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Abstract.Under the hypothesis that NP does not have p-measure 0 (roughly, that
NP contains more than a negligible subset of exponential time), it is shown that there
is a language that is SI;_T-complete but not Sl.;_“-complete for NP. This conclusion,
widely believed to be true, is not known to follow from P # NP or other traditional
complexity-theoretic hypotheses. This is a very preliminar version.

1. Introduction

The NP-completeness of decision problems has different formulations. We will deal here
with two very close ones, defined respectively by two adaptive and two non-adaptive
queries. We will exhibit a reasonable complexity-theoretic hypothesis that implies the
distinctness of these two completeness notions.

In general, given a polynomial-time reducibility <F (e.g., <k or <P), a language (i.e,,
decision problem) C is <F-complete for NP if C € NP and, for all A € NP, A<FC. If
A and B are languages, then A is polynomial-time 2-Turing reducible to B, and we write
A<} _1B,if A is decided in polynomial time by some oracle Turing machine that consults
B as an oracle, making at most two queries per input. On the other hand, A4 is polynomial-
time 2-truth-table reducible to B, and we write AS%_“, if A is decided in polynomial time
by some oracle Turing machine that consults B as an oracle, making at most two queries
per input in a non-adaptive way, that is, both queries are written by the machine before
consulting the oracle. It is clear that A<F_,,B implies A<} .. B, and hence that every
<} _i-complete language for NP is <f_r-complete for NP.

This work was supported by Accion Integrada HA-047 and by a Spanish Government grant FPI
PN9o.

84



It is widely conjectured (e.g., [2], [7], [3], [1]) that Turing completeness is more general
than many-one completeness:

CvKL Conjecture (“Cook versus Karp-Levin”). There exists a language that is <h-
complete, but not <P -complete, for NP.

Lutz and Mayordomo prove in [6] that the CvKL Conjecture follows from the hypothesis
that “NP does not have p-measure 0”. We improve this result here by showing that
the same hypothesis implies that there exists a language that is <f_-complete, but not
<%_,-complete, for NP.

In section 3 below we review the definition of resource-bounded measure that gives the
meaning of the hypothesis “NP does not have p-measure 0”. In section 4 we prove our
Main Theorem.

See [6] for a discussion on the reasonableness of the hypothesis “NP does not have p-
measure 07”.

2. Preliminaries

In this paper, [4] denotes the Boolean value of the condition 7.

All languages here are sets of binary strings, i.e., sets A C {0,1}*. We identify each
language A with its characteristic sequence x4 € {0,1}° defined by

x4 = [s0 € A][s1 € A][s2 € 4]...,

where 8o = A, s; =0, 3, =1, s3 = 00,... is the standard enumeration of {0,1}*. Relying
on this identification, the set {0,1}°°, consisting of all infinite binary sequences, will be
regarded as the set of all languages.

If we {0,1}* and z € {0,1}* U{0,1}*°, we say that w is a prefiz of z, and write w C =z, if
¢ = wy for some y € {0,1}* U {0,1}*°. The cylinder generated by a string w € {0,1}* is

Cuw={z€{0,1}*|wCaz}={AC{0,1}" [wE xa}

Note that C, = {0,1}°°, where ) denotes the empty string.
Let B3 be the set of two input, one output boolean functions.

As noted in section 1, we work with the exponential time complexity class E =
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=DTIME(2tinesr),

Welet D = {m2~™ | m € Z,n € N} be the set of dyadic rationals. We also fix a one-to-one
pairing function {,) from {0,1}* x {0,1}* onto {0,1}* such that the pairing function and
its associated projections, {z,y) — z and (z,y) — Yy, are computable in polynomial time.
Several functions in this paper are of the form d : N* x {0,1}* — Y, where Y is D or
[0, 0), the set of nonnegative real numbers. Formally, in order to have uniform criteria for
their computational complexities, we regard all such functions as having domain {0,1}*,
and codomain {0,1}* if Y = D. For example, a function d : N? x {0,1}* — D is formally
interpreted as a function d : {0,1}* — {0,1}*. Under this interpretation, d(i,j,w) = r
means that d((0%, (07, w))) = u, where u is a suitable binary encoding of the dyadic rational
r.
For a function d : N x X — Y and k € N, we define the function di : X — Y by
dx(z) = d(k,z) = d((0*,z)). We then regard d as a “uniform enumeration” of the functions
do,d1,da,.... For a function d: N* x X — Y (n > 2), we write di,; = (di )1, etc.

In general, complexity classes of functions from {0,1}* into {0,1}* will be denoted by
appending an ‘F’ to the notation for the corresponding complexity classes of languages.
Thus, for t : IN — IN, DTIMEF(2) is the set of all functions f : {0,1}* — {0,1}* such
that f(z) is computable in O(¢(|z|)) time. Similarly, PF = [J;Z, DTIMEF(n*). (For
technical reasons [5], when discussing resource bounds for measure, we will deviate from
this practice, writing p for PF, etc., as in section 3 below.)

3. Definition of Resource Bounded Measure

In this section we review the definition of measure in complexity classes.
Resource-bounded measure ([4], [5]) is a very general theory whose special cases include
classical Lebesgue measure, the measure structure of the class REC of all recursive lan-
guages, and measure in various complexity classes. In this paper we are interested only in
measure in E, so our discussion of measure is specific to these class. The interested reader
may consult section 3 of [4] for more discussion and examples.

Throughout this section, we identify every language A C {0,1}* with its characteristic
sequence x4 € {0,1}°°, defined as in section 2.

Definition 1. The class p consists of functions f : {0,1}* — {0,1}*, such that f is

computable in polynomial time
The measure structure of E is developed in terms of the class p.

Definition 2. A martingale is a function d : {0,1}* — [0, c0) satisfying

(w0) + d(w1)
2

for all w € {0,1}*. A martingale d succeeds on a language A C {0,1}* if

d(w) = % (3.1)

limsup d(x4[0..n — 1]) = oo.

n—oo

The class of languages on which a martingale d is successful is denoted S[d]. A martingale
d is successful on a set X C {0,1}* if X C S[d].

86



Intuitively, a martingale d is a betting strategy that, given a language A, starts with capital
(amount of money) d()) and bets on the membership or nonmembership of the successive
strings 89,31,32,-+- (the standard enumeration of {0,1}*) in A. Prior to betting on a
string s, the strategy has capital d(w), where

w = [[sg € A]---[sn—1 € A].

After betting on the string s,, the strategy has capital d(wb), where b = [s, € A].
Condition (3.1) ensures that the betting is fair. The strategy succeeds on A if its capital
is unbounded as the betting progresses.

More generally, we will be interested in “uniform systems” of martingales that are com-
putable within some resource bound.

Definition 3. An n-dimensional martingale system (n-MS) is a function
d:IN" x {0,1}* — [0, 00)

such that d; is a martingale for every k € IN®. It is sometimes convenient to regard a
martingale as a 0-MS.

Definition 4. A computation of an n-MS d is a function d : IN**? x {0,1}* — D such
that
di (w) — dg(w)| <277

forall ke N",r € IN, and w € {0,1}*. A p-computation of an n-MS d is a computation
d of d such that d € p. An n-MS d is p-computable if there exists a p-computation d of d.
If d is an n-MS such that d : IN" x {0,1}* — D and d € p, then d is trivially p-computable.
This fortunate circumstance, in which there is no need to compute approximations, occurs
frequently in practice. (Such applications typically do involve approximations, but these
are “hidden” by invoking fundamental theorems whose proofs involve approximations.)
We now come to the key idea of resource-bounded measure theory.

Definition 5. A set X has p-measure 0, and we write py(X) = 0, if there exists a p-
computable martingale d such that d is successful on X. A set X has p-measure 1, and we
write pp(X) =1, if py(X°) = 0.

This definition says that X has p-measure 0 if and only if there is a single p-computable
strategy d that succeeds (bets successfully) on every language A € X. The fact that the
strategy d is p-computable means that, when betting on the condition “z € A”, d requires
only 2°/| time for some fixed constant ¢. (This is because the running time of d for this
bet is polynomial in the number of predecessors of z in the standard ordering of {0,1}*.)
We now turn to the internal measure structures of the class E.

Definition 6. A set X has measure 0 in E, and we write u(X | E) =0, if up(X NE) = 0.
A set X has measure 1 in E, and we write u(X |E) =1,if p(X° |E) = 0. If u(X | E) =1,
we say that almost every language in E is in X.

We write u(X | E) # 0 to indicate that X does not have measure 0 in E. Note that this
does not assert that “u(X | E)” has some nonzero value.
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It is shown in [4] that these definitions endow E with internal measure structure. This
structure justifies the intuition that, if u(X | E) = 0, then X NE is a negligibly small subset
of E. The next two results state aspects of this structure that are especially relevant to the
present work.

Theorem 7. ([4]) For all cylinders Cy, p(Cw | E) # 0. In particular, x(E | E) # 0. I

The next lemma, which will be used in proving our main results, involves the following
computational restriction of the notion of “countable union.”

Definition 8. Let Z,Zy,21,25,--- C {0,1}°°. Then Z is a p-union of the p-measure 0
sets Zo,2Z4,25,---1f Z = U?‘;o Z; and there exists a p-computable 1-MS d such that each
d; is successful on Z;.

Lemma 9. ([4]) Let Z,2,2,,2,,--- C {0,1}°°. If Z is a p-union of the p-measure 0 sets
Zo,21,25,--, then Z has p-measure 0. u

In particular, an easy consequence of this lemma is that any finite union of p-measure 0
sets has p-measure 0.

4. Separating Completeness Notions in NP

In this section we prove our main result, that is:

Theorem 10. Main Theorem. If NP does not have p-measure 0, then there is a language
C that is <F_r-complete, but not <¥_,,-complete, for NP.
Our proof of Theorem 10 uses the following definitions and lemma.

Definition 11. The tagged union of languages Ao, ---, Ax—1 C {0,1}* is the language

Ay D - - D A4 ={::10i|0§i<k and z € A,-}.
Definition 12. For j € IN, the j** strand of a language A C {0,1}* is
Ay ={z|=107 € A}.
Lemma 13. Main Lemma. For any language S € E, the set
X ={AC{0,1}"|4@0)<5_uA() ® (A) N S) ® (A1) U S) }

has p-measure 0.
Before proving the Main Lemma, we use it to prove the Main Theorem.

Proof. Proof of Theorem 10. Assume that NP does not have p-measure 0. Let
X = {A|A©0)<3-uAw) ® (4q) N SAT) @ (A) USAT) } .

By the Main Lemma, X has p-measure 0, so there exists a language A € NP — X. Fix
such a language A and let

C=A441)0 (A(l) NSAT) & (A(l) U SAT).

88



Since A € NP, we have A(g), A1) € NP. Since A(;),SAT € NP and NP is closed under N,
U, and @, we have C € NP. Also, the algorithm
Begin
input z;
ifzleC
then if 210 € C then accept
else reject
else if 2100 € C then accept
else reject
end
clearly decides SAT using just two (adaptive) queries to C, so SAT<Y C. Thus C is
<P _r-complete for NP. On the other hand, A € X, so A £5_,C. Since A(g) € NP, it
follows that C is not <% _,,-complete for NP. n

The Main Lemma is proven in the Appendix.

5. Appendix

This section is devoted to proving the Main Lemma. For this we need the following
definitions.

A <P_..-reduction is a polynomial time computable function f with domain {0,1}* such
that, for all z € {0,1}*,

£(z) = (f*(=), (=), (=) € {0,1}** x Ba.

Each fi(z) is called a query of f on input z. f3(z) is the encoding of a 2-input, 1-output
Boolean function. We write f3(z)(w) for the output of this function on input w € {0,1}%.
Let 4,B C {0,1}*. A <F_,,-reduction of A to B is a <}_,,-reduction f such that, for all
z € {0,1}",

[= € Al = F*(=)([f* (=) € B], [f*(=) € BI).
(Recall that [+] denotes the Boolean value of the condition %.) In this case we say that
A <P ., B via f. We say that A is <}_,,-reducible to B, and write A <}_,, B, if there
exists f such that A <}_,, B via f.
We now sketch the proof the Main Lemma.
Proof. Sketch of the proof of the Main Lemma. Our objective is to prove that uy(X) = 0.
For this we will write X as a union of four classes X!, X2, X3 and X* and then prove
that each X* has p-measure 0. By the observation following Lemma 9 this is enough to
have py(X) = 0.
Let us define X* for i = 1,2,3,4. We say that a language A is in X via a reduction f when

A(o) Slzj—ttA(l) ® (AN S)® (A U S) via f.

For a <F_,,-reduction f and for each z € {0,1}*, we denote by g}(z) and g¢}(z) the
following prefixes of f}(z) and f*(z)

A (2) = gh(z)10% 2,
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f(z) = q}(z)lO“}(’),
for a}(z),a%(z) € IN.

X' = {A C {0,1}" |there exists a <P_,, reduction f such that 4 € X via f

and there exists infinite z € {0,1}* such that (g7(2)10 < z1 and ¢%(=)10 < z1)}

X?=(X')yn{4c{o,1} |there exists a <F_,, reduction f such that A € X via f

and there exists infinite 2 € {0,1}* such that ¢}(z)10 < 21 < q4(z)10}

X*=(x'ux?rn{Ac{o,1} ]there exists a <i_,, reduction f such that A € X via f

and there exists infinite = € {0,1}" such that g¢}(z) # ¢}(z)}

Xt=(Xx'uX*nXx¥®nx
Let f € DTIMEF(n'°8 ") be a function that is universal for PF, in the sense that

PF = {f;|j € N}.

Define the sets
X}={4A€ X via f;}
fori=1,2,3,4, € IN. Note that X* = U;‘io XJ‘
Now we prove that for each i from 1 to 4, X* has p-measure 0. By using Lemma 9, it is

enough to define for each i a p-computable 1-MS d*, such that X J' cSs [d;'-], for all j € IN.
X! has p-measure 0.

Let j € IN,w € {0,1}*,5 € {0,1}, let A be a language in X} such that w C A,
di(A) =277
If 8y =21, for z € {0,1}*, q;,(2)10 < z1 and ¢} ()10 < 21 then
d}(wb) =2 - d}(w), if b = A(=1)
d;(wb) =0, if b # A(z1)
Otherwise, d}(wb) = d}(w)

X? has p-measure 0.

Let j € IN. we first define {z, | n € IN}, an infinite sequence of very separated strings
that are witnesses of the condition in the definition of X 12

z; = min{z € {0,1}* | g, (2)10 < 21 < qf.),(a:)lO}
Znt1 = min{z € {0,1}* | z1 > q%,(zn)10 and gy, (z)10 < z1 < g% ()10}
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Let w € {0,1}*,b € {0,1}, let A be a language in X7} such that w E A4, let n € IN such
that z,1 < 8}y < Zp+11. Let b; be the answer to f}(zn) according to w and S.
Let g be the function from {0,1,2} to {0,1} defined as follows

9(0)=1, g(1)=1, g(2)=0.

() =27
If 8)) = zp1 thenif b # ff(bl,g(az}i (zn))) d?(wb) = %
if b= f}(b1,9(a}, (zn))) d}(wd) = 3
If 5y = q}j ()10 then
if A(zn) = f](b1,9(a%;(2a))) d3(wb) = dj(w),
if A(zn) # £7(b1,9(a%; (zn))) 2nd b # g(aF, (2n)) & (wb) = 2 - di(w),
b= g(al (2n)) di(wl)=0,
Otherwise, d%(wb) = d%(w)

X3 has p-measure 0.

'd?(w)i
¥

w),

Let j € IN. we first define {z, | n € IN}, an infinite sequence of very separated strings
that are witnesses of the condition in the definition of XJ:-’.

z1 = min{z € {0,1}* | z1 < g} (2)10 < ¢ ()10}

Zny1 = min{z € {0,1}* | z1 > q7,(zn)10 and 21 < g (2)10 < g% (=)10}

Let w € {0,1}*,b € {0,1}, let A be a language in X? such that w C A, let n € IN such
that z,1 < S|w| < Zp41.

Let h be the function from {0,1,2} x {0,1,2} to {0,1} x{0,1} defined as follows

If (a,d) ¢ {(0,2),(2,0)} then h((a,bd)) = (g(a), g(b))

h((0,2)) = h((2,0)) = (0,0)

d¥(A) = 2-J
If 8] = znl and if b # ff(h((a}j (zn),a"‘}j (zn))))then d:;-(wb) = % . d?(w),
if b = f}(h((a}, (za), 0}, (2n))))then &}(wbd) = 3 - d}(w),

If 5| = q}j ()10 and if A(z,) # ff(h((a}l (:cn),afcj (za)))) and
b= hi((a}, (zn),a% (2n))) then dj(wbd) = 2. d}(w),
b# hi((a}, (zn), 0% (2a))) then dj(wb) = 2 - di(w),
If 5j0) = €% (2n)10, if A(en) = 3(A((6}, (20, %, (20))))
A(g, (2)10) = hy((, (), (20)) and
b # ha((a}, (zn), a%, (zn))) then d}(wb) = 2 - d}(w)
b= hz((a}, (zn),a% (2a))) then d(wb) =0
Otherwise, d?(wb) = d;- (w)

X* has p-measure 0.

Let j € IN. we first define {z, | n € IN}, an infinite sequence of very separated strings
that are witnesses of the condition in the definition of X;-*.
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z; = min{z € {0,1}* | z1 < gz, (2)10 = g%, (=)10}
Zn+1 = min{z € {0,1}* | 21 > ¢ ()10 and 21 < g, ()10 = g3, ()10}
Let w € {0,1}*,b € {0,1}, let A be a language in X} such that w C A, let n» € IN such
that an S Slw| < Tnil-
d;(/\) =27
If (a'},- (z")iai,- (:Bn)) ¢ {(1’2)7(2)1)} then
if 8jw| = 2nl and if b # f}(h((a}, (zn), 6%, (zn))))then d}(wd) = 2. dj(w),
if b = f3(h((aj, (2n), 8% (zn))))then &j(wb) = % - dj(w),
if 81| = ¢, (2n)10 and if A(z,) # f}(h((a}; (n),a% (zn)))) then
ifb# hl((alfi (zn),a% (2n))) then di(wd) = 2 - dj(w)
if b= hz((a}j (:c,.),a.?,j (zn))) then d}(wd) =0
Otherwise, d}(wbd) = d}(w)
If (a} (zn), a% (zn)) = (1,2) then if f}(z,) is
blef?(zn)
000
101
110
Ifif s = q}j ()10 then
if A(za1) =0 and (g}, (zn)) = 0 then dj(w0) =2- d}(w), d(wl) = 0.
if A(znl) = 0 and 5(g}, (2a)) = 1 then dj(wl) = 2- d}(w), dj(w0) = 0.
if A(zn1) =1 and S(g}, (2n)) = 0 then dj(wl) = 2 d}(w), dj(w0) = 0.
if A(znl) =1 and S(g}, (2)) =1 then dj(w0) = 2 - d}(w), dj(wl) = 0.
Otherwise, dj(wb) = dj(w).
The other cases of f?(z,) are analogous.

The proof that this 1-MS are witnesses of pp(X*) = 0 is based on the fact that = € A(y)
implies that € A(;j U S, and = ¢ A(y) implies that z ¢ A;;) N S "

6. Conclusion

We have shown that the hypothesis “NP does not have p-measure 0” separates <P .
and <}_,,-completeness. The most immediate open problem is to generalize this result
to separate <} . and <F_,,-completeness for other values of k. There is also a large
spectrum of completeness notions between 5}1’1 and Sf_“ that deserve further attention.
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