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A B S T R A C T

Deep Neural Networks (DNNs) have achieved tremendous success for cognitive applications. The core operation
in a DNN is the dot product between quantized inputs and weights. Prior works exploit the weight/input
repetition that arises due to quantization to avoid redundant computations in Convolutional Neural Networks
(CNNs). However, in this paper we show that their effectiveness is severely limited when applied to Fully-
Connected (FC) layers, which are commonly used in state-of-the-art DNNs, as it is the case of modern Recurrent
Neural Networks (RNNs) and Transformer models. To improve energy-efficiency of FC computation we present
CREW, a hardware accelerator that implements Computation Reuse and an Efficient Weight Storage mechanism
to exploit the large number of repeated weights in FC layers. CREW first performs the multiplications of the
unique weights by their respective inputs and stores the results in an on-chip buffer. The storage requirements
are modest due to the small number of unique weights and the relatively small size of the input compared to
convolutional layers. Next, CREW computes each output by fetching and adding its required products. To this
end, each weight is replaced offline by an index in the buffer of unique products. Indices are typically smaller
than the quantized weights, since the number of unique weights for each input tends to be much lower than
the range of quantized weights, which reduces storage and memory bandwidth requirements. Overall, CREW
greatly reduces the number of multiplications and provides significant savings in model memory footprint
and memory bandwidth usage. We evaluate CREW on a diverse set of modern DNNs. On average, CREW
provides 2.61𝑥 speedup and 2.42𝑥 energy savings over a TPU-like accelerator. Compared to UCNN, a state-of-art
computation reuse technique, CREW achieves 2.10𝑥 speedup and 2.08𝑥 energy savings on average.
1. Introduction

Deep Neural Networks (DNNs) represent the state-of-the-art solution
to a broad range of applications such as machine translation [1] and
speech recognition [2]. The complexity of the DNN models continues
to grow along with its computational cost and memory requirements,
making it difficult to support them on conventional computer systems.
Accelerators adopting a systolic array architecture such as TPU [3]
from Google, have proven to be efficient hardware implementations to
perform DNN inference [4–8]. The systolic array architecture [9,10],
which was designed for massive parallelization and data reuse, is
especially effective for Convolutional Neural Networks (CNNs) since the
weights of a layer are shared across a large number of sliding windows
and can be reused multiple times. In addition, there has been a plethora
of recent proposals to further optimize CNN inference [11–13]. How-
ever, CNNs are just a subset of DNNs with very specific characteristics.
Therefore, techniques targeting CNNs do not necessarily achieve similar
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benefits for other DNN architectures. Our proposal is motivated by the
fact that state-of-the-art models for sequence-to-sequence problems are
either Recurrent Neural Networks (RNNs) [1,2] or very deep Multi-
Layer Perceptrons (MLPs) such as the Transformer [14], which are both
composed of fully-connected (FC) layers. FC layers exhibit different
characteristics with respect to CNNs: weights are not reused by differ-
ent neurons and the compute to memory access ratio is significantly
smaller, i.e., FC layers are more memory intensive.

FC layer computation mainly consists of dot products between a
vector of inputs and a matrix of weights. The inputs are generated dy-
namically while the weights are static and learned during the training
phase. Current DNN model sizes are in the hundreds of megabytes (MB)
and require billions of floating-point (FP) computations to perform
inference. Linear quantization [3,17] is a highly popular technique used
to compress the weights of the model and reduce the complexity of
the computations. Quantization maps a continuous set of values to a
vailable online 7 June 2022
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Fig. 1. Cumulative distribution of the unique weights per input neuron from all the FC
layers of DeepSpeech2 [2], GNMT [1], Transformer [14], Kaldi [15] and PTBLM [16].

discrete set, which as a side effect favors the appearance of repeated
weights. Our work is based on the observation that, on average, more
than 80% of the inputs among different FC layers of a set of DNNs are
multiplied by less than 64 unique weights. Fig. 1 shows the cumulative
istribution of unique weights per input of DeepSpeech2 (DS2) [2],
NMT [1], Transformer [14], Kaldi [15] and PTBLM [16], which
re popular models for speech recognition, machine translation, and
anguage modeling. The average number of unique weights per input
s 44 when applying an 8-bit quantization, and can never be higher than
56.

In this paper, we show how to efficiently exploit the spatial local-
ty of repeated weights on FC layers. We first propose a mechanism
CREW) that dynamically computes and stores the partial products of
ach input by their associated unique weights in a given layer. This
irst step removes redundant multiplications due to repeated weights
nd their associated memory reads. Similar to sparse architectures [7,
8,19] and their pruning mechanisms [20,21], the weight repetition
atterns are irregular, making it very challenging to achieve net bene-
its due to the sparse accesses and extra metadata that are required. The
artial products stored by this mechanism have to be indexed similar
o sparse algorithms. Since the unique weights are known statically,
he indexation table can be generated offline. The second step of our
echanism produces the final outputs of a FC layer by accessing the
artial products with the associated indices and adding all the required
alues for each output. The main advantage of our mechanism is that
he size of the indices depends on the number of unique weights of
ach input. As previously described, the number of unique weights is
ypically lower than 64 so indices will be typically smaller than 7 bits.

In consequence, the final size of the model can be further compressed
and the memory bandwidth is further reduced. Fig. 2 shows an example
of a small FC layer computing the standard dot product (Fig. 2(a)) and
our CREW mechanism (Fig. 2(b)), saving 33% of multiplications and
20% of storage.

Then, we present CREW, a novel accelerator that implements the
above computation reuse and efficient weight storage scheme for FC
layers. CREW is implemented on top of a TPU-like architecture, but it
includes an enhanced weight stationary dataflow. The extra hardware
required for our technique is modest since most of the components
are already available in the baseline TPU-like architecture. CREW only
requires small local buffers to store blocks of indices and some shared
buffers to store partial results. The extra memory represents a small
increase in the on-chip storage of the accelerator. Our experimental
results show that the overheads are minimal compared to the savings
in memory fetches and multiplications. Although our scheme has some
similarity with UCNN [12], a recently proposed mechanism for com-
putation reuse in CNNs, our work is different in several manners. First,
we observe the low number of unique weights per input neuron of
different FC layers instead of per output neuron. Second, we exploit this
observation to reduce the size of the indexation. UCNN focuses on con-
volutional layers and shows modest speedups for FC layers compared to
2

CREW. Our scheme not only avoids most of the multiplications, it also
provides a significant reduction in storage and memory accesses due to
the smaller indexes compared to the original weights. To summarize,
this paper focuses on energy-efficient FC layer inference. The main
contributions are:

• We analyze the unique weights per input in FC layers for several
state-of-the-art MLPs and RNNs, including a Transformer. We
observe that, on average, each input is multiplied by 44 unique
weights.

• We propose a novel computation reuse mechanism to exploit
weight repetition on FC layers. This technique reduces the num-
ber of multiplications and memory accesses by 98% and 40%
respectively on average. Furthermore, it replaces weights by in-
dices in the buffer of partial results, resulting in 25% reduction
of the model size.

• We present CREW, a hardware accelerator that implements our
computation reuse scheme. CREW improves performance by 2.61𝑥
and reduces energy consumption by 2.42𝑥 on average over a TPU-
like accelerator. Compared to UCNN [12], CREW achieves 2.10𝑥
speedup and 2.08𝑥 energy savings on average.

The rest of the paper is organized as follows. Section 2 provides
background information on modern DNNs. Section 3 reviews prior
computation reuse mechanisms and motives our own proposal by pre-
senting the analysis of unique weights per input. Section 4 describes
in detail our reuse scheme. Section 5 describes the hardware imple-
mentation of our computation reuse and model compression scheme.
Section 6 presents the evaluation methodology and Section 7 discusses
the experimental results. Section 8 reviews some related work and,
finally, Section 9 sums up the main conclusions.

2. Background

2.1. Modern DNNs

Deep Neural Networks (DNNs) can be classified in three main cate-
gories. First, Multi-Layer Perceptrons (MLP) [22,23] consist of multiple
Fully-Connected (FC) layers in which every input neuron is connected,
via synapses with particular weights, to every output neuron. Sec-
ond, Convolutional Neural Networks (CNN) are composed of multiple
convolutional layers to extract features, usually followed by one or
several FC layers to perform the final classification. CNNs have proved
to be particularly efficient for image and video processing [24–27].
Finally, Recurrent Neural Networks (RNN) consist of multiple layers
of cells with feedback connections, stacked on top of each other. RNN
cells store information from past executions to improve the accuracy
of future predictions. The most popular RNN architectures are the
Long–Short Term Memory (LSTM) [28] and the Gated Recurrent Unit
(GRU) [29]. In both cases, the cell consists of multiple single-layer FC
networks commonly referred as gates.

RNNs and very deep MLPs such as the Transformer model have
become the state-of-art solution for sequence processing problems such
as machine translation and speech recognition [1,2,14]. The Trans-
former [14] model has recently received special attention from the
machine learning community for being extremely efficient in terms
of both accuracy and performance. Transformers use attention mech-
anisms [30,31] to gather information about the relevant context of a
given input (i.e., a word of a sentence), and then encode that context in
a vector. The attention mechanism allows to grab context information
from distant parts of an input sequence to help understand its meaning,
and it is implemented in the form of multiple feed-forward FC layers.

Most recent proposals focus on optimizing CNN inference and its
convolutional layers. Although CNNs are the most efficient solution for
image processing applications, their unique characteristics make it hard
to exploit the same techniques on other DNNs. In addition, state-of-art
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Fig. 2. Standard (a) vs. CREW (b) DNN inference for a fully-connected (FC) layer. For each input, CREW only performs the multiplications with unique weights, avoiding redundant
omputations and memory fetches. Furthermore, it replaces weights by indexes in the buffer of unique multiplications. In this example there are only two unique weights per
nput, so the 8-bit quantized weights can be replaced by 1-bit indexes.
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ccelerators implementing systolic array architectures, such as TPU [3],
ave proven to be efficient hardware implementations to perform CNN
nference since the weights of a convolutional filter are reused multiple
imes. However, the FC layers do not have the same reuse properties
nd may cause the accelerator to be highly underutilized, especially for
mall batch sizes that are common in inference. In this paper we focus
n optimizing the performance of hardware accelerators for FC layers
nference in modern MLPs, RNNs and Transformers.

.2. Fully-connected layers

The main performance and energy bottleneck of MLPs and RNNs
re the FC layers. In an FC layer, each output neuron performs a
ot product operation between all the inputs of the layer and their
orresponding weights. Specifically, the output of neuron 𝑗 is computed

according to the following equation:

𝑜𝑢𝑡(𝑗) = (
𝑁−1
∑

𝑖=0
𝑤𝑖𝑗 ∗ 𝑖𝑛(𝑖)) + 𝑏𝑗 (1)

where 𝑖𝑛(𝑖) represents the input vector, 𝑤𝑖𝑗 is the weight of neuron 𝑗
for input 𝑖, and 𝑏𝑗 represents the bias of neuron 𝑗. An FC layer with
𝑁 inputs and 𝑀 neurons contains 𝑁 × 𝑀 weights, as each neuron
has its own set of weights, and requires 2 × 𝑁 × 𝑀 operations. FC
layers employed in real applications consist of thousands of neurons
and they typically account for most of the computations and memory
bandwidth usage of MLPs and RNNs. FC layers may also take most of
the storage requirements and memory bandwidth usage in CNNs that
tend to include a few FC layers at the end of the model to perform the
final classification.

3. Unique weights in FC layers

FC layers have increased their size over time from thousands to
millions of parameters to provide better accuracy on complex appli-
cations. However, the number of unique weights in each neuron is
decreasing. Prior works observed the same effect in the filters of the
CNNs [12]. This reduction in unique weights is due to the successful
methods to compress the DNN model size such as pruning [20,21]
and quantization [32,33]. Linear quantization [34] is a highly popular
technique to map a continuous set of values to a discrete set with a
negligible impact in accuracy. One of the side effects of quantization
is that it significantly increases the number of repeated weights. In
this paper, we apply uniformly distributed linear quantization to the
weights of the FC layers. Then, we analyze the number of unique
weights per input neuron.

Typically, DNNs are quantized to 8 bits per weight without any
impact in accuracy [3]. We refer to the number of unique weights
3

Fig. 3. Histograms of the unique weights per input neuron from all the FC layers of
DS2, GNMT, Transformer, Kaldi and PTBLM.

in a layer as 𝑈𝑊 , and hence with 8-bit weights 𝑈𝑊 ≤ 28 = 256.
Weight repetition in a fully-connected layer is guaranteed as long as
𝑈𝑊 < 𝑁 ∗ 𝑀 , being 𝑁 and 𝑀 the number of input and output neurons
f the FC layer respectively. This condition is commonly met in modern
NNs. For instance, all the FC layers of the Transformer [14] have more

han one million weights.
Weight repetition can be exploited in two different ways: Factor-

zation and Memoization. UCNN [12], a state-of-art accelerator, imple-
ents a computation reuse technique by exploiting the factorization of

epeated weights. UCNN focuses on optimizing the convolutional layers
y grouping and adding the inputs that belong to the same unique
eights in a given convolutional window and filter, performing each
nique weight multiplication just once per factorization group. UCNN
mplements FC layers as convolutions, where each output neuron is
reated as a 1 × 1 ×𝑁 convolutional filter, i.e. the number of channels

is the number of inputs (𝑁) in the FC layer. Due to the factorization,
inputs are spread out irregularly within each filter and, hence, an
indirection table is required to fetch the inputs for each unique weight.
Since there are 𝑁 inputs, the size of each index in the indirection table
is 𝑙𝑜𝑔2𝑁 . Note that for FC layers in modern DNNs, 𝑙𝑜𝑔2𝑁 may be larger
than 8 bits. To sum up, UCNN reduces the number of computations in
an FC layer. However, it requires 𝑁 × 𝑀 indexes of size 𝑙𝑜𝑔2𝑁 bits,
which may result in a model larger than the original one. Therefore, its
indexing overheads to apply factorization on FC layers are not negligi-
ble and hinder the benefits of the computation reuse. Not surprisingly,
we obtained modest speedups and energy savings when applying UCNN
on FC layers as we show in Section 7.

On the other hand, we observe that the number of unique weights
per input neuron is relatively low. Therefore, we can memoize partial
products between inputs and unique weights to largely reduce the
number of multiplications. The number of indexes to the partial results
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Table 1
UW/I shows the average number of unique weights per input neuron. MULs is the
ercentage of multiplications of inputs by unique weights with respect to the total
umber of multiplications in the original model.
DNN model UW/I MULs (%)

DS2 38 1.67
GNMT 29 0.57
Transformer 49 3.77
Kaldi 59 2.95
PTBLM 43 0.71

required is still 𝑁 ∗ 𝑀 , but the size of each index will depend on
he number of unique weights of its related input neuron. Therefore,
f the condition in Eq. (2) is fulfilled, where 𝑞 is the number of bits
sed to quantize and 𝑈𝑊𝑖 is the number of unique weights of a given
nput neuron 𝑖, the size of the model along with the associated memory
ccesses can be reduced.

𝑊𝑖 ≤ 2𝑞−1,∀𝑖 ∈ {1,… , 𝑁} (2)

CREW, our proposed computation reuse solution for FC layers, is
ased on the key observation that, on average, more than 80% of the
nput neurons among different FC layers of a representative set of DNNs
re multiplied by less than 64 unique weights as shown in Fig. 1. Fig. 3
rovides the histogram of unique weights per input neuron for each
NN listed in Table 4. We can see that DS2 and GNMT have a similar
istribution of unique weights centered around 34, while the rest have
more dispersed distribution centered around 50. In all the cases, all

he input neurons have less than 128 unique weights. Table 1 shows
he average number of unique weights per input neuron (UW/I). On
verage, each input neuron from our set of DNNs has 44 unique weights
hen applying an 8 bit quantization, out of the 256 potential weights
er input. Furthermore, Table 1 shows the percentage of multiplications
f inputs by unique weights (MULs). As it can be seen, only between
.57% and 3.77% of the multiplications are required to compute the
C layers.

. Partial product reuse

This section describes how the low number of unique weights per
nput in FC layers, characterized in Section 3, can be exploited for
fficient DNN inference. We first present the partial product memoiza-
ion mechanism (Section 4.1), which saves multiplications and storage
y leveraging repeated weights in each input, for any FC layer of the
etwork. We then present an optimization, called partial product ap-
roximation (Section 4.2), to further reduce multiplications and storage
t the expense of a minor accuracy loss.

.1. Partial product memoization

Our computation reuse method consists of two main steps. First, it
etects statically the unique weights of each input for all the FC layers
fter quantization. Then, it dynamically performs the partial products
etween the inputs and their unique weights, and memoizes the partial
esults. These partial products will be retrieved later to perform the
inal accumulations of each output neuron. We refer to this scheme as
omputation Reuse and Efficient Weight Storage (CREW).

The first step of the proposed approach is to detect the unique
eights per input on each FC layer. This step can be done offline since

he weights are statically known after training. The unique weights
ill be stored in a table in the same order as the inputs, that is, the
nique weights of the first input will be stored first, next the unique
eights of the second input and so on. There is an extra table storing

he number of unique weights of each input. Then, we generate a table
ith the corresponding indexes to the partial products. Note that we
re exploiting the partial products of repeated weights in the same
4

Table 2
Reduction in multiplications and storage.

DNN model Saved MULs (%) Storage reduction (%)

DS2 98 27
GNMT 99 34
Transformer 96 22
Kaldi 97 16
PTBLM 99 26

spatial position along the 𝑀-axis as shown in Fig. 2. Therefore, the
positions of the partial products are statically determined. Each FC
layer will have an index table with 𝑁 ∗ 𝑀 entries. The indexes of each
row 𝑁 may have a different bit length depending on the number of
unique weights of the corresponding input. For example, if the number
of unique weights of a given input neuron is 45, then the corresponding
row of the table will have 𝑀 indexes of 6 bits.

The second step of CREW is applied during the dynamic execution
of the DNN inference. Each FC will be computed as follows: first the
multiplications of each input by their unique weights will be performed
and the results memoized into a table of partial products. Then, indexes
generated offline will be used to access the corresponding partial
products of each output neuron, which will be accumulated to generate
the final output. Note that each column of the table of indices contains
𝑁 indexes to a partial product related with a different input so that
by adding them all, the output of each neuron is computed. Fig. 4(a)
illustrates the tables required by CREW for a small FC of 4 × 8 neurons.
Note that in the example, the number of unique weights per input is ≤4,
as well as the number of partial products, so the size of the indices is
≤2 bits.

One of the main benefits of the memoization of partial products
is the reduction in multiplications. The number of multiplications per
input is reduced to the number of unique weights it has. Moreover, the
storage and memory accesses are also reduced since the indexes are
smaller than the original weights. Table 2 shows the multiplications
and storage reduction achieved on a set of state-of-the-art DNNs. On
average, we can reduce the storage required for the FC layers of the
models by 25% over the quantized networks (taking into account the
required metadata for CREW), and save 98% of the multiplications.
CREW requires extra metadata such as the number of unique weights
per input and the table of partial products. However, since the unique
weights represent a small fraction of the total number of weights in the
original model (<4%) and the indices are also smaller than the original
weights, the extra storage required for metadata is negligible compared
to the savings provided by CREW.

4.2. Partial product approximation

Partial product memoization reduces multiplications by exploiting
weight repetition. The original weights are replaced by the unique
weights and the indexes to the partial products. The number of unique
weights per input determines the size of the indexes and, hence, the
total size of the DNN. We propose to further improve our mechanism
by reducing the number of unique weights. From the histograms of the
unique weights frequency usage shown in Fig. 5, we observe that on
average more than 50% of the unique weights have a frequency of use
lower than 1%. Based on this observation we propose to approximate
the less frequent unique weights by its closest value in the remaining
unique weights.

The partial product approximation technique reduces the number of
unique weights of some (potentially all) input neurons to the nearest
and smaller power of two. For this purpose, a subset of unique weights,
as well as their respective partial products, are approximated by similar
unique weights/products of the same input. By reducing the number of
unique weights to a lower power of two, the index bit length can be
reduced. For example, if an input neuron has 38 unique weights, we can
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Fig. 4. Example of partial product memoization (a) vs. partial product approximation (b) using a small FC layer.
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Fig. 5. Usage frequency histograms of the unique weights per input neuron for all
the FC layers of DS2, GNMT, Transformer, Kaldi and PTBLM. The frequency of use is
the number of times each unique weight is repeated divided by the total number of
weights for each input neuron.

Algorithm 1 Partial Product Approximation Heuristic
𝑊 = 𝐿𝑜𝑎𝑑𝑊 𝑒𝑖𝑔ℎ𝑡𝑠();
𝑇ℎ𝑟 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡;
for Input Neuron (𝑖) do

𝑈𝑊 ,𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 𝑈𝑛𝑖𝑞𝑢𝑒𝑊 𝑒𝑖𝑔ℎ𝑡𝑠(𝑊 [𝑖], 𝑐𝑜𝑢𝑛𝑡𝑠 = 𝑇 𝑟𝑢𝑒);
𝐶𝑢𝑟𝑟𝑒𝑛𝑡2𝑃𝑜𝑤𝑒𝑟 = 2(𝑙𝑜𝑔2𝑈𝑊 );
𝐿𝑜𝑤2𝑃𝑜𝑤𝑒𝑟 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡2𝑃𝑜𝑤𝑒𝑟∕2;
𝑑𝑖𝑠𝑡_𝑊 = 𝑈𝑊 − 𝐿𝑜𝑤2𝑃𝑜𝑤𝑒𝑟;
𝐹 = 𝑆𝑜𝑟𝑡(𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦);
𝑛𝑢𝑚_𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = 𝑆𝑖𝑧𝑒(𝑊 [𝑖]);
𝑙𝑜𝑤_𝑓𝑟𝑒𝑞_𝑊 ,𝑑𝑒𝑙_𝑢𝑤 = 𝐿𝑜𝑤𝐹𝑟𝑒𝑞𝑆𝑢𝑚(𝑈𝑊 ,𝐹 , 𝑑𝑖𝑠𝑡_𝑊 );
𝑊𝑅 = (𝑙𝑜𝑤_𝑓𝑟𝑒𝑞_𝑊 ∕𝑛𝑢𝑚_𝑤𝑒𝑖𝑔ℎ𝑡𝑠);
if 𝑊𝑅 < 𝑇ℎ𝑟 then

𝑠𝑖𝑚_𝑢𝑤 = 𝐶𝑙𝑜𝑠𝑒𝑠𝑡𝑊 𝑒𝑖𝑔ℎ𝑡𝑠(𝑈𝑊 , 𝑑𝑒𝑙_𝑢𝑤);
𝑛𝑒𝑤_𝑊 = 𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒(𝑊 , 𝑠𝑖𝑚_𝑢𝑤, 𝑑𝑒𝑙_𝑢𝑤);

end if
end for
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑛𝑒𝑤_𝑊 );

approximate 6 of them so that the number of unique weights becomes
32, reducing all the indexes related to this input by one bit. Fig. 4(b)
shows the approximation of three unique weights from two different
input neurons that result in a reduction of one bit in the corresponding
indexes of the index table. As a result of this optimization, all the
indexes of the example require only one bit.
5

The reduction in storage and memory accesses obtained from this
optimization may affect accuracy if it is not carefully applied. There is
a trade-off between the number of weights that can be approximated
without accuracy loss (or with a negligible loss) and the benefits
obtained in terms of performance and energy consumption during DNN
inference. The heuristic used to select which weights are approximated
is shown in Algorithm 1. First, for each input neuron we compute
the number of weights to be approximated by measuring the distance
(𝑑𝑖𝑠𝑡_𝑊 ) between the number of unique weights (𝑈𝑊 ) and the closest
smaller power of two (𝐿𝑜𝑤2𝑃𝑜𝑤𝑒𝑟). Then, we select the weights to
approximate by sorting the frequencies from lowest to highest, that
is the number of times each unique weight is repeated in the original
model. The rationale is that approximating the weights that are less
frequently used should introduce the smallest distortion in the model.
The frequencies of the 𝑑𝑖𝑠𝑡_𝑊 lowest weights are added (𝑙𝑜𝑤_𝑓𝑟𝑒𝑞_𝑊 )
o determine the relevance of the weights that will be approximated
𝑊𝑅), and the result is compared against a threshold (𝑇ℎ𝑟): if the
otal frequencies of the less common weights (𝑊𝑅) is smaller than
he threshold (𝑇ℎ𝑟) then the weights are considered to have a small
mportance in the layer and are selected for approximation; otherwise,
pproximation is not used for this input. Finally, the selected weights
𝑑𝑒𝑙_𝑢𝑤) are replaced in the original model by their closest unique
eight (𝑠𝑖𝑚_𝑢𝑤) and the new model accuracy is tested. This heuristic

an be generalized to reduce more than one bit by shrinking the
umber of unique weights to different powers of two while fulfilling
he threshold condition.

A small threshold will limit the benefits achieved since less input
eurons will be able to reduce their number of unique weights. On
he other hand, a high threshold value may negatively impact the DNN
ccuracy since important weights may be approximated. We performed
sensitivity analysis on a representative set of DNNs to determine a

roper threshold. Fig. 6 shows that we can achieve, on average, an
xtra 17% model compression over our partial product memoization
echanism (CREW without accuracy loss as described in Section 4.1)
hile losing less than 1% of accuracy in absolute terms. We observed

hat with a threshold of 10%, the approximation covers more than
0% of the input neurons, which means that 90% of the indices are
eing reduced by one bit. For the Transformer and PTBLM networks
he accuracy loss is almost negligible, so we tested a more aggressive
pproximation trying to reduce up to 2 bits per index. By doing so, we
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Fig. 6. Accuracy loss versus compression ratio over partial product memoization
(CREW without approximation) for different thresholds of the heuristic for unique
weight approximation. Thresholds tested go up to 20% in steps of 5%, where the
initial 0% threshold means no weight approximation.

achieved, on average, an extra 35% model compression while losing
less than 1% of accuracy. In particular, the compression ratios are 32%
for the Transformer and 39% for the PTBLM network. Note that these
compression ratios, as in Fig. 6, are on top of the compression achieved
by the baseline CREW without approximation. In summary, we can
achieve extra improvements in performance and energy consumption
during DNN inference in scenarios where the user is willing to accept
a very minor accuracy loss.

4.3. Pruning and clustering/quantization analysis

Pruning and Clustering (or Quantization) [20,21,35,36] are popular
DNN optimizations for reducing the model size and the amount (or
cost) of computations. In this work, we apply a standard uniform 8-bit
quantization to the inputs and weights of our set of evaluated DNNs,
and exploit the resulting weight repetition to further reduce the storage
requirements and the number of computations with CREW. Our goal
is to propose a mechanism that can efficiently perform inference of
FC layers without requiring additional fine-tuning of the DNN models.
We do not consider aggressive pruning and clustering/quantization
with lower bit-widths since these techniques require retraining of the
DNN models. Note that even the partial product approximation scheme
allows some accuracy loss but does not require retraining. Moreover,
pruning would increase the complexity of the hardware to deal with
the sparsity. Note that CREW does not behave as a sparse accelerator
since all the weights are processed in the form of small indexes and
memoized products. Nevertheless, pruning and clustering are orthogo-
nal to this work and could be applied to reduce the number of unique
weights further improving the efficiency of CREW. In order to prove it,
we have done a couple of experiments on the Transformer network to
analyze the effects of pruning and aggressive quantization respectively.
The results of the Transformer evaluation and additional discussion are
described below.

A more aggressive quantization or clustering may increase the
probability to observe the maximum number of unique weights per
input neuron due to the lower number of unique weights in the layer,
which would limit the potential benefits of CREW. To demonstrate the
applicability of quantization with lower bit-widths on top of CREW,
we have evaluated a uniform 4-bit quantization on the Transformer
network, and checked the number of unique weights and the indexation
table size compared to the 4-bit quantized model. The results show
that the average number of unique weights per input neuron on the
Transformer is UW/I = 4 when applying a 4-bit quantization, out of the
16 potential weights per input. Furthermore, the relative percentage of
unique weights after the 4-bit quantization, that is, the multiplications
required to compute the FC layers is MULs = 0.33%, hence, the reduc-
6

tion in multiplications is 99.7%. Finally, the storage required for the
model is reduced by 39% compared to the 4-bit quantized model due
to the reduction of the indexation table size.

Regarding weight pruning, as already discussed, pruning is orthog-
onal to this work and could be applied to reduce the number of
unique weights, further increasing the benefits of CREW. A naive way
to support weight pruning in CREW is to consider the zero weights
of each input neuron, resulting from the pruning, as an additional
unique weight per input so that all the weights are still processed,
that is, all the additions to accumulate the partial products would
be computed even if some partial products are zero. This would be
similar to our approximation scheme where some of the unique weights
are approximated by zero instead of using Algorithm 1. Note that
pruning the small magnitude weights changes the topology of the DNN,
resulting in a sparse network, and the model requires an expensive
retraining step to retain accuracy. On the other hand, partial product
approximation aims to maintain accuracy without retraining.

In order to prove that even a naive scheme to support pruning can
be combined with CREW while providing additional benefits, we have
performed the weight pruning (3x rate) of the Transformer network
with the Near-Zero pruning method [20]. Then, we have evaluated
the number of unique weights and the corresponding indexation table
size considering that the zero weights are still processed in the form
of small indexes when doing the partial product accumulations. The
results show that the average number of unique weights per input
neuron on the Transformer is UW/I = 36 when applying pruning, out
of the 256 potential weights per input. Furthermore, the percentage of
multiplications required to compute the FC layers is MULs = 2.76%,
hence, the reduction in multiplications is 97%. Finally, the storage
required for the model is reduced by 27% compared to the non-pruned
baseline model due to the reduction of the indexation table size.

In comparison, the non-pruned 8-bit quantized Transformer net-
work with the baseline CREW has UW/I = 49, MULs = 3.77%, and
a storage reduction of 22%, as shown in Tables 1 and 2. Note that our
model size includes the unique weights, indexation table and all the
extra metadata. Summarizing, while a lower bit-width quantization or
a more aggressive clustering may increase the probability to observe
the maximum number of unique weights per input limiting the benefits
of our proposal, we observed that even with a 4-bit quantization the
number of unique weights is reduced, achieving a smaller indexation
table, and allowing to further improve the speed-up and energy savings
of the CREW accelerator due to the reduction in multiplications and
memory accesses. On the other hand, similar to the approximation
scheme, pruning can also reduce the number of unique weights and
the indexation table size without any additional overhead in hardware.
However, to fully exploit the benefits of pruning on top of CREW in
terms of storage compression and computational reduction, we should
modify both the hardware and execution scheme to behave as a sparse
accelerator, which we will explore in future works.

5. CREW accelerator

This section describes the hardware support required to implement
CREW. First, we present the main hardware components of the CREW
accelerator for DNN inference. Next, we describe how FC layers are
executed in the accelerator using CREW with an enhanced weight
stationary dataflow. Finally, we describe how to efficiently support
other types of layers and networks such as CNNs.

5.1. Architecture

In this section, we present an accelerator that takes advantage of the
CREW mechanism to reuse computations in the FC layers of different
DNNs. CREW exploits the high degree of repeated weights at each
input neuron to save computations and memory accesses. Fig. 7(a)
shows a high-level schematic of the architecture. The main components
are the blocks of SRAM used for the inputs, outputs, unique weights
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Fig. 7. Architecture of (a) the CREW accelerator and (b) a Processing Element (PE).
The PE components shaded in gray represent the required extra hardware for CREW.
The partial product buffer is shared among all or a subset of PEs of the same row of
the array.

and indexes, and the systolic array of processing elements (PEs). Each
PE includes functional units to perform computations. All the global
SRAM memories are double buffered to load data from main memory
while performing computations, and highly multi-banked to achieve
the bandwidth required to feed a large number of PEs. This systolic
array architecture is inspired in Google’s TPU [3], which has proven to
be an efficient accelerator to perform DNN inference.

Fig. 7(b) shows the architecture of a Processing Element (PE). Each
PE has a multiplier and an adder which can be used independently, that
is, the multipliers are used to perform the unique weight multiplications
and can be power-gated during the rest of the execution. On the other
hand, the adders are used during the entire execution to accumulate
the partial products of each output into the Partial Sum Buffer. Each
PE requires additional memory buffers to store the partial products
and the corresponding indexes to access them. The indexes are decoded
from the compressed stream and padded to 8 bits to be stored in the
partial product indirections buffer. The partial products are stored in
a multi-banked buffer shared among all the PEs from the same row of
the array.

5.2. Dataflow

We implement an enhanced weight stationary dataflow to pro-
vide better efficiency in the execution of the FC layers with CREW.
Traditional DNN accelerators follow one of these dataflows: output
stationary, weight stationary or input stationary. In output stationary,
each PE computes an output at a time. In the weight/input stationary
dataflow, each PE pre-loads a weight/input from memory to its local
register, and those are used to perform all the associated computations.
FC layers do not tend to be efficiently executed on systolic arrays
because the potential reuse is much more limited compared to con-
volutional layers. Given a batch size of one, only the inputs can be
7

reused multiple times to compute each output, making all the common
dataflows inefficient to exploit the resources of the systolic array. We
propose to use an enhanced weight stationary dataflow coupled with a
blocking scheme.

The CREW accelerator executes FC layers in two main steps carried
out in parallel as is shown in the flowchart of Fig. 8, where both steps
are marked in different colors. In the first step, marked in blue, the
accelerator starts by reading an input and its number of unique weights.
Then, the unique weights of the input are read from memory. The input
is broadcasted to a row of PEs and the unique weights are distributed
along the PEs of the same row. Each PE will multiply the input and
its unique weights and store the partial results into the Partial Product
Buffer shared by all the PEs of a given row. This step is repeated until all
the partial products of unique weights for the FC layer are computed.
Note that the multipliers can be power gated after doing all the unique
multiplications.

As it is shown in the schematic of Fig. 8, when a given number
of partial products is stored in the shared buffer of each row of PEs,
the second step starts in parallel with the first one. The number of
partial products required is determined by a block size parameter of
𝐵𝑆𝑟𝑜𝑤 × 𝐵𝑆𝑐𝑜𝑙 so that when the unique weights of 𝐵𝑆𝑟𝑜𝑤 inputs have
been processed for each row of the systolic array (𝑃𝐸𝑟𝑜𝑤), the second
step begins. The block size also determines the number of indexes
(𝐵𝑆𝑟𝑜𝑤 ×𝐵𝑆𝑐𝑜𝑙) stored in the index table of each PE and the number of
partial outputs (𝐵𝑆𝑐𝑜𝑙) that each PE is computing. During the second
step, the accelerator reads one block of 𝐵𝑆𝑟𝑜𝑤 ×𝐵𝑆𝑐𝑜𝑙 indexes for each
PE to perform the partial sums, as illustrated by the green marker
in Fig. 8. The blocks of indexes are constructed offline and stored
consecutively in main memory. Each PE will receive a block of indexes
pointing to partial products stored in its shared buffer. Therefore, each
PE in a given row of the array is computing a different set of partial
outputs, while the PEs in the same column are computing different
partial sums for the same set of outputs.

The indexes of a block arrive in a compressed format to each PE,
that is, all the 𝐵𝑆𝑐𝑜𝑙 indexes of a given row of the block have the
same size, but for each 𝐵𝑆𝑟𝑜𝑤 the size of the indexes may be different.
The reasoning behind the compressed format is that the blocks are
composed of indexes related to different input neurons which may
have a different number of unique weights, and so indexes exhibit
variable size. All the indexes of a block are stored consecutively in
memory starting by the 𝐵𝑆𝑐𝑜𝑙 indexes of the first row of the block.
Each PE includes a specialized hardware decoder to decompress the
indexes and store them uncompressed (8 bits per index) in the Partial
Product Indirections buffer. The number of indexes in a block is fixed
and known by the control unit of each PE. Similarly, the sizes of the
indexes related to each input neuron are computed offline, stored in
memory, and sent along the indexes of each block when needed. Note
that a single value of three bits per input neuron is enough to determine
the sizes of all the indexes. The hardware required to perform the
decoding of each index is relatively simple since all the information is
statically available. The decoder will receive the compressed indexes
of a block in chunks, the information of the size of the indexes of
the block and the number of indexes in the block. Then, it will read
a byte of the chunk, and use the information of the size of the first
index to discard the unneeded bits and pad the index to 8 bits. Next,
a pointer will be increased using the size of the index to point at
the start of the next index of the chunk. The decoder also takes into
account how many indexes of a given size are in the block, to use
the corresponding information at each decoding. The decoding of the
indexes is overlapped with the loading and distribution of the blocks
as well as the computations.

On the other hand, the partial products between inputs and unique
weights can be computed in parallel to the partial sums, along with
the loading and decoding of the next blocks of indexes from the global
buffer. To this end, the shared Partial Product Buffer and the indirection
table of each PE are double buffered. To avoid collisions, the shared

buffer of partial products is highly multi-banked and each PE starts to
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Fig. 8. CREW Execution Dataflow. 𝑃𝐸𝑟𝑜𝑤 is the number of PEs per row in the systolic array, and 𝐵𝑆𝑟𝑜𝑤 and 𝐵𝑆𝑐𝑜𝑙 determine the block size, i.e. the number of indexes per block.
𝐵𝑆𝑟𝑜𝑤 refers to the number of indexes relative to different input neurons, while 𝐵𝑆𝑐𝑜𝑙 refers to indexes associated to the same input neuron but used in the computation of different
output neurons. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. FC Execution in the CREW Accelerator.
ccess partial products relative to input neurons with a different offset
ocated into a different bank. More specifically, the shared buffer of
artial products for a given row of the array is modeled to have a bank
er 𝑃𝐸𝑐𝑜𝑙. Then, each bank is sized to store the partial products related
o 𝐵𝑆𝑟𝑜𝑤∕𝑃𝐸𝑐𝑜𝑙 input neurons. The worst case scenario is considered,
o that up to 256 partial products may be stored for each input neuron
hen using an 8-bit quantization. Note that in this case the partial
roducts will have a bit-length of 16 bits.

Continuing the example from Section 4, Fig. 9 shows an FC exe-
ution in the CREW accelerator following our dataflow and blocking
cheme. Considering a systolic array of 2 × 2 PEs and a block size
f 4 indexes, the blocks of indexes are distributed in two iterations as
hown in Fig. 9(a). Fig. 9(b) illustrates the second step of our dataflow,
aving all the partial products computed in the first step stored in
he shared buffer of each row of PEs, and all the decoded indexes in
he indirections buffer. At each cycle, each PE reads an index of its
lock, the associated partial product and the current partial sum of the
orresponding output to perform the next accumulation. The partial
um buffer depicted in the figure shows the additions performed by
ach PE in each iteration. Once the PE has processed all the indexes of
he block, it proceeds to compute the subsequent block. This step will
e repeated until all the blocks are processed. Finally, a reduction of all
8

he partial summations is performed from top to bottom of the systolic
array, writing the final results into the SRAM output buffer as shown
in the example.

In summary, each PE will compute partial sums of multiple neurons
by accessing to different partial products associated to the same set of
inputs. The two main steps are repeated until all the partial products of
each input are computed and all the indexes processed. Note that the
partial products are computed only once and reused during the rest of
the FC layer execution.

5.3. Design flexibility

A key parameter in the dataflow of CREW and its hardware imple-
mentation is the block size. The block size affects the performance and
the size of the local buffers in each PE. A large block size will require
sizable local buffers in each PE. On the other hand, the block size has
to be large enough to be able to perform computations while loading
from memory the next blocks of indexes, in order to hide main memory
latency, and avoid collisions to the shared buffers. To avoid large
interconnection overheads in case of a considerable number of columns
in the systolic array, the shared buffers can be replicated and shared
among PEs of a given subset for the same row of the array. Therefore,
by adjusting the block size and resizing the buffers, CREW can keep
the scalability of the accelerator to any systolic array size. Although

our accelerator is specialized in efficient inference of FC layers by
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Table 3
Parameters for the accelerators.

Common parameters

Technology 32 nm
Frequency 500 MHz
# PEs 16 × 16
Block size 16 × 16
Total global SRAM buffers size 24 MB

UCNN parameters

Input/Weight indirections buffer size/PE 0.75 kB
Input/Weight buffer size/PE 272 B
Partial sum buffer size/PE 0.75 kB

CREW parameters

Partial product indirections buffer size/PE 0.5 kB
Partial product buffer size/PE 1 kB
Partial sum buffer size/PE 0.75 kB

using CREW, it can support any kind of layer such as convolutionals
as executed in a TPU-like accelerator, without obtaining the benefits of
the reuse mechanism.

6. Evaluation methodology

We have extended ScaleSim [37], a simulator for DNN accelerators,
to accurately model three different systems: a TPU-like architecture,
UCNN [12] and our CREW scheme presented in Section 5. ScaleSim
models a systolic array architecture and supports any kind of neural
network, including CNNs, MLPs and RNNs. Table 3 shows the parame-
ters for the experiments. The baseline configuration is a TPU-like archi-
tecture clocked at 500 MHz with an output stationary dataflow [6]. It
includes a systolic array of 16 × 16 (256 PEs) and 24 MB of global on-
hip SRAM. Inputs and weights are quantized to 8-bit integers without
ny accuracy loss for our set of DNNs, whereas activation functions
re performed in 32-bit floating point. On top of this architecture, we
ave implemented UCNN as described in [12] and our CREW scheme as
resented in Section 5. The sizes of the additional local buffers required
y UCNN and CREW are provided in Table 3. CREW requires three local
RAM buffers on each PE: the Partial Product Indirections buffer, the
artial Product Buffer shared between multiple PEs of the same row
nd the Partial Sum Buffer. All the local buffers are sized taking into
ccount the block size parameter of our dataflow. We employ a block
ize of 16 × 16 for all the DNNs, as we found that it provides a good
rade-off between on-chip storage requirements and performance. As
result, all the local buffers require less than 1 kB of capacity per PE.
hese overheads are taken into account for the area, timing and energy
valuation of the accelerator. Regarding main memory, we model an
PDDR4 of 8 GB with a bandwidth of 16 GB/s (dual channel).

Regarding area and energy consumption, the combinational logic
ardware is implemented in Verilog, including all the additional com-
onents required by CREW, and synthesized to obtain the delay and
ower using the Synopsys Design Compiler, the modules of the De-
ignWare library and the technology library of 28/32 nm from Synop-
ys [38]. For the technology library, we use the standard low power
onfiguration with 0.78 V. On the other hand, we characterize the
emory components of the accelerator by obtaining the delay, energy
er access and area using CACTI-P [39]. We use the configurations
ptimized for low power and a supply voltage of 0.78 V. Finally,
he energy consumption of main memory is estimated by using the
ICRON power model for LPDDR4 [40]. The results obtained with

he aforementioned tools are combined with the activity factors and
emory traces provided by the extended ScaleSim [37] simulator to

btain the dynamic and static power of the accelerators.
Our objective is to prove that our scheme provides important sav-

ngs for multiple applications and different DNN architectures. To
his end, we evaluate our technique on five state-of-the-art DNNs
9

Table 4
DNNs employed for the experimental evaluation of CREW. The model size accounts for
the original FP parameters of the FC layers where CREW is applied.

DNN Model Size (MB) Accuracy

DS2 144 10.32% (WER)
GNMT 518 29.8 (BLEU)
Transformer 336 28.0 (BLEU)
Kaldi 18 10.85% (WER)
PTBLM 137 78.15 (Perplexity)

from different application domains, including speech recognition and
machine translation as shown in Table 4. We include DeepSpeech2
(𝐷𝑆2) [2], an RNN that consists of GRU cells for end-to-end speech
recognition implemented in PyTorch [41], and Kaldi [15], an MLP for
acoustic scoring from the popular framework of the same name. DS2
and Kaldi are trained and evaluated with the Librispeech [42] dataset.
In addition, we employ two machine translation networks: 𝐺𝑁𝑀𝑇 [1]
and Transformer [14]. GNMT is an LSTM network for neural ma-
chine translation based on the Google Translator and trained using
the WMT16 [43] dataset with texts of newspapers from German to
English (DE-EN). As described in Section 2.1, the Transformer is a deep
MLP with an encoder–decoder architecture that is mainly composed of
attention layers. We evaluate the Transformer implementation from the
OpenSeq2Seq [44] framework of NVIDIA, using the WMT16 dataset
for translating from English to German (EN–DE). Finally, PTBLM [16]
is an LSTM network for language modeling using the Penn Treebank
dataset. Accuracy is reported as Word Error Rate (WER) for speech
recognition (lower is better), bilingual evaluation understudy (BLEU)
for machine translation (higher is better), and perplexity for language
modeling (lower is better). For all the DNNs, we employ the entire
evaluation sets from their respective datasets, including several hours of
audio and a large number of texts, to assess the efficiency of our compu-
tation reuse scheme in terms of performance and energy consumption.
Our workloads represent important machine learning applications, and
the selected DNNs cover three of the most common approaches for
sequence processing: MLPs, LSTMs and GRUs.

7. Results

This section evaluates the performance and energy efficiency of
our computation reuse scheme. First, we present the speedups and
energy savings achieved by CREW compared to a baseline TPU-like
accelerator and UCNN. In order to do a fair comparison, we evaluate
the factorization of UCNN using the same blocking dataflow as CREW.
Next, we present the additional benefits of CREW when applying the
partial product approximation presented in Section 4.2. Finally, we
discuss the accelerator overheads.

7.1. CREW evaluation

Fig. 10 shows the speedups achieved by CREW and UCNN over the
baseline DNN accelerator. CREW provides consistent speedups for the
five DNNs that range from 2.26𝑥 (Kaldi) to 2.96𝑥 (GNMT ), achieving
an average performance improvement of 2.61𝑥. The reduction in ex-
ecution time is due to reusing previously computed partial products.
The number of multiplications is dramatically reduced since only the
unique weights are multiplied by their corresponding inputs. Further-
more, the overhead to access the previously memoized partial products
is small since the indexes are smaller than the original weights. In
addition, the partial sums are computed concurrently while loading
the next blocks of indexes from memory, efficiently exploiting all the
resources of the accelerator. Note that we use the partial product
memoization scheme presented in Section 4.1, so the speedups reported
in Fig. 10 are achieved without any accuracy loss. Impact on accuracy
loss and performance of partial product approximation are presented

in Section 7.2.



Journal of Systems Architecture 129 (2022) 102604M. Riera et al.
Fig. 10. Speedups achieved by CREW and UCNN for each DNN. Baseline configuration
is the TPU-like DNN accelerator without any computation reuse mechanism.

Fig. 11. Normalized energy savings for each DNN. Baseline configuration is the
TPU-like DNN accelerator without the computation reuse technique.

We achieve more than 2𝑥 performance speedup compared to the
factorization scheme of UCNN, since CREW is much more effective for
FC layer inference. Although UCNN supports FC layers, our results show
that it achieves an average speedup of 25% compared to the baseline.
The multiplications are reduced in a similar percentage compared to
CREW. However, the overheads to index the inputs of each factoriza-
tion group in an FC layer are quite high, hindering the benefits of the
computation reuse scheme.

Fig. 11 reports normalized energy savings. On average, our scheme
reduces the energy consumption of the accelerator by 2.42𝑥. The energy
savings are well correlated with the reduction of the model size due to
the low number of unique weights and the small size of the indexes
compared to the original weights. These energy savings are due to two
main reasons. First, dynamic energy is reduced due to the savings in
computations and memory accesses. Second, the performance improve-
ments shown in Fig. 10 provide a reduction in static energy. Again,
we reduce energy by more than 2𝑥 on average compared to both the
baseline and UCNN.

7.2. CREW-PPA evaluation

As described in Section 4.2, we propose to extend CREW with partial
product approximation (CREW-PPA) to further reduce multiplications
and the storage for the indexes. With this technique, some unique
weights are discarded and replaced by the most similar remaining
unique weights. Note that all the processing for this optimization is
performed offline and it does not require any additional hardware
support, so it can be implemented directly on top of CREW. This opti-
mization effectively reduces the amount of computations and memory
bandwidth usage, but it has to be carefully applied to guarantee a
negligible impact on DNN accuracy.

Figs. 12 and 13 show the speedup and normalized energy obtained
of the PPA optimization when the maximum accuracy loss is set to
1%. On average, it achieves more than 1.2𝑥 speedup with an energy
reduction of 17%, on top of the CREW accelerator. Note that this
optimization can be customized to the user requirements in terms of
accuracy versus performance and energy consumption.
10
Fig. 12. Speedup of CREW-PPA with less than 1% accuracy loss. Baseline configuration
is the CREW accelerator.

Fig. 13. Normalized energy of CREW-PPA with less than 1% accuracy loss. Baseline
configuration is the CREW accelerator.

7.3. Overheads

CREW requires extra storage in the PEs of the accelerator as shown
in Table 3. These buffers together with the index decoders are small
compared to the global SRAM, so they represent a small portion of the
area and energy of the accelerator. CREW has a 9% increase in area,
compared to the baseline TPU-like accelerator. On average, the energy
consumed by the additional hardware of CREW represents less than 4%
of the total energy. In comparison, UCNN’s extra storage results in an
increase in area of 4% and less than 3% of energy consumption. We be-
lieve CREW’s area and energy overheads are acceptable considering the
large performance and energy improvements as reported in Section 7.1.

8. Related work

DNN Optimizations. Popular optimizations for reducing mem-
ory footprint and/or numerical precision of DNNs include cluster-
ing [45] and quantization [34]. INQ [35], TTQ [36], DoReFa [32] and
LQNets [33] achieve important reductions in the numerical precision
(i.e. < 8𝑏) with small impact in accuracy loss. However, clustering and
quantization techniques alone do not reduce the amount of computa-
tions, but storage requirements and/or the cost of the computations. As
discussed in Section 4.3, CREW supports these optimizations and effi-
ciently exploits the weight repetition originated from them to improve
performance and energy efficiency.

Pruning and Sparse Accelerators. Pruning [20,21,46–48] reduces
the model size and the number of computations by removing connec-
tions/nodes depending on the weights’ values. The pruned model may
loss accuracy but tends to regain it after retraining. On the other hand,
the pruned model becomes sparse, requiring specialized hardware to be
efficiently executed. Multiple sparse DNN accelerators [7,18,19] have
been recently proposed. Some sparse accelerators, such as EIE [18],
utilize clustering to further reduce weight storage, but do no explore
ways to reuse computations as we propose in CREW. Note that CREW
does not behave as a sparse accelerator since all weights are still
processed in the form of small indexes and memoized products. As
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discussed previously, pruning is orthogonal to this work and could be
applied to reduce the number of unique weights, further increasing the
benefits of CREW.

Computation Reuse. Several recent studies observed the increase
in repeated weights and/or inputs and proposed algorithms to reuse
computations. UCNN [12,49] perform factorization of repeated weights
in CNNs to reduce computations. However, as discussed in this work,
FC layers have different requirements, and the proposed mechanisms
do not fully exploit the benefits of computation reuse. Reuse of partial
products with repeated weights has been previously proposed in [50],
where the output neurons of a given FC layer are clustered depending
on their weights similarity, and the partial products may be reused
inside a given cluster of neurons. Note that CREW does not limit the
reuse on a given cluster of neurons but can reuse partial products on
any output neuron of an FC layer. The work in [51] proposes RAPIDNN,
an In-Memory Processing (PIM) accelerator inspired by memoization
and computation reuse techniques. RAPIDNN uses clustering to stati-
cally generate a subset of the most representative inputs and weights,
and memoizes all the possible partial product combinations. During
inference, the inputs and weights are encoded by accessing lookup
tables to select which partial products are accumulated for each output.
Note that the partial products selected are always an approximation,
which may impact the accuracy of the network. Compared to our work,
we do not loss any accuracy by performing linear quantization, and
we require fewer accesses to lookup tables since the integer accumu-
lation with our dataflow is efficiently performed in a systolic array
architecture. On the other hand, a different approach is to exploit the
repetition or similarity of input activations. Deep Reuse [52,53] detect
similarities between vectors of inputs in a given CNN layer to approxi-
mate computations, while a recent proposal [54] exploits the similarity
between consecutive frames of audio/video to reuse computations of
consecutive executions of a given layer. These proposals do not exploit
repeated weights and are orthogonal to our work.

9. Conclusions

In this paper, we show that modern DNNs exhibit a high degree
of weight repetition in FC layers, resulting in a low number of unique
weights per input neuron. Then, we propose CREW, a new accelerator
that exploits weight repetition to reduce multiplications and memory
accesses. The proposed reuse scheme only performs the multiplications
of the inputs by their respective unique weights, avoiding many re-
dundant computations and their associated memory accesses. The final
output accumulations are performed by indexing a buffer that stores
the results of the partial products. Besides, the indices required to
access the buffer of partial products are small, since their size depend
on the number of unique weights, thus the total network model size
is significantly reduced. CREW also includes an enhanced weight sta-
tionary dataflow that processes blocks of indices and partial products.
We show that CREW requires minor hardware changes over a state-
of-the-art accelerator, mainly additional memory storage for saving the
partial products and the indices. Our experimental results show that, on
average, CREW provides 2.42𝑥 energy savings and 2.61𝑥 speedup, while
it only requires a minor increase in the area of the accelerator (less
than 9%). We show that our scheme works for any DNN composed of
FC layers such as MLPs and RNNs from different applications, including
speech recognition and machine translation.
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