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Abstract: Amyotrophic lateral sclerosis (ALS) is a multifactorial neurodegenerative pathology of
the upper or lower motor neuron. Evaluation of ALS progression is based on clinical outcomes
considering the impairment of body sites. ALS has been extensively investigated in the pathogenetic
mechanisms and the clinical profile; however, no molecular biomarkers are used as diagnostic criteria
to establish the ALS pathological staging. Using the source-reconstructed magnetoencephalography
(MEG) approach, we demonstrated that global brain hyperconnectivity is associated with early and
advanced clinical ALS stages. Using nuclear magnetic resonance (1H-NMR) and high resolution mass
spectrometry (HRMS) spectroscopy, here we studied the metabolomic profile of ALS patients’ sera
characterized by different stages of disease progression—namely early and advanced. Multivariate
statistical analysis of the data integrated with the network analysis indicates that metabolites related
to energy deficit, abnormal concentrations of neurotoxic metabolites and metabolites related to neuro-
transmitter production are pathognomonic of ALS in the advanced stage. Furthermore, analysis of the
lipidomic profile indicates that advanced ALS patients report significant alteration of phosphocholine
(PCs), lysophosphatidylcholine (LPCs), and sphingomyelin (SMs) metabolism, consistent with the
exigency of lipid remodeling to repair advanced neuronal degeneration and inflammation.

Keywords: amyotrophic lateral sclerosis (ALS); metabolomics; NMR; HRMS

1. Introduction

Amyotrophic lateral sclerosis (ALS) is a clinically heterogeneous, devastating neurode-
generative disease characterized by muscle wasting, weakness, swallowing impairment,
and respiratory failure [1,2]. The incidence and prevalence of ALS are greater in men than
in women [3]. The most common pathological phenotype is the spinal one with the onset
of limbs and symptoms related to focal muscle weakness and atrophy, mainly in the lower
and upper limbs [4].

Numerous scientific evidence claims that ALS pathogenesis is multifactorial [1] and
related to different dysmetabolic conditions: glutamate toxicity, oxidative stress, aberrant
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protein aggregation, defective axonal transport, mitochondrial dysfunction, and altered
RNA metabolism.

Evaluation of ALS progression is based on clinical outcomes considering cogni-
tive assessment and the impairment of body sites [1,2]. The most accredited system
used for patient clinical evaluation is the King system. It excludes the evaluation of
cognitive assessment but considers the clinical stages: stage 1 = impairment of a body
site; stage 2 = impairment of two body sites; stage 3 = impairment of 3 body sites;
stage 4 = non-invasive ventilation or percutaneous endoscopic gastrostomy [5,6]. King’s
staging is performed concurrently with Edinburgh Cognitive and Behavioral ALS Screen
(ECAS) [7] and the Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS) [8].
ECAS enables evaluating the patient’s cognitive performance by exploring different do-
mains. The total ECAS score ranges from 0 (worst performance) to 136 (best perfor-
mance) [9]. Moreover, ALSFR evaluates the functional status of patients. The score ranges
from 0 (maximum disability) to 48 (normal condition) [10].

ALS has been extensively investigated in the pathogenetic mechanisms and the clinical
profile; however, no molecular biomarkers are used as diagnostic criteria to establish the
ALS pathological staging [1,11].

To add new insight into the elucidation of ALS pathogenetic mechanisms, we pre-
viously used the source-reconstructed magnetoencephalography (MEG) approach, thus
assessing functional brain connectivity in ALS patients compared to sex- and age-matched
healthy controls. As a result, we demonstrated that ALS induces a global brain hypercon-
nectivity, resulting in a less flexible and more vulnerable network. These features vary
according to disease severity. Early and advanced ALS stages differ for a widespread topolog-
ical reorganization of the brain toward a more integrated and vulnerable network [12,13].

A great deal of evidence has been showing that ALS patients report altered circulating
cytokine concentrations, thus indicating that an abnormal neuroinflammatory cascade is as-
sociated with ALS [14]. In the hypothesis that the inflammatory processes may have a linear
correlation with ALS progression, similarly to the topological alterations on MEG data, we
estimated blood levels of a subset interleukin (IL)-4, IL-1β, and interferon-gamma (IFN-γ)
of cytokines and compared them with the topological properties of the brain networks. Our
data indicated that although circulating cytokine concentrations are significantly different
between ALS patients and healthy controls, these differences did not correlate with the
topological changes in the functional brain network [15].

Metabolomics provides qualitative and quantitative information on the metabolites
present in biological fluids. Therefore, one of the metabolomic applications is the definition
of the signatures featuring a specific disease condition.

NMR spectroscopy combined with HRMS represents robust and suitable techniques
for metabolomic analysis [16–18].

Several NMR and HRMS metabolomics studies on cerebrospinal fluid (CSF) and sera
have been performed in ALS patients, identifying alterations in biochemical pathways
associated with energy expenditure and oxidative stress [19–21]. In particular, increased
lactic acid and decreased glucose concentration have been found [19,22–25] to be associated
with an excitotoxic role of glutamate [23].

Although these metabolomic studies reveal the metabolomic profiles distinguishing
ALS patients from healthy controls, a lack of information exists concerning the specificities
related to the different stages of ALS disease. These data, in turn, may be clinically relevant
to planning appropriate diagnostic and therapeutic interventions [11].

In this context, using 1H-NMR spectroscopy and HRMS spectrometry metabolomics,
we extended the previously mentioned investigation of ALS patients by analyzing the
sera of ALS patients characterized by different stages of disease progression—namely
early and advanced. Multivariate statistical analysis (MVA) of the data integrated with the
network analysis confirmed a dysmetabolism in energy pathways. Metabolites related to an
energy deficit, abnormal concentrations of neurotoxic metabolites, and metabolites related
to neurotransmitter production are pathognomonic in advanced ALS patients. Furthermore,
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analysis of the lipidomic profile indicated that advanced ALS patients report significant
alteration of phosphocholine (PCs), lysophosphatidylcholine (LPCs), and sphingomyelin
(SMs) metabolism, consistent with the exigency of lipid remodeling to repair advanced
neuronal degeneration and inflammation [12,15].

2. Materials and Methods
2.1. Participants

Twenty-two ALS patients (15 males, 7 females) were initially recruited from the ALS
Center of the First Division of Neurology of the University of Campania “Luigi Vanvitelli”
(Naples, Italy). Patients were righthanded and native Italian speakers diagnosed with
ALS, according to the revised El-Escorial criteria of ALS. None of the patients showed any
mutation in the screened genes SOD1, TARDBP, FUS/TLS, and C9ORF72.

During the recruitment, an anamnestic questionnaire was administered to patients.
Participants were asked to specify their eating habits (e.g., Mediterranean, vegetarian or
vegan diet) and to report particular lifestyle-related behaviors (e.g., abuse of alcohol or
coffee, constant use of psychotropic substances). Subjects with particular habits that could
affect the data were excluded from the study.

Out of a total of 22 ALS patients, only 15 (10 males, 5 females) were eligible for
recruitment. The remaining 7 were excluded because of (1) unsuitability of blood samples
(1 patient); (2) unwillingness to be recruited into a study protocol which, together with the
metabolomic profile assessment, involved a more complex panel of clinical evaluations for
both diagnostic and non-diagnostic purposes (3 patients); (3) abuse of alcohol (2 patients);
(4) constant use of psychotropic drugs (1 patient).

Clinical details and descriptive information about the cohort are shown in Table 1. The
study protocol was approved by the local ethics committee, and all participants provided
written informed consent in accordance with the Declaration of Helsinki.

Table 1. Demographics and clinical information of the participants.

Parameters ALS “Advanced” Patients
Mean (SD) (n = 6)

ALS “Early” Patients
Mean (SD) (n = 9)

Demographic and clinical measures

Age 64.66 (12.20) 63,92 (10.56)
Male/Female 4/2 6/3
Education 9.17 (4.49) 8.76 (3.67)
Disease duration (months) 54.33 (43.01) 38.68 (16. 22)
ALSFRS-R score 32.0 (8.85) 41.62 (3.60)
UMN score 8.33 (6.77) 5.34 (2.61)
Site of onset 1 bulbar 1 bulbar

5 Spinal 8 Spinal
Phenotype 2 predominant LMN. 7 predominant LMN.

1 predominant U.M.N. 1 predominant U.M.N.
2 Classic 1 Classic

Riluzole 6/6 9/9

Neuropsychological
parameters

ECAS test (total score) 93.67 (14.14) 93.45 (14.82)
ALSFRS-R = Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised; ECAS = Edinburgh Cognitive and
Behavioral; LMN = lower motor neuron; UMN = upper motor neuron.

2.2. Sample Collection and Preparation

Serum samples were collected from males and females according to the standard oper-
ating procedure (SOP) for metabolomic-grade serum samples [26]. Serum samples were
prepared as previously reported [27–29]. Serum was collected and stored in coagulation
tubes for serum, centrifuged at 2000 rpm for 10 min, and transferred to 500 µL vials. Before
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being transferred to a 5 mm heavy-walled NMR tube, samples were spun at 12,000 g using
a pre-washed Amicon Ultra-0.5 3000 MWCO filter at 4 ◦C, to remove proteic and particulate
matter [28,30,31]. To prepare NMR samples, 425 µL of each sample was added to 25 µL
of 1 M potassium phosphate buffer (pH 7.4) and 50 µL of D2O with 0.1% trimethylsilyl
propionic-2,2,3,3-d4 acid, sodium salt (TSP-d4).

2.3. NMR Spectroscopy and Processing

NMR experiments were carried out on a Bruker DRX600 spectrometer equipped with a
5 mm triple resonance z-gradient CryoProbe. For spectrometer control and data processing
we used TOPSPIN 2.1. Samples were filtered, so 1D-NOESY experiments were acquired
at 310 K with the excitation sculpting pulse sequence to suppress the water resonance at
a 14 ppm sweep width, 192 transients of 16 k complex points, with an acquisition time of
4 sec transient, and 60 msec mixing time.

1H-NMR spectra were processed and analyzed using Bayesil, a software online
(http://bayesil.ca (accessed on 12 July 2022)) [30]. Bayesil is a web system that automatically
identifies and quantifies metabolites using 1D 1H NMR spectra of ultra-filtered biological
samples. The attribution of reference chemical shift and quantification was based on the
peak intensity of the internal reference compound, TSP-d4 (Figure S1, Table S1).

2.4. Mass Spectrometry Sample Preparation and Processing

Polar metabolites and lipids were extracted as reported previously [31]. HRMS anal-
yses were performed in flow injection analysis (FIA) by using an Ultimate 3000 UH-
PLC (Thermo, Bremen, Germany) coupled to a SolariX XR 7T (Bruker Daltonics, Bremen,
Germany). The flow rate was set to 10 mL/min and increased in the washing step to
300 mL/min. The instrument was tuned with a standard solution of sodium trifluoracetate
(NaTFA). Mass spectra were recorded in a broadband mode in the range of 150–1500 m/z
for lipids, whereas 90–800 m/z was used for polar metabolites, with an ion accumulation
of 10 ms. A total of 64 scans were acquired using 4 million data points (4 M), with an
approximate resolution of 400.000 at m/z 400. Drying gas (nitrogen) was set at 2 mL/min,
with a drying temperature of 150 ◦C. Funnel amplitude was set to 90 V (polar metabolites)
or 100 V (lipids), transfer was set at 0.6 MHz, and TOF 0.7 s. Both positive and negative ESI
ionization was employed in a separate run. Five replicates of each injection were carried
out. The instrument was controlled by Bruker FTMS Control (Bruker). FIA-FT-ICR data
extraction, alignment, filtering, and annotation were performed with Metaboscape (v. 5.0,
Bruker), as reported previously [31].

2.5. Statistical Analysis

Data matrices were analyzed using the MetaboAnalyst 5.0 by multivariate methods,
using PCA (principal component analysis), PLS-DA (partial least-squares discriminant
analysis), and O-PLS-DA (orthogonal partial least-squares discriminant analysis).

Metaboanalyst 5.0 is a comprehensive platform for metabolomics analysis that allows
uni- and multivariate statistical analyses on omics datasets. MetaboAnalyst is part of a suite
of metabolomic databases, including the human metabolome database (HMDB) [32]. The
link to this database allowed us to interpret our data in comparison with those deposited
and detectable in healthy subjects’ human biofluids [33–35].

Data were normalized using Sum, Log transformed, and Pareto scaled [36]. In par-
ticular, the 1H NMR data matrix included N = 40 metabolite concentrations; HRMS data
matrices included Npolar = 49 and Napolar = 98 metabolite concentrations.

The unsupervised PCA method was carried out to exclude the presence of outliers [37]
(Figure S4). Then, supervised PLS-DA and O-PLS-DA analyses were applied to the whole
matrix divided into early and advanced ALS sub-matrices (Table S1).

Each model was validated using Q2Y and R2Y [38] parameters based on leave-one-out
cross validation (LOOCV) and 10-fold cross validation (10-FC) (Tables S2 and S3) to obtain

http://bayesil.ca
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the predictive performance (R package roopls) [39]. Further validation was based on the
distance matrix approach carried out by R package MixOmics [40] (Figure S3).

To test the robustness of the discriminant analysis, supervised PLSDA and O-PLS-DA
were repeated on two sub-matrices randomly defined.

Metabolites discriminant for early and advanced classification were identified using
the VIP score analysis (VIP score > 1) on the O-PLS-DA model [39]. The metabolites
characterized by VIP score > 1 were further validated as good classifiers by calculating
the ROC (receiver operating characteristics) curve (500 bootstrap cycles methods) and
AUC (area under the curve) (Tables S4 and S5; Figures S5 and S7) [41,42]. AUC > 70 and
p-value < 0.05 were considered significant.

Pathway analysis was performed using MetaboAnalyst 5.0 and Reactome [43–45].
The pathways corresponding to abnormal metabolite concentrations were identified

using the KEGG database based on the number of metabolites involved (hits > 1 and
p-values < 0.05) [44].

The normalized data matrices using Sum, Log transformed, and Pareto scaled was
used for the debiased sparse partial correlation (DSPC). The algorithm is based on the
de-sparsified graphical lasso modeling procedure and is applied to discover connectivities
between a high number of metabolites using fewer samples [46]. DSPC reconstructs a
graphical model, where each pair of metabolic characteristics in the dataset is validated
from partial correlation coefficients and p-values. In the DSPC network, nodes are input
metabolites, while the edges represent the connections [46].

The network degree and betweenness parameters are calculated for each node. The
degree is the number of correlations that a given metabolite establishes with the other
metabolites in the network [33,46–48]. The betweenness measures the importance of a
metabolite for the connections between all pairs of nodes. Metabolites with between-
ness values > 35 and node degrees > 5 were considered significant in discriminating the
metabolomic profile of the early and advanced patients; their abnormal concentration affects
the concentrations of other metabolites in the network [33,46,48].

The correlation of the ECAS and ALSFR with metabolomic data was evaluated by
calculating the Pearson distance [49]. The statistical validation of the correlation was carried
out by T-test and false discovery rate (FDR). p-value < 0.05, correlation index ≥ ±70 and
FDR < 1 were considered significant (Tables S6 and S7).

3. Results
3.1. Univariate and Multivariate Data Analysis

The matrix, including metabolites concentrations (N=40) derived from 1H NMR
spectra, was analyzed using multivariate statistical analysis (Table S1). First, the pres-
ence of outliers was ruled out on the whole matrix using the unsupervised PCA method
(Figure S4) [37,50]. Then we proceeded to the PLS-DA and O-PLS-DA supervised methods.
The O-PLS-DA method uses the individual component as a predictor for the class by
improving the discriminatory power of the clusters compared to PLS-DA [51].

Aware that the low number of samples can be a limitation for the significance of our
analysis, PLS-DA and O-PLS-DA were applied by considering first early and advanced
sub-matrices and then, as an experimental control, two sub-matrices randomly defined.
Finally, validation tests were carried out through LOOCV, 10-FC (Tables S2 and S3), and
the distance matrix approach [39] (Figure S3).

The score plot in Figure 1a shows that early and advanced ALS patients define two
distinct clusters, each corresponding to a specific metabolomic profile. Q2 = 0.33 by
LOOCV and Q2 = 0.30 by 10-fold validate the separation and the distance matrix approach
(Figure S3). On the contrary, negative Q2 cross-validation parameters indicated that the
dataset for the sub-matrices randomly defined results in no cluster definition (Figure S2).
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Figure 1. (a) O-PLS-DA score plot for 1H NMR data collected in 1D-NOESY spectra acquired at
600 MHz. Data represent the sera from 9 early (green) and 6 advanced (red) ALS patients. (b) VIP score
analysis derived from O-PLS-DA. Color code indicates higher (red) or lower (blue) concentrations in
early (E) compared to advanced (A) ALS patients.

The metabolites responsible for cluster separation are identified according to the VIP
score analysis (Figure 1b). In particular, the sera of ALS patients in the advanced stage report
high concentrations of 3-hydroxybutyrate, acetic acid, acetone, succinic acid, L-glutamic
acid, creatine, and on the contrary, low concentrations of amino acids such as L-valine,
methionine, ornithine, L-glutamine, L-arginine, L-tyrosine, and 1-methylhistidine.

ROC curve was calculated to validate the discriminating power of the metabolites
responsible for early and advanced classification. Significant AUC values (>70, p-value < 0.05)
were observed for ketone body metabolites, such as 3-hydroxybutyrate, acetone, and acetic
acid (Table S4, Figure S5–S7).

Following the analytical protocol, as previously reported, HRMS analysis of polar and
apolar extracts resulted in matrices of metabolite concentrations (Npolar = 49, Napolar = 98)
for early and advanced ALS patients (Table S3). The score plot in Figure 2A,B indicates a clear
separation of the clusters confirming the existence of different metabolomic profiles. The
separation is validated by cross validation (polar extract: Q2 = 0.18 by LOOCV, Q2 = 0.22
by 10-fold; apolar extract: Q2 = 0.59 by LOOCV, Q2 = 0.55 by 10-fold) and distance matrix
approach (Figure S3).
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VIP score analysis evidenced in advanced patients a higher concentration of citric acid
and indoxyl sulfate and lower concentrations of some amino acids (methionine, histidine,
L-isoleucyl-L-proline, and isoleucine), lysophosphatidylcholine, betaine, and creatinine.
Conversely, analysis of the lipid extract showed that in advanced ALS patients, there are
high concentrations of glycerophospholipids (PC, PI, and PC-Os) and low concentrations
of sphingomyelins (SMs) and triacylglycerols (TGs) (Figure 3).
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For some of these metabolites — citric acid, L-fucose, 3-(3-4-5-trimethoxyphenyl)propanoic
acid, oleic acid, SM 34:1;O2, SM 41:1;O2, PC 36:1 and Cer 42:0;O3 — the discriminant power
was confirmed by calculating the ROC curves (AUC > 0.70 p-value < 0.05) (Figures S4–S6;
Tables S4 and S5).
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3.2. Debiased Sparse Partial Correlation (DSPC) Algorithm

DSPC is a machine learning algorithm discovering the connectivities between many
metabolites derived from a few samples [52]. Considering that the low number of samples
could be a limitation to the significance of our analysis, we used the DSPC to produce an
additional validation of our results. DSPC was applied to a single data matrix, including
NMR and HRMS data [46]. Figures 4 and 5 show the graphical representation of the DSPC
results applied to early (Figure 4) and advanced (Figure 5) ALS patients. Nodes correspond
to the metabolites in input, and the edges represent the correlations among them. Red
edges indicate positive correlations, blue edges negative correlations.
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Figure 4. Correlation network obtained by DSPC algorithm using metabolites (VIP > 1) discriminating
early ALS patients. Nodes represent metabolites. Red lines indicate a direct correlation between
metabolites, blue lines indicate an inverse correlation.

Each node representing the metabolite is characterized by degree and betweenness
values [53] (Table 2). The degree refers to the number of connections a node has with other
nodes. The betweenness represents the number of interconnections. Nodes having a high
degree and betweenness are more likely to be important hubs [54]. We considered a degree
threshold > 5 and betweenness > 35 to identify metabolites distinctive for the pathological
phenotype. Network analysis of advanced ALS patients indicates that metabolites related to
energy pathways (fucose and succinic acid) and ketone bodies (3-hydroxybutyrate) have a
central role. Acetic acid and L-histidine are critical in early ALS patients, while glycerolipids
and betaine have a critical role in both the patient clusters (Table 2).
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to energy pathways (fucose and succinic acid) and ketone bodies (3-hydroxybutyrate) 
have a central role. Acetic acid and L-histidine are critical in early ALS patients, while 
glycerolipids and betaine have a critical role in both the patient clusters (Table 2). 

Table 2. DSPC network analysis. Degree of node and betweenness of the interrelationships calcu-
lated on the metabolites with VIP > 1 related to the early and advanced ALS patients. 

Network Analysis Related to Early Patients 
Label Degree Betweenness 
L-Histidine 16 59.91 
TG 54:5 15 58.3 

Figure 5. Correlation network obtained by DSPC algorithm using discriminating metabolites (VIP > 1)
between advanced ALS patients. Nodes represent metabolites; red lines indicate a direct correlation,
blue lines indicate an inverse correlation.

Table 2. DSPC network analysis. Degree of node and betweenness of the interrelationships calculated
on the metabolites with VIP > 1 related to the early and advanced ALS patients.

Network Analysis Related to Early Patients
Label Degree Betweenness

L-Histidine 16 59.91

TG 54:5 15 58.3

L-Glutamine 15 32.01

Acetic acid 14 45.95

CE 16:0 14 40.1

Cer 42:1;O2 13 33.92

PE O-38:5 13 31.09
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Table 2. Cont.

Network Analysis Related to Early Patients
L-Valine 13 27.77

Malonic acid 13 23.08

L-Fucose 12 51.26

SM 41:1;O2 12 32.34

1-Methylhistidine 12 24.22

L-Arginine 12 20.99

L-Methionine 12 18.84

Betaine 11 38.48

TG 52:2 11 25.04

TG 56:6 11 24.16

Linoleamide 11 20.78

Oleamide 11 20.36

3-(3,4,5-Trimethoxyphenyl)propanoic acid 10 32.28

Cer 42:0;O3 10 19.77

TG 48:2 10 19.28

L-isoleucyl-L-proline 10 15.43

TG 52:4 10 13.13

L-Glutamic acid 10 10.19

SM(34:1) 10 4.89

Ornithine 9 15.13

Acetone 9 14.81

PC 35:2 9 11.77

3-Hydroxybutyric acid 9 7.81

Succinic acid 9 6.81

LPC(20:3) 8 31.8

Creatinine 8 13.73

Creatine 8 10.52

Isobutyric acid 8 7.92

PC 32:0 8 3.67

PC O-40:5 7 8.09

PC O-38:5 7 6.29

TG 50:2 7 2.66

L-Tryptophan 6 20.66

Citric acid 5 9.23

Indoxyl sulfate 4 6.16

LPC(18:2) 3 3.01

L-Isoleucine 3 0.35

4-Hydroxyestrone sulfate 2 0
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Table 2. Cont.

Network analysis related to advanced patients
Label Degree Betweenness

3-Hydroxybutyric acid 10 88.58

L-Isoleucyl-L-proline 10 75.85

L-Fucose 10 70.7

Succinic acid 9 89.14

Betaine 8 74.67

TG 50:2 7 83.66

1-Methylhistidine 6 65.9

TG 48:2 6 64.41

L-Methionine 6 37.13

L-Histidine 6 32.1

Isobutyric acid 6 19.31

LPC(18:2) 5 100.12

L-Valine 5 75.3

L-Isoleucine 5 72.02

PC 32:0 5 65.74

L-Tryptophan 5 62.42

TG 52:2 5 58.58

PC O-40:5 5 54.62

Acetone 5 45.33

SM(34:1) 5 33.5

Acetic acid 5 29.88

4-Hydroxyestrone sulfate 5 29.83

Cer 42:1 5 28.68463

Creatinine 5 27.83

Malonic acid 4 65.18

TG 56:6 4 33.45

Citric acid 4 18.85

3-(3-45-Trimethoxyphenyl-propanoic acid) 3 88.1

CE 16:0 3 28.59

TG 52:4 3 21.78

L-Arginine 3 19.99

LPC(20:3) 3 15.73

PC 38:5 3 11.94

Ornithine 3 0.5

Oleamide 2 42

Creatine 2 9.23

3.3. Combined Pathway Analysis

We carried out pathway analysis to identify the metabolic dysfunctions correlated with
early and advanced ALS pathological stages. To gain meaningful insight from MVA data, we
applied metabolic pathway analysis using the whole HRMS and NMR data set. Pathway
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analysis was performed using MetaboAnalyst 5.0 and Reactome [45,55,56]. Table 3 shows
the most significant pathway classified according to hits > 1 and p-value < 0.01. The analysis
showed the dysregulation of pathways related to lipid metabolisms, such as Mitochondrial
beta-oxidation of Long-Chain Saturated Fatty Acids, Beta Oxidation of Very Long Chain Fatty Acids,
and Oxidation of Branched Chain Fatty Acids metabolism. In addition, pathway analysis also
indicates the dysregulation of neurotransmitter transduction pathways such as Serotonin
receptor and Na+/Cl− dependent neurotransmitter transporters pathway. Interestingly the most
discriminant pathway between early and advanced patients is Ammonia Recycling, including
the Urea pathway, Glucose-alanine cycle, and Glutamate and Glutamine metabolism.

Table 3. Metabolic pathway analysis: pathway discriminating early and advanced ALS patients. For
each pathway is reported p-value, FDR value.

Pathway Software p-Value FDR.

Ammonia Recycling Metaboanalyst 7.27 × 10−10 0.000538

Mitochondrial Beta-Oxidation of Long-Chain Saturated Fatty Acids Metaboanalyst 0.0125 0.056

Carnitine Synthesis Metaboanalyst 0.0125 0.0564

Beta Oxidation of Very Long Chain Fatty Acids Metaboanalyst 0.015 0.0564

Oxidation of Branched Chain Fatty Acids Metaboanalyst 0.015 0.0564

Amine ligand-binding receptors Reactome 1.30 × 10−3 1.39 × 10−6

Serotonin receptors Reactome 1.10 × 10−5 5.89 × 10−6

Defective SLC6A19 causes Hartnup disorder (HND) Reactome 3.80 × 10−10 0.008

Na−/Cl− dependent neurotransmitter transporters Reactome 5.13 × 10−10 0.009

Cytosolic tRNA aminoacylation Reactome 8.64 × 10−9 0.011

Class A/1 (Rhodopsin-like receptors) Reactome 9.88 × 10−10 0.011

Adrenoceptors Reactome 1.26 × 10−12 0.013

Muscarinic acetylcholine receptors Reactome 1.47 × 10−11 0.014

GPCR ligand binding Reactome 5.59 × 10−11 0.048

Chemokine receptors bind chemokines Reactome 5.88 × 10−11 0.048

Adrenaline signaling through Alpha-2 adrenergic receptor Reactome 0.001 0.105

Adenylate cyclase inhibitory pathway Reactome 0.007 0.492

4. Discussion

ALS is a multifactorial neurodegenerative pathology of the upper or lower motor
neuron [57]. The causes of the disease include glutamatergic excitotoxicity, oxidative
stress, energy deficit, and neuroinflammation [58]. ALS severity is currently assessed
by King’s disease staging system based on the number of body site impairments. An
accurate definition of the pathological stage supported by multiple biochemical markers is
mandatory to develop personalized and successful treatment [57]. Based on our previous
MEG study, which evidences specific topological brain networks for early and advanced
ALS patients [12], we performed an exploratory metabolomic study using the blood sera
of 9 early and 6 advanced ALS patients to identify the related metabolomic profile to ALS
patients in the different stages of the pathology.

Concerning the sample size, we know that the number of patients is far less than
expected for human study; however, fully conscious of this limitation, we carefully planned
our statistical analysis to avoid the misuse and misinterpretation of the data [59]. Accord-
ingly, we used first unsupervised PCA to rule out outliers and then supervised PLS-DA and
O-PLS-DA as feature selectors and classifiers. Regarding the application of these methods,
since we know they are prone to overfitting, we used several different cross-validation (CV)
tests to be confident of the significance of the results. For additional validation, we applied
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DSPC, a machine learning network analysis suitable for extracting significant information
from data matrices containing many variables on a few samples [46].

Having said all this, we believe that our study highlights with good confidence a set
of metabolites and biochemical pathways that, after additional future validations, may
become biomarkers of ALS disease stages.

Previous scientific studies have shown the correlation between ALS and energetic
metabolism abnormality [55,56,60]. Our analyses confirmed a dysmetabolism correlated
with energy expenditure. In particular, we observed an increase in ketone bodies in advanced
ALS patients, suggesting that ALS progression favors glucose deprivation and a metabolic
switch to ketone body metabolism [2,61,62]. This metabolic modification is clearly evident
in the network analysis, where 3-hydroxybutyric acid reports the highest degree and
betweenness score (Table 2).

Previous evidence identified betaine as a marker of neuroinflammation: betaine
plasma concentrations have been found inversely proportional to the severity of motor
neuron impairment in ALS [63,64]. Confirming this finding, analysis of serum extracts
using HRMS indicated a more pronounced decrease in betaine concentrations in the serum
of advanced ALS patients [63,64]. The central role of betaine in the pathological metabolic
picture of ALS is confirmed by the DSPC analysis, evidencing a critical role of betaine in
several networks of both the pathological phenotypes (Table 2).

ALS is known to be associated with neurotoxicity [61,65,66]. Glutamate and indoxyl
sulfate, known neurotoxicity markers, are present in abnormally high concentrations in
advanced ALS patients (Figures 1–3). In the same direction, biochemical pathways related
to neuroinflammation, such as the Ammonia Recycling pathway (Table 3) (e.g., urea cycle,
glutamine, and glutamine metabolism), are more significantly altered in advanced ALS
patients compared to the early ones.

A low concentration of tyrosine, which is essential for dopamine and epinephrine syn-
thesis [67], is consistent with a general dysmetabolism in the biochemical pathways related
to the amine ligand-binding receptors, suggesting a worsening of the neurotransmission
deficit depending on the ALS progression [2,68,69] (Table 3).

Finally, Pearson’s distance correlation analysis showed a direct correlation between
tyrosine and the ECAS and ALSFRS-R clinical indices, indicating a relationship between the
cognitive and functional improvement of patients and increased tyrosine concentrations
(Tables S6 and S7).

Our data point to a significant alteration of the lipid profile in ALS patients [62]. In
particular, we observed low circulating serum sphingomyelins (SMs) [70] (Figure 3). These
data are coherent with previous ALS and partial lateral sclerosis patients (PLS) follow-up
studies, demonstrating a progressive reduction of SMs [71]. According to previous studies
on different neurodegenerative diseases, perturbation in the sphingolipid metabolism
depends on the necessity of sphingolipid remodeling to increase phospholipid produc-
tion [72]. Analysis of the lipidome, supported by the DSPC algorithm, reveals an increase in
glycerophosphocholine concentrations in advanced ALS patients (Figure 3). The alteration
of glycerophospholipid levels is associated with neuroinflammation and the dysregula-
tion of cholinergic transmission [73,74]. This is confirmed by the pathways analysis that,
in turn, indicates the dysmetabolism of amine ligand-binding receptors and muscarinic
acetylcholine receptors (Tables 2 and 3).

Considering the male predominance of the pathology, we repeated the MVA on ad-
vanced and early male patients (Figure S8, Table S8). The results confirmed a worsening of
energy metabolism, characterized by a shift toward the ketone body metabolism in advanced
male ALS patients. Furthermore, increased toxicity was evident in male pathological pheno-
types as demonstrated by high concentrations of indoxyl-sulfate and glycerophospholipids
in advanced male patients compared to the early ones.
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5. Conclusions

To identify molecular markers to be used as diagnostic criteria for correct identification
of ALS severity, in the present work, we performed a metabolomic study using NMR
spectroscopy and HRMS spectrometry on the sera of patients with ALS at early and advanced
stages of disease progression.

MVA on NMR and HRMS data, integrated with network analysis based on machine
learning algorithms and supported by biomarkers analysis, indicate that increasing ab-
normalities in energy expenditure metabolism are typical of ALS patients in the advanced
disease stage.

Our multi-omic approach identified the increase in ketone bodies (acetone, 3-hydroxyb-
utyrate, and acetic acid) as pathognomonic of advanced ALS stage (Figures 1–3 and S4,
Table 2). Moreover, abnormalities in sphingomyelins concentrations are a datum confirmed
by all the approaches, proving that the modification of the lipidomic profile is necessary for
lipid remodeling to rebalance neuronal neurodegeneration and inflammation.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/metabo12090837/s1, Table S1. Metabolites resulted from
serum ALS patients using NMR spectroscopy and HRMS. Table S2. Validation of the multivariate
PLS-DA model using LOOCV and 10-Fold related to NMR and HRMS analysis on serum extract of
early and advanced ALS patients. Table S3. Validation of the multivariate O-PLS-DA model related
to NMR spectroscopy and HRMS analysis on serum extracts of early and advanced ALS patients.
Table S4. ROC curve biomarkers related to ALS early and advanced patients’ serum polar extract by
NMR analysis. Discriminating metabolites have been classified by AUC (Area under the curve) >70
and p-value < 0.05, p-value adjustment using Bonferroni. Table S5. ROC curve biomarkers related to
ALS early and advanced patients’ serum polar and apolar extract by HRMS analysis. Discriminating
metabolites have been classified by AUC (Area under the curve) > 70 and p-value < 0.05, p-value
adjustment using Bonferroni. Table S6. Correlation analysis between the clinical parameter ECAS
and ALS patients’ serum metabolites detected by NMR and HRMS. The table shows the correlation
coefficient calculated by Person distance and the univariate statistical validation carried out by T-Test,
p-value, and False discovery rate (FDR). Metabolites with p-value < 0.05, correlation index ≥± 70, and
FDR<1 are considered to correlate with ECAS parameter. Table S7. Correlation analysis between the
clinical parameter ALSFR-S and ALS patients’ serum metabolites detected by NMR and HRMS. The
table shows the correlation coefficient calculated by Person distance and the univariate statistical vali-
dation carried out by T-Test, p-value, and False discovery rate (FDR). Metabolites with p-value < 0.05,
correlation index ≥±70, and FDR < 1 are considered correlating with ALSFR-S parameter. Table S8.
Validation of the multivariate O-PLS-DA model related to NMR spectroscopy and HRMS analysis on
serum extracts of early and advanced male ALS patients. Figure S1. 1D-NOESY 1H nuclear magnetic
resonance spectra of human sera samples from: early ALS patients (blue) and advanced ALS patient
(red). The spectra are acquired at 600 MHz and T = 310 K. Figure S2. PLS-DA score plot for serum
polar(A1–B1) and lipid extracts (C1–D1) obtained by mass spectrometry and serum polar extracts
obtained by 1H-NMR spectroscopy (E1–F1). The dataset used corresponds to the early (A1–C1–E1)
and advanced subset (B1–D1–F1). Histograms (A2–F2) are related to cross-validation indices R2,
Q2, and accuracy. Figure S3. Sample prediction area plot carried out using Maximum distance
(a,b,c) and Mahalanobis (e,f,g) showing the distribution of samples in validation aerea. Figure S4.
PCA and PLS-DA score plot (A–D) for 1H NMR data collected in 1D-NOESY spectra acquired at
600 MHz. Data represent the sera from 9 ALS early patients (green) and 6 ALS advanced patients
(red). PCA and PLS-DA score scatter plot for the HRMS data collected acquired in ESI(+) and (−).
Data are relative to polar and (B–E) and apolar (C–F) serum extract of 9 ALS early patients (green)
compared to 6 advanced patients (red). Figure S5. ROC curve of biomarker identified using polar
serum extract by NMR spectroscopy. The sensitivity is on the y-axis, and the specificity is on the
x-axis. The AUC is in blue. Figure S6. ROC curve of biomarker identified using serum apolar extract
by HRMS spectroscopy. The sensitivity is on the y-axis, and the specificity is on the x-axis. The
AUC is in blue. Figure S7. ROC curve of biomarker identified on serum polar extract by HRMS
spectroscopy. The sensitivity is on the y-axis, and the specificity is on the x-axis. The AUC is in
blue. Figure S8. OPLS-DA score plot and VIP graph (A–D) for 1H NMR data collected in 1D-NOESY
spectra acquired at 600 MHz. Data represent the sera from 6 male ALS early patients (green) and
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4 male ALS advanced patients (red). O-PLS-DA score scatter plot and VIP graph for the HRMS data
acquired in ESI(+) and (−). Data are relative to polar and (B–E) and apolar (C–F) serum extract of
6 male ALS early patients (green) compared to 4 advanced male patients (red).
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