypted with the symmetric key, due

to the properties of the XOR operation.

D. PRNGs Analysis for Stream Cipher

When applying stream ciphers, the main consideration is

the selection of PRNG, as discussed in Section 3.C. Standard

stream ciphers (e.g., ChaCha or AES in counter mode) can

be used to produce high-quality PRNG. The quality of a

PRNG can be examined using some of the available

empirical statistical tests; see, e.g., [27], [28]. However,

standard stream ciphers can hardly be used for the speeds that

are targeted at the optical layer and, in consequence, other

options should be analyzed. Specifically, the 64-bit all-

purpose PRNGs in [29] exhibits enough speed for the

specific requirements of the optical layer. Such PRNGs pass

many of the statistical tests and can partially fulfil the

requirements to be used in cryptographic applications. From

the set of PRNGs proposed in [29], we selected Xoshiro256+

as stream cipher.

Let us first compare the speed of AES, ChaCha, and LPsec

for a 32Gbaud 16-QAM system. For AES and ChaCha, the

OpenSSL library was used and blocks of 128 bits for AES

and 512 bits for ChaCha are considered for encryption. In

contrast, Xoshiro256+ was integrated in the design of the

optical encryption block in LPsec (see Fig. 4) and used as

PRNG. Encryption times were computed on a stream of

1GB. The tests were performed on an Intel® Core™ i7-4790

CPU @ 3.60GHz using gcc version 9.3.0. O3 optimization

was used in all the cases.

Fig. 9a presents the obtained encryption times for AES,

ChaCha and LPsec, where we observe that the latter reduces

the encryption time of AES by 2 orders of magnitude,

whereas ChaCha reduces the encryption time by a factor of

about 30. Note that encryption time must be smaller than the

time required to transmit a block. With the results from Fig.

9a, AES can support up to 0.8 Gb/s, ChaCha up to 2.7 Gb/s,

while LPsec can support up to 80 Gb/s, all using Intel®

Core™ i7-4790 CPU. Of course, when those methods are

implemented in specialized hardware, transmission times can

scale several times, but these results show clearly the

potential of LPsec.

Let us now analyze the average delay introduced by each

encryption method. Recall that AES works on blocks of 128

bits, whereas ChaCha works on blocks of 512 bits and the

encryption can only start when sufficient bits have arrived.

Symmetrically, once a block has been encrypted, bits have to

wait until they are actually transmitted to the destination. In

contrast, LPsec works in groups matching the bits per symbol

of the modulation format, so bits in the input bit stream have

to wait half of the inverse of the baud rate, on average. Fig.

9b presents the average delay introduced for each of the

encryption methods, where we can observe the very low

delay of LPsec.

E. Security Level Against Exhaustive Search Attack

Finally, let us explore the security level of LPsec in terms

of exhaustive search or brute force attacks, where all possible

keys are tested until the correct one is identified. For this

attack, we assume the known-plain-text attack model, where

a plain text along with the cipher text are known to the

attacker; if the plain text has some repeated properties, like

headers or identifiers in the communication, that is

applicable on cipher text only attacks as well.

The key length used in the encryption method will

determine the strength of encryption with the longer keys

being more difficult to crack. For instance, with a 256-bit

key, the brute-force attack has a complexity of 2256.

However, techniques like precomputation attacks are short-

cuts to the exhaustive search attacks and can greatly reduce

such complexity [30]. Precomputation attacks exploit the

birthday paradox (i.e., the probability that in a set of

randomly chosen people, some pair of them will have the

same birthday). The birthday attack is based on the fact that

duplicate values or collisions appear much faster than

expected. In general, if a system takes N different values, the

first collision can occur after √N random values [31]. In

practice, a precomputed table can be generated by the

attacker in offline mode. E.g., for a 256-bit key system, the

attacker can precompute a table with precomputed cipher

texts by using only 2128 random key entries. Then, she/he

eavesdrops on each message and checks whether the

ciphertext appears in the table. If there is a collision, then the

key is used in the encryption and arbitrary information can

be added by the attacker till the key is valid. In this case, the

workload for the attacker becomes 2128, which is much

smaller than the default expected 2256.

We have evaluated the key sizes in terms of

precomputation attacks for LPsec. On the one hand,

Xoshiro256+ generates 256-bit keys. Besides, the

substitution cipher adds more complexity to the brute-force

attack, e.g., key spaces of 44, 117, and 295 bits are produced

10

using 16, 32, and 64 -QAM, respectively, which results in

total key sizes for LPsec of 300, 373, and 551. This means

that the effective computation required by the birthday

paradox is over 2150, which can be considered safe enough

for the foreseeable future [32]. In conclusion, LPsec can be

considered secure against exhaustive search attacks.

6. CONCLUDING REMARKS

A complete solution to add encryption at the optical

connection level has been presented in this paper. The

solution includes a mechanism for key distribution from the

Tx to the Rx and two ciphers that, when combined, can

provide the required security level and are able to work on

100s of Gb/s data flows. The key distribution is performed

using a Key exchange Frame that is sent periodically from

the Tx to the Rx. Note that the proposed key exchange

enables implementing security at the optical layer, although

can be substituted as soon as other key exchange

mechanisms, like QKD, become available. The Xoshiro256+

PRNG is used for symmetric key expansion, so as to provide

keys that are used by the first XOR-based cipher. A second

cipher based on LUT substitution improves the security

level. The design of LPsec has been presented and is easily

implementable on current coherent optical systems.

Simulation results carried out for 16, 32 and 64-QAM

signals show that LPsec has negligible impact on the

performance of the optical transmission system. Moreover,

the required periodical key exchange does not add any

significant delays. The security against two well-known

attacks, frequency analysis and exhaustive search, has been

analyzed and it was shown that LPsec provides a high level

of security against them.

As a follow-up of this work, we are starting the

implementation of some of the LPsec modules described in

Section 4 in a hardware prototype aiming at experimentally

demonstrating 100s Gb/s encryption speed.

Funding. The research leading to these results has received funding

from the European Community's through the MSCA REAL-NET

project (G.A. 813144), the H2020 B5G-OPEN (G.A. 101016663),

the MICINN IBON (PID2020-114135RB-I00) project, and from

the ICREA Institution.

REFERENCES
1. M. Fok, Z. Wang, Y. Deng, and P. Prucnal, “Optical Layer Security in

Fiber-Optic Networks,” IEEE Transactions on Information Forensics
and Security, vol. 6, pp. 725-736, 2011.

2. A. Aguado, D. Lopez, A. Pastor, V. Lopez, J. Brito, M. Peev, A. Poppe,
V. Martin, “Quantum cryptography networks in support of path
verification in service function chains,” IEEE/OSA J. of Optical
Communications and Networking, vol. 12, pp. B9-B19, 2020.

3. D. Bernstein, “ChaCha, a variant of Salsa20,” in Workshop Record of
SASC, 2008.

4. “Specification for the Advanced Encryption Standard (AES),” FIPS-
197, National Institute of Standards and Technology (NIST), 2001.

5. M. Abbade, M. Cvijetic, C. Messani, C. Alves, and S. Tenenbaum, “All-
optical cryptography of M-QAM formats by using two-dimensional
spectrally sliced keys,” Applied Optics, vol. 54. pp. 4359-4365, 2015.

6. M. Abbade, L. Lessa, M. Santos, A. Prado and I. Aldaya, “A New DSP-
Based Physical Layer Encryption Technique Applied to Passive Optical
Networks,” in Proc. ICTON, 2018.

7. B. Liu, L. Zhang, X. Xin and N. Liu, “Piecewise Chaotic Permutation
Method for Physical Layer Security in OFDM-PON,” IEEE Photonics
Technology Letters, vol. 28, pp. 2359-2362, 2016.

8. M. Sciamanna and K. A. Shore, “Physics and applications of laser
diode chaos,” Nat. Photon., vol. 9, pp. 151-162, 2015.

9. A. Zhao, N. Jiang, S. Liu, Y. Zhang, K. Qiu, “Physical Layer Encryption
for WDM Optical Communication Systems Using Private Chaotic
Phase Scrambling,” IEEE/OSA Journal of Lightwave Technology, vol.
39, pp. 2288-2295, 2021.

10. L. Jiang, Y. Pan, A. Yi, J. Feng, W. Pan, L. Yi, W. Hu, A. Wang, Y. Wang, Y.
Qin, L. Yan, “Trading off security and practicability to explore high-
speed and long-haul chaotic optical communication,” OSA Optics
Express, vol. 29, pp. 12750-12762, 2021.

11. T. Shake, “Security performance of optical CDMA against
eavesdropping,” IEEE J. Lightwave Technol., vol. 23. pp. 655-670,
2005.

12. Z. Jiang, D. Leaird, and A. Weiner, “Experimental investigation of
security issues in O-CDMA,” IEEE J. Lightwave Technol., vol. 24. pp.
4228-4334, 2006.

13. Z. Si, F. Yin, M. Xin, H. Chen, M. Chen, and S. Xie, “Code extraction
from encoded signal in time-spreading optical code division multiple
access,” OSA Optics Letters, vol. 35, pp. 229-231, 2010.

14. B. Dai, Z. Gao, X. Wang, N. Kataoka and N. Wada, “Demonstration of
differential detection on attacking code-shift-keying OCDMA
system,” Electronics Letters, vol. 46, pp. 1680-1682, 2010.

15. B. Wu, A. Agrawal, I. Glesk, E. Narimanov, S. Etemad and P. Prucnal,
“Steganographic fiber-optic transmission using coherent spectral-
phase-encoded optical CDMA,” in Proc. CLEO, 2008.

16. K. Kravtsov, B. Wu, I. Glesk; P. Prucnal, E. Narimanov, “Stealth
transmission over a WDM network with detection based on an all
optical thresholder,” in Proc. IEEE/LEOS, 2007.

17. Z. Wang and P. Prucnal, “Optical steganography over a public DPSK
channel with asynchronous detection,” IEEE Photonics Technology
Letters, vol 23, pp. 48-50, 2011.

18. B. Wu, Z. Wang, Y. Tian, M. Fok, B. Shastri, D. Kanoff, P. Prucnal,
“Optical steganography based on amplified spontaneous emission
noise,” OSA Optics Letters, vol. 35, pp. 2065-2071 2013.

19. ADVA Layer 1 security. https://www.adva.com/en/innovation/
network-security/layer-1-security. [Accessed: Sept. 2021].

20. D. Neuenschwander, “Diffie-Hellman Key Exchange,” Probabilistic
and Statistical Methods in Cryptology, 2004.

21. D. Boneh and V. Shoup, A Graduate Course in Applied Cryptography,
http://toc.cryptobook.us [Accessed: Sept. 2021], 2020.

22. C. Shannon, “Communication theory of secrecy systems,” Bell Labs
Tech. J., vol. 28, pp. 656-715, 1949.

23. Y. Nir and A. Langley, “ChaCha20 and Poly1305 for IETF Protocols,”
IRTF RFC-8439, 2018.

24. H. Corrigan-Gibbs and D. Kogan “The Discrete-Logarithm Problem
with Preprocessing,” in Proc. EUROCRYPT 2018.

25. G. Agrawal, Nonlinear fiber optics, Academic Press, 5th edition, 2013.
26. A. Tychopoulos, O. Koufopavlou and I. Tomkos, “FEC in optical

communications - A tutorial overview on the evolution of
architectures and the future prospects of outband and inband FEC

11

for optical communications,” IEEE Circuits and Devices Magazine,
vol. 22, pp. 79-86, 2006.

27. TestU01, Empirical Testing of Random Number Generators [Online].
http://simul.iro.umontreal.ca/testu01/tu01.html.

28. NIST Empirical Testing of Random Number Generators [Online].
https://www.nist.gov/publications/statistical-test-suite-random-
and-pseudorandom-number-generators-cryptographic.

29. D. Blackman and S. Vigna, “Scrambled Linear Pseudorandom
Number Generators,” [Online] arXiv:1805.01407, 2019.

30. D. Mcgrew, “Counter Mode Security: Analysis and
Recommendations,” vol. 2, Cisco Systems, 2002.

31. E. Biham, “How to Forge DES-encrypted messages in 228 steps,“
Technion, Technical Report CS0884, 1996.

32. N. Ferguson, B. Schneier, T. Kohno, Cryptography Engineering: Design
Principles and Practical Applications, Wiley Publishing, 2010.

33. M. Dallaglio, A. Giorgetti, N. Sambo, L. Velasco, and P. Castoldi,
“Routing, Spectrum, and Transponder Assignment (RSTA) in Elastic
Optical Networks,” IEEE/OSA Journal of Lightwave Technology (JLT),
vol. 33, pp. 4648-4658, 2015.

