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DNN-Based PolSAR Image Classification
on Noisy Labels

Jun Ni
Carlos Lopez-Martinez

Abstract—Deep neural networks (DNNs) appear to be a solution
for the classification of polarimetric synthetic aperture radar (Pol-
SAR) data in that they outperform classical supervised classifiers
under the condition of sufficient training samples. The design of
a classifier is challenging because DNNs can easily overfit due to
limited remote sensing training samples and unavoidable noisy la-
bels. In this article, a softmax loss strategy with antinoise capability,
namely, the probability-aware sample grading strategy (PASGS), is
developed to overcome this limitation. Combined with the proposed
softmax loss strategy, two classical DNN-based classifiers are im-
plemented to perform PolSAR image classification to demonstrate
its effectiveness. In this framework, the difference distribution im-
plicitly reflects the probability that a training sample is clean, and
clean labels can be distinguished from noisy labels according to the
method of probability statistics. Then, this probability is employed
to reweight the corresponding loss of each training sample during
the training process to locate the noisy data and to prevent partici-
pation in the loss calculation of the neural network. As the number
of training iterations increases, the condition of the probability
statistics of the noisy labels will be constantly adjusted without
supervision, and the clean labels will eventually be identified to
train the neural network. Experiments on three PolSAR datasets
with two DNN-based methods also demonstrate that the proposed
method is superior to state-of-the-art methods.

Index Terms—Deep neural network (DNN), image classification,
noisy label, polarimetric synthetic aperture radar (SAR).
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1. INTRODUCTION

OLARIMETRIC synthetic aperture radar (PolSAR) im-
P agery classification is important due to the unique physical
properties that can be retrieved from electromagnetic wave
scattering. Inspired by the image processing methods [1]-[3],
deep neural network (DNN) seems to be a promising approach to
perform classification tasks because of its precise classification
effect and independence from complex models [4]-[6]. The
convolutional neural network (CNN) has been employed as an
effective deep learning method for image feature extraction, and
it has been widely developed for POISAR imagery classifica-
tion [7]-[10].

These DNN-based methods aim to mine more reliable features
by improving the network structure and loss functions and by
expanding or enhancing samples with ideal training samples
and labels. The current research progress is relatively slow in
actual applications due to the limitations of transportability and
sufficient training samples. Simultaneously, ground reference
data play a fundamental role in the classification methods.
Although the ground dataset is generally considered perfect,
there may still be mislabeled samples, even though the data may
be obtained from reliable sources [11]. In SAR/PolSAR images,
training samples with noisy labels are almost inevitable because
of many reasons such as mislabeling caused by human error,
indistinguishable edge mixing, inaccurate scene image, and
label registration, and even labels obtained from unsupervised
automatic labeling technology. Under the condition of training
samples with noisy labels, the DNN-based classification method
can easily learn the characteristics of the noise samples and
disturb the original classification rules, which is susceptible to
overfitting [12]-[16].

Actually, learning with noisy datasets has been studied exten-
sively in classification. In terms of computer vision, DNN-based
methods for evaluating noise transfer matrices have been pro-
posed successively [17]. To prevent overfitting, some researchers
try to isolate the noisy labels and update the DNN using only
the separated clean labels. Two DNN-based models trained
by a decoupling technique are designed to select samples that
have different predictions [12]. The weights are implemented
to mediate training samples to select clean samples [13]. Some
methods try to select clean training samples using curriculum
learning [ 14]. However, the discarded training samples may con-
tain some vital information, and excessive discarding of training
samples will result in a severe decline in the classification per-
formance compared with the DNN updated by the same number
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of clean samples. The noise-tolerant loss is designed to correct
noisy labels [15], and Ghosh et al. [18] constructed a knowledge
graph to guide the learning process. A simple joint optimization
framework is implemented to learn the probable correct labels of
training samples, and then the corrected labels are used to train
models [19]. Han et al. [20] proposed an extra-label correction
phase to correct the wrong labels. In addition, label regression
is proposed for noisy supervision [21]. To avoid relying on too
much auxiliary information, the probability difference distribu-
tions are designed to evaluate the noisy labels [22].

Unfortunately, there are few studies on PolSAR imagery
classification with noisy labels, and many researchers of PoOISAR
classification design their classifiers under an ideal condition,
except those carried out by some researchers based on target
recognition and scene segmentation of SAR images. In target
recognition, a transition matrix with noise rate is proposed to
change the probability vector of softmax using the noise rate,
but they idealized that noise labels were evenly distributed in
each category [23]. Wang et al. [24] attempted to build a noise
label corrected model by fitting the loss curve. In scene segmen-
tation, A class label correction method is designed to correct the
misclassified pixels in SAR image segmentation [25]. A top-2
smooth loss function with cost-sensitive parameters is designed
to tackle the noise label and alleviate the overfitting problem
caused by the noise label [26]. In POISAR image classification,
Hou et al. [27] designed a robust classification loss function
to solve the influence of outliers in the PolSAR pixels, and a
probability graph framework combined support vector machine
(SVM) with Markov fields is designed to smooth images. Indeed,
most of the methods in hyperspectral imagery classification re-
gard the noisy labels as outliers [28]—[34]. Practically, additional
errors may be introduced for some clean samples because of
high interclass similarity compared with low intraclass similar-
ity [35]. Simultaneously, the noise labels are not limited by the
outliers, for example, large areas of error labeling caused by
human mistakes limit the outlier-detection methods.

In addition, labeling is not only the category attribute problem
in PolSAR imagery, but also crossed samples between differ-
ent scenarios (pixels near the boundary or mix-pixels), and
these neutral and hard understand samples are not suitable for
classification. For the training processing of deep learning, the
most simple and effective softmax-loss strategy is to establish
a statistical model to guide neural networks to learn simple
samples with common characteristics, then to learn difficult
samples, and finally to discard the samples with unrecognizable
features.

In this article, we design general softmax-loss strategies,
namely PASGS and Auto-PASGS, for a DNN-based PolSAR
image classification method to tolerate noisy labels. First, the
influence of noisy labels on the DNN classifier in PolSAR
image classification is analyzed. Given the influence of noisy
labels, a probability-aware distribution diagram is implemented
to learn DNN classifiers. Then, the probability-aware strategy
is designed to estimate the probability of a sample to be noisy
according to the probability-aware distribution diagram. Two
kinds of softmax-loss strategies are developed for two situations:
the noise ratio can be artificially evaluated or not. For the former,
the noise ratio can be directly used for the dynamic weight
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adjustment algorithm. For the latter, the noise rate needs to
be automatically evaluated according to the training and con-
vergence status of the neural network, therefore, an evaluation
indicator of sample differentiation is defined to estimate the
noise profile. Finally, the dynamic weight adjustment algorithm
is used to suppress the influence of noisy labels on the training
process, and the softmax-loss strategy does not rely on additional
auxiliary information, such as datasets, stages, and models. Two
PolSAR images and one temporal PoISAR dataset are employed
to verify the validity of our method. Considering the existing
PolSAR classification methods, we have made the following
contributions:

1) A novel noisy label identification method, namely a
probability-aware distribution diagram, is implemented to
estimate the probability of a POISAR sample to be noisy.
Based on the probability-aware distribution diagram, the
sample grading strategy is designed to select clean samples
and suppress noisy labels.

2) Two sample grading strategies according to the noise ratio
can be artificially evaluated or not. And an evaluation in-
dicator of sample differentiation is defined to estimate the
noise profile. Without any prior knowledge, the antilabel
noise method can be easily applied to the existing softmax
loss to show its excellent performance.

3) Based on two DNN-based classification methods of Pol-
SAR imagery, namely VGGNet and LeNet, hypothetical
experiments with different noise conditions and five dif-
ferent forms of noise labels are designed to demonstrate
the advantages of our method.

The rest of this article is organized as follows. Section II
describes some preliminaries of the influence of noisy labels on
DNN-based PoISAR image classification. Section III introduces
the proposed noisy label detection method in detail, and the soft-
max loss strategy is formulated. In Section I'V, the experimental
results are analyzed. Finally, Section V concludes this article.

II. BACKGROUND

Noise severely affects PolSAR image interpretation. The
existing noise includes not only speckle noise of the PolSAR
images, but also label noise in some special tasks (e.g., classifica-
tion, target recognition, and semantic segmentation). The former
is generated by the imaging mechanism of the SAR system
and has been extensively studied [36]-[39], while the latter is
generated by unavoidable human error or automatic labeling
systems, which has a significant impact on the performance of
data-driven classifier models, such as DNN-based classifiers.

To illustrate the influence of noisy labels on the POISAR image
classification, a VGGNet-based land cover classification method
is designed with training samples in different noisy label ratios
in Flevoland I (It will be introduced in Section IV-Al), and
the results are shown in Fig. 1. Under the same samples, the
labels of training samples are randomly changed, and the noise
ratios are, respectively, 10%, 20%, and 30%. In the network,
the “dropout” is set to 0.2 to prevent the overfitting caused by
too many epochs, “Adam” is selected as the optimizer, and the
noise label ratio of the training samples is the result obtained
by random modification of the training labels. From Fig. 1,
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regardless of there are noise labels or not, the curve of training
processing can be divided into three stages:

1) Rapid convergence stage, easy-to-understand samples
dominate network training, so network convergence is
fast, and training accuracy and test accuracy are constantly
greatly improved. The noise samples have little influence
on the network training process.

2) Convergence tends to moderate increase, the samples with
noise labels and hard-to-understand samples dominate the
training processing, so network convergence stagnate, and
the improvement of training and test accuracy is slowing
down. Due to the network learning noise samples, the
accuracy of verification began to decline in the latter half,
and the network appeared overfitting.

3) Stability stage, the networks are stable and all the train-
ing accuracy remains unchanged. In the training network
without noise labels, the verification accuracy is stable and
unchanged, but in the training networks with noisy labels,
the verification accuracy fluctuates constantly.
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Actually, the influence of noise samples gradually increases
and eventually leads to overfitting. Although complete validation
samples may be able to find the optimal network model, it is
difficult to find such a complete validation sample set in prac-
tical applications, thus increasing the difficulty of selecting the
optimal model. If the constraints of noise samples are gradually
strengthened in the training processing, the overfitting problem
will be alleviated.

III. PROPOSED CLASSIFICATION FRAMEWORK

The softmax loss strategy has been proven to be an effec-
tive way to select clean samples [40]-[42]. This article also
designs a softmax loss strategy in the DNN-based POISAR image
classification method, mainly including the probability-aware
distribution and softmax-loss strategy formulation, see Fig. 2.

The proposed noise-tolerant classification framework mainly
consists of four steps: pixelwise polarimetric feature vector
extraction, spatial-polarimetric feature extraction using the
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DNN-based method, calculation of the probability difference
distribution diagram, and calculation of the loss using separated
clean samples. First, a three-dimensional feature matrix is
constructed for the PolSAR image by integrating various
polarimetric feature extraction methods. Then, the polarimetric
features are input into a CNN to extract spatial-polarimetric
features and output the predicted probability using the softmax
function. Next, the probability-aware distribution diagram can
be calculated to separate clean samples from training samples.
Finally, an algorithm is designed to dynamically constrain
the noise proportion of the probability difference distribution
diagram in one minibatch according to the number of iterations,
and the loss can be calculated by the separated clean samples.
In addition, two kinds of softmax loss strategies, namely, a
given noise label ratio strategy and an unknown noise label ratio
strategy, are developed for the PoOISAR image classification.

A. Polarimetric Feature Vector Construction

As the basis of PolSAR imagery classification, polarimetric
feature vector construction is an essential process in POISAR im-
age classification. The PolSAR complex backscattering matrix
[S] can be expressed as

[5]= [gh: gh} M

where h and v represent the horizontal polarization channel and
the vertical polarization channel, respectively. The scattering
matrix [S] can be interpreted by the second-order polarimetric
descriptors’ multilook coherent matrix [75]or covariance matrix
[C5] in a single station backscattering mass.

The target decomposition (TD) theorems, divided into inco-
herent decomposition and coherent decomposition algorithms,
are designed to interpret the scattering mechanisms of the targets
physically. The incoherent TD theorems are usually used to pro-
cess the coherent matrix [7], the covariance matrix [C], and the
Kennaugh matrix [K]. The coherent TD algorithms are employed
to process the scattering matrix [S]. The features obtained by
TD have more vital image expression ability than the original
matrices (i.e., [K], [T], [C], and [S]), and many studies have
shown the effectiveness of these features [43], [44]. In summary,
107 features are selected for our PoOISAR imagery classification,
namely, 10 elements of the coherency and covariance matrixes,
18 polarimetric descriptors, and 79 TD parameters, as shown in
Table 1.

B. Disadvantages of the Cross-Entropy Loss

In PoISAR data classification, the category label of samples is
treated as a probability vector P= [P0, 1, - - - pc] T, where C'is
the number of categories. p. € [0, 1] is the predicted probability
of belonging to the cth class and can be output by the softmax
function as

exp(WZIZ + b,)
ZjC=1 exp(V_Vij + (_)'J)

where 7 is the input of the softmax function obtained by the
DNN-based method, and W*T and b, are the weight and bias

pc(f) = 2)
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TABLE I
POLARIMETRIC FEATURES EMPLOYED IN THE PROPOSED METHOD

Category Features (Dimension) #parameters
Matrix Coherence Matrix (7), 10
Elements Covariance Matrix (3),
Polarimetric Span (1), Polarization Fraction(1), 18
Descriptors SERD/DERD(2), Shannon Entropy(1),

Polarization Asymmetry (1),
Radar Vegetation Index (1),
Pedestal Height (1),

Alpha Approximation (2),
Entropy Approximation (2),
Scattering Mechanism Entropy (2),
Kozlov Anisotropy (1),
Lueneburrg Anisotropy (1),
Conformity Coefficient (1),
Scattering Predominance (1)
H/A/a (11), Holm (6), Huynen (3), 79

Decomposition

Components Barnes (6), Cloude (3), Freeman (2),
Freeman-Durden (3), Krogager (3),
Vanzyl (3), Yang (7), Yamaguchi (7),
Mcsm5 (6), Neuman (3), Tsvm (16)
Total 107

of the full connection layer located before the softmax layer,
respectively.

The cross-entropy loss fully believes in the training labels,
and the predicted probability is directly calculated by the cross-
entropy loss as

C
L=-Y gclog(p) 3)
c=1

where ¢, is the preset truth probability of the cth category in the
training samples and is defined as

_J0 c#y
qc_{l C:y (4)

Due to the belief in the authenticity of the sample label, in
the update process of the DNN-based method, only when the
prediction label c is the same as the sample label y (i.e., c = y)
will the corresponding prediction probability contribute to the
loss calculation, but the possibility of sample label error is
ignored. In fact, the predicted probability p, of the training
sample labeled with y is a noisy label, and it will mislead the
robustness of the DNN-based classifier. Therefore, the softmax
loss strategy appears to be a fundamental algorithm for solving
the problem of training samples with noisy labels and has been
proven effective in selecting clean samples.

C. Probability-Aware Distribution

As shown in Fig. 1, the complexity of the training data can be
reflected by the DNN-based classifier according to the training
and validation curves, and the relevant network state in the
update may be hinted in the probability vector P. Therefore, this
article attempts to design a probability distribution to distinguish
noisy labels and clean labels.

Suppose there is a probability distribution mapping that can
separate the noisy samples from clean samples, and the mapping
relationship between the probability-aware distribution ¢ and
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probability vector Pis presented as
5 =O(P) )

where probability-aware function ©(-) is the mapping relation-
ship function, and § € [dmin, dmax] should be a bounded distribu-
tion to make a reasonable analysis of the corresponding sample.

In probability vector Pofone sample labeled the yth category,
the special predicted probability p,, is developed to calculate the
loss, and the other predicted probability hardly participates in
any calculations. Considering y may not be the real ground truth
because it may be a noisy label, the other predicted probability of
this training sample should be considered in the calculation. The
other predicted probability of this training sample is recorded as
Dey- According to the probability relationship between p,, and
Desy, Various probability-aware distributions can be proposed.

1) Label Probability-Aware Distribution: In the training up-
date of a DNN-based classifier, p, is a process increasing from
0 to I, while p.., decreases and approaches 0. Finally, the
predicted probability p, of one training sample y in the trained
DNN-based classifier is close to 1, and the probability p.., of
other labels in P is near 0. Therefore, the probability relationship
between p, and p., can be directly constructed by

C
S=py— Y, pe 6)

c=1,c#y

where § € [—1, 1]. In the training processing, 0 of clean samples
will easily approach 1 because these samples have more similar
characteristics. According to (2), 23:1 pe = land

C C
> pe=> pe—py=1-p, (7)
c=1

e=1,cy

Equation (6) can be revised as
d=2-p,— L (8)

Although p., is implemented to calculate the probability
distribution, (8) does not make detailed distinctions on other
category attributes of the corresponding sample.

2) Distinguishable Probability-Aware Distribution: Actu-
ally, another predicted probability needs to be taken into account
in the predicted probability vector P, i.e., the maximum pre-
dicted probability p,,,. Most clear samples have common char-
acteristics that are easily extracted by the DNN-based classifier,
so the label predicted probability p, is usually the maximum
predicted probability p,,, i.e., y = m. However, the characteris-
tics of noisy samples are considered to be difficult to understand,
and their predicted probabilities are easily mixed with p,,. To
distinguish those predicted probabilities, p,, is defined as the
maximum probability other than p, in P, and the distinguishable
probability distribution is defined as

0= Py — Pm )

where ¢ € [—1,1]. For example, the output probability vector
of softmax is {0.01, 0.02, 0.3, 0.07, 0.6}, if the corresponding
training label is y = 5, the distinguishable probability should be
0 = 0.3 because of p, = 0.6 and p,,, = 0.3, if the corresponding
training label is y = 3, the distinguishable probability should
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Fig. 3. Distinguishable probability-aware distribution of VGGNet-8 with a
30% noise label ratio with Flevoland I.

be § = —0.3 because of p, = 0.3 and p,,, = 0.6. If y is a clear
label, but the sample characteristics are not extracted in the initial
update stage, it can easily be considered a noise sample. To avoid
this issue, the predicted probabilities in P are sorted, and the
largest probability p,,; and the second-largest probability p,,2
are considered to be more easily confused with p,. Then, (9)
should be revised as

§ = (py — Pm1) + (Py — Pm2) = 2py — (Pm1 + Pm2) (10)

where the range of § is still [—1, 1] because of p,,1 + P2 < 1.

Based on the classification results of Fig. 1, the VGGNet-
based PolSAR classification method with a 30% noisy label
ratio of training samples can be expressed by the distinguishable
probability-aware distribution, as shown in Fig. 3. The vertical
axis represents the statistics of &, which is a percentage of
the total number of training samples. Obviously, the universal
distinction of the sample features in each category is easily
captured in the initial training stage of the network. Therefore,
most of the samples with § ~ 1 are clean samples, while ¢
of the noisy label is generally close to —1. As the number of
epochs increases, the features that are not easy to distinguish are
gradually extracted by the neural network. However, the features
of the noise samples are also learned by the neural network,
resulting in overfitting of the DNN-based model.

D. Probability Statistic Distribution

Considering Sections III-B and III-C, a sample grading strat-
egy is designed to clean the noisy labels. First, § is considered an
independent variable of the probability-aware distribution, and
its probability density function f(§) is expressed as

+o0 Gmin

F(8) = F(5)ds = FO)ds =1 11

Omax

and when § = Jj,, the cumulative distribution function F'(dy,) is
expressed by

Ok
F((Sk) = f(&)dé, o € [5min7 6max]~

6min

12)
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According to the analysis in Section III-C, the noise samples
can be distinguished from the clean samples by d;. With the
increase in the number of epochs in the training process, d; can
slowly changes its constraint value (from ¢y, t0 dpmax ) to suppress
the interference of separated noise samples. Due to the limitation
of the number of training samples, the probability-aware variable
f(9) can be equally discretized into N bins, and suppose that
6, locates in nth bin

(7 —1)(6max — Omin) 1(Omax — Omin)
571 5min7
& N * N
+0min)y, n€{l,2,...,N} (13)
The proportion of training samples in the nth bin is
(n)(émdx Smin) +Gmin
AF(5,) = f(9)do
("Lfl)((sln\lfax*ﬂ‘min)+5mi“
n(élna)}(\]iénlin) +6min
~ Jim > Af(i) (14)
PO —Snig) | s
~ min

where A f (%) is the proportion of training samples with 6 = 4;
thus, the cumulative distribution function F'(4,,) is obtained by

= En: AF (8
i=1

To improve the computational efficiency, N is set to 100 in
this article. According to (10), 6ax = 1 and 0, = —1. Further-
more, one minibatch is considered to reduce the stabilization of
sample selection because of the variability of the loss values in
one epoch and the demand for calculation. To avoid increasing
the computational burden of computing § frequently, J is set as a
global variable and stored in memory. As the number of updates
increases in one epoch, ¢ is constantly accumulated. According
to the probability-aware distribution d, the softmax-loss strategy
can be formulated.

as)

E. Sample Grading Strategy for a Given Noise Ratio

As shown in Fig. 3, the clean samples are more concentrated
around O, in the probability-aware distribution. This trend
becomes more apparent with the increase in the number of
epochs. If the probability-aware distribution § close to dyy 1S
considered noisy samples, the ideal sample grading strategy
should concentrate the noise samples in the back part of the
probability-aware distribution diagram, while the clean samples
are distributed in the front of the probability-aware distribution
diagram so that the noise samples and the clean samples are
separated.

Suppose that s namely, the probability-aware threshold value,
is a threshold for distinguishing between noisy samples and
clean samples, and corresponds to the zth bin. § is calculated
by
(6max -

6min) + 6min- (]6)

=] w
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Algorithm 1: The Probability-Aware Sample Grading Strat-
egy (PASGS) for a Given Noise Ratio.
Require: the PolSAR samples D, DNN-based network, the
initialize wight W of networks, Tjnaa. 7
Ensure: the updated wight W

1: get mini-batch samples D from D;
2: calculate softmax and output the probability vector P;
3: if end of one epoch then
4: initialize probability-aware distribution d;
5: else
6: cumulative probability-aware distribution J;
7: endif
8: ifT < T,,,, then
9: calculate & using Function (18) and update w;
10: else
1:  F)=r
12: calculate & and update w;
13: endif
14: calculate loss £ and calculate the gradient

G+ = V(w3 g log(pe)
15: get the updated wight W

Given the proportion 7 of noisy labels, dpoise Of n0isy labels
should meet

5n0ise S 8\ S 5max - 7—((Smax - 5min) (17)

and F'(dnoise) < 7. Since the DNN-based classifiers do not have
the ability to classify samples correctly at the beginning of the
training process, I’ (S) should be 0 and & & Spiy. As the number
of epochs increases, the noise samples are gradually separated
from training samples and finally reach the condition of F' (3\) ~
7. If the network can completely distinguish the noisy labels
after T}, iterations, the dynamic drop rate F(g) can be set to
distinguish noisy samples

F()=r- Te€{0,1,2,.... T} (I8)

Tmax ’
where T is the number of training epochs. Since N is not an
infinite value in actual calculations, it is not easy to find an 2th bin
to satisfy (18) Therefore, the upper limit value 5 satisfying the
condition F’ (6 )< T- TL is selected as the constraint threshold.
Therefore, the softmax loss strategy can be formulated as

L=-w Z gc log(pe)
c=1

where w is a weight adjustment matrix for each training sample
in one minibatch and is defined as

1 s>v

0 o<
In addition, F' (3\) will be identical to 7 when the number
of network updates is greater than Tp,,«. Therefore, the overall
flowchart of sample grading with the softmax loss strategy for a

given noise ratio, namely, the probability-aware sample grading
strategy (PASGS), can be designed as shown in Algorithm 1.

19)

(20)
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FE Sample Grading Strategy Without Noise Ratio

Generally, the noisy label ratio is hard to obtain due to the lack
of information on the training samples in actual applications.
Although the noisy label ratio can be inferred by the validation
set [45], the inferred rate cannot accurately reflect the noisy label
ratio of the training samples. Therefore, a method independent
of the noise sample proportion is more suitable in practical
applications.

In the absence of a given noise ratio, two problems need to be
addressed: 1) what is the reference standard of S; and 2) how to
evaluate the noise ratio. N

1) Reference Standard of : In the ideal method, the noise
samples should be separated from clean samples. The maximum
predicted probability p,,, of the noisy label is far greater than the
predicted label probability p,. This means the sample should
be a noise sample when § — O, the sample should be a
clean sample when § — dy, and the sample should be a hard
recognition sample when J is near % Intuitively, from
Fig. 3, the proportion of clean samples, in the case of § < 0,
is continuously decreasing with the increase in the number of
network updates. Therefore, the sample grading strategy without
a noise ratio can be designed with the ideal threshold value
5 — Cuntone)

2

Similarly, suppose that the network can completely distin-

guish the noisy label after 7, iterations; the dynamic drop rate

~

F(§) can be set to distinguish noisy samples

2(Smin

5max - 5min

Te{0,1,.... T} (1)

However, the estimated threshold value § = cannot
be completely trusted since the DNN-based method can even-
tually memorize incorrect labels [46]. The ideal approach is to
clean the training samples further using a noise ratio.

2) Evaluate the Noise Ratio: Theoretically, the probability-
aware distribution § of noisy samples and clean samples should
be close to 0y and dpax, but it cannot be completely proved
that the samples are clean samples when 5> M and the

(6min +5max )
2

samples are noisy samples when 5 < M after T' = Thax
because T}, is also an inference value. Therefore, an appropri-
ate method needs to be developed to evaluate the training level
of the network.

Suppose that only dpeise Of the noisy labels is considered and
the number of noise samples is Kise; the average Soise O NOISE
samples can be calculated as

Knoise

- 1
§n0ise = E[(Snoise] = K Z 6noise,i-
noise i=1

(22)

Similarly, the average Octear OF the clear samples is calculated
as

1 Kjear

5clear = E[(Sclear] = K]
clear

(23)

6clear,i .
i=1
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Algorithm 2: The Automatic Probability-Aware Sample
Grading Strategy (Auto-PASGS) without Noise Ratio.
Require:the PolISAR samples D, DNN-based network, the
initialize wight W of networks, Tynaz
Ensure: the updated wight w

1:  get mini-batch samples D from D;
2: calculate softmax and output the probability vector P;
3: if end of one epoch then
4: initialize probability-aware distribution &;
5: else
6: cumulative probability-aware distribution &;
7: endif
8: ifT < T,,,. then
9: calculate & using Function (21) and update w;
10: else
11: calculate £ using Function (15);
12: if & < ¢, then
13: 5=0and update w;
14: else
15: calculate F'(§) and estimate 7;
16: calculate & using Function (18) and update w;
17: end if
18: end if
19: calculate the loss £ and gradient

G+ = V(—w ZCC:l qc IOg(pc))

-,

20: get the updated wight W;

The separation level of noise samples and clear samples can
be expressed as
f _ |Sclear - gnoise| (24)

5max - 5min
where £ € [0, 1]. However, £ cannot be obtained because it is
impossible to distinguish the respective distribution of clean
samples and noise samples in the probability-aware distribution.

Therefore, a hybrid evaluation index is defined as

_ 2500 [0 - Bt AF(S))

6max

£ (25)

- 6min
where £ indicates the concentration degree of the probability
distribution diagram. The greater the value of ¢ is, the more
concentrated the probability distribution value ¢ of the training
samples is at pax Or O, indicating the higher the degree
of discrimination between noise samples and clean samples.
When the hybrid evaluation index £ reaches a certain value &,
the probability-aware distribution is considered to be able to
distinguish noise samples from clean samples with § = %
as the boundary condition. Therefore, the noise ratio is evaluated
asT=F(0 < W). Finally, the noise-tolerant method can
be improved by the sample grading strategy with the noise ratio.
The automatic sample grading strategy without the noise ratio,
namely, Auto-PASGS, can be designed as in Algorithm 2.
Considering the noisy samples and clean samples have a large
distinction in the probability difference distribution diagram
after £ > ¢, the loss and backpropagation of the network are
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Fig. 4. Information of Pauli image and ground truth in Flevoland I. (a) Pauli
image. (b) Ground truth.
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TABLE II
INFORMATION OF TRAINING AND TEST SAMPLES IN FLEVOLAND I
No. Name Training Test No. Name Train Test

Samples | Samples Samples | Samples
1 Stembeans 271 6103 9 Rapeseed 316 6269
2 Peas 435 9111 10 Grass 555 12690
3 Forest 717 14944 11 Barley 337 7156
4 Lucerne 462 9477 12 Wheat 2 489 10591
5 Wheat 808 17283 13 Wheat 3 970 21300
6 Beet 428 10050 14 Water 620 13476
7 Photos 721 15292 15 Building 27 476
8 Bare soil 140 3078 Total - 7296 157296

mainly affected by the clean samples. However, § of some
uncertain samples will still be near 0, and clean samples will
increasingly be closer to 1 as the number of updates increases.
Due to the differentiability of noise samples, the samples with
0 < 0 are roughly considered noise samples to evaluate noise
ratio 7. Then, the dynamic threshold & can be inferred according
to F(6) = 7.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, two experiments are implemented to discuss
the effectiveness of the designed classification method. Two air-
borne PoISAR datasets are employed to conduct the experiments
and to validate the proposed classification scheme. In addition,
two CNNs are implemented to prove the applicability of the
proposed methodology.

A. Experimental Data

1) AIRSAR Data in Flevoland I: One L-band quad-
polarimetric SAR dataset was obtained by the NASA/JPL AIR-
SAR system in Flevoland in August 1989. The size of these data
is 750 x 1024 pixels, and 157 296 pixels are labeled into 15
different terrain types. The Pauli image and the ground truth are
shown in Fig. 4. The detailed information of the training and test
samples can be seen in Table II.

In the experiments, each sample is extracted into one cube
centered on the label, and the block size is set to 14 x 14.
Approximately 5% of pixels are randomly selected as training
samples, and the rest are used as test samples. In the training
samples, approximately 10%, 20%, and 30% of the training
labels are randomly labeled as noisy labels to interfere with the
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Fig.5. Information of Pauli image and ground truth in Flevoland II. (a) Pauli
image. (b) Ground truth.

TABLE III
INFORMATION OF TRAINING AND TEST SAMPLES IN FLEVOLAND II
No. Name Train Test No. Name Train Test
Samples | Samples Samples | Samples
1 Rapeseed 866 17621 8 Beans 63 1258
2 Potato 1691 32854 9 Wheat 5 120
3 Barley 823 16475 10 Beet 18 559
4 Maize 2002 40019 11 Grass 292 5800
5 Lucerne 114 2336 12 Oats 12 360
6 Peas 123 2409 13 Onions 9 247
7 Fruit 192 4156 Total - 6210 124214
TABLE IV

INFORMATION OF TRAINING AND TEST SAMPLES IN NETHERLAND DATASET

No. Name Training Samples | Test Samples
1 Flower bulb 1208 156855
2 Fruit 1244 161879
3 Grass 5711 748886
4 Maize 2113 268156
5 Miscellanea 2720 350675
6 Onion 4108 542516
7 Pea 680 85962
8 Potato 7854 1025700
9 Spring-wheat 529 71536
10 Sugar-bee 5110 661697
11 Winter-wheat 8123 1116549

Total - 40000 5190411

DNN-based classifier, and 0% means that the training samples
are clear.

2) AIRSAR Data in Flevoland II: The AIRSAR system ac-
quired another L-band quad-polarimetric SAR dataset in June
1991. The size of the image scene is 1024 x 1279 pixels with 13
different terrain types and 122 928 identified pixels. The Pauli
image and the ground truth are shown in Fig. 5. The detailed
information of training and test samples can be found in Table III.

In the experiment, approximately 5% of pixels are also ran-
domly selected as training samples, and each sample is cut into
one 14 x 14 cube centered on the label.

3) Temporal PolSAR Dataset in the Netherlands: Driven by
solving the actual problem, a set of temporal PolISAR datasets
are implemented to prove the practicability of our method.
The C-band temporal quad-polarimetric SAR datasets were
obtained by Radarsat-2 in the Netherlands from April 14, 2009,
to September 29, 2009 in the framework of AgriSAR 2009.
The size of these data is 5300 x 3100 pixels at 8 different
times, and 5 190 411 pixels are labeled into 11 different terrain
types are shown in Fig. 6. The detailed information of training
and test samples can be found in Table IV. In the experiment,
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Fig. 6. Information of Pauli Image and Ground Truth about the Temporal
PolSAR Datasets in the Netherlands.
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Fig. 7. Structure of VGGNet-8 and LeNet-5 for the PoISAR imagery classi-
fication in this article. (a) VGGNet-8. (b) LeNet-5.

approximately 0.77% of pixels are randomly selected as training
samples, and each sample is cut into one 14 x 14 cube centered
on the label.

B. DNN-Based Classification Method

To fully illustrate the effectiveness of our method, two DNN-
based methods are designed to implement PolSAR image classi-
fication, including VGGNet-8 and LeNet-5. Their structures are
shown in Fig. 7. In the experiments, Caffe [47] is implemented as
the basic framework of our DNN. In each classification method,
“SGD” is designed as the optimizer, the initialization learning
rate is set to 0.0001, and the batch size is set to 128.

Two classical noise-tolerant classification methods have also
been developed for comparative experiments, namely, Co-
teaching [41] and JOCOR [48]. In addition, the traditional
method without any noise-tolerant ability is referred to General.
In all experiments, Ti,ax is set to 30. In different classification
methods, we separately combine VGGNet-8 and LeNet-5 with
the general DNN-based method, Co-teaching, JOCOR, PASGS,
and Auto-PASGS. In noise-tolerant methods of Co-teaching, JO-
COR, and PASGS, the noise ratio in the training samples should
be preset, while Auto-PASGS does not need to set the noise
ratio in advance but rather automatically evaluates the noise
ratio of the training samples through changes in the probability
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TABLE V
CLASSIFICATION RESULTS OF FLEVOLAND I IN DIFFERENT METHODS WITH
DIFFERENT NOISE RATIOS (OA %, AA %, AND KAPPA)

. LeNets VGGNet-8
Ratio Method OA | AA | Kappa | OA | AA | Kappa
General 9053 | 987 | 0.9948 | 99.88 | 99.86 | 09986
Co-teaching | 99.74 | 99.59 | 0.9972 | 99.97 | 99.97 | 0.9996
0% JOCOR 99.65 | 98.95 | 09962 | 99.86 | 99.7 | 0.9985
PASGS 99.69 | 98.99 | 0.9966 | 99.94 | 999 | 09994
Auto-PASGS | 99.56 | 98.69 | 09952 | 99.92 | 99.68 | 0.9991
General 98.74 | 97.29 | 0.9863 | 97.06 | 9627 | 09679
Co-teaching | 96.89 | 96.1 | 0966 | 9669 | 96.02 | 09639
10% JOCOR 99.06 | 98.46 | 09897 | 98.69 | 98.26 | 0.9857
PASGS 99.65 | 98.28 | 0.9962 | 99.66 | 99.23 | 0.9963
Auto-PASGS | 99.15 | 97.79 | 09907 | 99.63 | 98.95 | 0.996

General 9498 | 94.64 | 09453 | 9331 | 92.69 | 0.9271
Co-teaching 94.93 91.22 | 0.9447 94.9 94.84 | 0.9444

20% JOCOR 962 | 9471 | 0958 | 97.34 | 9598 | 0971
PASGS 99.54 | 984 | 0995 | 9954 | 98.42 | 0.995
Auto-PASGS | 9852 | 97.04 | 09839 | 98.73 | 9825 | 0.9861
General 9220 | 91.46 | 09161 | S7 | 86.74 | 0.8585
Co-teaching | 93.25 | §748 | 09263 | 936 | 945 | 09301
30% JOCOR 93.39 | 91.83 | 0928 | 95.02 | 94.82 | 0.9457
PASGS 99.24 | 98.07 | 09917 | 99.42 | 99.13 | 0.9936
Auto-PASGS | 98.17 | 96.53 | 09801 | 97.88 | 97.65 | 0.9769

difference distribution diagram in the training process. In each
method, the maximum epoch number is set to 400. Moreover,
the average accuracy (AA), overall accuracy (OA), and kappa
coefficient are calculated to evaluate the performance of different
methods.

C. Analysis of Antinoise Performance

Two datasets in Flevoland are designed to evaluate VGGNet-8
and LeNet-5 for demonstrating the effectiveness of our proposed
method. In the training samples, approximately 10%, 20%, and
30% of the training labels are also randomly labeled as noisy
labels.

1) Results and Analysis of Flevoland I Data: In the first
dataset, the number of samples can be considered balanced.
The sample size of each category is amenable to the classifier
because the design of the classifier does not need to account
for the problem of sample balance. The classification results are
shown in Table V.

In the clear training samples, OA of different classifiers can
reach more than 99%, AA can reach more than 98%, and
the kappa coefficient can reach more than 0.98. Compared
with the results of LeNet-5 with clear samples, VGGNet-8 has
better classification performance in each classification method.
However, with the continuous increase of the noise ratio, the
classification accuracy of the conventional classifiers has de-
creased significantly with the General method in LeNet-5 and
VGGNet-8. The classification performance of VGGNet-8 has
decreased more obviously than that of LeNet-5 because the
inclusion of noise labels in training samples makes the deep
network model more challenging to be trained. Although both
Co-teaching and JOCOR can distinguish the noise samples, their
influence on the classification performance of the classifier is
not ideal. The OA of the classifier combined with Co-teaching
and JOCOR is better than that of general classifiers, but the
downward trend of the classification accuracy does not seem to
stop. In addition, the AA of Co-teaching and JOCOR with LeNet
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Fig. 8. Classification Accuracy with LeNet-5 and VGGNet-8 in Different

Noise Rate. (a) Validation accuracy of LeNet-5 with different noise rate.
(b) Validation accuracy of VGGNet-8 with different noise rate.

has no advantage compared to the general method, and even the
AA of Co-teaching is lower than that of the general method. By
contrast, the classification performance of the classifiers com-
bined with PASGS and Auto-PASGS does not decrease signif-
icantly. Although the proportion of the noise ratio is constantly
increasing, the OA of the combination of PASGS can always
remain above 99%. Although the classification performance of
the classifiers combined with Auto-PASGS is slightly lower than
PASGS, this method still has significant advantages compared
with other methods.

To track the antinoise performance of different models, more
experiments with different noise rates are implemented, rang-
ing from 0% to 70% with every 5% interval. The validation
accuracy of different methods can be plotted, as shown in
Fig. 8. With the increase of the noise rate, the uncertainty of
OA in verification samples increases in the general method,
which can be concluded from Figs. 1 and 8. At the same time,
the classification performance of Co-teaching and JOCOR also
gradually decreased. Nevertheless, the accuracy of PASGS and
Auto-PASGS isrelatively stable. Especially, the overall accuracy
of Auto-PASGS in LeNet-5 is over 97%.

In detail, the probability difference diagrams of the combi-
nation methods in LeNet-5, VGGNet-8, and PASGS, and Auto-
PASGS in the training process with the training samples that
contained 30% noisy labels are presented in Fig. 9. Compared
with the probability difference diagram of the VGGNet-based
general classifier in Fig. 3, the methods combined with PASGS
and Auto-PASGS can clearly distinguish noise samples and
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TABLE VI
CLASSIFICATION RESULTS OF FLEVOLAND II IN DIFFERENT METHODS WITH
DIFFERENT NOISE RATIOS (OA %, AA %, AND KAPPA)

. LeNet s VGGNet 8
Ratio Method OA | AA [ Kappa | OA | AA | Kappa
General 9979 | 98.18 | 0.9974 | 99.77 | 99.63 | 09971
Co-teaching | 99.8 | 08.87 | 0.0974 | 99.93 | 99.9 | 0.9991

0% JOCOR 99.83 | 99.77 | 0.9978 | 99.91 | 99.85 | 0.9989
PASGS 99.75 | 9493 | 0.9968 | 99.77 | 99.63 | 09971
Auo-PASGS | 99.6 | 9596 | 0.9949 | 99.72 | 99.49 | 0.9965

General 98.18 | 8031 | 0.9768 | 98.18 | 8031 | 0.9768
Co-teaching | 9839 | 94.12 | 0.0795 | 98.16 | 95.68 | 09763

10% JOCOR 97.68 | 9524 | 0.9705 | 97.55 | 94.08 | 0.9689
PASGS 99.48 | 9376 | 0.9934 | 99.66 | 952 | 0.9957
Auo-PASGS | 99.59 | 9539 | 09948 | 99.61 | 95.82 | 0.995

General 9658 | 79.11 | 0.9565 | 98.13 | 8031 | 0.9768
Co-teaching | 97.07 | §7.74 | 09628 | 97.18 | 86.59 | 0.9642

20% JOCOR 9573 | 87.04 | 09458 | 9524 | 8565 | 0.9397
PASGS 992 | 822 | 09898 | 99.54 | 93.54 | 0.9941
Auo-PASGS | 99.51 | 89.46 | 0.9937 | 99.61 | 90.89 | 0.9951

General 95.17 | 69.09 | 0.9387 | 80.66 | 69.05 | 0.7615
Co-teaching | 95.09 | 7659 | 09375 | 9451 | 79.05 | 09305

30% JOCOR 9371 | 8074 | 0.9206 | 9339 | 78.51 | 0.9166
PASGS 98.89 | 85.11 | 0.9858 | 99.11 | 89.8 | 0.9887
Auto-PASGS | 9853 | 81.02 | 09812 | 99.53 | 93.68 | 0.994

clear samples. This trend becomes increasingly evident with
the increase in updating times. The noise samples and the clear
samples are wholly separated in PASGS when epoch=100, and
some samples are still mixed in Auto-PASGS, but the effect
of this phenomenon on classification accuracy is weak. As
the network continues to be trained, the probability difference
diagrams of clear samples are closer to 1. In comparison, the
probability difference diagrams of noise samples are closer to
—1, which we expect to obtain in Sections III-E and III-F.

2) Results and Analysis of Flevoland Il Data: Different with
respect to the first dataset, Flevoland II dataset intensifies the
imbalance of training samples, especially the Wheat labeled as
9th category only has five training samples, while Maize labeled
as 4th category has 2002 training samples. The unbalance of the
training samples will affect the discriminating ability of clas-
sifier. The classification results with 10 different classification
methods can be shown in Table VL.

In the clear training samples, i.e., the noise ratio is 0%, the
classification performance of VGGNet-8 is better than that of
LeNet-5. After adding the noisy labels, the overall accuracy of
LeNet-5 is higher than that of VGGNet-8, but this does not
mean that LeNet-5 is better than VGGNet-8 in the classification
performance because VGGNet-8 has higher AA accuracy than
LeNet, which indicates that VGGNet-8 is more suitable than
LeNet-5 to deal with the classification problem of unbalanced
training samples. On the other hand, the classification accuracy
of cooperation networks with two-path branches in Co-teaching
and JOCOR is higher than that of the one-path network in
General, PASGS, and Auto-PASGS.

After adding the noisy labels to the training samples, the
overall classification results of Co-teaching are better than those
of JOCOR but not as good as the proposed methods, i.e., PASGS
and Auto-PASGS. In addition, the classification performance of
Auto-PASGS is better than other methods, which indicates that
the given noise ratio is not better than the autonoise ratio method
in the imbalance of training samples.
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Fig. 9.

D. Hypothetical Experiments in Different Noise Label Types

Considering the diversity of noise labels in PoISAR image
classification, three hypothetical experiments of different noise
distribution are implemented to prove the effectiveness of our
methods.

1) Asymmetric Noisy Labels in Similar Areas: The first hy-
pothetical experiment is that in the fine-grained PolSAR clas-
sification, two similar categories are confused by human er-
rors. Based on Flevoland I, one area of Wheat-2 is mislabeled
into Wheat-3, and the mislabeled labels accounted for around
14.77% of Wheat-2 samples and 0.99% of total samples, as
shown in Fig. 10. In the asymmetric noise labels, 5% samples
of the mislabeled map are selected to train network, and the real
ground truth is used to test the performance. The classification
results are shown in Table VII.

From the classification results, the classification accuracy of
Wheat-2 is reduced in the general method, Co-teaching, and
JOCOR. Their classification accuracy of OA dropped from 99%
in Table V to around 98% in Table VII, mostly because the
classification ability of Wheat-2 declined. The noise labels have

0
4 (epoch=100)

5 (epoch=200)

Probability-aware distribution diagram by the proposed Softmax-Loss strategies with training samples contained 30% noisy labels.

Fig. 10.
(b) Noisy labels.

TABLE VII
CLASSIFICATION RESULTS OF ONE AREA OF WHEAT-2 MISLABELED TO
‘WHEAT-3 (OA %, AA %, AND KAPPA)

One area of Wheat-2 mislabeled as Wheat-3. (a) Pauli image.

Method LeNet-5 VGGNet-8
OA AA Kappa OA AA Kappa
General 98.88 | 98.08 | 0.9878 | 98.81 | 98.54 | 0.987
Co-teaching | 98.59 | 98.03 | 0.9846 | 98.94 | 98.83 | 0.9884
JOCOR 98.58 | 98.54 | 0.9845 | 98.94 | 98.73 | 0.9884
PASGS 99.47 | 98.76 | 0.9942 | 99.19 | 98.99 | 0.9912
Auto-PASGS | 99.27 | 98.57 | 0.9921 | 99.14 | 98.93 | 0.9906
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Fig. 11.  Symmetric noise labels of Wheat-2 and Wheat-3. (a) Pauli image.
(b) Noisy labels.

TABLE VIII
CLASSIFICATION RESULTS OF THE SYMMETRIC NOISE LABELS OF WHEAT-2
AND WHEAT-3 (OA %, AA %, AND KAPPA)

Method LeNet-5 VGGNet-8
OA AA Kappa OA AA Kappa
General 97.34 | 97.08 | 0.9709 | 96.87 | 97.6 | 0.9658
Co-teaching | 97.05 | 96.69 | 0.9678 | 97.07 | 97.46 | 0.968
JOCOR 96.72 | 97.16 | 0.9642 | 96.63 | 91.25 | 0.9632
PASGS 98.05 | 97.58 | 0.9787 | 97.69 | 97.86 | 0.9748
Auto-PASGS | 98.11 | 97.44 | 09793 | 97.37 | 97.77 | 0.9713
TABLE IX

CLASSIFICATION RESULTS OF ONE AREA OF WHEAT-2 IS MISLABELED TO
WHEAT-3 (OA %, AA %, AND KAPPA)

Method LeNet-5 VGGNet-8
OA AA Kappa OA AA Kappa
General 98.75 | 97.31 | 0.9864 | 98.44 | 98.57 | 0.983
Co-teaching 982 | 97.67 | 0.9804 | 98.55 | 98.42 | 0.9841
JOCOR 98.2 | 98.06 | 0.9804 | 98.51 98.2 | 0.9838
PASGS 99 98.04 | 0.9891 | 99.36 | 99.26 | 0.993
Auto-PASGS | 99.12 | 98.37 | 0.9904 | 99.38 | 99.24 | 0.9932

less effect on Wheat-3 because the absence of noise labels causes
some Wheat-3 to be classified as Wheat-2. In LeNet-5, AA of
Co-teaching and JOCOR is lower than that of General, but OA
of JOCOR is better than that of General. In VGGNet-8, the
classification accuracy of Co-teaching and JOCOR is better than
that of General in the three classification performance indicators.
In terms of OA, AA, and Kappa in LeNet-5 and VGGNet-8, the
classification accuracy of PASGS and Auto-PASGS are superior
to that of other compared methods.

2) Symmetric Noisy Labels in Similar Areas: The symmetric
noisy labels in the similar area mean that some labels of Wheat-2
are mislabeled as Wheat-3, and some labels of Wheat-3 are also
mislabeled as Wheat-2, which is shown in Fig. 11. In the noisy
ground truth, 14.77% samples of Wheat-2 are labeled as Wheat-
3, while 14.65% samples of Wheat-3 are labeled as Wheat-2,
therefore, the mislabeled labels accounted for about 2.98% of
total samples. 5% training samples of the mislabeled map are
randomly selected to realize the classification, and the results
are shown in Table VIII.

Compared with the results in Table IX, the classification
accuracy of different methods in Table VIII is decreased, but
our proposed method still has advantages. Specifically, the
classification accuracy of PASGS and Auto-PASGS is better
than that of General, Co-teaching, and JOCOR in both LeNet-5
and VGGNet-8 methods, and even the classification accuracy of
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Fig. 12. Noisy labels at edge area. (a) Pauli image. (b) Noisy labels.

Fig. 13.  Unsupervised classification results from H/A/«-Wishart and the
matched noisy labels. (a) Unsupervised classification labels. (b) The matched
noisy labels.

Co-teaching and JOCOR is lower than that of the conventional
method. In addition, the classification accuracy of Auto-PASGS
in OA, AA, and Kappa is similar to that of PASGS, which means
the proposed noise-tolerant network without artificial setting of
noise ratio is feasible.

3) Noisy Labels at Edge Areas: The indistinguishable edge
mixing label is another kind of noise label in scene classification
and segmentation of PoISAR image. The noisy labels at the edge
of one area can be divided into types: one is that the object is
labeled into another class; The other is that the edge of one area
does not belong to any labeled classes, as shown in Fig. 12. In
the above-mixed edge scene, some irrelevant labels that may
not be related to the classification types are also added to the
ground truth, while the following mixed edge only considers the
edge blends of marked types. The mislabeled labels accounted
for 1.53% of total samples. Under 5% training samples from the
mislabeled ground truth, the classification results are shown in
Table IX.

Obviously, the classification accuracy of Co-teaching, JO-
COR, PASGS, and Auto-PASGS in VGGNet-8 is more stable
than that in LeNet-5, comparing the classification results in
Tables V and IX. In LeNet-5, General has better OA performance
disregarding PASGS and Auto-PASGS, but its AA is lower
than that of Co-teaching and JOCOR. In VGGNet-8, OA, AA,
and Kappa of Co-teaching and JOCOR have been improved
compared with LeNet-5. Although OA and Kappa of General
are decreased slightly, AA has been improved by 1.26%. In all
classification results, Auto-PASGS for automatic recognition
of noise proportions the optimal classification performance,
PASGS is slightly lower than the former.
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Fig. 14.

Classification maps of different methods in the H/A/a-Wishart result from Flevoland I. (a) Ground truth. (b) The corrected labels. (c) LeNet-5

general. (d) LeNet-5, co-teaching. (e) LeNet-5, JOCOR. (f) LeNet-5 PASGS. (g) LeNet-5 auto-PASGS. (h) VGGNet-8, general. (i) VGGNet-8, co-teaching.

(j) VGGNet-8, JOCOR. (k) VGGNet-8 PASGS. (1) VGGNet-8, auto PASGS.

E. Applications in Different Noise Label Types

Considering the practicability in PoISAR image classifica-
tion, two sets of practical applications are implemented to prove
the effectiveness of our methods.

1) Noisy Labels With Unsupervised Classification Results:
As one of the automatic labeling technologies, unsupervised
classification is another important application in POISAR image.
More complicated situations of noise label will appear in the
unsupervised classification results, limiting the performance of
unsupervised classification. Although the deep learning method
can reach a better-refined classification result, the limited train-
ing samples restrict its classifier performance. In this article,
the unsupervised classification results can be regarded as a
kind of the noisy ground truth for noise-tolerant classification
methods. Based on the classical unsupervised classification
method: H/A/a-Wishart [49], the unsupervised classification
labels can be obtained with 16 categories in Flevoland I dataset.
To qualitatively evaluate the performance of each method, the
16 labels are matched with 15 refined categories in the manually
labeled ground truth, as shown in Fig. 13.

The unsupervised classification result is obtained from Pol-
SARPRO [50], the multilook size is set to 3 x 3, and the
maximum of iteration with the Wishart method is set to 10.
In the matching rule, the label with the maximum number
of unsupervised labels in one category of the manual label
is regarded as the modified label and others are regarded as
noisy labels. After matching each category, the noisy labels
account for 15.90% of whole labeled labels, and each class has

TABLE X
CLASSIFICATION RESULTS WITH THE MATCHED UNSUPERVISED LABELS (OA
%, AA %, AND KAPPA)

Method LeNet-5 VGGNet-8
OA AA Kappa OA AA Kappa
General 83.77 | 84.44 | 0.8223 | 85.62 | 86.08 | 0.8427
Co-teaching | 82.92 | 74.08 | 0.8304 | 85.78 | 81.33 | 0.8443
JOCOR 86.23 | 81.88 | 0.8128 | 84.49 | 80.79 | 0.8304
PASGS 87.77 | 88.07 | 0.8662 | 87.06 | 86.98 | 0.8585
Auto-PASGS | 87.48 87.5 | 0.8631 | 87.28 | 87.84 | 0.8609

a different proportion of noise labels. Finally, 5% samples of
the noisy labels are randomly selected to realize the supervised
classification, and there are around 84.10% clean labels in the
training samples. The classification results are shown in Table X.

The overall classification process can be considered unsu-
pervised except they need to preset noise rate in Co-teaching,
JOCOR, and PASGS. In LeNet-5, the classification results of
General and Co-teaching get worse because their OAs are lower
than 84.10%. AA of JOCOR is improved by 2.13% compared
with 84.10%, but its AA is worse than General. PASGS and
Auto-PASGS are more superior to other methods, no matter in
OA, AA, or Kappa. In VGGNet-8, the classification accuracy
of all methods has been improved in terms of AA, but the
classification performance of Co-teaching and JOCOR is not
better than that General. Compared with General, AA, OA,
and Kappa of PASGS and Auto-PASGS can reach more than
87.06%, 86.98%, and 0.8585, respectively, and there is little
difference between PASGS and Auto-PASGS in classification
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TABLE XI
CLASSIFICATION RESULTS OF TEMPORAL POLSAR IMAGES IN
THE NETHERLAND (OA %, AA %, AND KAPPA)

Class LeNet-5 VGGNet-8
General Auto-PASGS General Auto-PASGS

1 85.6 89.27 91.63 92.4
2 89.64 88.32 92.19 93.23
3 89.57 90.04 93.01 93.62
4 85.14 81.69 91.08 92.15
5 75.17 77.26 84.34 85.62
6 89.74 90.65 93.74 94.32
7 71.5 78.42 86.87 88.35
8 90.78 94.68 95.93 96.83
9 31.02 21.12 69 64.23
10 95.25 94.27 95.32 95.39
11 96.6 96.54 94.89 95.65
OA 89.66 90.47 93.18 93.84
AA 81.82 82.02 89.82 90.16
kappa 0.8789 0.8883 0.9204 0.928

performance. The complete classification maps of the classi-
fication methods are shown in Fig. 14. The noise labels with
unsupervised classification results are not evenly distributed in
each category, and they are more complicated than those of the
hypothesis. When there are a lot of noise labels, LeNet-5 in
General is more stable than VGGNet-8 from Tables V and
Table VI, which is similar as the classification maps in Fig. 14
of LeNet-5 of PASGS and Auto-PASGS are better than those of
VGGNet-8.

2) Noisy Labels in Temporal PolSAR Data: Considering that
PolSAR images at different times share one ground truth, there
may be some errors after coregistration, resulting in edge mis-
match of samples. Due to sequence-based deep learning clas-
sifiers being more sensitive to noise samples because of lack
of spatial information, four network models, namely Simple
RNN, LSTM, GRU, and CNN-1D, are used to test the impact of
temporal PoISAR samples on the networks, as shown in Fig. 15.
“SGD” is designed as the optimizer, the initialization learning
rate is set to 0.0001, “dropout” is set to 0.2, and batch-size
is set to 16. In addition, the multilook with 7 x 7 windows is
implemented.

Obviously, the overfitting is easy to occur when there are noise
samples, regardless of the network structure, and the training
curve can be decomposed into three stages similar to Fig. 1.
Even in the CNN-1D method, overfitting has already appeared
when the epoch is less than 15. Since the noise rate in the training

201

1 51 101 151
Epoch
——Simple RNN ——LSTM

201

GRU CNN-1D

Training and validation accuracy curves of different sequence methods on the temporal PolSAR images.

o
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Fig. 16. Classification maps of different methods in the multi-temporal
SAR dataset. (a) LeNet-5 General, 88.66% (b) LeNet-5 Auto-PASGS, 90.47%
(c) VGGNet-8 general, 93.18%. (d) VGGNet-8 Auto-PASGS, 93.84%.

samples is not known, the noise-tolerant method based on arti-
ficial noise proportion (Co-teaching, JOCOR, and PASGS) is
not suitable for actual temporal PolSAR classification. Based
on the DNN-based methods (i.e., VGGNet-8 and LeNet-5),
Auto-PASGS is combined with them to realize the temporal
PolSAR image classification, as shown in Table XI. The com-
plete classification maps of the four classification methods are
shown in Fig. 16. In multitemporal datasets, the complexity
of sample features is greatly increased, so the classification
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maps of LeNet-5 with shallow networks are worse than those of
VGGNet-8, but Auto-PASGS is superior to General.

Although the noise ratio can not be determined, the proposed
Auto-PASGS does help improve the classification accuracy of
OA, AA, and Kappa in LeNet-5 and VGGNet-8. In VGGNet-8,
the classification accuracy of most categories in Auto-PASGS
is better than that in General. Therefore, OA has been improved
by 0.56%, AA has been improved by 0.34%, and Kappa has
been improved by 0.0076 after using the Auto-PASGS method.
By contrast, the classification accuracy of LeNet-5 is not bet-
ter than that of VGGNet-8, and the classification accuracy of
some categories in Auto-PASGS is better than that in General.
Nevertheless, OA has been improved by 0.81%, AA has been
improved by 0.2%, Kappa has been improved by 0.0094 after
using the Auto-PASGS method.

V. CONCLUSION

In this article, we proposed a novel classification method for
PoISAR classification with noisy labels. First, the probability-
aware distribution is implemented to separate noisy labels from
training samples. Then, a softmax loss strategy is designed to
suppress the influence of the noise samples on DNN-based
classifiers according to the probability-aware distribution di-
agram. Two sample grading strategies, namely, PASGS and
Auto-PASGS, are developed to improve the classification per-
formance when the training samples contain noisy labels. The
former approach needs to set the noise ratio in advance and
can reach a classification result similar to the classification
accuracy with clear training samples. The latter approach does
not need any prior information of training samples and can also
obtain a superior classification accuracy. Finally, two PolSAR
datasets are employed to prove the effectiveness of our pro-
posed method with different noise ratios for labels. In addition,
three hypothetical noise scenarios are implemented based on
Flevoland I dataset, and two applications (i.e., unsupervised
labels and temporal PolSAR images) are realized to prove the
practicality of our proposed method. Two DNN-based classifiers
and two noise-tolerant methods are exploited to demonstrate the
effectiveness of our methods from different aspects.
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