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Abstract: Seawater represents a potential resource to ensure sustainable availability of water for
population and irrigation purposes, especially in some areas of the world. Desalination processes
allow the production of fresh water, but they generate also brine as waste product. Sustainable
brine management should be identified to ensure proper disposal and potentially resource recovery.
This experimental study showed that emerging technologies such as Microbial Desalination Cells
(MDCs) may provide a valuable contribution to the sustainability of the seawater desalination sector.
In this paper, we report results on lab-scale desalination brine treatments applying MDCs, which
allow energy savings, resource recovery, environmental impact minimization, and reduction of the
organic load in municipal wastewater. Our results showed that MDCs’ treatment allows the removal
of approximately 33 g of salts (62% of the total)—including chlorides, bromides, and sulphates—
from 20 mL of brine within 96 h. The MDCs, according to the source of energy and the presence
of mature biofilm at the anode, spent 7.2 J, 7.9 J, and 9.6 J in the desalination process, with the
higher amount of energy required by the abiotic system and the lesser by the MDCs fed with just
wastewater. Our approach also showed environmental and energy reductions because of potential
metal recovery instead of returning them into marine environment. We quantified the avoided
life cycle of human and marine eco-toxicity impacts as well as the reduction of cumulative energy
demand of recovered metals. The main benefit in terms of avoided toxicity would arise from the
mercury and copper recovery, while potential economic advantages would derive from the recovered
cobalt that represents a strategic resource for many products such as battery storage systems.

Keywords: brine treatment; wastewater treatment; metals; resource recovery; energy reduction;
life-cycle analysis

1. Introduction
1.1. Brine Production

Brine is the hypersaline concentrate produced as the main by-product of a seawater
desalination process, which is a viable option for freshwater recovery, removing salts, and
meeting the quality requirements for human uses [1,2].

However, brine production from desalination represents a critical environmental
issue because of residual organic chemicals and heavy metals (such as copper, nickel,
iron, chromium, zinc), high salinity, and relatively high temperature [3–5], which affect
water ecosystems, soil, and groundwater [6]. The potential damages to the environment
include eutrophication, pH fluctuations, and heavy metals and chemicals discharge in
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marine environments [4–7]. Recent estimates showed that for each m3 of freshwater water
produced, approximately 1 1

2 m3 of brine may be discharged [2]. Globally, desalinated
water production is estimated to be 95.4 million m3/day, while associated generation of
brine is 141.5 million m3/day [2].

Usually, brine is discharged in seawater and water bodies, applied on land, injected
into deep wells, or treated in evaporation ponds, with environmental consequences for
marine and soil ecosystems and then, indirectly, for human health [1,2,8]. Considering
the significant impacts that brine disposal can generate and the increasing number of
desalination plants worldwide, technological and research efforts are needed to address
this challenge [5,6,9]. One of the main approaches investigated is the brine prevention
leading to the setup of Zero Liquid Discharge (ZLD) systems [10], based on brine thermal
treatment [11]. Other technologies for brine treatment are membrane-based processes
such as reverse osmosis and thermal-based technologies such as brine concentrator and
crystallizer [8]. All the listed processes require a certain amount of energy and, thus, they
contribute to the greenhouse gases’ (GHGs’) emissions [6]. Different approaches have
been applied with the aim of improving desalination processes’ sustainability, such as the
utilization of renewable energies and waste heat, the use of high-quality materials, and
proper maintenance plans [6,8]. In comparison to cost- and energy-intensive current water
desalination technologies such as thermal and membrane-based desalination processes,
MDCs can take advantage of microbial catalysis to produce bioenergy from wastewater
(or other substrates able to sustain microbial growth) to drive the desalination process.
thus reducing, or even avoiding, the use of energy from other sources (first and foremost,
fossil fuels). As a result, MDCs not only are able to perform a significant reduction of
salts’ content in salty waters, but also remediate wastewater by decreasing the organic
load and nitrogen and phosphorous compounds’ concentration. Recently, researchers from
different parts of the world set up MDCs with four or more chambers able to produce
molecules such as hydrogen, ammonia, sulphate, and volatile fatty acid [12,13]. The last,
but not the least, the possibility to develop a bio-desalination process by using membranes
of cyanobacteria, has been demonstrated in MDCs, at least as a proof of concept [12]. For
all the abovementioned reasons, MDCs can develop as an energy- and cost-effective and
environmentally sustainable technology for saline water desalination [12,13].

1.2. Microbial Desalination Cells (MDCs): An Emerging Technology

Bio-electrochemical Systems (BESs) represent an emerging technology—that may
be scaled up at the industrial level—useful for many sectors. Among them, the main
applications are to wastewater treatment, production of bioenergy from biomass, sedi-
ment/soil remediation, biosynthesis of commodity chemicals, and the setup of biomedical
devices [14–19]. Recently, an innovative process, able to combine wastewater treatment
and salty waters’ desalination, captured the interest of the scientific community, the Mi-
crobial Desalination Cells (MDCs). MDCs are based on the metabolism of electroactive
bacteria, which provide the energy needed to drive the desalination process [15,20,21].
Sources of energy (namely, the feedstock provided to bacteria) can be wastewater, activated
sludge, dyed industrial effluents, cattle manure, nitrates in groundwater, and many others
even though, especially at lab scale, sodium acetate is provided as a source of carbon and
energy [22,23]. As essentially based on microbial metabolism, MDCs are listed among
the renewable energy-based technologies, even though they can be in need for external
potentials to control the desalination process itself [15,22]. Recently, some authors reported
the recovery of value-added products (such as H2, HCl, fulvic and humic acids, volatile
fatty acids, SO4

2−) and the removal of pollutants from wastewater in association with
the desalination process in four- or even five-chambers MDCs [22,24]. Other applications
explored are groundwater remediation and hardness removal in water [23]. MDCs are
interesting also because of their behavior as supercapacitors [25]. Santoro et al. [21] showed
the increase of power outputs (up to 3.01 ± 0.01 W m−2) and desalination efficiency (about
60% removal in 44 h) in comparison with their negative control (traditional MDCs) by
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connecting a third electrode to the cathode and applying a pulse current of 2 and 3 mA
every 2 s. Briefly, model MDCs are generally made up by three chambers (anode, cathode,
and central chambers) separated by ions- exchanging membranes, even though multiple-
chambers systems are used for the recovery of chemicals [15,23]. Figure 1 shows the
schematic diagram of three- and four-chambers MDCs, according to Rahman et al. [22].
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Even though much progress has been achieved in recent years, some bottlenecks have
to be overcome in order to realize scalable applications of MDCs such as membrane fouling,
high internal resistance and electric outputs, and pH fluctuations [23,26].

1.3. Goals of the Paper

With the aim of providing sustainable brine management options, in this work we
explored the application of MDCs as brine treatment and, as a benefit of metal recovery,
we evaluated the avoided human toxicity impacts by applying Life Cycle Analysis (LCA).
The main research outcomes are MDCs can act as a stand-alone, energy self-sufficient
solution for brine treatment removal of salt content in brine and organic load from a mix
of municipal wastewater and mineral medium; potential recovery of metals contained in
brine; and minimization of the life cycle of human and eco-toxicity impacts, as well as
reduction of cumulative energy demand associated with the recovered metals.

2. Materials and Methods
2.1. MDCs’ Setup

Three-chamber MDCs were assembled using acrylic bodies, screws, rubber gaskets,
and carbon cloth material purchased at the University of Reading (UK). We filled the anodic,
central, and cathodic chambers with 20 mL of anolyte, brine, and catholyte, respectively. A
detailed description of the liquid media is reported in Section 2.2.

We used Fumasep® FAS-50 and Fumasep® FKM (Fumatech Inc., Sankt Ingbert, Ger-
many) as anion- and as cation-exchanging membranes. Before being used, the membranes
were soaked in a 0.5 M NaCl solution for 24 h, according to manufacturer’s instructions.
Synthetic tissues were applied at the interface between membranes and liquids, to limit
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membranes fouling. Both anode and cathode electrodes were crafted using carbon cloth
pieces of 6 cm × 4 cm, folded to form a double layer with overall surface of 52 cm2, and
fixed with a titanium wire of 0.5 mm in diameter, which acted also as an electrons’ collector
at the anode. All catholytes were constantly aerated by an air pump. As to microbial
inocula, we incubated the anodes of MDC_2 and MDC_3 in 300 mL of activated sludge—
previously sampled at a wastewater treatment plant in Naples District—for 1 month at
20 ± 2 ◦C. In order to foster the formation of anodic mature electroactive biofilms, we
applied a potential of +550mV vs. Ag/AgCl reference electrode for 2 weeks, with the aim
to reduce MDC_2 and MDC_3 start-up phase [19].

Then, we set up and evaluated the performance of MDCs (1) with (MDC_2 and
MDC_3) and without (MDC_cntr) mature biofilm at the anode, and (2) with (MDC_3
and MDC_cntr) and without (MDC_2) the application of + 1.5 V external voltage at the
electrodes, as reported in Figure 2. For evaluating MDCs’ performance, we calculated
the following parameters: current density (CD), power density (PD), columbic efficiency
(CE), and polarization behavior [16,19,23]. CD and PD referred to the cathode surface. In
addition, in MDC_2 (mature anode biofilm, closed-circuit operation), we estimated the
amount of energy (expressed in Joule) produced by the chemical energy stored in the fuel,
which drove the desalination process.
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2.2. Liquid Media

MDCs were applied to treat the brine produced by a desalination plant in Italy (Sicily
Region). The collected brine was stored at 4 ◦C and then added to the central chamber
of MDCs (20 mL). We used as anolyte a mixture of wastewater and mineral salt medium
(GM Medium) in a 1:1 ratio. Wastewater samples were collected at the sewage treatment
plant of Marcianise, in Naples District. As to GM Medium, it was prepared according
to Logan et al. [26] by adding 4.09 g Na2HPO4, 2.93 g NaH2PO4 × H2O, 0.31 g NH4Cl,
0.13 g KCl, 12.5 mL metal salts solution, and 5 mL vitamin solution to one liter of distilled
water. Sodium acetate (2g/L) was used as an additional source of carbon and energy in GM
Medium, with a final concentration in the fuel of 0.01 M. A 100-mM PBS solution (pH 7.4,
Applichem, Darmstadt, Germany) was used as catholyte. The latter was constantly aerated
by means of an air pump. All experiments were performed in triplicate.

2.3. DMCs’ Operational Conditions

Unlike MDC_2 and MDC_3, MDC_cntr was not inoculated with an anode previously
colonized by bacteria in order to evaluate essentially the contribution of the 1.5-V external
potential on the desalination process. Immediately, the MDCs were left in Open Circuit
Voltage (OCV) for 2 hours before performing a first polarization experiment, which was
carried out using MBED NXP LPC1768 microcontroller and GNU OCTAVE 5.1.0 software.
Then, MDC_2s were connected to an external resistor of 47 Ω for the first 24 h, then to
120 Ω for a further 48 h and, finally, to 220 Ω for about 24 h. MDC_3 and MDC_cntr were
connected to a 1.5-V battery following the same time schedule of MDC_2s (Figure 1). The
applied voltage range was 1.5 ± 0.1 V. Once disconnected, respectively, from the loads
and the batteries, all MDCs were left in OCV until they achieved a stable voltage. Then,
we performed a new polarization experiment. Voltacraft DL191V dataloggers were used
to record V values of all MDCs. Columbic Efficiency (EC) was calculated according to
Nastro et al., 2014 [14]. The energy produced by MDC_2 and used to drive the desalination
process was expressed, as usual, in J. After 96 h of operation at 20 ± 2 ◦C, we sampled
brine, anolyte, catholyte, and membranes for chemical analyses. We also investigated the
microbial populations at the anode of MDC_2 and MDC_3, using a Next Generation Se-
quencing method (ILLUMINA) to screen the rRNA 16S of both Proteo- and Archeobacteria
in biofilms.

2.4. Chemical Analyses

We collected brine from MDC_2, MDC_3, and MDC_cntr replicates, obtaining a single
sample of average composition for each system. In order to evaluate the recovery of metals
and other ions, membranes from MDCs and negative controls were collected and stored in
distilled water to avoid drying. Then, cation-exchange membranes were soaked in 3% v/v
HNO3 solution to dissolve the absorbed cations. The obtained elutriates were analyzed for
their content in Al, Cd, Cr, Fe, Mn, Hg, Ni, Pb, Cu, and Sb by inductively coupled plasma
with mass spectrometry (Aurora M90, Bruker Daltonics, Bremen, Germany). The anion
membranes were soaked in a solution of 3.6 mM Na2CO3 solution. The determination of
chloride and sulphate was performed by ionic exchange chromatography with conduc-
tivity detector (IC 856, Metrohm, Herisau, Switzerland). With the aim of evaluating the
desalination process efficiency, we analyzed treated brine for its Na+, Cl−, Br-, K+, Mg2+,
SO4

2−, and Ca2+ concentration after MDCs’ treatment. The concentration of all anions and
cations was measured by ionic exchange chromatography, coupled with a conductivity
detector. Cations were separated by a Metrosep C4 250/4.0 column using 3.0 mM HNO3
as eluent and a flow rate of 0.9 mL/min, whereas anions were separated by a Metrosep A
supp7 250/40 column using 3.6 mM Na2CO3 as eluent at a flow rate of 0.7 mL/min. (IC
856, Metrohm, Herisau, Switzerland). The pH was measured by potentiometric methods
(Mod 856/867, Metrohm, Herisau, Switzerland). Chemical Oxygen Demand (COD) in the
anolytes was determined by oxidative acid digestion, followed by colorimetric measure
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(Hach, DR 3900, Düsseldorf, Germany). We carried out a X2 Test (α = 0.05) to analyze the
results obtained by the three layouts.

2.5. MDCs’ Energy Inputs

The amount of current intensity provided by the external batteries to MDC_3 and
MDC_cntr was calculated according to the Kirchhoff’s law:

Ib = (Vb − OCVMDC)/RMDC (1)

where Ib is the current intensity provided by the battery b and OCVMDC is the Open
Circuit Voltage of MDCs (MDC_3 and MDC_cntr). RMDC is the internal resistance of
MDCs. The overall power provided to MDCs’ systems was calculated as follows:

Pb = Vb ∗ Ib = Vb ∗ [(Vb − OCVMDC)/RMDC] (2)

where Pb and Vb are, respectively, the electric power and the voltage provided by the
batteries, Ib is the current intensity flowing through the systems, and OCVMDC and RMDC
are as above. Starting from Pb values, we calculated the overall energy amount provided to
the systems for the entire duration of the experiments, expressed in J.

Further, we estimated the energy spent by the MDCs to remove from brine the metals
captured by membranes (Al, Cd, Cr, Fe, Mn, Hg, Ni, Pb, Cu, Sb). Using Faraday’s law for
electrochemical solutions and assuming as negligible the resistance of the brine to ions’
migration, we calculated the electrical equivalent Ei of each metal and the corresponding
electric charge carried by each metal by means of Equations (3) and (4):

Ei = (ni/zi) (3)

Qi = Ei ∗ F (4)

where Qi is the electric charge carried by a specific ion and expressed in Coulomb, F
is the Faraday constant (96,500 C mol−1), and ni is the amount and zi is the charge of
each considered metal. Then, we obtained the current (in Ampere) produced by the ions,
according to Equation (5):

I = Qi/t (5)

where t is the operation time, expressed in seconds. The power (P) used by the system
to move and separate metals from brine was calculated according to Ohm’s law. Then,
we calculated the amount of energy (expressed in Joule) needed to move and sequestrate
metals from brine as:

E = P ∗ t (6)

We reported, then, the energy values in MJ/m3 of treated brine.

2.6. Life Cycle Analysis (LCA)

Life Cycle Analysis (LCA) is an analytical methodology that is considered to be
the most comprehensive approach for the evaluation of potential environmental impacts
of a system, service, or product, through its entire life cycle [27,28]. LCA allows the
quantification of all energy and material inputs, outputs, and emissions, in each stage of
a product’s life cycle from the extraction of raw materials to the component and product
manufacturing, transport, distribution, operation phase, maintenance, reuse, recycling,
and disposal. It has been standardized by the Society of Environmental Toxicology and
Chemistry (SETAC) and the International Organization for Standardization (ISO) Standards
14,040 and 14,044 [29,30].

LCA allows the impact quantification from resource extraction, raw material pro-
duction, manufacturing, refining, distribution, use and re-use, maintenance, and end of
life [31,32]. Among all the impact categories, LCA allows the calculation of the total
primary energy harvested from the environment in order to produce a given amount of
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end product (such as electricity), commonly named cumulative energy demand (CED).
CED breakdowns provide useful details on the energy demand needed for the life cycle
stages, including mining activities. Moreover, LCA estimates the human toxicity potential
(HTP), which quantifies the potential harm of a unit of chemical released into the envi-
ronment based on the inherent toxicity of a compound and its potential dose, and marine
eco-toxicity potential (ETP), which refers to the impact on marine ecosystems as a result of
toxic emissions to air, water, and soil.

The life cycle impact assessment method used in this analysis was ReCiPe Midpoint
(H) that provides characterization factors (CFs) calculated with USES-LCA [33]. Specifically,
CFs of human and marine eco-toxicity account for the environmental persistence (fate),
accumulation in the human food chain (exposure), and toxicity (effect) of each chemical,
assuming chemicals in brine are not recovered, being instead released to the marine
environment. Due to potential uncertainties of fate, exposure, and effect of each substance,
toxicity impacts should be intended as first estimates to be further investigated. Toxicity
results calculated at the mid-point level are expressed using as reference unit “kg 1,4-
dichlorobenzene equivalent” (kg 1,4-DBeq). In order to be as complete as possible, in this
study ReCiPe Endpoint (H) was also applied with the aim of calculating avoided toxic
impacts expressed also in terms of disability-adjusted life years (DALY), which take into
account the years lost due to premature death or reduced quality of life due to illness.
This metric is a combination of years of life lost due to premature mortality and the
years of life lost due to disability as result of disease or its consequences. Finally, we
also calculated the avoided biodiversity loss in terms of species disappeared per year.
Mid-point and End-point avoided impacts provide useful first indications for potentially
avoided damage impacts, although, as mentioned above, it should also be considered
that these metrics include high uncertainties due to complex dynamic interaction between
chemicals, humans, and ecosystems as well as potential variations in the exposure time
and different geographical criticalities. Regarding the data sources, the foreground life
cycle inventory used in this study corresponded to the specific mass of each recovered
metal, applying MDC_2 treatment to the produced brine, while the background life cycle
inventory database was based on the Ecoinvent database version 3 [34]. As a practical
standpoint, the analysis was performed using the SimaPro software version 9.

3. Results and Discussion
3.1. Polarization Behavior and Energy Outputs

MDC_2s and MDC_3s showed a proper polarization about 24 h after the setup,
while no significant polarization behavior was observed in the abiotic control (MDC_cntr).
Among all MDCs, MDC_2 revealed the highest energy production, with 8.97 ± 4.2 mA/m2

and 1.6 ± 0.4 mW/m2 average values over 12 different polarization experiments. Less
stability and PD were observed in MDC_3, with 0.38 ± 0.21 mW/m2 and 8.83 ± 6.7 mA/m2

maximum values on average. These results showed that the application of the external
voltage did not improve the performance of MDCs (as setup in this experiment) in terms
of polarization and power outputs (Figure 3a,b).
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As expected, COD decreased significantly in MDC_2 anolyte: The residual amount
(93 mg/L COD) was only 23% and 25% of COD in MDC_cntr (410 mg/L) and MDC_3
(379 mg/L), respectively. MDC_2 received by wastewater an approximate energy amount
of 7.2 J to be spent in the desalination process (with a CE of 26.8%). As to MDC_3 and
MDC-cntr, the overall energy (Equation (2)) provided by the external batteries was 7.7 J and
9.6 J, respectively. Further, the estimated energy provided by the wastewater in MDC_3
was 0.29 J. The overall energy spent in the desalination process in MDC_3 was 7.9 ± 0.1 J.
As to the energy needed to capture Al, Cd, Cr, Fe, Mn, Hg, Ni, Pb, Cu, and Sb at the
membranes, according to our estimation, MDC_2 required the smaller amount of energy
(3.24 × 10−3 MJ/m3) in comparison to MDC_cntr (1.63 × 10−2 MJ/m3). MDC_3 required
the highest amount of energy (6.18 × 10−1 MJ/m3). This result could find a possible
explanation in the increase in cationic membrane resistance due to the biological activity of
bacteria at the membrane interface at anode compartment. Further studies may be needed
to fully explain this result.

3.2. Microbiological Analyses

The analyses of microbial communities at the anodes revealed a prevalence of Pseu-
domonadaceae in MDC_2 (52.5%), almost absent in MDC_3 (1.85%). This result indicates
that Pseudomonadaceae played an important role in the electrogenesys. In general, MDC_2
anodic community showed less diversity in comparison to MDC_3, in consequence of the
different operational conditions realized (Table 1).

Table 1. Microbial taxa (families) in MDC_2 and MDC_3.

Taxa MDC_2 MDC_3

Bacillales_Incertae Sedis XII 0 1.90
Bifidobacteriaceae 0.16 1.38
Clostridiaceae 1 1.48 5.41
Clostridiales_Incertae Sedis XI 0.16 1.35
Coriobacteriaceae 0.00 1.55
Incertae Sedis XI 0.16 1.35
Moraxellaceae 30.87 53.72
Parachlamydiaceae 0 2.53
Peptostreptococcaceae 0.16 2.43
Pseudomonadaceae 52.55 1.85
Unclassified_Acidimicrobiales 0 1.07
Unclassified_Actinomycetales 0 1.73
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Table 1. Cont.

Taxa MDC_2 MDC_3

Unclassified_Alphaproteobacteria 2.46 0.48
Unclassified_Gammaproteobacteria 7.06 3.02
Xanthomonadaceae 0 1.24
Others < 1% 4.93 18.99

As to Archeobacteria, Methanobacteriaceae were prevalent in both MDC_2 (88.2%)
and MDC_3 (87.9%), followed by Methanospirillaceae (5.9% and 3.5%) and an Unclassi-
fied_Euryarchaeota (5.9% and 5.4%). It is interesting to notice the presence (just in MDC_3)
of a taxa including ammonia oxidizing bacteria, the Nitrososphaeraceae.

3.3. Chemical Analyses

In Table 2, we report the pH values and the concentration of the most abundant salts
in brine before and after its treatment in MDCs. At the end of the treatment, we compared
the residual dissolved salts’ concentration of MDC_2 and MDC_3 with the MDC_cntr
to investigate the advantage of electrogenesis (in two different operational conditions)
in comparison with a similar chemical–physical treatment, in which an external voltage
drives the desalination process.

Table 2. Main salts’ content in brine before and after the treatment in MDCs.

Parameters Units of
Measure Brine MDC_2_ MDC_3_ MDC_cntr_

pH 6.7 ± 0.2 6.6 ± 0.2 6.8 ± 0.2 6.8 ± 0.2
Cl- mg/L 228718 76771 80674 89636
Br- mg/L 176 74.3 83 86.3

SO4
−2 mg/L 3937 1724 1521 1700

Na+ mg/L 149934 63681 55412 64921
K+ mg/L 4120 188 108 122

Ca2+ mg/L 1853 1037 852 886
Mg2+ mg/L 191 165 100 96.7

Overall, we measured a decrease in total salt concentration of 8.7% and 9.3% in
MDC_2 and MDC_3, respectively, in comparison with MDC_cntr. Considering the salt
decrease in rejected brine at the end of treatment, MDC_2, MDC_3, and MDC_cntr removed,
respectively, 62.7%, 63.9%, and 59%. As for metals’ recovery, cationic membranes of
MDC_2s captured Sb, Co, Cr, Fe, Mn, Pb, and Hg, with a higher rate in comparison to
MDC_3s (Figure 4). Nevertheless, when only external voltage was applied (MDC_cntr) Co,
Pb, Al, Fe, and Mn, were collected in higher amounts.

A simple statistical analysis by the X2 Test revealed significant differences between
the amount of metals recovered in MDC_2 and MDC_cntr (p = 0.0039). We found a similar
result between MDC_3 and MDC_cntr values (p = 0.037), which indicates that in MDCs
the application of the external voltage could be not the prevalent force working. The role
that microbial activity seems to play in the desalination process, with particular regards
to metals’ sequestration, could prevail the application of an external voltage. X2 Test
performed among the data obtained by MDC_2 and MDC_3 revealed the existence of
a weak dependence between the two groups of data (p = 0.51). Nevertheless, this is a
preliminary test and further data are needed to confirm this result.
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In Figure 5 as an example, we provide an overview of potential recovered metals
from brine MDC_3 system treatment compared to current metal price [$/kg] listed by the
U.S. Geological Survey 2021 [35]. Considering the large amounts of brine treated by a
scaled–up desalination plant, the amount of metals recovered may translate into a large
economic value. Of course, economic advantages are different for the different MDCs’
systems. It is also worth noting that potential economic advantages should be evaluated
also considering the effective cost of metal recovery, for which there is currently a lack
of data. Therefore, future analysis should be focused also on a comparative assessment
between economic advantages, recovered metals, and large-scale investments that are
needed for implementing these practices.
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Therefore, metal recovery may represent a potential environmental advantage in terms
of circular economy [9,25], but the advantages in terms of the avoided release of potential
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toxic chemicals into the water bodies should not be disregarded. Hence, we applied LCA to
the investigated processes with the aim of quantifying the avoided life cycle toxic impacts
due to metal recovery in terms of avoided human toxicity (HTP) and marine eco-toxicity
(ETP) impacts.

Specifically, we can calculate, as an example, the potential avoided impacts because of
the recovery of Al, Sb, Co, Cr, Fe, Mn, Hg, Ni, Pb, and Cu for each m3 of brine treated by
MDC_2 and, therefore, not released into water bodies. Overall, results—in terms of HTP—
show that it would be possible to avoid the release of approximately 3.8 × 10−2 kg 1,4DBeq
per m3 of brine produced by desalination plants. Further, the total avoided potential eco-
toxicity (ETP) impact due to all the metal recovery would be approximately 6.6 × 10−5 kg
1,4DBeq per m3 of brine that is not released into the marine eco-system. Detailed results in
terms of avoided life cycle toxic impacts (at mid-point and end-point levels) are provided
in Table 3. It should be noted that life cycle toxicity results may include uncertainties due to
different exposure, fate, and effect of toxic chemicals. The main environmental advantage
arises from the recovery of Hg, Cu, and Al, although any avoided impact is important,
being well known that some chemicals generate impacts also at very low concentrations
and that concentrations may increase through the marine metabolic chain.

From an energy perspective, metal recovery may also allow an energy saving because
of the use of secondary metal production and, consequently, the avoided life cycle mining
activities. Table 4 shows the estimated mining energy values of metals recovered from
brine. This estimation is calculated considering the mass of recovered metals from the three
MCD systems multiplied by their unit mining energy value, based on Nuss et al., 2014, and
Ecoinvent database [34,36]. Results show that the main energy savings are associated with
the recovery of Sb, Cu, and Al per kg of metals as the CED breakdown for mining activities
is, respectively, 117 MJ/kg (83% of the total CED), 24 MJ/kg (45% of the total CED), and
24 MJ/kg (18% of the total CED). It should also be noted that the metal recovery could
also represent a combined environmental benefit [31,37], due to finite resource availability
of some strategic metals and potential economic gain due to the high cost of some metals
such as Co. This last one is commonly used as cathode in battery storage systems as well
as in other sectors (as an example, the current price of Co is $37.48 /kg, according to the
latest report released by the U.S. Geological Survey).

Being aware that the three MDC systems are able to extract different amounts of each
metal, if we compare the cumulative energy demand (Table 4) with the estimated energy
required by MDCs to separate and capture the same metals from brine, we can see that
MDC_2, MDC_3, and MDC_cntr may require, respectively, a smaller, a higher, and a similar
amount of energy compared to the mining practices (Table 5). In particular, MDC_2 only
fed by wastewater shows a very promising result for future research.
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Table 3. Life cycle human toxicity potential (HTP) and marine eco-toxicity potential (ETP) avoided impacts due to recovered metals [mg per m3 of brine] calculated with ReCiPe mid-point
(expressed as kg1,4DB-eq/m3 brine) and end-point (expressed as DALY/m3 brine) life cycle impact assessment method, in the case of MDC_2 system. Life cycle toxicity results should be
interpreted as a first indication as they may include uncertainties due to different exposures, fates, and effects of toxic chemicals. Recovered metals from brine in the three MDC systems
are indicated in Table 4.

Method: ReCiPe Midpoint
(H) Metals

Metric Unit Al Sb Co Cr Fe Mn Hg Ni Pb Cu Total Impact
Mid-point

Human
toxicity

potential
(HTP)

kg 1,4-DB
eq/mg of
recovered

metal

1.22 × 10−3 1.12 × 10−4 1.31 × 10−6 3.10 × 10−5 2.03 × 10−4 5.45 × 10−6 3.47 × 10−2 4.33 × 10−5 7.95 × 10−5 1.60 × 10−3 3.80 × 10−2

Mid-point
Marine

eco-toxicity
potential

(ETP)

kg 1,4-DB
eq/mg of
recovered

metal

3.69 × 10−6 3.32 × 10−7 1.56 × 10−8 2.89 × 10−7 5.04 × 10−7 1.12 × 10−7 3.98 × 10−5 3.91 × 10−6 8.52 × 10−8 1.74 × 10−5 6.61 × 10−5

Method: ReCiPe Endpoint
(H) Metals

Metric Unit Al Sb Co Cr Fe Mn Hg Ni Pb Cu Total Impact
End-point

Human
toxicity
(HTP)

DALY/mg of
recovered

metal
8.50 × 10−10 7.82 × 10−11 9.14 × 10−13 2.17 × 10−11 1.42 × 10−10 3.82 × 10−12 2.43 × 10−8 3.04 × 10−11 5.57 × 10−11 1.12 × 10−9 2.67 × 10−8

End-point
Marine

ecotoxicity
(ETP)

Species.yr/mg
of recovered

metal
6.50 × 10−16 5.85 × 10−17 2.75 × 10−18 5.08 × 10−17 8.86 × 10−17 1.97 × 10−17 6.98 × 10−15 6.90 × 10−11 1.50 × 10−17 3.06 × 10−15 1.16 × 10−14
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Table 4. Energy values of metals mining vs extraction from brine, based on Nuss et al., 2014 [36].

Al Sb Co Cr Fe Mn Hg Ni Pb Cu Total
Energy

• MDC_3 Recovered metals
(g/m3) 0.384 0.008 0.002 0.016 0.147 0.038 0.0005 0.020 0.019 0.035 n.a.

• MDC_cntr_Recovered metals
(g/m3) 0.413 0.009 n.a. 0.003 0.008 0.188 0.113 0.0004 0.012 0.022 n.a.

• MDC_2 Recovered metals
(g/m3) 0.192 0.017 0.002 0.018 0.117 0.045 0.002 0.018 0.003 0.021 n.a.

• Mining Energy Demand (MJ/g) 0.024 0.117 n.a. 0.002 0.0002 0.012 n.a. n.a. 0.008 0.024 n.a.

• MDC_3 Extraction Energy
value of metals recovered from
brine (MJ/m3)

9.2 × 10−3 9.7 × 10−4 n.a. 3.2 × 10−5 2.9 × 10−5 4.7 × 10−4 n.a. n.a. 1.5 × 10−4 8.5 × 10−4 1.12 × 10−2

• MDC_cntr Extraction Energy
value of metals recovered from
brine (MJ/m3)

9.93 × 10−3 1.16 × 10−3 n.a. 7.74 × 10−6 1.66 × 10−6 2.26 × 10−3 n.a. n.a. 9.84 × 10−5 5.51 × 10−4 1.40 × 10−2

• MDC_2 Extraction Energy
value of metals recovered from
brine (MJ/m3)

4.61 × 10−3 2.07 × 10−3 n.a. 3.64 × 10−5 2.35 × 10−5 5.43 × 10−4 n.a. n.a. 2.90 × 10−5 5.23 × 10−4 7.84 × 10−3
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Table 5. Energy provided to the MDCs’ systems by either battery and/or wastewater (en-
ergy unit/treated brine volume) to separate metals from brine and cumulative energy demand
(Nuss et al., 2014). All values are expressed as MJ/m3 brine.

Desalination
Process

Mining
Practices

Source of Energy
(Desalination)

MDC_2 3.24 × 10−3 7.84 × 10−3 Wastewater

MDC_3 6.18 × 10−1 1.12 × 10−2 Wastewater + battery

MDC_cntr 1.64 × 10−2 1.40 × 10−2 Battery

Future exploitation of recovered elements will entail the setup of proper and specific
processes, at appropriate scale. Nevertheless, the potential advantages associated with the
sequestration of metals in MDCs are undoubtedly significant.

4. Conclusions

Desalination processes represent a sustainable option for addressing water scarcity
and providing fresh water for population and industry purposes. However, a sustainable
management of the associated hypersaline brine production should be identified and
implemented globally to reduce environmental impacts. Emerging technologies such
as MDC technology are potential candidates to address this issue. This work provides
a proof of concept focused on the application of MDC technology as potential brine
treatment (for stand-alone devices or integrating other desalination processes). Results
showed that this approach could provide several benefits, such as energy savings due to
reduced metal mining activities, salt removal, resource recovery, wastewater treatment,
and reduction of life cycle human and eco-toxicity impacts as well as cumulative energy
demand and potential economic advantages due to metal recovery. Although MDCs’
process optimization and its scale-up represent a challenge for future industry applications,
our analysis provides useful evidence that MDCs’ technology can contribute toward a
greener pathway of brine treatments from desalination processes.
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