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Abstract
Human lifespan increments represent one of the main current risks for governments and 
pension and health benefits providers. Longevity societies imply financial sustainability 
challenges to guarantee adequate socioeconomic conditions for all individuals for a longer 
period. Consequently, modelling population dynamics and projecting future longevity 
scenarios are vital tasks for policymakers. As an answer, the demographic and the actu-
arial literature have been introduced and compared to several stochastic mortality mod-
els, although few studies have thoroughly tested the uncertainty concerning mortality 
projections. Forecasting mortality uncertainty levels have a central role since they reveal 
the potential, unexpected longevity rise and the related economic impact. Therefore, the 
present study poses a methodological framework to backtest uncertainty in mortality pro-
jections by exploiting uncertainty metrics not yet adopted in mortality literature. Using 
the data from the Human Mortality Database of the male and female populations of five 
countries, we present some numerical applications to illustrate how the proposed criterion 
works. The results show that there is no mortality model overperforming the others in all 
cases, and the best model choice depends on the data considered.

Keywords  Stochastic mortality models · Prediction interval forecasting · Models 
comparison · Backtesting metrics

1  Introduction

During the last century, populations around the world have experienced a continuous lon-
gevity growth, despite country-specific dynamics and disparities in age-at-death distribu-
tion ( Aburto and van Raalte 2018; Nigri et  al. 2022). Broadly speaking, mortality has 

 *	 Salvatore Scognamiglio 
	 salvatore.scognamiglio@uniparthenope.it

	 Mario Marino 
	 m.marino@uniroma1.it

1	 Department of Management and Quantitative Studies, University of Naples Parthenope, Naples, 
Italy

2	 Department of Methods and Models for Economics, Territory and Finance, Sapienza University 
of Rome, Rome, Italy

http://orcid.org/0000-0001-5725-5061
http://crossmark.crossref.org/dialog/?doi=10.1007/s11135-022-01537-z&domain=pdf


	 S. Scognamiglio, M. Marino 

1 3

declined at all ages, with different intensities, due to the action of heterogeneous factors 
affecting the human lifespan. For instance, the diffusion of preventative health measures 
and improved medical care have positively impacted on population’s life expectancy (see, 
e.g. Vaupel et al. 2021 and Zarulli et al. 2021). Moreover, socioeconomic and environmen-
tal conditions have been determinants of how mortality changed over time and among pop-
ulations (see, e.g. Cairns et al. 2019 and Khomenko et al. 2021). Although human lifespan 
increments are enjoyable evidence, as longevity increases, economic challenges emerge to 
ensure an adequate income and health treatments for all individuals throughout their old 
age. The social costs to cater for the needs of increasingly elderly populations involve a 
burdensome financial position for governments, annuity providers and pension schemes. 
These entities face the risk of paying out benefits for a much longer period, suffering finan-
cial instability conditions. In addition, such a circumstance may be exacerbated by future 
social advances. For instance, it is plausible that scientific and technological progresses 
will be able to boost medicine and lifestyles behaviours, making future improvements in 
life expectancy highly unpredictable (see, e.g. Keilman 2019). Indeed, population forecasts 
are heavily based on the current knowledge in vital processes, from which to extrapolate 
future trends. As a consequence, unexpected changes may occur due to random fluctuations 
or structural changes in the mortality trends. Therefore, uncertainty in predicting future 
longevity scenarios is a fact and achieving accuracy in mortality forecasts is crucial to sup-
port a long-lived society financially. To this end, both the demographic and the actuarial 
literature have been enriched over time by excellent works focused on stochastic mortality 
modelling. Models widely used to forecast mortality rates are extrapolative and draw inspi-
ration from the pioneering Lee-Carter model (Lee and Carter 1992, hereinafter LC). The 
latter is a log-bilinear model embedding age-period effects and an additive Gaussian error 
structure. Various LC model extensions have been proposed in the literature to overcome 
model weaknesses and describe other relevant mortality patterns. For instance, Brouhns 
et  al. (2002) formulated the canonical LC model in terms of Poisson regression, later 
extended in a Bayesian framework by Czado et al. (2005). A multi-factor age–period exten-
sion of LC was proposed by Booth et  al. (2002), while Renshaw and Haberman (2003) 
exploited the LC model to provide mortality forecasting with age-specific enhancement. 
Prominent developments in stochastic mortality modelling were furnished by Renshaw and 
Haberman (2006), introducing cohort effects, and by Cairns et al. (2006). The latter pro-
posed a two-factor stochastic representation for the logit of death probabilities, opening 
the way for further generalizations embodying multiple period and cohort effects (Cairns 
et  al. 2009). Afterwards, Plat (2009) gathered the LC, the Renshaw and Haberman and 
the Cairns-Blake-Dowd models to establish a unified approach. Since a large number of 
mortality models have been proposed in the literature, Hunt and Blake (2014) designed a 
general procedure for constructing parametric mortality models able to catch different age-
period-cohort effects present in the data.

Designating the best mortality model is not trivial, and the choice stems from the sat-
isfaction of suitable criteria. However, a model may not necessarily dominate all others 
based on the selected criteria. For instance, a model could be better than others looking at 
its goodness of fit to historical data; at the same time, such a model could be less robust 
or provide less accurate projections than others. Furthermore, the model comparison 
depends on the mortality data investigated and the purposes of the analysis. Subsequently, 
many articles in the literature have compared different mortality models exploiting spe-
cific mortality experiences and befitting metrics. Cairns et al. (2009) offered an extensive 
analysis comparing empirical fits of eight stochastic mortality models on US and England 
& Wales males mortality data. The authors examined model performances by means of 
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both qualitative and quantitative model selection criteria. The former refers to desirable 
mortality model’s features, that is, parsimony, transparency, ability to generate sample 
paths, incorporation of cohort effects, aptitude to provide non-trivial correlation struc-
tures between ages. Quantitative criteria allow for assessing consistency and robustness 
of parameter estimates with respect to the period of data observed. Dowd et al. (2010b) 
tailored hypothesis tests to strengthen models evaluation in terms of goodness-of-fit and 
to consider England & Wales males mortality data. A different perspective to benchmark 
mortality models was developed in Dowd et  al. (2010a). The latter designed a backtest-
ing framework to gauge (ex-post) the forecasting performances of six stochastic mortality 
models fitted on England & Wales male mortality data. Cairns et  al. (2011) focused on 
the plausibility of stochastic mortality model forecasts by means of innovative qualitative 
criteria, namely: biological reasonableness, plausibility of predicted levels of uncertainty 
in forecasts at different ages, projections robustness with respect to the sample period used 
to fit the model. A considerable model comparison is also promoted in Haberman and Ren-
shaw (2011), whose numerical experiment include both US and England & Wales female’s 
mortality experiences. Additional quantitative model comparisons have been performed in 
Lovász (2011), concerning Finnish and Swedish populations, and in Biffi and Clemente 
(2014) and Carfora et al. (2017), concerning Italian population.

In the spirit of the aforementioned literature, the present study furnishes a comparative 
analysis of the forecasting ability of stochastic mortality models. As suggested in Dowd et al. 
(2010a), a suitable mortality model should offer both proper in-sample results and plausible 
ex-ante forecasts, as well as generate adequate ex-post out-of-sample performances. In particu-
lar, forecasted uncertainty levels have a central role since it reveals the potential, unexpected 
longevity rise and its biological plausibility. Therefore, we implement an ex-post assessment 
of the projected prediction intervals, comparing and measuring their plausibility through 
uncertainty metrics not yet adopted: the Prediction Interval Coverage Probability (hereinafter 
PICP) and the Mean Prediction Interval Width (hereinafter MPIW). The former generally rep-
resents the probability of observing mortality outcomes over the backtesting horizon falling 
within the prediction intervals. At the same time, the latter expresses the average amplitude 
of such intervals. Both the PICP and the MPIW are usually employed for rating neural net-
works prediction intervals (see, e.g. Khosravi et al. 2011, but they can be efficiently utilized 
for any predictive model. It is straightforward to note that prediction intervals whose PICP is 
the highest possible value are a matter of interest; we aim for all mortality realizations within 
the variability range. Such a scenario may be simply achieved through a wide prediction inter-
val, but the latter could indicate poor predictive believability. For instance, too large predic-
tion intervals are not informative about the likely uncertainty of future mortality outcomes; 
furthermore, too wide intervals may be associated with low or null PICP values. The latter 
is the worst-case scenario as it indicates the model’s failure to capture the mortality trend. 
Hence, it is important to consider jointly the PICP and the MPIW, defining an associated cri-
terion for the model comparison and selection. From a backtesting perspective, we advance a 
preference criterion that gives credibility to the mortality model with the highest PICP and the 
lower MPIW. Our proposal identifies an additional backtesting strategy whose joint applica-
tion with commonly used quantitative metrics improves the model selection process. As fur-
ther contribution, we illustrate how the suggested criterion performs ranking seven stochastic 
mortality models in an empirical analysis. To this end, we deal with the mortality experiences 
of five populations, namely Australia, England & Wales, Italy, Japan and the USA, and for 
both genders by exploiting the Human Mortality Database data (Human Mortality Database 
2018). Our analysis shows that, as expected, no mortality model outperforms all the others. 
Despite both age- and country-specific characteristics, our proposal grants to identify models 
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with mortality density forecasts more balanced across populations. The remainder of the paper 
is the following. Section 2 contains the methodological framework for investigating the sto-
chastic mortality models. Section 3 explains the PICP and the MPIW metrics and the pro-
posed preference criterion. Section 4 refers to the numerical experiments and related results 
obtained. Finally, Sect. 5 sets out concluding remarks.

2 � Methodological framework

Let X = {x1, x2,… , x�} be the age set, and T = {t1, t2,… , tn} the calendar year set. For each 
last birthday age x ∈ X  during calendar year t ∈ T  , we introduce the following variables of 
interest:

•	 Dx,t , i.e. the random number of deaths;
•	 dx,t , i.e. the observed number of deaths;
•	 E0

x,t , i.e. the initial exposed to risk;
•	 qx,t , i.e. the one-year probability of death.

In the present work we resort the Generalized Age-Period-Cohort (hereinafter GAPC) as uni-
fied mortality modeling framework, allowing for a fair comparison among stochastic mortality 
models (see e.g. Currie 2016; Villegas et al. 2018). In particular, we assume that:

coherently representing the systematic mortality component by the following predictor:

By the means of Eq. (2), one-year probabilities of death are characterized through a sig-
moidal transformation of age-dependent parameters ax, b(l)x  and cx , time-dependent param-
eters �(l)

t  , and the cohort parameter �p . Most of the stochastic mortality models in the lit-
erature are special cases extracted from the GAPC setup. For instance, consider whether 
the age-dependent parameter ax or the cohort parameter �t−x , implies different mortality 
representations; again, varying the order of L, mortality models are shaped according to 
specific period effects portrayals.

2.1 � Stochastic mortality models

We choose to deal with seven stochastic mortality models, summarized in Table 1, depicting 
the hinges of the two main stochastic mortality models families: the Lee-Carter family and the 
Cairns-Blake-Dowd family. We briefly illustrated their analytical structure in the following 
sections.

(1)Dx,t ∼ Binomial(E0
x,t
, qx,t), ∀x ∈ X,∀t ∈ T,

(2)log
qx,t

1 − qx,t
= ax +

L∑

l=1

b(l)
x
�
(l)
t + cx�t−x.
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2.1.1 � LC model

The LC model provides two age-specific effects, a period effect and it does not acknowl-
edge for cohort influences. Thus, by the means of Eq. (2) we have L = 1 and cx, �t−x = 0 , 
obtaining:

We need to make the LC model invariant with respect to parameters’ transformations, and 
the following constraints are then applied:

2.1.2 � RH model

The RH model develops the LC structure introducing an age-cohort bi-linear term, that 
is:

Similarly to the LC model, identifiability problems are avoided imposing the following 
constraints:

As suggested in Haberman and Renshaw (2011), we consider the specification cx = 1 aim-
ing to bypass robustness issues suffered by the predictor in Eq. (4).

(3)log
qx,t

1 − qx,t
= ax + b(1)

x
�
(1)
t .

∑

x∈X

b(1)
x

= 1,
∑

t∈T

�
(1)
t = 0.

(4)log
qx,t

1 − qx,t
= ax + b(1)

x
�
(1)
t + cx�t−x.

∑

x∈X

b(1)
x

= 1,
∑

x∈X

cx = 1,
∑

t∈T

�
(1)
t = 0,

tn−x0∑

p=t0−x�

�p = 0.

Table 1   Stochastic mortality models considered in the present work

Model Notation References

Lee-Carter model family
Lee-Carter LC Lee and Carter (1992)
Renshaw-Haberman RH Renshaw and Haberman (2006)
Age-Period-Cohort APC Currie (2006)
Cairns-Blake-Dowd model family
Cairns-Blake-Dowd CBD Cairns et al. (2006)
CBD with cohort effects M6 Cairns et al. (2009)
Quadratic CBD with cohort effects M7 Cairns et al. (2009)
Variant of CBD with cohort effects M8 Cairns et al. (2009)
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2.1.3 � APC model

The APC model was originally proposed in the fields of medicine and demography (see 
e.g. Clayton and Schifflers 1987) and later introduced in actuarial literature by Currie 
(2006). Referring to the latter, the APC model involves an age effect, a period effect and 
a cohort effect, that is:

Such a model requires parameters constraints defined as below:

2.1.4 � CBD model

The CBD model assumes L = 2 time-dependent parameters, while ax, cx, �t−x = 0 . In 
addition, Cairns et al. (2006) accounts for b(1)

x
= 1 and b(2)

x
= (x − x̄) , where x̄ denotes the 

average age for the age set considered. Hence, the predictor has the following expression:

and it is not affected by identifiability issues.

2.1.5 � M6 model

The M6 model is a CBD’s extension due to the cohort effect inclusion. The latter is 
weighted by cx = 1 , and the predictor becomes:

Contrary to the CBD model, constraints have to be introduced:

2.1.6 � M7 model

The M7 model boosts the M6 one, favoring the introduction of a third period effect 
weighted by a quadratic coefficient. In particular, the M7’s predictor is defined setting 
L = 3 , ax = 0, b(1)

x
= 1 , b(2)

x
= (x − x̄) , b(2)

x
= ((x − x̄)2 − 𝜎̂2

x
) , c(1)

x
= 1 , where 𝜎̂x denotes the 

standard deviation of ages. In analytical terms, it holds that:

(5)log
qx,t

1 − qx,t
= ax + �

(1)
t + �t−x.

∑

t∈T

�
(1)
t = 0,

tn−x0∑

p=t0−x�

�p = 0.

(6)log
qx,t

1 − qx,t
= 𝜅

(1)
t + (x − x̄)𝜅

(2)
t ,

(7)log
qx,t

1 − qx,t
= 𝜅

(1)
t + (x − x̄)𝜅

(2)
t + 𝛾t−x.

tn−x0∑

p=t0−x�

�p = 0,

tn−x0∑

p=t0−x�

p�p = 0.

(8)log
qx,t

1 − qx,t
= 𝜅

(1)
t + (x − x̄)𝜅

(2)
t + ((x − x̄)2 − 𝜎̂2

x
)𝜅

(3)
t + 𝛾t−x.
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Regarding identifiability problems, the following constraints are imposed:

2.1.7 � M8 model

The M8 model is M6 model’s variant contemplating a non-constant coefficient related 
to the cohort effect, that is c(1)

x
= (xc − x) for some constant parameter xc to be estimated. 

Thus, the predictor takes the form:

and the associated parameter constraint is:

2.2 � Model fitting

Stochastic mortality models falling within the GAPC framework are examples of general-
ized, or non-generalized, linear models and they can be fitted by maximum likelihood esti-
mation (see e.g. Currie 2016). Recalling assumption (1) and assuming i.i.d. death counts 
for each age and calendar year, we consider the log-likelihood below:

where wx,t is a 0/1 weight taking value 0 if a data cell, (x, t), is ignored or 1 if the cell is 
incorporated, and d̂x,t is the estimated number of deaths, that is:

It is straightforward to note that the parameters are estimated by solving the problem:

where �̂ =

(
âx, b̂

(l)
x
, 𝜅̂

(l)
t , ĉx, 𝛾̂t−x

)
.

2.3 � Model forecasting

Stochastic mortality models forecasts arise from time-series techniques describing 
period and cohort effects, while age-specific parameters are time invariant. Let tn ∈ T  

tn−x0∑

p=t0−x�

�p = 0,

tn−x0∑

p=t0−x�

p �p = 0,

tn−x0∑

p=t0−x�

p2 �p = 0.

(9)log
qx,t

1 − qx,t
= 𝜅

(1)
t + (x − x̄)𝜅

(2)
t + (xc − x)𝛾t−x,

tn−x0∑

p=t0−x�

�p = 0.

(10)

logL(dx,t, d̂x,t) =
∑

x,t

wx,t

[
dx,t log

(
d̂x,t

E0
x,t

)
+ (E0

x,t
− dx,t) log

(
E0
x,t
− d̂x,t

E0
x,t

)
+

(
E0
x,t

dx,t

)]
,

(11)d̂x,t = E0
x,t
q̂x,t = E0

x,t

exp
�
âx +

∑L

l=1
b̂(l)
x
𝜅̂
(l)
t + ĉx𝛾̂t−x

�

1 + exp
�
âx +

∑L

l=1
b̂
(l)
x 𝜅̂

(l)
t + ĉx𝛾̂t−x

� .

�̂ = argmax
�

logL(dx,t, d̂x,t)
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be the forecasting year and let T
�

= {tn + h, h = 1,… , s} be the forecasting horizon. 
Then, the h-step ahead forecast for the predictor is defined as:

Periods effects at time t ∈ T
�

 , namely �t = (�
(1)
t , �

(2)
t ,… �

(L)
t ) ∈ ℝ

L , are shaped through a 
multivariate random walk:

where � ∈ ℝ
L is the drift term and Σ ∈ ℝ

L×L is the variance-covariance matrix of �t . Obvi-
ously, for stochastic mortality models with L = 1 , the random walk collapses to the univari-
ate case. Concerning the cohort’s parameter, we follow previous studies in literature (see 
e.g. Haberman and Renshaw 2011; Lovász (2011)) in order to generate projections embed-
ding cohort effects. Therefore, the latter are modeled by an univariate ARIMA process, 
assuming stochastic independence with respect to �t . In Table 2 we summarize the specific 
ARIMA(p,d,q) considered in the present work.

Point mortality forecasts are obtained determining the expectation of both time-
dependent and cohort-dependent parameters, that is:

so that future mortality trend is outlined without considering prediction errors. However, 
the latter generates uncertainty in mortality forecasts, as well as the estimation error related 
to �̂ . Therefore, prediction intervals are substantial in supporting mortality projection’s 
reliability and to perform consistent mortality/longevity risk assessments. Any stochastic 
mortality model have to provide prediction intervals with a certain coverage probability, 
namely (1 − �) , aiming that future mortality outcomes belong to the interval defined by 
the lower and upper bounds. More in detail, indicating with q̂LB the projected prediction 
interval lower bound and with q̂UB the projected upper bound, a desirable model satisfies 
the following:

In addition, prediction interval’s quality depends on the distance between q̂LB
x,tn+h

 and q̂UB
x,tn+h

 
for each time point in T

′

 . For our purposes, we appraise models’ out-of-sample judging the 
quality of the projected prediction intervals in terms of their probability coverage and their 
width. In doing so, we take into account both model and parameter uncertainty. The 
method considered to generate such uncertainty is explained in Appendix A.

(12)log
qx,tn+h

1 − qx,tn+h
= âx +

L∑

l=1

b̂(l)
x
𝜅
(l)

th+h
+ ĉx𝛾tn+h−x, ∀x ∈ X

(13)�t = � + �t−1 + �t, �t ∼ N(0,Σ),

(14)log
q̂x,tn+h

1 − q̂x,tn+h
= âx +

L∑

l=1

b̂(l)
x
�

(
𝜅
(l)

th+h

)
+ ĉx�

(
𝛾tn+h−x

)
, ∀x ∈ X,

(15)ℙ

(
q̂LB
x,tn+h

≤ qx,tn+h ≤ q̂UB
x,tn+h

)
≥ (1 − 𝛼), 𝛼 ∈ (0, 1).

Table 2   ARIMA models for 
the cohort effect in the different 
mortality models

Mortality model ARIMA model for �
t−x

APC ARIMA(1,1,0) with drift
RH ARIMA(1,1,0) with drift
M7 and M8 ARIMA(2,0,0) with 

non-zero intercept
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3 � Prediction interval based metrics and forecasts comparison

To appreciate the prediction interval’s goodness, we propose to jointly examine specific pre-
diction interval-based metrics, namely PICP and MPIW. The former inspects the prediction 
interval coverage by counting how many mortality realisations are wrapped in the probabilis-
tic range, given a confidence level (1 − �) . It is defined as

where 1{⋅} = 1 if qx,t ∈ [q̂LB
x,t
, q̂UB

x,t
] , and 1{⋅} = 0 otherwise. Broadly speaking, the PICP fur-

nishes the estimate for the probability in Eq.  (15) so that, theoretically, PICP should be 
greater or equal to the nominal value (1 − �) . The higher the PICP value, the more likely 
the coverage the prediction interval provides for future mortality realizations. However, 
PICP values lower than the confidence level could occur due to different reasons, such as 
in the presence of noisy mortality data or when the model under-fitting or over-fitting crops 
up. Larger PICP values could be achieved simply by considering wider prediction intervals, 
but the latter suggests poor predictive believability, and they are not of practical usefulness. 
Therefore, rating prediction interval quality by PICP without considering the prediction 
interval width is a little choice. We must evaluate prediction interval accuracy, referring 
simultaneously to both PICP and MPIW. The latter represents the prediction interval mean 
width over the forecasting horizon, that is:

The joint use of PICP and MPIW requires formulating a criterion to compare mortality 
models given their projected prediction intervals. Our approach traces a backtesting exer-
cise. We provide a plain ex-post evaluation of prediction intervals inspecting the associated 
PICP and MPIW for each mortality model considered. In particular, we advance a prefer-
ence criterion relying on the mortality model with the highest PICP and the lower MPIW. 
For instance, given two stochastic mortality models, namely Mk and Mj , we propose to 
promote the model satisfying the following criterion:

The criterion in (18) may be drafted also in terms of weak preference, that is:

allowing for the indifference situation Mk ∼ Mj iff PICPk = PICPj and MPIWk = MPIWj . 
The means of criterion (18), or (19), is streamlined: we aim to select a model whose pre-
diction intervals enclose future mortality outcomes and, at the same time, the model (and 
associated parameters) must not yield an excessive uncertainty. For instance, Fig. 1 shows 
a graphical visualization of how the proposed preference criterion works. Let us consider 
five stochastic mortality models and let Mk , k = 1,… , 5 , the coordinates representing such 
models in the plane (MPIW, PICP). It is straightforward to note that M3 ≻ M1 ≻ M2 , but 
criterion (18) does not allow preference judgment in comparing M1 and M4 or M1 and M5 . 
However, for financial and actuarial purposes, the latter case should be unambiguous: we 
are inclined to prefer the model M1 as it provides a greater probability coverage and is more 

(16)PICP =
1

|T� |

∑

t∈T
�

1{qx,t ∈ [q̂LBx,t , q̂
UB
x,t ]}

,

(17)MPIW =
1

|T� |

∑

t∈T
�

q̂UB
x,t

− q̂LB
x,t
.

(18)Mk ≻ Mj if PICPk > PICPj ∧ MPIWk ≤ MPIWj.

(19)Mk ⪰ Mj if PICPk ≥ PICPj ∧ MPIWk ≤ MPIWj,



	 S. Scognamiglio, M. Marino 

1 3

informative regarding uncertainty. Thus, we interpret the preference criterion (18) as a gold 
standard, facilitating model selection if there is a prominent mortality model in terms of 
density forecasts; otherwise, intermediate situations occur, and we need to introduce an 
additional rule in defining the preference criterion. In particular, we say that Mk ≻ Mj if the 
following criterion is satisfied:

Recalling the example in Fig.  1, the previous criterion implies the preference chain 
M3 ≻ M4 ≻ M1 ≻ M5 ≻ M2 . The model M2 represents the worst case, since it has simulta-
neously the lowest PICP and the higest MPIW.

4 � Empirical experiments

To test our proposal, we implement an empirical experiment involving mortal-
ity experiences worldwide. In particular, we exploit mortality data for both gen-
ders in five countries, namely Australia (AUS), England & Wales (GBRTENW), 
Japan (JPN), Italy (ITA) and the USA. We indicate the population set by 
I = {����, ������} × {���, �������, ���, 
��, ���} . We consider such countries repre-
sentative in terms of mortality dynamics. For instance, Australia, England & Wales and 
Italy populations experienced a deep, non-linear shaped, reduction of mortality rates after 
WWII, despite they differ in terms of life expectancy acceleration. On the other hand, 
Japan population exhibits a linear decline in mortality, while the USA population is charac-
terized by the well-known life expectancy stagnation (Mehta et al. 2020).

Data were downloaded from the Human Mortality Database, which concerns calen-
dar years from 1960 to 2019 and the age set X = {60,… , 89} . The latter is specially cho-
sen to investigate ages for which the longevity risk may arise. Such a data are split in two 
sub-dataset with respect to the forecasting year t = 2000 : a training dataset composed by 
mortality data indexed by the calendar years set T = {1960,… , 2000} and a testing data-
set concerning mortality data for the calendar years set T

�

= {2001,… , 2019} . The former 
is used to fit stochastic mortality models, while the latter act as a test for the backtesting 

(20)
PICPk ≥ PICPj ∧ MPIWk ≤ MPIWj ∨

PICPk ≥ PICPj ∧ MPIWk ≤ MPIWj

Fig. 1   An illustrative representa-
tion of mortality models in the 
plane (MPIW, PICP)
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analysis. We refer to the Bayesian Information Criterion (hereinafter BIC) to assess the 
mortality model’s in-sample performance. At the same time, the out-of-sample accuracy of 
point forecasts is evaluated by looking at the Mean Squared Error (hereinafter MSE). We 
inspect the latter metric as an overall performance measure for each mortality model, and 
it is defined as:

We also investigated the MSE distribution by age, that is:

In addition, we assess the mortality density forecasts using uncertainty metrics explained 
in Sect. 3. In particular, we firstly scrutinize PICP and MPIW distribution by age and sepa-
rately. As the final step, we apply the proposed preference criterion displaying the results 
for ages x = 65, 75, 85 . The experiments are performed using the R software (R Core Team 
2021, version 3.6.3) and the package StMoMo (Villegas et al. 2018, version 0.4.1).

4.1 � Results

The present section exposes and discusses the findings of our numerical experiments. Fore-
most, in Table 3 we list in-sample BIC values for each mortality model and different popu-
lations. The best performance is reported in bold for each population.  We outline that RH 
and M7 fitting overperform the other models: the former presents the lowest BIC in 5/10 
cases, while the latter has the best BIC in 4/10 cases. The M8 provides the lowest BIC only 
for the US female population. Thus, from a proper perspective, both periods and cohort 
effects seem to be prevalent in explaining the mortality surfaces considered. For complete-
ness, we report the heatmaps of the binomial residuals for all the considered models and 
populations in Appendix B.

Concerning the out-of-sample analysis, Table 4 shows MSE values applying Eq. (21). 
We observe that models selected in terms of BIC are not optimal from a forecasting 

(21)MSEi =
1

|T� | ⋅ |X|

∑

t∈T

∑

x∈X

(qx,t,i − q̂x,t,i)
2, ∀i ∈ I.

(22)MSEx,i =
1

|T� |

∑

t∈T

(qx,t,i − q̂x,t,i)
2, ∀x ∈ X, i ∈ I.

Table 3   In-sample BIC for the different populations and different stochastic models considered

The lowest BIC for each population is reported in bold

Country Sex LC RH CBD M6 M7 M8 APC

AUS Female 14222.9 14007.0 15852.4 14608.2 14755.8 14556.47 14549.3
Male 14960.0 14665.4 15492.7 15238.3 15424.6 15178.7 15061.5

GBRTENW Female 19915.6 15955.9 22196.4 16545.2 16318.8 16360.9 18356.9
Male 19899.3 16017.9 21122.8 16209.1 16106.3 16139.5 16887.6

ITA Female 17906.7 16271.2 23285.7 17518.1 15781.2 16807.03 18043.1
Male 19805.2 16676.7 20790.5 16141.4 15949.5 16103.5 17030.1

JPN Female 25038.5 16392.7 37239.9 18715.7 16257.9 17591.7 17347.1
Male 25299.3 16429.2 28188.5 17019.0 15945.7 16387.1 16918.1

USA Female 27459.8 21646.5 80536.6 27864.3 26259.9 25798.9 29303.3
Male 30110.8 21615.3 42856.1 25973.5 25426.3 25573.3 25675.8
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perspective. For instance, the RH forecasts underperform for all populations investigated, 
and the M7 results are profitable only for the GBRTENW male mortality data. From a 
forecasting accuracy’s point of view, the models appearing fruitful are the LC and the M8. 
Such evidence remarks on the backtesting process’s usefulness. Indeed, a mortality model 
should offer both an in-sample representativeness and an accurate out-of-sample perfor-
mance. Our analysis points out potential over-fitting generated by RH and M7 models so 
that their forecasting accuracy is poor overall. However, we also examine the MSE distri-
bution by age for an in-depth vision.

Referring to Fig. 2, MSE increases with age, and some models show peculiar trends for 
the elderly. For all female populations, excluding the US, the M7’s MSE tends to be greater 
for initial ages, then decreases until about age 85 and increases for the final ages. Such 
behaviour also occurs in both Italian and Japanese male populations. For the latter mor-
tality data, the M6’s MSE shrinks after age 85, indicating the M6 goodness in predicting 
mortality for older ages. However, the M6 shows lower accuracy for other mortality experi-
ences. Within the CBD family, the MSE related to the M8 model exhibits greater regularity 
with increasing age. The RH model seems to be befitting, respecting the age range 60–73, 
but then loses predictive accuracy at older ages. The LC forecasts produce quite increas-
ing errors, except for US and Australian female populations. On the other hand, the APC’s 
MSE boasts significantly after age 80 for all populations.

Selecting a mortality model considering only the point predictions accuracy could be 
difficult and, sometimes, misleading. Therefore, we evaluate projected prediction inter-
vals exploiting both PICP and MPIW. We begin inspecting the former as depicted in 
Fig. 3, separately from the latter represented in Fig. 4. As expected, mortality models 
within the CBD family demonstrate larger prediction intervals at old ages. These mod-
els imply more uncertainty due to the presence of multiple periods effects with respect 
to LC-based models. Prediction interval width influences the prediction interval cover-
age, making CBD-based models more appealing ex-ante to anticipate unexpected mor-
tality outcomes. Nonetheless, the ex-post perspective about PICP by age, as in Fig. 3, 
delineates particular evidence. For instance, the best M6 and M7 density forecasts occur 
for both English & Welsh and Australian males. For all other populations, such mod-
els regain coverage probability only at higher ages, thanks to their MPIW’s exponential 

Table 4   Out-of-sample MSE
i
 , i ∈ I  for the different stochastic models considered

Values are in 10−4

Country Sex LC RH CBD M6 M7 M8 APC

AUS Female 0.0806 0.3806 0.1445 1.0595 0.4252 0.1089 0.4720
Male 0.3128 1.0581 0.3111 0.2624 0.2627 0.4614 0.8046

GBRTENW Female 0.1720 0.3545 0.1890 1.1626 0.7468 0.2105 0.2245
Male 0.6339 1.2497 0.5935 0.4448 0.3703 3.5868 0.4801

ITA Female 0.1259 0.8940 0.2623 0.4258 2.0138 0.1104 0.4543
Male 0.3412 0.4227 0.3747 1.1891 0.4678 0.3049 0.5614

JPN Female 0.0621 0.9355 0.2627 0.4914 1.9322 0.0239 0.3407
Male 0.2171 1.1591 0.8170 0.3437 3.0701 0.1105 0.8848

USA Female 0.1083 0.1901 0.1685 5.8476 0.2573 0.2690 0.1235
Male 0.4543 0.4606 0.5169 3.1440 0.5978 0.6117 0.3472
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Fig. 2   Out-of-sample MSE
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 distribution by age, for i ∈ I  . MSE
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 values are expressed on log-scale for 
simplicity of graphical display
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Fig. 3   PICP
i
 distribution by age, for i ∈ I  . Prediction intervals are calculated at level 95% , accounting for 

parameter uncertainty
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growth. In addition, we observe that the APC’s PICP departs from the complete cover-
age from age 80 onwards, despite APC’s MPIW increasing with age. The LC model 
presents the lowest MPIW in all populations and allows a reasonable coverage probabil-
ity for Australian females, Italian females and Japanese males. Regarding PICP, the LC 
model with cohort effect is profitable for both Australian and English & Welsh female 
mortality experiences.

Moreover, RH’s MPIW increases exponentially at older ages for English & Welsh 
males, failing to provide a corresponding probability coverage. In our opinion, the M8 
model seems to be the best compromise to achieve biological reasonableness and plausibil-
ity of predicted levels of uncertainty in forecasts at different ages. To verify our belief, we 
compare mortality model predictions using a statistical test about the global PICP-based 
performances.

To this end, we compute the global PICP for each mortality model and each population, 
that is:

and we submit the values to the Wilcoxon signed-rank test (Wilcoxon 1992): the null 
hypothesis assumes that differences between two distributions come from a zero-median 
distribution, while the alternative hypothesis states that they come from a distribution with 
a median greater than zero. We perform the test by analysing the PICP values (PICPi)i∈I 
obtained by two models in the (ten) different populations across ages and calendar years.

(23)PICPi =
1

|T� | ⋅ |X|

∑

x∈X

∑

t∈T
�

1{
qx,t,i ∈ [q̂LB

x,t,i
, q̂UB

x,t,i
]

},
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Fig. 4   MPIW
i
 distribution by age, for i ∈ I  . Prediction intervals are calculated at level 95% , accounting for 

parameter uncertainty
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Table 5 contains the Wilcoxon’s test results. Each table cell reports the p-value obtained 
by testing the PICP performances of the model in the row against those of the model in the 
column. We refer to the value 0.05 as the significance threshold: if the p-value is lower, 
we reject the null hypothesis concluding that the model in the row is superior to the model 
in the column. Green cells indicate, by row, which models are better, while red cells iden-
tify opposite cases. Interestingly, we observe that for both M8 and APC models alternative 
hypothesis is rejected in almost all cases. Therefore, these models are superior to others in 
terms of global PICP. In addition, the empirical evidence does not allow for rejection of the 
null hypothesis when the APC model is tested against M8 and vice versa, highlighting that 
these two models have comparable PICP performances.

Finally, we compare mortality forecasts employing jointly PICP and MPIW. In particu-
lar, we apply the preference criterion exposed in Eq.  (20). Figures 5, 6 and 7 depict the 
(MPIW, PICP) plane for each population under investigation and for ages 65, 75 and 85 
respectively.

For x = 65 , the M7 model produces modest performances, in particular for both Japa-
nese genders and for the female gender of Italy, England & Wales and Australia. Similar 

Table 5   P-value of the left-side 
Wilcoxon rank test. The test is 
applied to the (PICP

i
)
i∈I values 

of two models each time
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M6 0.9999 1.0000 1.0000
M7 0.9774 1.0000 0.9999 0.0647
M8 0.0000 0.0037 0.0000 0.0000 0.0000
APC 0.0000 0.0210 0.0000 0.0000 0.0000 0.7492
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Fig. 5   Stochastic mortality models in the (MPIW − PICP) plane for age x = 65
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observations hold for the M6 model. In general terms, the M7 is the best model only for 
English & Wales aged 65. The M8 model is more advisable, but both the RH and the 
APC models can also guarantee a complete prediction interval coverage without large 
MPIW values. Moreover, we observe dense clusters of models for many populations, 
such as US males, Japanese males, Italian males and females, and Australian Males and 
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Fig. 6   Stochastic mortality models in the (MPIW − PICP) plane for age x = 75
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Fig. 7   Stochastic mortality models in the (MPIW − PICP) plane for age x = 85
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females. In these cases, mortality models provide similar density forecasts for popula-
tions aged 65, and the preference criterion’s strength emerges when clusters dissolve 
with increasing age. Indeed, looking at populations aged 75, models M6 and M7 are far 
from the cluster’s centre in many cases. On the other hand, prediction intervals stem-
ming from models M8, RH and APC ensure coherent mortality boundaries with respect 
to mortality outcomes. Finally, from Fig. 7, some clusters of models disappear, e.g. for 
US males, and others change their composition. We can appreciate how the LC model 
becomes more profitable for Japanese populations, as well as for Australian female mor-
tality. However, the M8 model plays the role of “best practice” in most cases.

In Table 6 we summarize models’ ranking by the means of criterion (20). Generally 
speaking, our experiment highlights the M8 model performances are the more balanced. 
Secondly, also the RH model manifests appealing prediction interval-based results for 
many populations. From an age-based perspective, both M8 and RH models seem more 
proper for populations aged x = 65 and x = 75 , while for higher ages, only the M8 main-
tains good performances. Adding country-specific considerations, both the LC and the 
CBD models’ performances for age x = 85 may be explanatory. For instance, we notice 
that mortality profiles for Japanese populations aged 85 are strongly linear, and the LCs’ 
density forecasts goodness confirms how such a model is more parsimonious than others. 
Thus, the LC model generates less uncertainty providing narrower prediction intervals 
and, at the same time, embedding mortality realizations. Similar suggestions hold about 
Australian populations. However, for populations aged 65, or 75, mortality experiences 
may be characterized by more complex influences so that mortality models also involv-
ing cohort effects are more accurate. Overall, the M6 model looks more unsatisfactory, 
while the M7 model owns peculiarities. The M7 is tailored for the English & Welsh male 
population, but it is also competitive for several elderly populations (see, e.g. Fig. 7).

5 � Conclusions

The improvements in mortality observed after WWII have raised the need to create 
stochastic mortality models to measure longevity risk. The literature offers many 
models’ specifications to provide accurate mortality projections. However, what is the 
best model remains an open question. Indeed, comparative studies available in the 

Table 6   Best (B) and worst 
(W) mortality forecasts for ages 
x = 65, 75, 85

x = 65 x = 75 x = 85

Country Gender (B) (W) (B) (W) (B) (W)
AUS Female M8 M7 M8 M6 LC M6

Male CBD LC APC RH CBD APC
GBRTENW Female RH LC RH M7 CBD LC

Male M7 M6 RH LC M8 LC
ITA Female RH M6 RH M7 M8 RH

Male RH LC RH M6 RH APC
JPN Female APC CBD M8 M7 LC RH

Male M8 M7 M8 M7 LC M8
USA Female M8 LC M8 M6 M8 M6

Male M8 M7 APC M6 M8 LC
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literature show that mortality model selection depends on both the mortality expe-
riences and the criteria considered. In addition, few studies have thoroughly tested 
the uncertainty concerning mortality projections. Forecasting mortality uncertainty 
levels have a central role since they reveal the potential, unexpected longevity rise 
and the related economic impact. The present work proposes a methodological frame-
work to backtest uncertainty in mortality projections exploiting uncertainty metrics 
not yet adopted in mortality literature. To this end, we employ the Prediction Interval 
Coverage Probability Coverage and the Mean Prediction Interval Width. In particular, 
such prediction interval-based measures allow quantifying both the plausibility and 
effectiveness concerning the predicted levels of uncertainty in future mortality out-
comes. In addition, we define a new model selection criterion that combines the two 
metrics, allowing for a plain ex-post assessment of density forecasts at different ages. 
Numerical experiments are performed in five countries worldwide and both genders. 
As expected, there does not exist a mortality model overperforming all the others. 
Despite both age- and country-specific characteristics, our proposal grants to iden-
tify models with mortality density forecasts more balanced across populations. The 
empirical application of our proposal highlights that the RH model seems the best 
candidate within The LC family, while the M8 model overperforms the other CBD 
family members. Furthermore, the M7 model may be suited for elderly populations. 
The latter feature is particularly fruitful for governments, as well as for pension and 
health benefits providers. These entities bear the cost of increasingly elderly popula-
tions, facing the risk of paying out benefits for much longer. Therefore, selecting an 
appropriate mortality model to forecast mortality is necessary, and our proposal aims 
to support such a goal. Indeed, our analysis show the possibility to select a country-
tailored mortality model in terms of uncertainty.

Future research will proceed in several directions. First, we intend to exploit our crite-
rion to test and compare multi-population models that consider the dependence structure 
between the mortality dynamics of different countries, see Li and Lee (2005), Kleinow 
(2015). Second, we plan to develop a data-driven procedure based on machine-learning-
based tools to select the most suited mortality model automatically following the approach 
suggested in Hunt and Blake (2014), Cairns et al. (2019).

Appendix A: Model and parameter uncertainty

In the present work, we construct prediction intervals considering both model and param-
eter uncertainty. Among others, we refer the reader to Dowd et al. (2010a) for more details 
concerning the role of both uncertainty causes in backtesting stochastic mortality models. 
For our purposes, we briefly recall that model uncertainty stems from forecasting errors 
about the period and cohort indexes, while parameter uncertainty arises from the estima-
tion of the parameters of the GAPC model. Consequently, accounting for both uncertainty 
sources allows for portraying the randomness generated by a stochastic mortality model 
in projecting mortality. In particular, model uncertainty is easily assessed as it derives 
directly from the innovation component of the time series model considered for the time 
and the cohort indexes, see for instance, Eq. (13) and Table 2. On the other hand, due to the 
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analytical intractability of many stochastic mortality models, parameter uncertainty is usu-
ally analyzed using the bootstrap procedure (see, e.g. Brouhns et al. 2005 and Wang and 
Lu 2005). Therefore, we implement the following procedure to obtain prediction intervals 
incorporating model and parameter uncertainty: 

1.	 We generate S samples of the number of deaths by sampling from the Binomial distribu-
tion as in Eq. (1), that is D(s)

x,t ∼ Binomial
(
E0
x,t
, qx,t

)
, s = 1,… , S;

2.	 For each bootstrapped sample we re-perform the estimation procedure in Sect. 2.2 
obtaining the bootstrapped parameter estimates 

3.	 We collect S bootstrap estimates of the predictor in Eq. (2) and we simulate each of them 
forward by the following: 

 Hence, we obtain simulated trajectories accounting for both the forecast error in the 
period and cohort indexes and the error in the model fitting;

4.	 Prediction intervals are finally achieved calculating the empirical �-quantiles.

Concerning numerical experiments exposed in Sect. 4.1, the aforementioned procedure is 
executed for each population i ∈ I .

Appendix B: Heatmaps for residuals

See Figs. 8 and 9.
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