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Abstract—Nowadays, a new parallel paradigm for energy-
efficient heterogeneous hardware infrastructures is required
to achieve better performance at a reasonable cost on high-
performance computing applications. Under this new paradigm,
some application parts are offloaded to specialized accelerators
that run faster or are more energy-efficient than CPUs. Field-
Programmable Gate Arrays (FPGA) are one of those types of
accelerators that are becoming widely available in data centers.

This paper proposes OmpSs@cloudFPGA, which includes
novel extensions to parallel task-based programming models that
enable easy and efficient programming of heterogeneous clusters
with FPGAs. The programmer only needs to annotate, with
OpenMP-like pragmas, the tasks of the application that should be
accelerated in the cluster of FPGAs. Next, the proposed program-
ming model framework automatically extracts parts annotated
with High-Level Synthesis (HLS) pragmas and synthesizes them
into hardware accelerator cores for FPGAs. Additionally, our
extensions include and support two novel features: 1) FPGA-to-
FPGA direct communication using a Message Passing Interface
(MPI) similar Application Programming Interface (API) with
one-to-one and collective communications to alleviate host com-
munication channel bottleneck, and 2) creating and spawning
work from inside the FPGAs to their own accelerator cores
based on an MPI rank-like identification. These features break
the classical host-accelerator model, where the host (typically the
CPU) generates all the work and distributes it to each accelerator.

We also present an evaluation of OmpSs@cloudFPGA for
different parallel strategies of the N-Body application on the IBM
cloudFPGA research platform. Results show that for cluster sizes
up to 56 FPGAs, the performance scales linearly. To the best of
our knowledge, this is the best performance obtained for N-body
over FPGA platforms, reaching 344 Gpairs/s with 56 FPGAs.
Finally, we compare the performance and power consumption
of the proposed approach with the ones obtained by a classical
execution on the MareNostrum 4 supercomputer, demonstrating
that our FPGA approach reduces power consumption by an order
of magnitude.

Index Terms—FPGA, MPI, OpenMP, programming models,
network-attached FPGA, stand-alone FPGA, High-Level Synthe-
sis, heterogeneous programming, High-performance computing

I. INTRODUCTION

As applications require more performance, the underlying
hardware has to evolve to satisfy their needs. This is why het-
erogeneous architectures are becoming more popular recently.

In these systems, part of the work traditionally done by a CPU
is offloaded to a specialized device. This device, e.g., a GPU,
FPGA, or ASIC, is more efficient than the CPU in some way,
like performance or power. The most common heterogeneous
architectures for High-Performance Computing (HPC) use
GPUs. Recently, more and more FPGAs are making their way
into data centers (DC) [1] to help optimize the compute as
well as the data movement of cloud workloads [2]. An FPGA
is a reconfigurable device that can host any hardware design
that fits within its available resources. Therefore, FPGAs can
be tuned and optimized for a wide variety of workloads.
The vast majority of FPGAs deployed in DCs operate with
a traditional CPU-FPGA bus attachment such as the Periph-
eral Component Interconnect Express (PCIe). In recent data
centers, we observe the emergence of a new interconnection
pattern in which FPGAs are directly connected to the DC
network fabric. Examples of such a pattern include the FPGAs
placed in between the CPU and the network in a so-called
”bump-in-the-wire” configuration [3] and the FPGAs operated
as standalone network-attached accelerators [2]. This is a
complete change of paradigm in CPU-to-FPGA and FPGA-to-
FPGA inter-communications. It opens new perspectives for the
use and the deployment of clusters of FPGAs in heterogeneous
cloud DCs. However, the specificities of network-attached
FPGAs require a new framework to profit from the potential
provided by the clustering of FPGAs over high-speed and low-
latency networks.

In this paper, we introduce a programming model frame-
work called OmpSs@cloudFPGA that automatically takes care
of all the low-level infrastructure of such clusters. With it, the
user can exploit the parallelism of large FPGA clusters and
scale out an application with minimal changes to the code.
The main objective of OmpSs@cloudFPGA is to scale with
decent performance on big clusters. This paper presents the
following contributions:

• OmpSs@cloudFPGA, a parallel task-based programming
model that allows easy and efficient programming of
FPGA clusters.

• A method to distribute program task control over the
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FPGA nodes on the cluster to improve system scalability.
• Direct MPI-like FPGA-to-FPGA communication to alle-

viate host communication channel bottlenecks.
• A data directory that dynamically performs data copies

between a CPU host and other types of hardware devices
attached to it.

• An evaluation of the presented model on a cluster of 56
FPGAs with an N-body application, delivering the highest
reported performance of N-body implemented over FPGA
to the best of our knowledge.

• A comparison of the performance and power consump-
tion of the presented model with the one obtained by a
CPU cluster.

II. BACKGROUND

A. FPGA programming

Traditionally, the complete design implemented on an
FPGA had to be programmed in a Hardware Description Lan-
guage (HDL), e.g., Verilog or VHDL. The Register Transfer
Level (RTL) engineer would have to code a hardware module
and connect it directly to the FPGA pins or use Intellectual
Property (IP) libraries that already implement the necessary
protocols. With the rise of High-Level Synthesis and automatic
tools, the gap between RTL and software engineers has been
dramatically reduced. Nowadays, the FPGA user can program
a custom IP with high-level languages and build and test the
design through an automatic framework. For example, the
Xilinx Vitis platform allows synthesizing accelerators using
C/C++ on the FPGA, and communicating with the software
application with a provided API.

B. OmpSs

OmpSs is a task-based programming model [4] developed
at the Barcelona Supercomputing Center. In OmpSs, the paral-
lelism of a C/C++ application is expressed mainly with tasks,
similar to OpenMP tasks. These tasks are pieces of code that
may require or produce data, in the form of single memory
addresses or regions of memory. The runtime of OmpSs is
called Nanos5 [5]. It dynamically checks for dependencies
among tasks, based on the data requirement and production,
and executes all possible tasks in parallel on Symmetric
Multiprocessors (SMP). The programming model of OmpSs
is flexible and was extended to execute tasks in devices such
as GPUs and FPGAs. In the case of FPGAs, the extension is
referred to as OmpSs@FPGA.

C. OmpSs@FPGA

The OmpSs@FPGA framework [6] is the extension of
OmpSs that enables executing FPGA tasks on heterogeneous
CPU+FPGA-based systems. It uses FPGA-specific vendor
tools to automate the generation of the FPGA bitstream from
the original user source code written in C/C++. The supported
HLS tool at the time of writing is Vivado HLS. Therefore, the
language subset in FPGA tasks is limited by Vivado HLS,
which does not support all features usually available in a reg-
ular C/C++ program due to the nature of FPGAs. For example,

dynamic memory allocation (e.g., malloc) and recursive calls
are not supported. Moreover, OmpSs@FPGA introduces some
limitations too. The bit width of task parameters is limited to
64-bit because the communication protocol with the FPGA
uses a single 64-bit word per parameter. Also, at the time
of writing, the framework does not provide a mechanism to
support return types other than void.

The compilation process is shown in Fig. 1. It consists
of a source-to-source compiler, Mercurium, the Accelerator
Integrator Tool (AIT), and the native compiler (e.g., GCC).
Mercurium reads the original code and separates the code to be
executed by CPUs from the code targeted at FPGAs. However,
it does not check language compatibility with the vendor HLS
tool, hence any compilation error related to this matter is
reported by the tool itself. AIT receives the FPGA code and
generates the final bitstream. The native host compiler links the
user application with the Nanos5 runtime, linked to the Xtasks
library. The latter implements the low-level communication
between the specific host and FPGA in the system.

OmpSs@FPGA introduces new clauses to the #pragma
target to specify that the code associated with the task is
to be executed on the FPGA, along with other device-specific
clauses. For example, the user can declare local arrays, which
are buffers stored in the FPGA local memory, e.g., SRAMs
embedded in the FPGA fabric. Mercurium identifies FPGA
tasks, extracts the necessary code, applies some transforma-
tions, and generates new source code that includes the code
of the tasks. An HLS tool synthesizes this code into one or
more hardware IP accelerators.

The user code is instantiated into a wrapper that commu-
nicates with a hardware runtime inside the FPGA bitstream,
called Picos OmpSs Manager (POM). AIT automatically con-
nects POM with the user-defined accelerators and with the
CPU at compile time. At runtime, POM directly manages
the accelerators and communicates with the CPU host of
the device. Each time a CPU thread creates an FPGA task
and is ready for execution, the Xtasks library sends the
task information directly to POM through a hardware queue.
Accelerators can also create CPU and FPGA tasks, and POM
can handle the dependencies they may have. Therefore, POM
is the counterpart of the Nanos5 runtime located in the host.
The tasks spawned by POM remain local to the FPGA and
are not visible by the runtime in the CPU. As a result, the
number of communications between the host and the FPGA
is reduced.

D. OmpSs-2

OmpSs-2 is an improved version of OmpSs. Although the
programming model itself is very similar, OmpSs-2 provides
a slightly different syntax, such as the use of pragma oss in-
stead of omp. The significant differences relate to the Nanos6
runtime library [5], which comes with better performance,
more and richer features than Nanos5. Therefore, we decided
to work directly with OmpSs-2 and Nanos6 to develop our
work.
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Fig. 1. Compilation process for OmpSs@FPGA

III. OMPSS@CLOUDFPGA

A. Modifications to the Nanos6 runtime

To perform the work presented we have extended the
Nanos6 runtime with support for multiple FPGAs. Our main
contribution in Nanos6 that is not present in Nanos5 is the data
directory, used to keep coherency between devices connected
to the same CPU host. Before a task is executed on a
device, the directory registers the memory regions accessed
by this task, extracted from the dependencies. Initially, Nanos6
only supported GPUs with CUDA unified memory. The GPU
automatically performs copies when needed in this model, but
only between CPU-GPU and GPU-GPU. Instead, the directory
handles both GPU and FPGA devices even when connected
to the same host, and performs device memory allocations,
address translation, and data copies. If data accessed by a
device task is present only in the host, the directory issues
a memory copy from the host to the device. It also handles
copies from device to host if a host task needs data modified by
a device and copies between devices if a device task needs data
from another device. When the host requests a taskwait,
all device data regions are invalidated and thus copied back to
the CPU. The directory transparently takes care of all the data
copies without any explicit allocation and memory copies in
the user code.

B. Extensions to OmpSs-2

With the directory approach, the host has to manage all
tasks and data movements between all devices. Although this
feature is valuable and easy for the programmer to use, as
the number of FPGAs increases, the host management of data
movements and tasks may become a bottleneck. This is further
discussed in section VI.

OmpSs@cloudFPGA extends the OmpSs-2 programming
model and framework with two main features to solve the
problem mentioned above.

1) FPGA point-to-point communication: To scale out appli-
cations on FPGA clusters, we first need to distribute the work
spawn on each FPGA. This is achieved by the POM hardware
runtime, which allows an FPGA to create tasks independently,
without the interaction of a CPU. Next, we need a way to
distribute the data movement between FPGAs.

To solve this issue, we propose an interface similar to the
well-known MPI for FPGAs and a corresponding API that can
be called from the user code. We called this FPGA version
of MPI OmpSs MPI for FPGAs (OMPIF). The implemented
API provides basic calls to send and receive messages. Each
FPGA gets assigned a rank ranging from zero to the size of the
cluster minus one. The CPU does not have a rank associated
with the initial implementation as we have not implemented a
software OMPIF runtime. I.e., all ranks are FPGA nodes, and
the cluster size counts only the number of FPGAs. In future
implementations, we plan to provide a software runtime that
can communicate with the FPGAs through OMPIF.

Along with the rank and the size of the cluster, an FPGA
accelerator can use the API to communicate with other de-
vices. Like in classical MPI, a message comprises user data,
and extra information called the envelope. The latter contains
the source and destination ranks of the message and a user-
defined tag. This envelope is used to route the message to its
corresponding destination and identify it so a receive call can
match it. The equivalent of an MPI communicator is fixed to
the total number of available FPGAs. However, a distributed
task could target a subset of the cluster and use communicators
to communicate in those subsets. The prototypes of the send
and receive calls are:

• void OMPIF_Send(const void* data, int
count, OMPIF_Datatype datatype, int
destination, uint8_t tag, OMPIF_COMM
communicator)

• void OMPIF_Recv(const void* data,
int count, OMPIF_Datatype datatype,
int source, uint8_t tag, OMPIF_COMM
communicator)

All parameters are equivalent to their MPI counterparts
except for a few modifications. tag is restricted to an 8-bit
unsigned integer. Currently, the communicator is only allowed
to have the OMPIF_COMM_WORLD value that involves all the
FPGAs in the cluster. The API calls and specification are
proposals and, therefore, subject to change. Both send and
receive operations are blocking: OMPIF_Send returns when
the send buffer is safe to be modified, and OMPIF_Recv
returns when the buffer contains the matching message data.

2) Distributed task spawn: Up to this point, FPGA accel-
erators in a cluster can create tasks and communicate with
each other through the OMPIF API. However, there is no
way to easily start executing an application on the whole
cluster from the host. The main objective is to provide the
user with a simple way to execute a distributed application
in a cluster of any size. The classical MPI approach is to
execute the same binary in the cluster, and depending on
the rank, each node decides what to do. However, there are
some limitations for FPGAs. One of the main problems is
that the cluster is heterogeneous, with at least two types
of devices: a CPU and many FPGAs. Both have different
characteristics, features, and roles in the application. Thus
they require very different codes. For example, FPGA devices
may not have a disk attached, so the CPU must perform all



disk operations required by the application. Another problem
is memory allocation. User accelerators are not supported by
an operating system or virtual memory in the FPGA. Instead
of using an external allocator, it is more straightforward if the
CPU does all the allocations and communicates the addresses
to the accelerators. With the proposed model and use case,
there is no immediate benefit in allocating memory on the
FPGA. In general, the CPU provides more features, and the
FPGA is mainly used to perform calculations only.

In the OmpSs@FPGA model, introduced in section II-C, the
FPGA code is already isolated inside a task, which is specified
as a C/C++ function. We extended the FPGA task declaration
pragma with a distributed clause. Distributed tasks can
only be called from the application code running in the CPU.
When invoked, a single instance is replicated for each device
in the cluster. This task instance becomes the entry point of
the application execution. A distributed task is implemented
as a regular accelerator, and it can use OMPIF and create
tasks based on its rank and cluster size. These properties can
be read at runtime by calls to the OMPIF API, equivalent to
MPI_comm_rank and MPI_comm_size.

The final problem to consider is distributing the initial
data in the FPGAs and retrieving it back. The CPU does
not implement OMPIF, so we can not use send/receive calls.
Instead, we propose different methods, including well-known
communication patterns as pragma clauses, only valid for
distributed tasks.

• Broadcast: The specified range is broadcasted to all
FPGAs in the cluster before executing the task.

• Scatter: The specified buffer is divided into equal chunks
of the specified size, and each chunk is sent to a different
FPGA before executing the task.

• Gather: When the execution finishes, the specified buffer
is divided into equal chunks of the specified size, and
each chunk is read from a different FPGA.

• Send/receive: The specified range is sent to the specified
rank before executing the task, or received after the
execution finishes.

Furthermore, we provide a blocking Nanos6 API,
nanos6_distributed_memcpy that enables the func-
tionality of the clauses above at the application level.

C. Execution flow

To summarize the OmpSs@cloudFPGA model, Fig. 2
shows a high-level view of an OmpSs@cloudFPGA cluster
and Listing 1 shows a code example. In Listing 1, vectors a
and b are integer vectors divided in blocks of four elements.
The total size of a and b is proportional to the number
of nodes in the system since they are distributed with a
scatter/gather collective. Each device computes some code
over a chunk of b with a task per block. The result is sent
to the next FPGA that receives this data, stores it in its part
of a and computes another chunk of b. The CPU executes
the main function (Main box in Fig. 2), initializes the data,
and distributes it to the whole cluster with the scatter/gather
clauses in the task pragma. Alternatively, the user could use
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Fig. 2. High-level view of an OmpSs@cloudFPGA cluster

#pragma oss task device(fpga) in([4]a) out([4]b)
void fpga_comp_code(int* a, int* b) {...}
#pragma oss task device(fpga) distributed \

scatter([nblocks*4]a) gather([nblocks*4]b)
void fpga_creator_code(int* a, int* b, int nblocks) {

int rank = OMPIF_comm_Rank(OMPIF_COMM_WORLD);
int size = OMPIF_comm_Size(OMPIF_COMM_WORLD);
for (int i = 0; i < nblocks; ++i)

fpga_comp_code(a + i*4, b + i*4);
#pragma oss taskwait
OMPIF_Send(b, nblocks*4, OMPIF_INT,

(rank+1)%size, 0, OMPIF_COMM_WORLD);
OMPIF_Recv(a, nblocks*4, OMPIF_INT,

(size+rank-1)%size, 0, OMPIF_COMM_WORLD);
for (int i = 0; i < nblocks; ++i);

fpga_comp_code(a + i*4, b + i*4);
#pragma oss taskwait

}
int main() {

int *a, *b;
int nblocks;
...//Initialize input with nblocks*4*nnodes elements
fpga_creator_code(a, b, nblocks);
#pragma oss taskwait
...//Process output

}

Listing 1: Example of OmpSs@cloudFPGA C code

the nanos6_distributed_memcpy API before calling
the distributed task and after the taskwait. The CPU then
creates a distributed task that Nanos6 broadcasts to all FPGAs.
In the example, they execute the fpga_creator_code
(App box in Fig. 2) function. This code communicates with
its neighbor ranks and spawns fpga_comp_code tasks that
POM handles. In Fig. 2, these tasks are represented by the
colored circles in each FPGA node. When all FPGAs finish,
the CPU program retrieves data from the cluster and processes
the output.

IV. IMPLEMENTATION OF OMPSS@CLOUDFPGA

This section describes the implementation details of
our framework concerning a specific cluster of standalone



network-attached FPGAs. Such a cluster is accessible at the
IBM Research laboratory in Zurich, Switzerland [7], [8], [9],
and was made available for us to carry out this work. In
the remainder of this article, we will refer to this cluster as
cloudFPGA.

Despite the fact that the presented implementation targets
a specific platform, most of its components and the program-
ming model can target other clusters. The programming model
is agnostic of the underlying platform where the tasks are
executed.

A. The cloudFPGA system

cloudFPGA is a research cluster that aims to demonstrate
new concepts and techniques for deploying FPGAs at a large
scale in DCs. The system is built on three mains pillars:
1) the use of standalone network-attached FPGAs cards, 2)
a hyperscale infrastructure for deploying such FPGA cards
at large scale and in a cost-effective way [7] and, 3) an
accelerator service that integrates and manages the standalone
network-attached FPGAs in the Cloud [8].

The main difference with other research projects and com-
mercial products is the absence of a PCIe bus for the host
or another device to interact with the FPGA. Instead, this
classical communication channel and its associated card driver
are replaced with two UDP/IP and TCP/IP network stack
interfaces and their affiliated socket programming models.

Similar to many other FPGA cloud offerings, cloudFPGA
standalone network-attached FPGA builds on the common
Shell-Role Architecture (SRA) design pattern [9]. This design
separates the platform-specific parts (i.e., the Shell) from the
application-specific parts (i.e., the Role) to increase the re-
usability and isolate the two parts. The Shell contains all
necessary I/O components, and the network stack that hooks
the FPGA to the DC network, as shown in the leftmost part of
Fig. 3. It further abstracts all these hardware components by
exposing standard AXI-stream interfaces to the user. From a
computer operating system perspective, the Shell can be seen
as the conceptual counterpart of the kernel space. The Role
is the application-specific part of the FPGA logic. It embeds
the user’s custom application and can be assimilated to a CPU
application executed in user space.

B. cloudFPGA Role architecture

With OmpSs@cloudFPGA, we add a new abstraction layer
to the user in the Role. From the programmer’s perspective,
the application is built with hardware accelerators, usually
in HLS C/C++. These accelerators are invoked from tasks
created by other C/C++ code in the host or the FPGA and
can communicate with other nodes in the cluster through the
OMPIF API. In our framework, the cloudFPGA Role provides
all the necessary components to make this possible. It contains
mainly the OmpSs@FPGA hardware runtime (POM), the ap-
plication accelerators, the message passing runtime (message
sender/receiver), the packet decoder/encoder, and the memory
manager. All these components are interconnected, as shown
in the rightmost part of Fig. 3. External communication is

done using UDP protocol because it has lower latency than
TCP, and packet loss rate stays in acceptable bounds. There
are many types of packets transported with UDP, used by the
FPGA and the host. They can be classified according to the
format of the header and the destination port:

• CPU commands: These commands are used by the host
to control the Role, for example, to execute a task or
read/write FPGA memory.

• CPU command responses: Most CPU commands expect
one or more responses from the FPGA. The data con-
tained in the packets depends on the command.

• Application messages: Packets generated by the use of
the OMPIF API. There are two subtypes:

– Data messages: Contain the actual data that one
FPGA sends to another through a send operation.

– Ack messages: Do not contain any relevant data, but
are used to confirm to the sender that one or more
messages have been successfully received. This is
needed because UDP is not a reliable protocol and
thus some packets can be dropped in the network.

1) Packet decoder and encoder: These modules are the
entry and exit points of the Role for external communication.
The decoder captures all incoming messages and forwards
them to the corresponding module depending on the packet
type. The decoder is also responsible for replying to data
messages with an ack.

The packet encoder forwards messages sent by any module
of the Role to the Shell. It also sets the destination node and
port and adds a header for responses to CPU commands.

Both modules include debugging counters that track the
number of packets sent/received, classified by the aforemen-
tioned types and subtypes. There are also registers that track
the number of application messages exchanged with each
individual node in the cluster. The host can access them with
a CPU command.

2) OMPIF message passing runtime: As shown in Fig. 3,
the runtime is a collection of two modules to handle message
emission and reception, managed by POM. Thus internally,
user accelerators issue send/receive petitions with the same
interface used to create tasks. The message sender handles
send operations only. It reads the memory in the specified
address and transmits the data to the packet encoder. The
message receiver reads a temporary buffer where the messages
are stored just after arriving at the Role. When a message
matching a receive request is found, it copies the data to the
specified address.

3) Memory manager: This module handles memory
read/write requests directly from the host and write requests
to store data messages in a temporary buffer. Mainly it
translates an AXI-stream codified with a specific format to
multiple AXI-stream interfaces with another format. These
interfaces communicate with a data mover IP, which receives
read/write commands and access actual memory through an
AXI4 interface.
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C. Message passing and reliability protocol

The designed protocol is used to control send/receive com-
munication between two nodes. All FPGAs reserve a region
of their memory address space to store temporarily data
messages. When the user code issues a matching receive call,
the data message is moved to its final address. In the proposed
implementation, the reserved region is a circular queue stored
in the board DRAM. To simplify the protocol, it is assumed
that there is enough space in the reserved buffer to store all
possible messages. This way, the sender can assume that all
packets that arrive at the destination can be stored, and the
receiver does not have to check if the buffer is full. We plan
to remove this limitation in the future.

The underlying network that moves a message between two
FPGAs has a specified Maximum Transmission Unit (MTU)
of 1450 bytes, but the API supports sending more than this
quantity. To overcome this limitation, the sender engine splits
a message in frames of 1408 bytes. This size is the maximum
multiple of 64 bytes that the payload can carry. The size is
limited by a restriction in the memory address alignment. It
has to be aligned to 64 bytes because the AXI4 data channels
of the memory controller are 512-bit wide. Using unaligned
addresses increases the resource usage and the complexity of
the code. Therefore we decided to keep all addresses aligned.

The message passing protocol also takes into account packet
loss. Because of UDP, data messages can be dropped before
reaching their destination. The proposed solution is to use an
acknowledge message to confirm that the data reached the
destination. If this ack message is not received in a fixed
amount of time, the sender retransmits the data message. To
increase the bandwidth, a fixed window of four packets can
be sent before waiting for an ack. If any of the four messages
or the ack is dropped, the sender transmits the whole window
again.

D. Host runtime implementation
1) Xtasks backend: The first step is to build a new backend

for the Xtasks library, modifying the API specification. The
old API assumes that only one device is attached, so there is no
means to specify a target FPGA index. With this issue solved,
we implemented a backend that uses UDP sockets to do all
communication. They use two ports, one to send/receive tasks
and another to read/write device memory. The library is thread
safe and supports concurrent communication between different
devices. Nevertheless, packets targeting the same device are
serialized due to the protocol used to exchange information.

2) Nanos6 runtime: To support distributed tasks, we added
a new type of virtual device in Nanos6 called broadcaster.
This device is in fact the host, which receives a single
distributed task and sends it to all devices in the cluster.
This implementation is helpful because it uses an abstract
class representing a device, and therefore can potentially work
with any device, not only FPGAs. The broadcaster is also
responsible for starting memory copies since the directory is
unaware of the data locality once it belongs to the broadcaster.

V. TEST APPLICATION: N-BODY

The N-body application simulates the dynamic interaction
of particles influenced by the force of gravity. Each particle has
a position, velocity and mass associated, and the force between
each pair of particles is calculated following the Newton’s law
of gravity:

Fij =
G×mi ×mj × (pj − pi)

||pj − pi||3

Where Fij is a 3-dimensional vector with the forces between
particles i and j, mi is the mass of particle i, pi is a 3-
dimensional vector with the position of particle i and G is the
gravitational constant.

The simulation is an iterative process that calculates the
forces between all pairs of particles on each iteration, ac-
cumulates the forces for each particle, and then updates the



position and velocities using the Euler method. Therefore, the
algorithm has O(n2) time complexity.

A. Parallelization strategy

From the described application, we can extract two task
types: one to calculate the interaction of particles and another
to update the positions and velocities. The first step to paral-
lelize the N-body is to distribute the particles in blocks of a
fixed size. Then, each task operates on the block granularity.
For example, to calculate the force interactions of four blocks,
we need to execute the first task 16 times. To update the
positions and velocities, we only need to execute the second
four times. Each task has dependencies on the blocks that it
reads or writes.

B. FPGA bitstream configuration

Our implementation of the N-body has been tested on
Xilinx Kintex Ultrascale FPGAs of the cloudFPGA cluster.
More details on the boards are discussed in section VI-A.
Regarding the application, each task type can be implemented
as an accelerator that can be instantiated multiple times in
the FPGA fabric. Local memory, mainly Xilinx Block RAMs
(BRAM), can be exploited because the block size is fixed.
The accelerator first loads the block data in local memory then
executes the algorithm using this memory, and finally stores
the result back in the main memory. The force calculation
accelerator is also optimized to take advantage of the FPGA
properties and thus increase performance. The algorithm loop
is unrolled by a factor of n and then pipelined with an initiation
interval of one. That implies that n forces are calculated and
accumulated on each cycle.

In the tested bitstream, we fit four instances of the force
calculation accelerator and one instance to update the forces.
The block size is 2048 particles, and the force calcula-
tion accelerator calculates 8 forces per cycle. The resulting
throughput is 32 forces per cycle at 200MHz.

C. Task creation and communication implementation

1) First version, host-centric: The critical task of the N-
body is force calculation. Because of its quadratic growth,
most of the time is spent calculating pairs of forces. Therefore,
our objective is to distribute this work between all FPGAs in
the cluster. In our implementation, each device calculates only
a subset of the forces. E.g., with 10 blocks of particles and
2 FPGAs, each one calculates the forces of 5 blocks against
all the 10 blocks. That is a total of 50 tasks per device out of
100. However, both FPGAs need all the particle’s positions to
calculate the forces.

With the initial OmpSs-2 FPGA support, we can achieve
this distribution of work with host task creation. Because the
CPU handles all tasks, this one has a global view of the data
locations. Thus the directory is able to maintain all accesses
in the FPGAs coherent. To achieve coherency, the Nanos6
runtime has to move particle positions from host to FPGA and
vice-versa. Nevertheless, this approach doubles the amount of

Algorithm 1 Pseudocode of the FPGA accelerator that creates
tasks and communicates with the cluster

start← (n/size) ∗ rank
end← start+ n/size
for t in 0..timesteps do

for i in 0..n do
for j in start..end do

calculate forces(parti, partj , forcesj)
end for

end for
taskwait()
OMPIF Allgather(forces0..n)
for i in 0..n do

update particles(parti, forcesi)
end for

end for

data movements because to copy a block from one FPGA to
another, the data must pass through the CPU memory first.

Although this approach is easier to implement for the user,
it has some limitations. The scalability depends heavily on
the host throughput for both sending tasks and moving data
between devices.

2) Second version, host-centric with distributed communi-
cation: This version takes advantage of the OMPIF runtime
available in the bitstream. To move a block of data from one
FPGA to another, Nanos6 calls a send operation on the device
with the most recent data and a receive operation on the device
that needs to update. With this method, the host throughput
does not affect the application and the memory movements
are distributed. However, the host still has to process all tasks
of the application.

3) Final version, distributed communication and control:
The main improvement of this implementation is that the FP-
GAs distributively handle both tasks and data movements. The
bitstream includes an accelerator devoted to create tasks and
call the OMPIF API, following algorithm 1. The function calls
calculate forces and update particles are non-blocking task
spawn functions, whereas OMPIF ALLGATHER is a blocking
call. In the pseudocode, n is the number of blocks, rank is a
device index starting at 0, and size is the size of the cluster.
Each device spawns only the tasks for its own accelerators
and handles the dependencies using POM. Forces are sent
after all force calculation tasks have finished. There is also
no overlapping with the tasks to update particles. However,
particle update tasks from one timestep are overlapped with the
execution of the force calculation tasks from the next timestep.

Despite that in previous versions, only positions were ex-
changed between devices, we decided to move forces instead
for this version. The N-body data set is stored in two buffers,
one with forces and another with particle properties, including
positions. Therefore, positions are not stored in consecutive
memory locations between blocks. The host runtime is able to
copy the necessary regions between FPGAs, but the OMPIF
API requires one consecutive buffer to send/receive data.

We use an equivalent operation to an MPI Allgather with
the force buffer. After the device has sent and received all
necessary blocks, it updates all the particles’ positions and
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Fig. 4. Exchange of forces in N-body with the OMPIF allgather collective.

velocities. Although each FPGA does extra work, this part
does not significantly affect performance due to the linear
against quadratic time relation between the two task types.

The allgather collective is already supported by OMPIF,
but only when the send buffer is a part of the receive buffer
(equivalent in MPI to use the parameter MPI_IN_PLACE).
Internally, each rank sends its part of the data to the next
rank and increases the destination rank, going to 0 when
overflowing until all ranks have been served. This process is
illustrated in Fig. 4, in which there are three ranks and three
blocks. Each rank has a reserved buffer to store all force blocks
but calculates a single force block. Then, each node sends its
own block to the other two, following the order of Fig. 4 to
fill the missing blocks.

VI. EVALUATION

We demonstrate the scalability of the OmpSs@cloudFPGA
framework with the N-body application described in section
V on a cluster of 56 FPGAs. We also perform a similar study
with CPU nodes in the MareNostrum 4 supercomputer.

A. Experimental setup

The FPGA cards of the cloudFPGA platform that we used
implement a Kintex Ultrascale FPGA (xcku060-ffva-1156-
2-i) and 16GB of DDR4 memory. The Kintex is a mid-
range FPGA chosen for its excellent performance-per-dollar
ratio, a metric that is particularly relevant for a large scale
deployment in the Cloud. The CPU host is an Intel Xeon
E5-2640 v4 @ 2.40GHz processor with 24GB of RAM. The
MareNostrum 4 supercomputer uses high-performance Intel
Xeon Platinum 8160 CPUs @ 2.1GHz. Each node has 48
cores and 96GB of memory. For the experiments, we use
the same task creation and communication as algorithm 1 but
using OmpSs-2 instead of OmpSs@cloudFPGA and Intel MPI
runtime (MPI_allgather) instead of OMPIF. The force
calculation task is vectorized using Intel intrinsics of the AVX-
512 extension. We built two versions of the application, the
first using all node resources, with 512-bit vectors (16 forces)
and 48 cores per node. The block size is 512 since it proved
to achieve the best performance. Each CPU computes 768
parallel forces, which is 24 times more than the Kintex FPGAs.
Therefore, we decided also to evaluate a more limited version
using four cores with 256-bit vectors (8 forces), which is
equivalent in vector length and number of computing units
to the FPGA bitstream. We also used the same block size.

TABLE I
KINTEX ULTRASCALE RESOURCE COUNT, RELATIVE USAGE AND MAX

FREQUENCY OF THE CLOUDFPGA SHELL AND ROLE FOR THE N-BODY

LUT FF DSP BRAM LUTRAM Fmax
(MHz)

Resources 331K 663K 2760 1080 146K
Usage (%)
Bitstream 75.4 47.7 57.9 51.5 13.8
Shell 34.4 19 0.65 27.8 7.5
Accs 39.3 25.3 57.1 22.2 6.3 266
POM 0.62 0.35 0 1.1 0.08 219
OMPIF 0.2 0.2 0.18 0 0.01 304
Enc/dec 0.16 0.06 0 0.19 0.01 -

B. FPGA runtime and accelerator usage

Table I shows the number of resources for each primitive
of the Kintex FPGA and also the relative usage of the tested
bitstream. This resource usage is split between the Shell and
the Role. For the latter, table I shows resource usage of the
OmpSs@cloudFPGA components and the user accelerators.
These are the POM and OMPIF hardware runtimes, packet
encoder, and decoder. The table also reports the max fre-
quency calculated after hardware synthesis. It is an estimation
because the routing delay is not accurate. It depends on
the place&route, which at the same time depends on the
whole design. However, we can conclude that POM contains
the critical path. Therefore we set the accelerator clock to
200MHz, giving a margin to the place&route algorithm for
extra route overhead. Increasing the frequency requires a more
detailed study of the internal design of POM and a change to
its implementation with a more restrictive frequency target.
The packet encoder and decoder have a fixed frequency of
156.25MHz because it is connected directly to a Shell clock.

C. Results

In all our tests, we fix the number of iterations to 16 and
only change the number of particles to limit the number of
possible input parameters. We also measure performance in
Gpairs/s, which represents the number of force interactions
calculated per second. The total number of particle pairs is
n2× t, where n is the number of particles and t is the number
of iterations.

In our first experiment, we compared the performance of the
three presented N-body versions in section V. With 16 FPGAs
in the cluster, we ran the applications with the same bitstream,
increasing the number of particles. Results are shown in Fig.
5. Host Tasks & Copies is the host-centric implementation in
which the directory copies data from FPGA to host and again
to another FPGA (section V-C1). Host Tasks+FPGA copies
is the other host-centric implementation that uses the OMPIF
runtime to copy data directly between FPGAs (section V-C2).
FPGA Tasks+OMPIF refers to using the distributed task with
FPGA task creation and the use of OMPIF from user code
(section V-C3).

We can see that both host-centric implementations do not
scale at the same rate as the distributed one. Also, the
performance starts to stabilize at a much lower point. The
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Fig. 5. Performance of the three FPGA versions of the N-body in a cluster
of 16 FPGAs.

distributed version is 4x faster. The host can only reach
26% of the peak performance with both copy strategies. This
bottleneck worsens with the number of FPGAs used, leading
to even worst comparable results with bigger clusters. Most
of the performance loss is due to the communication latency
between the host and FPGAs, there is a higher penalty since
the data packets have to pass through more switches to reach
the FPGAs. Even with only 16, the host cannot give work
to each of the accelerators inside each FPGA, limiting its
performance. For the data transfer, the protocol used by the
host is similar to the one used by OMPIF. A fixed number
of transfers is sent before waiting for finishing ack messages
and sending the subsequent transfers. However, sending tasks
from the host to the accelerators is more complex because the
runtime does not know how many tasks it will send. Therefore,
the runtime sends only one outstanding task per FPGA before
waiting for the ack. Although it could be improved, this
solution will not have significant effect in all applications
because if tasks depend on each other, the runtime can not send
outstanding tasks without breaking the dependence model. As
we increase the number of FPGAs or the problem size, the
runtime overhead becomes more critical for the host-centric
versions. As it can be observed at the rightmost part of
Fig. 5, the runtime overhead (suffered by both host-centric
implementations but more acutely by the Host Tasks+FPGA
copies version) becomes so large that it overcomes the data
transfer overhead of the host-centric copies version.

Next, we investigated the scalability of the FPGA
tasks+OMPIF version when increasing the number of FPGAs.
Fig. 6 illustrates the performance of the application when
varying the number of FPGAs from 1 to 56. The ideal plot
represents the performance of a single FPGA multiplied by the
cluster size. Our distributed implementation efficiency (actual
performance compared to the theoretical maximum) is 98%
for 56 FPGA nodes. The number of particles on each run also
increases to give enough work to each FPGA. There are 30
blocks of 2048 particles per node (61440 particles). Although
the number of particles is constant per device, the amount
of work is not. As there are more FPGAs in the cluster, the
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Fig. 6. Performance of the N-body application distributed over a cluster of
FPGAs (61440 particles per FPGA)

number of tasks per FPGA also increases as well as the number
of messages to send/receive. As seen in Fig. 6, with 56 FPGAs,
we reach 344.22 Gpairs/s.

If we look at the single FPGA performance, we get 6.27
Gpairs/s. This is equivalent to a 97% efficiency over the theo-
retical peak performance of 6.4 Gpairs/s (32 forces per cycle
at 200MHz). This 3% difference is caused by the memory
movements of the forces between local and main memory,
the update part of the particles, and the runtime overhead.
We measured a more precise estimation of the overhead
added by OmpSs@cloudFPGA with a different experiment
by running the application with zero computation time. The
results indicate that, on average, 60 cycles per task are spent
on the hardware runtime (mainly dependence management),
equivalent to 0.01% of a single force calculation task execution
time. Hence, we can conclude that the runtime overhead is
negligible.

We also measured the overhead introduced by OMPIF
in a similar way. We ran the application without spawning
computation tasks, only executing OMPIF_Allgather. The
results show that we achieve a bandwidth of 4.2GB/s across
16 FPGAs out of 20GB/s (10Gbit/s ethernet per FPGA).
The overhead added by data transfers is 0.32% of the total
execution time. With the host-centric implementations, we
measured an overhead of 54% with host copies and 50%
with FPGA copies, caused by the bottleneck introduced when
centralizing all transfers in a single device. Using FPGA copies
reduces this overhead because the FPGAs perform the actual
transfers, but the host still needs to communicate to start the
copies. The host-FPGA latency is ≈ 0.5ms, sending a single
message and receiving an ack is equivalent to 38% of the force
calculation task time. Contrary to the FPGA runtime overhead,
this time is not negligible and is one of the leading causes of
the limited performance shown in Fig. 5.

Finally, we compare the best performance we have (FPGA
tasks+OMPIF version and 56 nodes) with the equivalent
execution in the MareNostrum 4 supercomputer. The results
are shown in Table II. The MareNostrum vec256 row refers to



TABLE II
PERFORMANCE AND POWER COMPARISON OF THE N-BODY APPLICATION

ON A CLOUDFPGA CLUSTER AND ON THE MARENOSTRUM 4
SUPERCOMPUTER, WITH 56 NODES AND 3440640 PARTICLES.

Performance
(Gpairs/s) Efficiency Watts Perf./W

OmpSs@cloudFPGA 344.22 98% 840 0.41
MareNostrum vec256 211.81 94% 8673 0.024
MareNostrum vec512 2409.49 90% 15504 0.16

the limited resources implementation, it uses 256-bit vectors,
4 cores per node, and 2048 block size. The MareNostrum
vec512 row is the version with full resources and uses 512-
bits vector lengths, 48 cores per node, and 512 block size.
With similar resources, the FPGA cluster proves to have
1.6 better performance than the CPU. However, the vec512
version is 7 times faster than the FPGA. Although in terms of
efficiency, the FPGA version is above the other two. We also
have to take into account that we are comparing a mid-range
FPGA with a high-performance CPU. Moreover, the Kintex
Ultrascale technology is four years older than the Intel Xeon
Platinum CPUs. The Kintex uses 20nm TSMC lithography,
while the Xeon uses Intel 14nm. Even with this disadvantage,
the FPGA consumes one order of magnitude less power than
the vec256 version and 18 times less than vec512. Looking
at the performance per watt, the FPGA version is above both
MareNostrum implementations.

The power consumption numbers for the FPGAs, 15 watts
per FPGA, were measured in real-time by the cluster hardware.
We can report that these numbers validate the power estimation
generated by the Vivado tool for the considered bitstream. The
MareNostrum power is taken from the Slurm manager reports,
with 276 watts per node.

VII. RELATED WORK

There have been other efforts to implement the N-body on
FPGAs and even ASICS. In [10], Sano et al. implement a
full custom FPGA design that solves the N-body problem on
a single Intel Arria10 FPGA, achieving 10.944 Gpairs/s. In
[6], de Haro et al. uses OmpSs@FPGA to execute the N-body
on a Xilinx Alveo U200 board reaching 37.62 Gpairs/s with
a performance per watt of 0.58. Del Sozzo et al. [11] also
presented a custom N-body implementation on a Xilinx Virtex
Ultrascale+ board (VU9P). However, they only accelerate the
force calculation and update the positions and velocities with
software. They reach 13.441 Gpairs/s with a performance per
watt of 0.672. ASICs have also been developed to accelerate
the computation of the N-body. GRAvity PipE (GRAPE)
[12] is an ASIC that computes the force interaction between
particles, with 48 pipelines at 250MHz. The update part is
still done in the CPU, which communicates with the chip
through PCIe and an FPGA that works as a bridge. Its
theoretical peak performance is 480 Gflops which translates
to 24Gpairs/s, with a performance per watt of 0.5. Even
though single-node performance of the Kintex is the lowest at
6.2 Gpairs/s our implementation with 56 nodes outperforms

all other implementations. Applying our OmpSs@cloudFPGA
framework to bigger or more modern FPGAs will result in
even better results.

OpenMP also includes a mechanism to offload program
regions to other devices with the target pragma. This
feature has been used to accelerate OpenMP code with FPGAs.
Knaus et al. [13] use the Clang compiler to extract the LLVM
Intermediate Representation (IR) code of the target regions.
This code is transformed to an RTL IP with the OpenCL HLS
toolflow that FPGA vendors (e.g. Xilinx and Intel) provide.
They feed the vendor tools directly with a custom IR instead
of the original C/C++ code. The host code is modified to
include calls to the OpenCL API. Sommer el al. [14] also
modify the Clang compiler to extract the code in the OpenMP
target regions to compile them with an HLS toolflow.
However, instead OpenCL they use Xilinx Vivado HLS to
synthesize the FPGA code. Then they use a custom toolchain,
called ThreadPoolComposer (TPC), which similarly to AIT,
generates automatically the whole FPGA design. To com-
municate with the host, they implement a libomptarget
plugin that is used by OpenMP for the target regions. This
library is linked to the TPC API that implements the low-
level communication with the device. More related work for
OpenMP FPGA offloading can be found in [15].

IBM has worked on an MPI implementation with FPGAs
using the cloudFPGA platform [16]. Ringlein et al. imple-
mented an MPI runtime, called ZRLMPI (with part of the MPI
API), in both the FPGA and CPU. The ZRLMPI execution
model is similar to MPI: all nodes have the same entry point
to start execution. Although the same code targets both CPU
and FPGA, it is optimized at compile-time depending on
the executing device. Their proposal is not limited to only
one CPU in the cluster, which can also participate in the
application. Nevertheless, there is no task-level parallelism
inside the FPGA. It can be seen as a single accelerator that
executes HLS code. In the ZRLMPI approach, the cluster
configuration must be known at compile-time, so the bitstream
must be recompiled every time the configuration changes. With
OmpSs@FPGA, the same bitstream and binary executable can
be used for any number of FPGAs.

De Matteis et al. [17] also present an MPI-like model for
FPGAs, more focused on streaming data from point-to-point
rather than sending bulk messages. Nevertheless, they target a
set of FPGAs connected with a specific topology, and message
routing is part of their framework. They do not parallelize the
application inside one FPGA using multiple accelerators.

Naylor et al. [18] introduce a RISCV-based multithreaded
CPU for FPGAs and an FPGA cluster of 12 Stratix V. They
present a message passing API similar to MPI to communicate
data between cores of different FPGAs. Like De Matteis et al.,
they rely on a custom and fixed topology and hardware. They
do not use hardware acceleration to execute the application, as
it runs on the CPUs, but they accelerate global synchronization
of nodes with hardware-assisted primitives.

There have been other extensions to the OmpSs program-
ming model to support cluster offloading with tasks [19]. Sainz



et al. present a way to create MPI clusters dynamically and
offload created tasks to a specific rank in a specific cluster.
To achieve this, they use MPI_Comm_spawn to create and
isolate each cluster and provide channels to communicate
between clusters. However, they test their system on Intel
Xeon Phi clusters, with up to 128 nodes.

Xiong et al. [20] introduce an FPGA implementation of
the MPI_Irecv operation. They offload only the message
matching part of the MPI runtime to the FPGA to accelerate
MPI applications on CPUs. The architecture they propose does
a similar job to the message receiver of OmpSs@cloudFPGA.
Their implementation supports many outstanding receive re-
quests using a two-level queue. However, we are more limited
in resources because a big part of the FPGA is used for the
user application, limiting the message receiver’s capabilities.

VIII. CONCLUSION

With the introduction of FPGAs in data centers, a new
paradigm has appeared for distributed parallel applications.
In this work, we present extensions to an existing task-
based programming model and a framework that can take
advantage of the internal parallelism of an FPGA, as well
as its inter and intra-communication capabilities to scale out
parallel applications. With a single C/C++ code annotated with
pragmas and a single bitstream compilation, the programmer
can run an application in an FPGA cluster of any size. We have
introduced an implementation of OmpSs@cloudFPGA, with
support to an MPI-like API. We evaluated our framework on
the IBM cloudFPGA research project equipped with mid-range
network-attached FPGAs. The results show that the N-body
application scales linearly to 56 nodes when implemented
with OmpSs@cloudFPGA with near-perfect scalability. Fur-
thermore, we have compared its performance and power
consumption with the MareNostrum 4 supercomputer. The
results show that even when using all the CPU resources,
FPGAs still outperform CPUs’ performance per watt. Fur-
thermore, when comparing similar CPU and FPGA resources,
the FPGA also provides better absolute performance than
the CPU. In addition, the close to perfect linear scaling
of FPGA accelerators shows the general advantage of the
distributed task-programming approach to accelerate future
high-performance applications at a low energy cost and with
the same programmability as CPUs.
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