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Abstract 

In the present paper, the fracture behaviour of the shot-earth 772, in terms of crack path, is numerically investigated. To such an 
aim, a version of the lattice discrete element method is used to numerically simulate fracture toughness testing performed, on the 
shot-earth 772, by employing the Modified Two-Parameter model. 
A comparison between the numerical crack path and the experimental ones is performed, highlighting as the lattice discrete element 
method is able to capture the kinked crack shape, typical of quasi-brittle materials. 
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1. Introduction  

Europe has an extensive history of earth constructions and a wide variety of technologies, where many of such 
technologies have been exported to other areas of world (Hall et al. (2012)).   

In such a context, the shot-earth is a novel technology where the material, composed by stabilised or unstabilised 
soil, aggregates and water, is pneumatically projected at high velocity onto a receiving surface (Curto et al. (2020)). 
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The material investigated in the present paper is a specific mixture of the shot-earth, where the soil is stabilised by 
cement, and named shot-earth 772, being characterised by a proportion of soil: sand: cement equal to 7:7:2. 

The aim of the present paper is to numerically simulate the crack path experimentally observed during fracture 
toughness testing, performed according to the Modified Two-Parameter Model (Vantadori et al. (2016)). The 
simulation is carried-out by employing a version of the lattice discrete element method, originally proposed by Riera 
(1984).  

The paper is structured as follows: in Section 2 the main concepts of the lattice discrete element method (LDEM) 
are presented. Section 3 describes the experimental fracture tests performed on the short-earth 772, whereas the LDE 
model here employed is presented in Section 4. Section 5 is dedicated to present the results obtained in terms of crack 
path, whereas the main conclusions are summarized in Section 6. 

2. Lattice discrete element method (LDEM) 

The LDEM allows us to model a continuous medium as a 3D-array of nodes, linked by massless uniaxial elements 
(also named bars), which are only able to transfer axial load. The discretised masses are assumed concentrated at the 
above nodes. More precisely, the discretization strategy employs a basic cubic module, built with twenty bars and 
nine nodes (Fig. 1a). The lengths of the longitudinal and diagonal elements are n coL L  and  3 2d coL L , 
respectively (Kosteski (2012)). Each node has three degrees of freedom. 

The system of equations resulting from applying the Newton's second law to each node, is given by: 
 

    0+ + t t ij j ij j i iM x C x F P                                                                                      (1) 
 

where the vectors jx  and jx  represent the nodal acceleration and velocity, respectively, ijM  and ijC  are the mass 

and damping matrices, respectively, and the vectors  i tF  and  i tP  are the internal and external nodal forces, 
respectively.  Since ijM  and ijC  are diagonal matrices, the Eq. (1) are not coupled, and can be integrated in the time 
domain using an explicit finite difference scheme.   
 

 

  Fig. 1. (a) Basic cubic module employed in the discretization; (b) bilinear constitutive law of each bar. 

The possibility of bars breaking is considered through the bilinear law show in Fig. 1b. 
The total mass of the basic cubic module is equal to 3

nm L , being   the mass density of the material and 3
nL  

the volume of the module. In the bilinear law shown in Fig. 1b, iEA  is the bar specific stiffness, where E is the 
Young modulus, iA  is the cross-section area of the bar, p  is the critical strain (when the bar starts to damage) and 

u  is the strain value for which the element loses its load bearing capacity (that is, the bar breaks).  
Successful applications of such a method are available in the literature (Iturrioz et al. (2013), Colpo et al. (2016), 

Birck et al. (2019), Zanichelli et al. (2021)). 
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The possibility of bars breaking is considered through the bilinear law show in Fig. 1b. 
The total mass of the basic cubic module is equal to 3

nm L , being   the mass density of the material and 3
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3. Fracture toughness testing 

According to the MTPM (Vantadori et al., (2016); Carpinteri et al. (2017)) and the RILEM Recommendations 
(RILEM (1990)), the specimens are tested under three-point bending loading and crack mouth opening displacement 
(CMOD) control (Fig. 2). The specimen presents a prismatic shape with a notch in the lower part of the middle cross-
section (Fig. 2). The geometric sizes of the specimen are function of the width B, that is: depth 2W B , span 8S B
and notch depth 0 2 3a B . 

 

  Fig. 2. Specimen geometry and loading configuration.  

The specimen is monotonically loaded up to the peak load and, in the post-peak stage, when the force is equal to 
95% of peak load, the specimen is fully unloaded. After that, the specimen is reloaded up to failure.  

Five specimens are tested. The mean values of the corresponding geometrical sizes are listed in Table 1, together 
with the value of Young Modulus, E, and fracture toughness, 

( )I II C

SK


.  Note that these latter parameters are computed 
according to the MTPM (interested readers may refer to Zanichelli et al. (2018) and Vantadori et al. (2021)). 

                       Table 1. Mean values of specimen sizes, elastic modulus and fracture toughness. 

 W (mm) B (mm) 0a (mm) L (mm) S (mm) E (MPa) 
( )I II C

SK


(MPa.m0.5) 

Mean value 77.01 44.51 27.15 375.00 320.00 6918.11 0.29 

 
Moreover, the failure configurations observed during the experimental campaign are reported in Figure 3. 
 

 

Fig. 3. Experimental failure configurations. 

4. Numerical model 

Using the LDEM, a 3D model is built and calibrated by employing both the sizes and the properties listed in Table 1. 

In Table 2 the parameter of the discretization adopted are reported, where ( , , )i i x y zN   is the modules number along x, 

y and z direction, respectively, coL  is the cubic module size,  is the mass density,  is the Poisson coefficient and 

fG  is the fracture energy. 
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                                               Table 2. Parameters characterising the 3D numerical model. 

coL  [mm] xN [-] yN [-] zN [-]  [kg/m3]  [-] fG [N/m] 

2.00 188 38 22 2070 0.25 18.65 

 
Note that, in correspondence of the left support of the model the nodes are constrained in both x and y directions, 

whereas in correspondence of the right support they are constrained in y direction (Fig. 4a). In correspondence of the 

upper region of the model show in Fig. 4b, characterised by 2x L , a prescribed displacement, yU ( t ) , in the -y 

direction is applied. 

 

Fig. 4. (a) Bottom view of the model; (b) model geometry and applied loading. 

5. Results 

Fig. 5 shows the failure configuration of the model, where the green bars are the undamaged bars, the orange ones are 

the damaged bars and the red ones are the broken bars. As previously described, the LDEM allows to capture the crack 

path due to its ability to deactivate bars at a strain value equal to u  (see Fig.1(b)). 

 

 

Fig. 5. Numerical failure configuration. 
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By comparing the numerical failure configuration with the failure configurations obtained during the experimental 
campaign (Fig. 3), it can be observed that the agreement between crack paths is quite satisfactory, being the model 
able to capture the kinked cracks shape experimentally found. For a detailed comparison, the kinked crack profile 
related to the specimens No. 1 and No. 3 are shown in Fig. 6 together with the numerical one, thus highlighting a good 
correlation. 

 

  Fig. 6. Comparison between numerical and experimental crack paths.  

Furthermore, by dividing the model in 2 parts along the thickness direction, it possible to observe how the crack 
path changes along the thickness of the specimen (Fig. 7). 

 

 

Fig. 7. Numerical crack paths along the thickness direction: A is in correspondence of z B , B is in correspondence of 2z B , C is in 
correspondence of 0z  . 
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6. Conclusions 

In the present paper, the fracture behaviour of the shot-earth 772 has been numerically investigated. More precisely, 
a version of the LDEM has been employed to simulate the experimental crack paths observed during fracture testing. 
Note that such tests have been performed on the short-earth 772, in accordance to the Modified Two-Parameter Model. 

The obtained numerical crack path has been compared with the experimental ones. It has been observed that the 
developed model is able to capture the kinked crack shape (typical of quasi-brittle material) with a high accuracy, 
being the crack profiles, estimated and experimental, very similar among them. 
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By comparing the numerical failure configuration with the failure configurations obtained during the experimental 
campaign (Fig. 3), it can be observed that the agreement between crack paths is quite satisfactory, being the model 
able to capture the kinked cracks shape experimentally found. For a detailed comparison, the kinked crack profile 
related to the specimens No. 1 and No. 3 are shown in Fig. 6 together with the numerical one, thus highlighting a good 
correlation. 

 

  Fig. 6. Comparison between numerical and experimental crack paths.  

Furthermore, by dividing the model in 2 parts along the thickness direction, it possible to observe how the crack 
path changes along the thickness of the specimen (Fig. 7). 

 

 

Fig. 7. Numerical crack paths along the thickness direction: A is in correspondence of z B , B is in correspondence of 2z B , C is in 
correspondence of 0z  . 
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6. Conclusions 

In the present paper, the fracture behaviour of the shot-earth 772 has been numerically investigated. More precisely, 
a version of the LDEM has been employed to simulate the experimental crack paths observed during fracture testing. 
Note that such tests have been performed on the short-earth 772, in accordance to the Modified Two-Parameter Model. 

The obtained numerical crack path has been compared with the experimental ones. It has been observed that the 
developed model is able to capture the kinked crack shape (typical of quasi-brittle material) with a high accuracy, 
being the crack profiles, estimated and experimental, very similar among them. 
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