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Abstract 

 
Drones are nowadays an air vehicle with many possible applications and with a 
huge field of development and research. This work deals, more specifically, 
with the delivery drones used for the distribution of packages to citizens. That 
is, they could be considered as a new way of distributing packages to the city. 
Today, this is seen as a hypothetical, because in order to achieve this, many 
points must be studied and new tools for their control and security must be 
developed. 
 
This work studies the field of predicting the trajectory of drones through 
Machine Learning and thus, providing a new point of view in the research and 
development of this new branch of aviation. 
 
The aim of this work is to predict, through Machine Learning, the trajectory of a 
drone in 4D based on the data collected in the test flights made by the different 
air operators participating in the CORUS-XUAM. The objective is to achieve 
results with sufficient precision to be able to project them valid in terms of air 
safety. 
 
To carry out this work, it has been necessary the data previously collected from 
the VLDs operated and the processing of them by means of the code made in 
Google Coolab. For this reason, different libraries have been needed, such as 
"Pandas", "Matplotlib", "Numpy" or "Geopandas", among others. Finally, a 
Machine Learning has been used to carry out the predictions. To do this, it has 
been necessary to decide which will be the best method used, in our case it 
has been seen that the most appropriate is the Regression model. 
 
Regarding the results, it has been confirmed that the chosen method has been 
correct, since the margins of error are quite low and acceptable and the 
accuracy of it could be considered good with a margin error of maximum 3 
minutes. 
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Resum 

 
Els drons són avui en dia un vehicle aeri amb moltes possibles aplicacions i 
amb un camp enorme de desenvolupament i investigació. En aquest treball es 
tracta més específicament dels drons utilitzats per la distribució de paquets als 
ciutadans. És a dir, se'ls podria considerar com una nova forma de repartir 
paquets a la ciutat. Avui en dia això es veu com un ideal, ja que per poder 
aconseguir-ho s'han d'estudiar molts punts i desenvolupar noves eines pel seu 
control i seguretat. 
 
En aquest treball s'estudia l'àmbit de la predicció de la trajectòria dels drons 
mitjançant una Machine Learning i d'aquesta manera, aportar un punt de vista 
nou en la investigació i desenvolupament d'aquesta nova branca de l'aviació. 
 
L'objectiu d'aquest treball és predir mitjançant una Machine Learning, la 
trajectòria d'un dron en 4 dimensions a partir de les dades recollides en els 
vols de prova fets pels diferents operadors aeris que participaven en el 
CORUS-XUAM. Es vol assolir uns resultats amb una precisió suficient per 
poder considerar-ho vàlid en termes de seguretat aèria. 
 
Per la realització d'aquest treball, s'ha necessitat les dades prèviament 
recollides als VLDs operats i el processament d'elles mitjançant el codi realitzat 
a Google Coolab. Per això, s'han necessitat diferents llibreries com són la 
llibreria "Pandas", "Matplotlib", "Numpy" o "Geopandas", entre d'altres. 
Finalment, s'ha utilitzat una Machine Learning per dur a terme les prediccions. 
Per fer-ho, ha fet falta decidir quin serà el mètode emprat, en el nostre cas s'ha 
pogut veure que el més adequat és el mètode de Regressió. 
 
Pel que fa als resultats, s'ha pogut confirmar que el mètode elegit ha estat 
encertat, ja que, els marges d'error són bastant baixos i acceptables i la 
precisió del mateix es podria considerar bona amb un marge màxim de 3 
minuts.  
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INTRODUCTION 
 
Among all the functions that a drone can perform stand out as most useful, 
searching survivors after a catastrophe or helping with scientific search. This 
type of vehicle has been revolutionary and very useful because of their level of 
safety and efficiency. Nowadays the biggest challenge for drones is to be 
integrated in the airspace with all the other aircrafts flying in the airspace today.  
 
To provide this integration, it is needed to implement the Urban Air Mobility 
(UAM). UAM is an ecosystem where different aerial vehicles coexist with the 
aim of transporting passengers or cargo. Above all, it wants to be implemented 
in urban and suburban environments. 
 
It is believed that in about 5 or 10 years this system could be implemented and 
it could have a great growth, so there could be about 23.000 UAM generating 
about €60 billion.  
 
In order to create this system, it is needed to test it in real life to study and 
improve it. That is why the CORUS-XUAM project was created, it has the 
objective of investigating how all air vehicles can coexist in the same airspace, 
maintaining safety. It is based on the execution of several very large-scale 
demonstrations where it is intended to test the passenger transport execution, 
the package delivery and also, the emergency response and surveillance. 
 
In this work, we focus on the test that took place in Spain, more specifically on 
Castelldefels’ beach. With this activity it was intended to emulate operations for 
transport people or packages with different drones’ operators flying at once. 
From these flights, the necessary data was extracted to carry out this work. 
 
More specifically, this work aims to confirm whether it is possible to predict the 
trajectory of a drone in 4D from machine learning, with a range of certainty 
sufficient for the flight to be safe. 
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1 CHAPTER 1. DRONES 

1.1 What is a drone? 

 
It is said that the word drone comes from the Middle English word “Drone” that 
means male bee. This is because of the sound that this animal makes, which 
resembles the sound made by a drone. Nowadays we define a drone as a 
Remotely Piloted Air System (RPAS). 
 
Drones have some restrictions when someone wants to fly them. Not everyone 
can fly a drone, as it must maintain the safety range. Drones can even kill 
people or destroy properties.  
Every country has different regulations for drones. EASA (European Union 
Aviation Safety Agency) is the body of the general administration that watches 
over a safety activity from civil aeronautics and establishes next minimum 
requirements to allow it to fly a drone [1]. 

● The operator has to be registered as such 
● Train as a pilot 
● Have the liability insurance 
● Consult the general rules of operation of drones depending on the drone 

that is going to be flying  
● Be aware of the air regulations of the place where the flight is going to be 

made.    
 
 

1.2 How drones fly  

 
Their movement is based on the sensors and LiDAR detectors that drones 
have. Drones use a system that calculates their movement taking into account 
the flight plan and the obstacles. In order to understand how drones work, it is 
important to be familiar with the components that took sides. The system that 
allows the drone to fly is the Unmanned Aerial System (UAS) which is controlled 
by the Ground Control Station (GCS). The GCS can be controlled by a user or 
via satellites and is responsible for controlling the packages sensors, the flight 
and some more. Data Links allows the drone to communicate with the ground 
controller, sending through them important information such as airspeed 
altitude, flight time, distance from the target and others. 
 
In order to know how drones fly, we have to understand how drones rise. 
Drones have rotors that push air down and that make the air push the rotor up. 
So, the faster the rotors roll, the greater the lift is. Once the drone is in the air, it 
can hover when the pushing force is counteracted by the gravitational force. 
Drone can go up by increasing the thrust until it will be higher than the 
gravitational force. Finally, if we want to make a descent, it is needed to 
decrease the rotor thrust until it is smaller than the gravitational force. Figure 1.1 
shows how forces are distributed in the drone. 
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Figure 1.1 Drone forces [2] 

 
 
The turning can be explained by the figure 1.2. As we can see red rotors are 
rotating counter clockwise and green rotators clockwise, that means that the 
angular momentum is null. If we want to turn the drone to one direction, we 
have to decrease the angular velocity of the rotor that rotates in the same 
direction we want to turn the drone. That means, if we want to turn the drone to 
the left, we will have to decrease the angular velocity of the rotor 2. We have to 
take into account that decreasing the angular velocity of the rotor 2 also did that 
the thrust of this rotor decreases and then the drone also goes down. In order to 
compensate for this, we have to decrease the spin of the same rotors, in this 
case, the 2 and 4, and increase the spin of the opposite rotors, in this case, the 
1 and 3.  
 
 

 
 

Figure 1.2 Drone rotors [3] 

 
 
Finally, we must explain how the drone goes forward, backward or sidewise. 
We can explain this together because it follows the same principle. In order to 
make this, we need something that pushes the drone to the wanted direction. In 
the figure 1.3 we can see how the drone must be placed in order to move the 
drone forwards.  To obtain this, we have 2 options. Decrease the push of the 
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rotors 1 and 2 or increase the push of the 3 and 4 rotors. The thrust force will 
compensate with the weight and then, the drone will not ascend or descent [3].  
 
 

 

Figure 1.3 Drone movement forces [3] 

 
 

1.3 Delivery drones  

 
One of the most required functionalities for a drone is to transport packages or 
passengers. Drones can revolutionise and improve the world with this 
functionality, because they could get to places where we couldn’t think to get 
there before and raise supplies to isolated villages or with very difficult access. 
Another function of the delivery drones is to distribute delivery packages and 
thereby reduce pollution, improve delivery time, or even reduce traffic in cities. 
 
When the VLDs flights were made, different types of delivery drones were used. 
OMAHA operators used the drones DJI M300 and DIJ M2AE, UTAH used also 
the DJI M300 and the DJI M600 Pro. SWORD used the S900 drone and JUNO 
used the DJI M300 RTK. 
 
 

1.4 Urban Air Mobility 

 
The Urban Air Mobility (UAM) is a concept that has the purpose of 
interconnecting people and goods of a city. This goal takes into account 
different factors such as technology, politics, infrastructure culture, etc. Through 
the UAM it is wanted to achieve a city with less congestion and more 
sustainable. The challenge of urban air mobility is to maintain safety on flights 
and drones while they increase in quantity, in addition to reducing flight time, 
reducing CO2 in cities and creating more sustainable and intelligent mobility [4]. 
 
The UAM is also a challenge for the U-Space in order to integrate drones in low 
level airspace. The UAM is intended to be an ecosystem placed in urban and 
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suburban environments where the automated aerial passenger and cargo 
services will be found [5]. 
 
It is expected to have UAM solutions with a good level of safety, efficiency and 
sustainability by 2025-2030 [6]. 
 
 

1.5 U-Space 

 
U-Space is a set of services that allows drones to fly safely. It is useful in order 
to manage air traffic from the processing of applications and authorizations for 
drones’ flights. Its goal is to completely integrate drones in the civil airspace. It 
is mandatory to incorporate drones in the air space to be able to achieve the 
delivery processes with drones, among other functions that are intended to be 
done with drones. According to [7] the main objective of the U-space is:  
 

Providing those services that are fundamental to the safe navigation of 
drones, as well as an interface that integrates manned aircraft, suppliers 
and relevant authorities 

 
In order to organise the U-Space in a proper way CONOPs (Concept of 
Operations) is designed by CORUS [7]. This is a protocol that manages the 
operation condition of a system. CONOPs define three different operational 
volumes X, Y and Z.  
The X volume is the first volume of the U-Space, and it is where the drone 
operator has to maintain a safe distance visually. The Y volume is the volume 
where the operator needs an approved plan to fly, because this space needs 
certain technical requirements. The last volume, the Z volume is where all the 
tactical services that need to be authorised are located. The VLDs made for this 
work would be found in the volumes Y and Z. 
 
 

1.5.1 Implementation phases of the U-Space 

 
The integration of the U-Space will be gradual and in order to make that, 4 
phases have been described. The first phase is called U1 and it is based on the 
technological identification of pilots and aeroplanes. In order to make it, 
geofencing must be provided to the operator, that means, the zones where the 
drone cannot cross. The U2 phase is based on the integration of a security 
service in a drone’s operation by using geofencing, digital management of flight 
plans, meteorological information, among others. The U3 phase is based on the 
development of dynamic geofencing, that means, a constant communication 
with the ATC. The last phase, U4 has the aim of offering an active 
communication system between all aircrafts [8]. 
The figure 1.4 shows the phases names and the scheduled years for the 
implementation. 
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Figure 1.4 U-Space roadmap [8]
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2 CHAPTER 2. MACHINE LEARNING 

2.1. What is a Machine Learning 

 
Machine Learning is a computer system that can learn through algorithms and 
models from experience, without explicit instructions or human interference. In 
other words, a Machine Learning is an Artificial Intelligence field that maintains 
the algorithms updated. Figure 2.1 shows the process of Machine Learning. 
 

  

Figure 2.1 Machine learning process [9] 

 
 
Machine Learning can be configured with different learning systems. The 
learning system is supervised when the training data you feed to the algorithm 
includes the desired solutions. It is understood as an unsupervised system if the 
training data is unlabelled. Reinforcement learning is defined as a model that 
learns from its actions [10]. 
 
The process of manipulating the data for the prediction and the use of the 
machine learning for our project is explained in detail in CHAPTER 5. 
METHODOLOGY. In general, the common steps that have to be followed when 
using Machine Learning are as follows. 
First, we have to manipulate the data, in order to create two different tables. 
The X table where is placed all the necessary data for the prediction, and the Y 
table where is placed the data we want to predict. Then, we have to split the 
data in two parts, the training data that commonly is the 80% of the total data 
and the test data that is the 20%. Training data is the data that the machine will 
use for discovering and learning patterns of the machine learning algorithm and 
then, predict our desired result. On the other hand, the test data is used to 
evaluate the progress and then make an adjustment or optimise the algorithm 
with the aim of achieving better results.  Finally, we have to train the data, then 
fit the model we want to use for our prediction and at last, make the prediction.  
 
Machine learning is nowadays used in the real world for speech recognition, 
chatbots, photo tagging on social media, self-driving cars, discovering data 
trends or even spotting suspicious transactions, among others. 
 
Artificial Intelligence (AI from now on) is a branch of computer science in which 
machines operate like human intelligence. Its objective is to make decisions and 
learn from them based on the information they collect. Through Machine 
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Learning, AI processes the data and learns about it, getting smarter on its own 
[13]. 
 
 

2.2. Machine Learning Algorithms 

 
When all the data is well structured in the prediction tables, it is useful to use a 
machine learning algorithm to train the models. Figure 2.2 shows all the 
possible algorithms, classified by their learning system and their model type. 
There are three types of learning systems which are explained in the previous 
section and four types of models that are described next.  

● Clustering that is based on categorising data into clusters. 
● Dimensionality reduction based on the reduction of the number of 

inputs. 
● Classification based on specifying the conditional probability 

distributions of the output variables given the input data.  
● Regression is based on the relation between one dependent variable 

which is the one that can be controlled and one or more independent 
variables which shows the changes. The objective of this model is to 
estimate a variable from the previous ones.  

 

 
 

Figure 2.2 Machine learning algorithms [11] 

 
 
In this work, we will only explain the algorithms that we used for the prediction. 
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● Linear Regression Model works with the linear relation between the 
input data. It is very useful to predict numerical values [12]. 

● Logistic Regression Model which estimates the data using two possible 
scenarios, 0 or 1. 

● Ridge Regression Model is like linear regression but with correlated 
data. 

● Bayesian Linear Regression is a variation of the linear regression but 
with inaccurate data 

● Elastic Net Regression Model which is the combination of the two 
variants of the linear regression, Ridge (explained before) and LASSO 
where the data is shrunk to a central point. 
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3 CHAPTER 3. VERY LARGE-SCALE 
DEMONSTRATION 

3.1 CORUS-XUAM project 

 
The CORUS-XUAM project is a two year very large-scale demonstration (VLD 
from here on) with the aim of studying how the services and solutions of U-
Space could help to incorporate Urban Air Mobility flight operations. Their 
objective is to obtain a safe, sustainable and efficient air space, where the 
electric vertical take-off and landing vehicles (eVTOL), unmanned aircraft 
systems (UAS) and other airspace users can coexist. The interaction between 
all these types of flight is intended to be made from digital data exchange 
provided by the U-Space services [5].   
 
It will be necessary for coordination between ATC, U-Space and drone pilots. In 
this project, VLDs will work on passenger transport, package delivery, 
emergency response and surveillance. 
 
The CORUS-XUAM project was created by a project consortium coordinated by 
EUROCONTROL and carried out in SESAR Joint Undertaking (SESAR JU) and 
Europe’s Horizon 2020 framework [14]. 
The first step in this project is to make an update of the U-Space CONOPs, 
integrating the UAM in the airspace and creating the new services U3 and U4 of 
the U-Space phases.  
 
CORUS-XUAM has the aim of carrying out six different VLDs in six different 
countries. Spain is one of these countries and this work is based on the VLD 
performed in Spain. 
 
The CORUS-XUAM project in Spain focused on the relation between UAM 
operators and the urban restrictions. It is intended to create a test of door-to-
door package delivery in Castelldefels, a city that is located within the CTR of 
Barcelona’s airport. The activity was carried out for 3 consecutive days and that 
we will name in all this work as days A, B and C. 
 
 

3.3 Operators 

 
In the demonstration, there were four different operators. The first operator is 
UTAH, this operator belongs to UAB university, and it was placed on UTAH 
vertiport which is located at the right of the flying area. The second operator is 
OMAHA which belongs to UPC university, and it was placed on OMAHA 
vertiport located to the right of UTAH. JUNO was the third operator and belongs 
to MARS, a security, drone service and cybersecurity consultancy. JUNO is 
placed on JUNO vertiport which is located next to OMAHA. Finally, SWORD is 
the operator that belongs to HEMAV, a technological and artificial intelligence 
company. SWORD is placed on SWORD vertiport which is located at the left of 
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the flying area. In front of all these vertiports, along the shore, there were all the 
delivery ports where the drones will do the delivery procedure. We can see in 
figure 3.1 a Google Earth scheme of the demonstration area layout. 
 
 

 
 

Figure 3.1 Demonstration area layout 

 
 

3.4 Delivery ports 

 
In all the demonstration area where the flights were performed, there were 13 
delivery ports numerically ordered from right to left. Every delivery port has its 
own coordinates that will help to correctly deliver the packages by the drone.  
 
 

3.5 Airspace Organization  

 
The demonstration took place in a reserved space in Castelldefels Beach. In 
this area the drones made their deliveries. Prior to the demonstration, it was 
established a maximum of two drones flying at the same time and it was 
mandatory to maintain a safety distance between them of, at least, 5 metres 
throughout the flight.  
 
In the demonstration, the pilot had to perform the take-off manually, and 
therefore, the data collected from the take-off did not follow the flight plan. In the 
same way it happened for the landing, so the landing and take-off data collected 
from the demonstration will not be useful for our prediction. 
 
Once the drones reached the airway, they followed the flight plan previously 
created and approved. The airways that drones follow are delimited vertically 
and horizontally. Drones had to reach the airways after the take-off at 30 
metres, then follow the airway and reach the delivery port point at 20 metres. At 
the delivery port drones did not leave any package or person, they only 
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simulated it by staying 10 seconds above the delivery port about 20 metres 
high. After that, the drone returns to the airway at 25 metres, raises its height to 
the height of the airway that will follow and follows it until it arrives at the landing 
point, and in it descends to the 25 metres. Finally, the landing process was 
manually carried out by the pilot. 
 
Focusing on the airways used by these drones, 4 airways were defined, 2 of 
them used for going from Est to West and the other 2 used for going from West 
to Est. These different airways have different heights at 30, 40, 70 and 80 
metres. Each of them was chosen according to the flight plan. 
 
 

3.6 VLD process  

 
Prior to performing VLD it is necessary to go through a few previous steps. 
The first step in order to design a VLD is to prepare a flight plan by the operator 
or operators who are going to do the VLD. The flight plan is a file where all the 
flight is defined. Normally, the flight plan is made in a KML language (explained 
in more detail in the section 4.2 File languages) and it contains all the flight 
information about each waypoint. It is useful to use the KML language in order 
to afterwards visualise the flight plan in Google Earth. Once the operator has 
done the flight plan, sends it to the U-Space who is going to review it 
thoroughly. The U-Space will transform the flight plan in a 4D trajectory to check 
if the chosen airways are not occupied. Finally, the U-Space will approve the 
flight plan if there is no conflict between the operators. Therefore, the operator 
will only fly its demonstration if it has been approved by U-Space. 
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4 CHAPTER 4. Tools 

4.1 Google Coolab  

 
At this point of the document, it’s important to talk about Google Collaboratory. 
Google Collaboratory (Colab from here on out) is the Drive tool used for this 
project. This tool allows you to program and run code in Python language with 
the advantages that it is free, online, doesn't need pre-configuration and 
multiple users can use it at the same time. Colab is also useful because as it is 
a Jupyter notebook, you can run each cell separately. Moreover, the documents 
can be previously uploaded in Drive and then can be used in the code. [15] 
Colab has a special tool that differentiates it from the others programming 
software, the possibility of adding a text cell where you can append some 
information and even images if it's desired.  
 
Python is an object-oriented open-source language, and it is not needed to 
compile the source code to run it. Therefore, it could also be defined as an 
interpreted language. This type of language is useful because it is easier than 
other languages and has a large number of libraries.  
 
There are some additional tools used later in the project as the following. 

● Pandas is a library of Python that is useful to manipulate data tables. It is 
very useful for designing a Machine Learning project. 

● Geopandas is an open library in Python which permits work with vector 
data. 

● Basemap is a tool that creates maps. 
● Pyplot.plot, which draws a graph of the data you pass to it. It should be 

noted that Pyplot is a function which belongs to matplotlib library, and it is 
necessary to import them to use it.  

 
DataFrame is the most used tool in this project and is a two-dimensional data 
structure which allows to make operations on rows and columns, like delating, 
adding and some more. It is useful to process the data because it is flexible, the 
axes are labelled and has lots of different operations that can be done in the 
columns and rows [16]. 
 
 

4.2 File languages 

 
In this project, we use three different types of files that contain the data created 
and obtained in the VLDs. The files including the scheduled flights data are 
written in JSON language, the files that contain the flight plan data are written in 
KML language and the files that contain the data obtained from the VLDs flights 
use the CSV format. 
 
We can define JSON language as a lightweight data-interchange format that is 
simple to read and write for humans and uncomplicated to parse and generate 
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for machines [17]. It’s a completely independent language but uses familiar 
conventions for the programmers. If we talk about the JSON structures, we can 
differentiate a selection of names and a group of arrays that contain their 
values. In a specific way, JSON language uses universal data structures, and it 
is for that reason that JSON text can be converted easily into JavaScript text. 
 
KML language is defined as an “XML-based markup language designed to 
annotate and overlay visualisations on various two-dimensional, Web-based 
online maps or three-dimensional Earth browsers” [18]. 
 
CSV format is very common, and is used for Excel. In this format the data is 
divided by commas, by this way, the data can be placed in a table. 
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5 CHAPTER 5. METHODOLOGY 

5.1 Obtain the data 

The first step can be seen in figure 5.1. In our case we have three different type 
of data, and each one is collected in a different way. The first data collected is 
the flight plan data, as we explained before, this data is written in KML 
language. The flight plan is created by the operator and sent to the U-Space to 
approve it.  
The second data used in this project is the scheduled flight data or trajectory 
data. This data is written in JSON language and is created by the U-Space from 
the Flight Plan. 
The last data of the project is the VLDs data, that means the data obtained 
when the flights are performed and is collected in CSV format. 
 
 

 
 

Figure 5.1 Methodology process part 0 

 
 

5.2 Data cleaning 

 
When it comes to predicting any information from an AI, the most important 
procedure is the processing and analysis of the data. It is crucial to clean the 
data to later be able to make the prediction itself, with the data displaced in the 
correct way. See figure 5.2. 
 

 
 

Figure 5.2 Methodology process part I 
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The following step in this procedure is to do the data cleaning, that means 
eliminate the incorrect measurements or irrelevant information for the prediction 
process, combine the data or change the data format. In our case, I had three 
different types of files.  
 
The first file that I adapted was the flight plan file that had the information about 
the Flight Plan in KML language. Each flight plan file had recorded data from 
every single waypoint of the trajectory. This type of file is useful for drawing the 
trajectory in Google Earth and seeing its waypoints. We can see an example of 
this file in figure 5.3. 
 
 

 
 

Figure 5.3 Flight plan file in KML language 

 
 
Then, I adapted the scheduled flight file, that was the one that had the 
information about the flight's trajectory written in JSON language.  
This type of file had, for each flight, their callsign, its take off time, the trajectory 
coordinates, among others. This data will be very useful to predict the drone 
position. We can see an example of this file in figure 5.4. 
 



   27 

 
 

Figure 5.4 Scheduled flight file in JSON language 

 
 
Finally, the last file that I had to adapt was the real data. That means the data 
obtained from the VLDs. There was one file per each flight, and each one 
included information about the real flight. That means, its coordinates, altitude, 
speed and distance for every 100 milliseconds. Figure 5.5 shows a file written in 
CSV format. 
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Figure 5.5 Real data file in CSV format 

 
 

5.3 Data processing 

 
Structuring the data is the third step that we have to develop. In our case, we 
structure the data in tables because it was easier for us. 
 
 

 
 

Figure 5.6 Methodology process part II 

 
 
Once all the files are revised, we must upload them to Drive to use them in 
Colab afterwards. Next step in the process is to codify a function that reads the 
file and then, converts the information in a DataFrame.  
 

5.3.1 Steps for data processing 

 
The function “pandas.DataFrame.from_dict (json file path)” was used to convert 
the scheduled flight files’ information into a DataFrame. This DataFrame is 
displayed in figure 5.7 (the whole cell is placed in the Annex page 59).  
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Figure 5.7 Scheduled flights file’s DataFrame of Day A 

 
 
As we can see in the figure 5.7, this DataFrame is divided in three columns and 
225 rows, one per each flight made on day A. The left column is named 
“callsign”, and it is where the callsign of the flight is displayed. That has a 
special nomenclature; day of flight, then a low bar, flight operator, low bar and 
at last, an identificatory number. The middle column is used for the take off time 
of each flight and is called “request”. Finally, the right column is named 
“geometry.coordinates”, and it shows a long array that has inside more little 
arrays, one per each point of the flight, that are made up of the latitude, 
longitude, height and time of the flight. The coordinates data will be, in the 
following step, processed in order to create a DataFrame with the trajectory 
data. 
 
Transforming a flight plan file written in KML language into DataFrame is a little 
hard process. First it is necessary to split every single row and place it in a new 
DataFrame. A KML row is composed of the type of data and the data itself in 
this way “<type of data> data </type of data>”. Once we have the DataFrame 
with a column of type of data and another column with the data, we can take the 
important data for us from the DataFrame. 
In our case, we needed the name of the waypoint, the speed in each point, the 
corner radius, the longitude, latitude and altitude.  
An example of this DataFrame is displayed in the figure 5.8 (the whole cell is 
placed in the Annex page 58).  
 
 



30  Prediction of 4D drone trajectories from demonstration data 

 
 

Figure 5.8 Flight plan file’s DataFrame 

 
 
At last, it is needed to convert the real data file’s information into a DataFrame. 
In this case, the process is very simple. It is only necessary to use the function 
“Pandas.read_csv(filename)” that will return straight away the DataFrame with 
the data contained in the file. An example of this DataFrame is displayed in 
figure 5.9 (the whole cell is placed in the Annex page 62). 
 
 

 
 

Figure 5.9 Real data file’s DataFrame 

 
 
Figure 5.9 shows the flight data at different times presented in a DataFrame. 
Each row displays the information of the flight every 100 milliseconds. We can 
see some of the columns of the DataFrame in figure 5.9, there are some more, 
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but for us, the most important ones are time, datetime, latitude, longitude, and 
height above take-off. 
 
In this point it is important to mention that, as we explained before, the take-off 
and landing in the VLDs were made manually, therefore the take-off data will 
not be useful for us. In addition the flight plan data does not have the one that 
belongs to the take-off or landing, so it is necessary to eliminate the take-off 
data from the real data DataFrame. That's why the following function 
“retocarcsv” is created. 
 
The ”retocarcsv” function has the aim of reducing the number of samples, 
because there are many samples in real data DataFrame and also, eliminating 
the take-off data. This function first eliminates the rows that have the datetime 
duplicated in order to reduce the samples to one per each second. Then, the 
function concludes by eliminating the samples relative to the take-off and 
landing. To do this, the function firstly searches the first point where the altitude 
is bigger than 30 metres, that will be the point the take-off has ended, and 
eliminate all the prior points. Then, a column is added to the DataFrame which 
will be filled with “True” if the altitude is less than 25 metres and “False” if not. At 
last, the function eliminates all the rows with “True” that are in the end of the 
DataFrame, that means, the rows belonging to the landing. 
 
 

5.4 Trajectories 

 
After structuring the data in DataFrame, the following step is to paint the 
trajectories of the flights in order to understand them properly. 
 
 

 
 

Figure 5.10 Methodology process part III 

 
 
Once all DataFrame are generated and modified, the following step is to create 
a function that selects the most important data of the flight and then paints their 
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trajectory. In this step it is important to compare the different trajectories of a 
flight in function of the scheduled flight, flight plan or real flight data.  
In order to structure the scheduled flight trajectory, it is needed to make a 
function that first, searches in the DataFrame the row where the callsign is 
placed in order to paint its trajectory. Then, we select from the desired row of 
the DataFrame, the useful columns, that are the latitude, longitude, altitude and 
time. Later, we noticed that this function “trajectory” is useless when the data 
file is from the day A because the coordinates column of the DataFrame does 
not have the same format. Therefore, we adapt the function “trajectoryA” for this 
type of DataFrame. The trajectory DataFrame of a scheduled flight is presented 
in figure 5.11.  
 
 

 
 

Figure 5.11 Scheduled flight trajectory DataFrame 

 
 
For flight plan and real flight DataFrame, it is not necessary to modify anything 
because the DataFrame itself has the data needed to print the trajectory. So, 
once we have these three DataFrame, next step is to make a function that 
draws the three different trajectories. At first, it used the function “Basemap()”. 
Next, in order to get the X and Y positions of each type of DataFrame, is used 
the function “map (longitude, latitude)”. Finally, is plotted the different 
trajectories by the function “plt.plot(X,Y)”. The whole cell is placed in the Annex 
page 60. 
Plotting the three trajectories was useful to prove if they are similar or identical. 
We find that some trajectories are identical, or at least, very similar and others 
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are simply contingencies. Next, we can see these examples in the figures 5.12, 
5.13, 5.14 and 5.15. 
 
 

 
 

Figure 5.12 Same trajectory example 

 
 
The previous figure shows the trajectory of a flight. We can see the real 
trajectory of the flight painted in purple and, as it is an identical flight, it is almost 
impossible to see the flight plan and the scheduled flight. We can see in the 
turns the scheduled flight which is painted in yellow. The flight plan is identical, 
so we can’t see it but it is painted in green. We can also see the point where the 
delivery is and the name of the delivery, that in this example is the delivery 03.   
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Figure 5.13 Vertical profile of the same trajectory example 

 
 
We can see in the figure 5.13 the vertical profile of the scheduled flight painted 
in yellow, and the flight plan painted in green. They do not have a delay on time 
but have a difference in altitude of about 3 metres. We also can see the real 
flight painted in purple, which is practically identical to the flight plan but with a 
delay of 15 seconds. If we compare the real flight with the scheduled flight, we 
can see also a delay of 15 seconds and also a vertical divergence of 3 metres. 
 
 



   35 

 
 

Figure 5.14 Contingency trajectory example 

 
 
This figure shows the trajectory of a contingency flight, and it is clearly 
differentiable between the scheduled flight and the real flight. As previously, the 
scheduled flight is painted in yellow and below is painted the flight plan in green, 
which cannot be seen because they are identical. Also, we can see the real 
flight painted in purple. It is also painted the delivery port with its name.  
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Figure 5.15 Vertical profile of the contingency example 

 
 

As before we can see the different vertical profiles. We can see the scheduled 
flight and the flight plan vertical profiles painted in yellow and green 
respectively, they have a divergence of 3 metres vertically but have practically 
no delay. We can also see in purple the real flight vertical profile. As it is a 
contingency the scheduled and real vertical profiles are clearly different. Even 
though in this case the flight time is the same, the altitude is clearly different 
because the contingency flight did not take enough height. 
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5.5 Flight matching 

 
Next step in this prediction process is to match the flights. 
 
 

 
 

Figure 5.16 Methodology process part IV 

 
 
Next step is to match the scheduled flights and its flight plan with the performed 
flights recorded in real data files. This step is very important because it is 
necessary to, later, make the prediction table. The prediction table must have 
information about real and scheduled data, so we have to relate them. 
 
This was the most difficult part of the program process because real flight files 
did not have registered the callsign of the flight performed, so, we had to match 
real flight data with scheduled flight data through the take-off time. At first, we 
started matching the flights one by one manually, but we realised that it was 
impossible because there were too many flights, about more than 650, and the 
take-off time was not the same in scheduled flights than in real flights. We spent 
a lot of time with this problem. At first, we thought that maybe some flights were 
not performed or recorded correctly, but there were too many flights that did not 
add up, so, that was an unbelievable hypothesis. After some weeks, we realise 
that there is one scheduled flight file per each day, and we must relate the data 
taking into account the day of the flight.  
 
After all these problems, we decided to do a function that searches every flight 
recorded in the scheduled flights file and try to relate it with a real flights file, 
considering the take-off time, the delivery port and the vertiport. As for U-Space 
strategic deconfliction service the safety margin is about 3 minutes, the function 
checks if the take-off time is the same with a margin of 3 minutes after the 
desired take-off time. Then, the delivery port is calculated and if it’s the same, 
we consider that the real flight and the scheduled flight are related. In the case 
that the delivery port is not the same, we looked at the file manually in order to 
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find if the flights are the same or if the calculations are correct. To confirm our 
hypothesis, we looked at the trajectory in google earth or with the trajectory plot 
function to see if they are the same. 
 
Later we make the function “renameCSV” that rename the CSV’s files in order 
to change the name of the real flight file if we have found the related flight in 
scheduled flights files with the previous parameters. The criteria taken for 
renaming the real flight file is to name it in the same way as the scheduled 
flights file. That means, add at the beginning the day of the flight, A for first day, 
B for second day or C for the last day. After, add a low bar and next the callsign 
of this flight. Then, another low bar and finally, DELV with a low bar and then 
the number of the delivery port of the flight. For example 
“C_SWORD_928_DELV_10” is the flight number #928 is the 3rd day from 
SWORD to Delivery 10. 
 
Once all the real flights files have been renamed, we make a function that reads 
every file and then creates a DataFrame for each type of file and adds there the 
name of the flights scheduled or performed. We made one table per each day 
and operator. So, as it is explained, these files have 3 columns, one for the 
scheduled flights, other for the flight plan and the last for the real flights. The 
name for each flight added to the table has the day of the flight, its callsign, its 
take-off time and its delivery port. Finally, these DataFrames are exported to a 
text file and saved in Drive. Figure 5.17 shows an example of this text file. 
 
 

 
 

Figure 5.17 Example of Flights file 
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5.6 Data processing for prediction table 

 
Finally, before making the prediction, it is needed to structure the data in a 
prediction table.  
 
 

 
 

Figure 5.18 Methodology process part V 

 
 
 
Our objective is to make a DataFrame that contains the data that will be useful 
for prediction. So, as we want to predict, at first, the time of delivery of a 
particular flight, we need to know for each planned flight its latitude, longitude, 
and height when it is at entering of the airway, its latitude, longitude, and height 
when it is at the delivery point and the cruise altitude and velocity and at last, 
the real time of entering to the airway.  
After these text files are made, the function checks if there are any real flights 
made in it, because if not, all the flights operated by this operator that day are 
contingencies and there is not useful data for prediction. Then, we take from the 
name of the real flight using the split tool; the day, the operator, the callsign and 
the delivery port. 
Using the trajectory function (the whole function is placed on the Annex page 
55) and the information obtained in the previous step, we get the trajectory 
DataFrame of the scheduled flight. Later, this DataFrame will help us to know 
the delivery altitude, by searching the trajectory position where the latitude and 
the longitude are the same that the ones defined previously of each delivery 
port. 
In order to find the cruise velocity, we have to search in the flight plan the row 
where the altitude of the following point is smaller than in the current one, that 
will be the cruise altitude. Then, it is needed to find at the flight plan file which is 
the velocity when the flight is at cruise altitude and do the average of all the 
speed data found. From the flight plan, we also take the corner radius at the 
time entering the airway. From the real flight file, we take the time entering the 
airway and the delivery time. Finally, the entering airway latitude, longitude and 
height we get it from the trajectory file and the delivery latitude and longitude is 
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obtained from the data of the delivery ports defined previously at the beginning 
of the program. 
Every data explained above is what defines the columns of this prediction 
DataFrame, the rows are defined by all the performed flights. The time of 
delivery is placed on the Y prediction DataFrame, that means, that is the data 
that we want to predict. The rest of the data is placed on the X prediction 
DataFrame. Figure 5.19 shows a section of these DataFrame. 
 
 

 
 

Figure 5.19 X prediction DataFrame 

 

 
 

Figure 5.20 Y prediction DataFrame 

 
 

5.7 Folder schema 
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All the files defined before are uploaded in Drive and structured in different 
folders. The structure and its contents are explained in detail below.  
 
In the CSVs folder is saved the real flight files renamed with the parameters 
explained in the section 5.5. Flight matching. The CSV1 folder contains the real 
flight files with the original names. The flight plan files are placed in the KML 
folder. In the JSON folder we can find the scheduled flights file and a text file 
per each day and operator with the information of the scheduled flights showing 
its callsign, take-off time and delivery. Finally, in the TXTFLIGHTS folder we can 
find the text generated in the step explained at the end of the section 5.5. Flight 
matching, of each operator and day where is placed the name of all the flights 
scheduled and performed. 
 
 

5.8 Prediction through Machine Learning 

 
Finally, we make the prediction process with Machine Learning and then we 
analyse the results. 
 

 
 

Figure 5.21 Methodology process part VI 

 
 
As soon as the predicting table is completed, the last step is to use the Machine 
Learning to do the prediction itself. The first thing we must consider when it 
comes to predicting something, is to know what we want to predict and what 
type of data is. In our case, we want to predict, at first, the time of delivery in the 
port. Our type of data aims to predict something that is limited, does not vary 
over time, and only exists in a single group of results. Hence, the machine 
learning model that fits better with our type of data is the Regression model. 
 

In order to use a model, there are some steps that are always the same. The 
first step is to split the DataFrame in two different parts, the test table, and the 
train table. This procedure is used to analyse the efficiency of the Machine 
Learning algorithm. Usually, the data is divided in two parts, 80% of the data is 
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assigned for training data, and the 20% is assigned for test data. Once the data 
is divided, next step is to train it. To do it, we have to use the sklearn function 
“train_test_split(dfx, dfy, test_size)”. In this function we will have to insert the X 
prediction table, the Y prediction table and at last, the number of test size, that 
in our case is 0,2. After training it, the function output will be the X train vector, 
the X test vector, the Y train vector and the Y test vector.  
 
Finally, we have to fit the model, to do it we have to define the model and then 
use the function “model.fit(X_train, Y_train)” that will fit the model with the 
vectors inserted. In our case we choose the regression models. We use some 
different algorithms. It is convenient to try as many as possible, to see which will 
be the best, that means, the one that has less error, so the one that fits better 
the prediction. For this project we use the following algorithms, explained more 
in detail in the section 2.2. Machine Learning Algorithms. 

● Linear Regression 
● Logistic Regression  
● Ridge Regression  
● Bayesian Linear Regression 
● Elastic Net Regression  

After fitting the model, we must predict the data. To do it, we have to use the 
function “modelfit.predict(X_test)” defining modelfit as the result of the fitting 
function. 

Finally, the program will give us an Y prediction vector with the results of the 
prediction that the machine has calculated. The result of the prediction is by the 
moment, not very understandable, not quite optimal, so next step is to represent 
the result in a proper way. 

There are some functions that give us the result in different ways. In our case, 
we used two different functions. The Mean Absolute Error (MAE from here on 
out) function that is displayed as follows “mean_absolute_error(y_test, y_pred)” 
and is used to know the average difference between the calculated values and 
actual value. The Root Mean Squared Error (RMSE from here on out) is used to 
know the average of the divergence between the observed values and the 
predicted values. The RMSE is defined in numpy as follows 
“sqrt(metrics.mean_squared_error(y_test, y_pred)”. The last function we used is 
the Score function which is defined as “modelfit.score(X_train,y_train)” and is 
used to know the accuracy of the model, that means in a few words, how “good” 
the machine learns the model. 

 

 

6 CHAPTER 6. RESULTS 

6.1 Flight analysis 
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We thought that in order to see and understand the flight information better it is 
easy to see it visually in different plots in function of different parameters. This 
type of graph gives us a lot of information and is also useful for explaining the 
information to others. 
 

Figure 6.1 was the first graph we made. This plot shows the information about 
the total programmed flights per each operator and each day. In the X axis we 
can see the days that the flights were programmed, in the Y axis we can see 
the amount of flights programmed and each bar represents each operator. As 
we can see in the legend, the JUNO operator is represented in blue, the 
OMAHA operator in orange, the UTAH operator in green and the SWORD 
operator in red.  
 

 
 

Figure 6.1 Programmed flights per each day and operator 

 

 

Emphasising the figure 6.1, we can see that the first day JUNO and OMAHA 
program less flights than the others and SWORD programs the most flights, 
with more than 60 flights. If we compare the first with the second day, we can 
see that all the operators except SWORD, that program less, program more 
flights. Day B the operator that programs more flights is UTAH, followed by 
OMAHA and SWORD, JUNO this day is also the operator that programs less 
flights. The last day, the operators OMAHA, JUNO and SWORD reduce the 
amount of flights programmed. Instead, UTAH increased a little the flights 
programmed. Also, we can see that on the last day, JUNO and OMAHA are the 
operators that program less flights, followed by SWORD and then, UTAH that 
program almost 70 flights.  
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Making an overview of the three days, JUNO is the operator that plans the 
fewest number of flights on average. Then we would have OMAHA with the 
amount of 177 flights scheduled. Finally, UTAH and SWORD are the operators 
with the highest average of scheduled flights. As an own reflection, it is not as 
important to schedule many flights as to fly them.  

 

The figure 6.2 shows the amount of flights realised per each operator, each day. 
The Y axis shows the amount of flights that if we compared with the previous 
graph we can see that the maximum number of flights performed compared to 
the flights programmed is significantly reduced. That means that although the 
operators program a huge amount of flights, they cannot perform all of them. 
The X axis shows the day when the flights are performed.  

 

 

 
 

Figure 6.2 Performed flights per each day and operator 

 

 

In the figure 6.2 we can see that the first day a little amount of flights were 
performed. That day JUNO and UTAH performed more or less the same 
number of flights and OMAHA was the operator that performed more flights, 
performing the amount of 5 flights. Instead, SWORD did not fly any flight.  

The second day, the number of flights performed increased. SWORD is the 
operator with the fewest flights of the day. Ahead it is JUNO with 5 flights 
performed and UTAH with 10 flights. This day, the operator with more 
operations is OMAHA which almost quadruples the number of the previous day. 

The last day, the amount of flights performed went back down. The operator 
with less flights was SWORD followed by UTAH and OMAHA and as a 
difference, JUNO is the operator with more flights performed the last day.  
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The figure 6.3 represents the amount of flights scheduled, performed and 
contingencies made by OMAHA in the different days. In general, we can see 
that the amount of flights scheduled compared to those performed is much 
larger. The first day this difference is abysmal, with a divergence of around 50 
flights. The second day we can see that the difference is reduced and the last 
day, this divergence is drastically reduced. The amount of contingencies is in 
the three days very small, with a maximum of 2 contingencies in the second 
day. Therefore, we can consider the contingencies as not worrying data.  

 

 

 
 

Figure 6.3 Scheduled and performed flights by OMAHA 

 

 
The figure 6.4 shows, as the previous one, the number of flights programmed, 
performed and contingencies by JUNO operator in the three days. As in the 
previous one, the difference between the scheduled and the performed flights is 
very significant. In this case, the difference is bigger than with the OMAHA 
operator. JUNO only has 1 contingency the last day. So, we can still consider 
the contingency, a not worrisome data. 
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Figure 6.4 Scheduled and performed flights by JUNO 

 

 

The UTAH operator, as we can see in the figure 6.5, has also a big divergence 
between the scheduled flights and the performed flights. This difference is more 
or less the same than with the two previous operators. The contingency is again 
a not worrying data since there is only one contingency flight operated the 
second day.  
 
 

 

 

Figure 6.5 Scheduled and performed flights by UTAH 

 

 

The last operator, SWORD, shows in the figure 6.6 a divergence between 
performed and scheduled much larger than the previous ones. The first day, we 
can see that the number of flights programmed were 60 and there were any 
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flights performed. The second day, 60 were scheduled and was performed no 
more than 5. The last day, the number of flights programmed was reduced, but 
the number of flights performed was also. There were 3 flights performed and 4 
contingencies In this case, the number of contingency flights are bigger but not 
worrying, in no case does it exceed the 5 contingency flights in a day. 

 

 

 
 

Figure 6.6 Scheduled and performed flights by SWORD 

 

 

The figure 6.7 shows what we have been seeing so far. The number of flights 
scheduled compared to the flights performed has a big difference.   
 
 

 
 

Figure 6.7 Scheduled and performed flights by all the operators 
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6.2 Prediction results 

 
In this section, the prediction results from time of delivery will be displayed. After 
making all the steps explained in the previous chapter, machine learning will 
give us the following results data. In our case, first we try to predict the time of 
delivery of a flight. In order to do this, we prove different types of models and 
some types of functions that explain the results in different ways.  
 
Next, the results are displayed in tables 6.1, 6.2, 6.3, 6.4 and 6.5. Each table 
belongs to each model. Each one has some columns that are associated with 
the different types of results functions used. The rows belonging to each run did 
it in the prediction, the last row is reserved for the mean of each run results. 
 
 

 MAE (minutes) RMSE (minutes) Score (%accuracy) 

1st Run 0,825246448496667 1,14584735085511 0,9998121504360 

2nd Run 1,542014504197860 2,43314712865172 0,9999455551668 

3rd Run 0,881523386789679 1,29813881588196 0,9998302967796 

4th Run 0,584434589733791 0,65615541764733 0,9998055838284 

5th Run 0,593499539530118 0,69482173005167 0,9997894391698 

6th Run 0,710315532918563 1,10518170950124 0,9998236868500 

7th Run 0,938565259114693 1,53358505891121 0,9998425731768 

8th Run 0,565396923775551 0,69782359034944 0,9998029863076 

9th Run 0,556311341461453 0,642740379569623 0,9997750797583 

10th Run 1,120940657878350 2,192312058555160 0,9999141517648 

Mean 0,767780990707615 1,125514530178180 0,9998179186430 

 

Table 6.1 Prediction results with Linear Regression Model 

 
 

 MAE (minutes) RMSE (minutes) Score (%accuracy) 

1st 
Run 

16,266666666 31,36976056643281 0,56666666667 

2nd 
Run 

20,266666666666666 27,995237690245343 0,4 

3rd 
Run 

32,13333333333333 44,00303019868821 0,4666666666666667 

4th 
Run 

23,866666666666667 30,201545214331887 0,5 

 

Table 6.2 Prediction results with Logistic Regression Model 
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 MAE (minutes) RMSE (minutes) Score (%accuracy) 

1st Run 0,82991327478812 1,19352747905960 0,9997893060081 

2nd Run 1,42585818285609 2,33376363357557 0,9999010000431 

3rd Run 1,11830807608275 1,34291965778656 0,9998049924319 

4th Run 1,15696065761160 1,54598707251556 0,9998257592239 

5th Run 1,14909832433573 1,54374059533946 0,9998116210211 

6th Run 0,64305703765647 0,85451105567601 0,9997590952975 

7th Run 1,34512658303014 2,13555692013043 0,9998997241782 

8th Run 0,91712527723617 1,41607352325226 0,9998141250196 

9th Run 1,23834694099081 2,11051154922602 0,9998883238939 

10th Run 1,03506695337239 1,96128750578478 0,9998701646420 

Mean 1,133703200209240 1,544863833927510 0,9998199421217 

 

Table 6.3 Prediction results with Ridge Regression Model 

 
 
 
 

 MAE (minutes) RMSE (minutes) Score (%accuracy) 

1st Run 1,00130271746060 1,36167738114975 0,999808547412885 

2nd Run 0,69301734046664 0,86329114333595 0,999776928252762 

3rd Run 0,85037158262154 1,00734744130254 0,999791665960475 

4th Run 0,71418670246438 0,89603367351382 0,999796212560750 

5th Run 0,82217687284856 0,94720900777748 0,999787643122995 

6th Run 0,72754258831211 1,14222292982484 0,999793433495611 

7th Run 1,43152012751642 2,38349854797981 0,999917505116647 

8th Run 0,74852542631031 0,99956528375089 0,999784798239090 

9th Run 1,36194250130285 2,24843738801856 0,999901641505013 

10th Run 0,83616061245693 0,95959470906614 0,999793539829642 

Mean 0,82916874265275 1,00345636252671 0,99979348666263 

 

Table 6.4 Prediction results with Bayesian Linear Regression Model 

 
 

 MAE (minutes) RMSE (minutes) Score (%Accuracy) 

1st Run 0,488817953136056 0,626628824162782 0,999759419373152 

2nd Run 0,888960017006941 1,043999295752000 0,999778785463948 

3rd Run 0,825170926928497 0,942095423488324 0,999756681507377 

4th Run 0,797505392313860 0,991088044658980 0,999796238590901 

5th Run 0,808127412631211 1,062132500900980 0,999764039947374 

6th Run 0,718313149129244 1,009814653244770 0,999788974039623 

7th Run 1,207727949253770 2,034534951387060 0,999869501507223 

8th Run 0,961874505623844 1,285694038684730 0,999796624381939 

9th Run 1,020944800907470 1,246675495477200 0,999787107087608 

10th Run 0,965550124499388 1,163899460248860 0,999788508450030 
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Mean 0,85706547196772 1,05306589832649 0,99978780776882 

 

Table 6.5 Prediction results with Elastic Net Regression Model 

 
 
In Tables 6.1, 6.2, 6.3, 6.4 and 6.5, we can see that in all the models, except 
the Logistic Regression Model, the error is about 1 minute and the accuracy is 
about 0,999%. 
 
With the results presented before, we make some graphs in order to see them 
visually and examine in detail the numbers. The first graph shows the results of 
the MAE and RMSE for each algorithm model. We have to take into account 
that the smaller these results are, the better the prediction is. Therefore, it is 
obvious that the Ridge Regression Model is the algorithm with worse results, so 
we discard it. Now, we can see that the Linear Regression Model has better 
MAE but the Bayesian Linear Regression Model has the best RMSE. The 
Elastic Net Regression Model has a mix of both. So as we see we cannot affirm 
which is better, it is needed to analyse the score results. 
 
 

 
 

Figure 6.8 MAE and RMSE results for each algorithm 

 
 
The figure 6.9 shows the score results for each algorithm. As this results show 
the % of accuracy of the algorithm, that means, how close it gets to reality, it is 
needed to obtain as close as possible to 1. So, taking into account the previous 
results, the best algorithm for this prediction is the Linear Regression Model. 
Even so, the difference between the accuracy of all the algorithms is practically 
null. 
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Figure 6.9 Score results for each algorithm 

 

CHAPTER 7. CONCLUSIONS AND FURTHER 
IMPLEMENTATIONS 

 
The last chapter of this work, analyses the results exposed in the previous 
chapter in addition to understanding it and commenting on them.  
 
It can be seen that for any model shown in the figure 6.9, the accuracy will be 
good enough to make the VLDs safely since it is within the 3-minute range 
required by the U-Space, even so, it could be improved. So, the objective of this 
project is reached, the VLD flights carried out have been analysed and it has 
been seen that it is possible to predict with 1 minute accuracy the time when a 
drone will arrive at its delivery port in a UAM with an urban environment with 
restrictions, traffic, and emergency urban services.  
 
From the VLDs carried out by the CORUS-XUAM project in Castelldefels, it can 
be shown that the U-Space can have enough capacity to share airspace 
between drones and other aerial vehicles without risks. Although, the capacity 
that the organisation of the U-Space allowed was much greater than the one 
used by the operators for the flights made. 
 
From this point of analysis, new fields could be investigated, such as the 
prediction of the entire trajectory of the drone, so that it can be known exactly 
where the drone is at all times. This will allow delivery companies to create an 
application for the mobile phone where the customer could know at all times 
where their package is. Or even, get the drone to fly autonomously from the 
prediction of its position and the sensors it incorporates. Only being controlled 
by an ATC. On the other hand, more demonstration flights could also be made 
with a higher capacity in the airspace, being able to reach the maximum that the 
organization of the U-Space allows. 
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ANNEXES 
 
#Instalation 

!pip install basemap 

!pip install basemap-data-hires 

!pip install geopandas 

 
################################################################## 

 

#Importation 

import pandas as pd 

import json 

import time 

import os 

from datetime import datetime 

from string import Template 

import numpy as np 

import matplotlib.pyplot as plt 

import matplotlib as mlt 

from mpl_toolkits.basemap import Basemap 

from google.colab import drive 

import geopandas as gpd 

from shapely import wkt 

from datetime import time 

from numpy.ma.core import transpose 

import shutil 

 

from sklearn import datasets 

from sklearn import metrics 

from sklearn.model_selection import train_test_split 

from mlxtend.plotting import plot_decision_regions 

from sklearn.metrics import mean_squared_error 

from sklearn.metrics import mean_absolute_error 

from sklearn.linear_model import LinearRegression 

from sklearn.linear_model import LogisticRegression 

from sklearn.linear_model import Ridge 

from sklearn import linear_model 

from sklearn.linear_model import ElasticNet 

 

drive.mount('/content/drive') 

 

################################################################## 

 

#Delivery Ports 

DELV_01=[1.9994768500328066,41.264602080919474] 

DELV_02=[1.993994414806366,41.26440046653493] 

DELV_03=[1.9887560606002805,41.26429159450844] 



56  Prediction of 4D drone trajectories from demonstration data 

DELV_04=[1.9872057437896726,41.26429159450844] 

DELV_05=[1.982431411743164,41.26438836965208] 

DELV_06=[1.9807898998260498,41.26438030506223] 

DELV_07=[1.9773888587951658,41.264396434240886] 

DELV_08=[1.9746315479278564,41.26442869258624] 

DELV_09=[1.9716274738311765,41.26441256341556] 

DELV_10=[1.9666171073913574,41.26446901549553] 

DELV_11=[1.9652545452117918,41.26445288633479] 

DELV_12=[1.9600296020507812,41.264396434240886] 

 

DP=np.array([DELV_01, DELV_02, DELV_03, DELV_04, DELV_05, DELV_06, 

DELV_07, DELV_08, DELV_09, DELV_10, DELV_11, DELV_12]) 

 

################################################################## 

 

#Definition of functions 

#Trajectory function 

def trajectory(callsign, df): 

  found=False 

  i = 0 

  for i in df.index: 

    if callsign==df['callsign'][i]: 

      found=True 

      dfi=pd.DataFrame(pd.json_normalize(df['geometry'][i])) 

      FourDT=pd.DataFrame(dfi['coordinates'][0],columns=['lon','lat

','alt','secs']) 

      return (FourDT) 

 

#Trajectory function for day A 

def trajectoryA(callsign, df): 

  dfj = None 

  i = 0 

  for i in df.index: 

    if callsign==df['callsign'][i]: 

      dfj = pd.DataFrame(df['geometry.coordinates'][i],columns=['lo

n','lat','alt','secs']) 

      return(dfj) 

 

#Find delivery by latitude and longitude function 

def find_delivery(lon, lat, DP): 

  minlat = 10 

  minlon = 10 

  i = 0 

  posicion1 = 0 

  posicion2 = 0 

  for i in range(len(DP)): 

    clon = np.absolute(DP[i,0] - lon) 

    clat = np.absolute(DP[i,1] - lat) 

    if clon < minlon: 
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      minlon = clon 

      posicion1 = i + 1 

    if clat < minlat: 

      minlat = clat 

      posicion2 = i + 1 

  if posicion1 == posicion2: 

    return 'DELV_%02d'%(posicion1) 

  else: 

    if DP[posicion1 - 1,0] == DP[posicion2 - 1,0]: 

      return 'DELV_%02d'%(posicion2) 

    if DP[posicion1 - 1,1] == DP[posicion2 - 1,1]: 

      return 'DELV_%02d'%(posicion1)  

    else: 

      if minlon < minlat: 

        return 'DELV_%02d'%(posicion1) 

      else: 

        return 'DELV_%02d'%(posicion2) 

     

#Find geometry from KML DataFrame 

def geometry_kml(df): 

  i = 0 

  dffinal = pd.DataFrame() 

  for i in df.index: 

    dfr = df['str_geometry'][i].split() 

    striuno = dfr[2] 

    stridos = dfr[4] 

    characters = "()" 

    for x in range(len(characters)): 

      striuno = striuno.replace(characters[x],"") 

      stridos = stridos.replace(characters[x],"") 

    nueva_fila = {'lon': striuno, 'lat': dfr[3], 'alt': stridos}  

    dffinal = dffinal.append(nueva_fila, ignore_index=True) 

  return (dffinal) 

 

#Modify CSV DataFrame function 

def retocarcsv (dfcsv,callsign): 

  dfcsvfinal = pd.DataFrame() 

  dfcsvfinal = dfcsv.drop_duplicates(subset=['datetime(utc)'], igno

re_index=True)  

  dfcsvfinal['datetime(utc)'] = pd.to_datetime(dfcsvfinal['datetime

(utc)'], format="%Y-%m-%d %H:%M:%S") 

  dfcsvfinal['time(millisecond)'] = (dfcsvfinal['time(millisecond)'

] - dfcsvfinal['time(millisecond)'].iloc[0])*0.001 

  dfcsvfinal = dfcsvfinal.rename(columns={'time(millisecond)':'time

(secs)'}) 

  if callsign == 'UTAH': 

    dfcsvfinal.rename(columns = {'height_above_takeoff(feet)':'heig

ht_above_takeoff(meters)'}, inplace = True) 
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    dfcsvfinal['height_above_takeoff(meters)'] = dfcsvfinal['height

_above_takeoff(meters)'] * 0.3048 

  dfcsvfinal.rename(columns = {'height_above_takeoff(meters)':'alti

tude'}, inplace = True) 

  found = False 

  for i in dfcsvfinal.index: 

    if dfcsvfinal['altitude'][i] >= 26 and found == False: 

      found = True 

      finalTO = i 

  if found == False: 

    print ('CONTINGENCIA') 

    contingenica = pd.DataFrame() 

    return (contingenica) 

  if found == True: 

    dfcsvfinal = dfcsvfinal.tail(len(dfcsvfinal)-finalTO) 

  dfcsvfinal = dfcsvfinal.reset_index(inplace=False, drop=False) 

  del dfcsvfinal['index'] 

  dfcsvfinal['Landing'] = [True if x <= 25 else False for x in dfcs

vfinal['altitude']] 

  found = False 

  for i in dfcsvfinal.index: 

    if dfcsvfinal['Landing'][i] == True and i > ((len(dfcsvfinal)*0

.5) + (len(dfcsvfinal)*0.25)) and found == False: 

      found = True 

      landing = i 

  if found == True: 

    dfcsvfinal = dfcsvfinal.head(landing) 

  return(dfcsvfinal) 

 

 

#Modify CSV DataFrame function for SWORD operator 

def retocarcsvSWORD (dfcsv,callsign): 

  dfcsvfinal = dfcsv.drop_duplicates(subset=['time'], ignore_index=

True)  

  for i in dfcsvfinal.index: 

    split = dfcsvfinal['time'][i].split('+') 

    dfcsvfinal['time'][i] = split[0] 

  #dfcsvfinal['Vehiculo'] = vehiculo 

  dfcsvfinal['time'] = pd.to_datetime(dfcsvfinal['time'], format="%

Y-%m-%d %H:%M:%S") 

  dfcsvfinal['time(secs)'] = "" 

  for i in dfcsvfinal.index: 

    dfcsvfinal['time(secs)'][i] = (dfcsvfinal['time'][i].hour -

 dfcsvfinal['time'].iloc[0].hour)*3600 + (dfcsvfinal['time'][i].min

ute -

 dfcsvfinal['time'].iloc[0].minute)*60 + (dfcsvfinal['time'][i].sec

ond - dfcsvfinal['time'].iloc[0].second) 

  found = False 

  for i in dfcsvfinal.index: 
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    if dfcsvfinal['altitude'][i] >= 26 and found == False: 

      found = True 

      finalTO = i 

  if found == False: 

    print ('CONTINGENCIA') 

    contingenica = pd.DataFrame() 

    return (contingenica) 

  if found == True: 

    dfcsvfinal = dfcsvfinal.tail(len(dfcsvfinal)-finalTO) 

  dfcsvfinal = dfcsvfinal.reset_index(inplace=False, drop=False) 

  del dfcsvfinal['index'] 

  dfcsvfinal['Landing'] = [True if x <= 25 else False for x in dfcs

vfinal['altitude']] 

  found = False 

  for i in dfcsvfinal.index: 

    if dfcsvfinal['Landing'][i] == True and i > ((len(dfcsvfinal)*0

.5)) and found == False: 

      found = True 

      landing = i 

  if found == True: 

    dfcsvfinal = dfcsvfinal.head(landing) 

  return(dfcsvfinal) 

 

#Read KML file function  

def KML(kmlfile): 

  dataframe = pd.DataFrame() 

  kml = pd.DataFrame() 

  filekml = pd.DataFrame() 

  with open("drive/MyDrive/TFG - Laura Vazquez -

 PREDICTION OF 4D DRONE TRAJECTORIES FROM DEMONSTRATION DATA/KML/"+

 kmlfile + ".kml") as f: 

    for linea in f: 

      spl = linea.split('>') 

      spl2 = spl[1].split('<') 

      if len(spl2) > 1: 

        nueva_fila = {'type': spl2[1], 'num': spl2[0]}  

        dataframe = dataframe.append(nueva_fila, ignore_index=True) 

  dataframe = dataframe.drop([0,1,2,3,4,5,6,7,8]) 

  for i in dataframe.index: 

    if dataframe['type'][i] == '/name': 

      nueva_fila = {'Name': dataframe['num'][i]}  

      kml = kml.append(nueva_fila, ignore_index=True) 

    if dataframe['type'][i] == '/mis:speed': 

      nueva_fila = {'Speed': dataframe['num'][i]}  

      kml = kml.append(nueva_fila, ignore_index=True) 

    if dataframe['type'][i] == '/mis:cornerRadius': 

      nueva_fila = {'CornerRadius': dataframe['num'][i]}  

      kml = kml.append(nueva_fila, ignore_index=True) 

    if dataframe['type'][i] == '/coordinates': 
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      coor = dataframe['num'][i].split(',') 

      nueva_fila = {'Lon': coor[0],'Lat': coor[1],'Alt': coor[2]}  

      kml = kml.append(nueva_fila, ignore_index=True)     

 

  name = pd.DataFrame() 

  speed = pd.DataFrame() 

  cornerradius = pd.DataFrame() 

  alt = pd.DataFrame() 

  lat = pd.DataFrame() 

  lon = pd.DataFrame() 

  name = kml['Name'].dropna() 

  name = name.reset_index(inplace=False, drop=False) 

  speed = kml['Speed'].dropna() 

  speed = speed.reset_index(inplace=False, drop=False) 

  cornerradius = kml['CornerRadius'].dropna() 

  cornerradius = cornerradius.reset_index(inplace=False, drop=False

) 

  alt = kml['Alt'].dropna() 

  alt = alt.reset_index(inplace=False, drop=False) 

  lat = kml['Lat'].dropna() 

  lat = lat.reset_index(inplace=False, drop=False) 

  lon = kml['Lon'].dropna() 

  lon = lon.reset_index(inplace=False, drop=False) 

  kml = pd.concat([name, speed, cornerradius, lon, lat, alt], axis=

1) 

  kml = kml[['Name','Speed','CornerRadius','Lon','Lat','Alt']] 

  return(kml) 

 

 

#Read JSON file function  

def JSON(VERSION): 

  filetemplate=Template('drive/MyDrive/TFG - Laura Vazquez -

 PREDICTION OF 4D DRONE TRAJECTORIES FROM DEMONSTRATION DATA/JSON/c

astelldefels.corusxuam.${version}.mitigated.traffic.${ext}') 

  FILENAME=filetemplate.substitute(version=VERSION, ext="json") 

 

  with open(FILENAME) as f: 

    contents = json.loads(f.read()) 

  dfjson = pd.DataFrame.from_dict(pd.json_normalize(contents), orie

nt='columns') 

  if VERSION == "v8.A.2": 

    dfjson = dfjson[['callsign', 'request','geometry.coordinates']] 

  else: 

    dfjson = dfjson[['callsign', 'request','geometry']] 

 

  dfjson['request'] = pd.to_datetime(dfjson['request']) 

  return(dfjson) 

 

#Map plot function 
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def mapa(traj, trajkml, trajreal, color, colorb, colorc): 

  map = Basemap (llcrnrlon=traj['lon'].min()-

0.007, llcrnrlat=traj['lat'].min()-

0.009,urcrnrlon=traj['lon'].max()+0.007,urcrnrlat=traj['lat'].min()

+0.009,resolution='i',projection='tmerc',lat_0=41.3879,lon_0=2.1699

2) 

  fig = plt.figure(figsize=(20,20)) 

  lon=[] 

  lat=[] 

  i = 0 

  for i in traj.index: 

    lon.append(traj['lon'][i]) 

    lat.append(traj['lat'][i]) 

  lonkml=[] 

  latkml=[] 

  i = 0 

  for i in trajkml.index: 

    lonkml.append(np.float64(trajkml['Lon'][i])) 

    latkml.append(np.float64(trajkml['Lat'][i])) 

  lonreal=[] 

  latreal=[] 

  j = 0 

  for j in trajreal.index: 

    lonreal.append(trajreal['longitude'][j]) 

    latreal.append(trajreal['latitude'][j]) 

  x1, y1 = map(lon,lat) 

  x1kml, y1kml = map(lonkml,latkml) 

  x1real, y1real = map(lonreal,latreal) 

  xdelv, ydelv = map(DP[numdelv-1,0], DP[numdelv-1,1]) 

  plt.plot(x1kml,y1kml,color=colorc, label = "Flight Plan") 

  plt.plot(x1,y1,color=color, label = "Scheduled Flight") 

  plt.plot(x1real,y1real,color=colorb, label = "Real Flight") 

  plt.plot(xdelv, ydelv, marker = "o", ms = 12, mec = 'grey', mfc =

 'grey') 

  plt.annotate(delv, map(DP[numdelv-1,0], DP[numdelv-1,1])) 

  plt.ylim(950,1220) 

  plt.xlabel('Longitude') 

  plt.ylabel('Latitude') 

  plt.legend(fontsize=20, loc='upper right') 

 

#Rename file in drive 

def renamefile (file_oldname,file_newname_newfile): 

  shutil.move(file_oldname, file_newname_newfile) 

  print('renamed file') 

 

################################################################## 

 

#Day/File Version relation 

dia = 'C' 
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if dia == 'A': 

  VERSION="v8.A.2" 

if dia == 'B': 

  VERSION="v9.B.1" 

if dia == 'C': 

  VERSION="v9.C.1" 

dfjson = JSON(VERSION) 

 

################################################################## 

#Callsign Assignment 

callsignComparar = 'C_OMAHA_1092' 

 

################################################################## 

 

#Trajectory of a flight in JSON file 

tra = pd.DataFrame() 

if VERSION == "v8.A.2": 

  tra = trajectoryA(callsignComparar,dfjson) 

else: 

  tra = trajectory(callsignComparar,dfjson) 

 

alt_min = tra['alt'].idxmin() 

ind = dfjson.loc[dfjson['callsign'] == callsignComparar] 

TOT = ind['request'] 

delv = find_delivery(tra['lon'].iloc[alt_min], tra['lat'].iloc[alt_

min], DP) 

 

 

################################################################## 

 

#Get the data needed and trajectory from KML 

i = 0 

for i in range(15): 

  if i < 10: 

     

    if os.path.isfile("drive/MyDrive/TFG - Laura Vazquez -

 PREDICTION OF 4D DRONE TRAJECTORIES FROM DEMONSTRATION DATA/KML/"+

 callsignComparar + "-DELV-0" + str(i) + ".kml"): 

      kml = KML(callsignComparar + "-DELV-0" + str(i)) 

      kml['Alt'][len(kml)-1] = kml['Alt'][len(kml)-1].split(" ")[0] 

  else: 

    if os.path.isfile("drive/MyDrive/TFG - Laura Vazquez -

 PREDICTION OF 4D DRONE TRAJECTORIES FROM DEMONSTRATION DATA/KML/"+

 callsignComparar + "-DELV-" + str(i) + ".kml"): 

      kml = KML(callsignComparar + "-DELV-" + str(i)) 

      kml['Alt'][len(kml)-1] = kml['Alt'][len(kml)-1].split(" ")[0] 

 

################################################################## 

 

#Get the data needed from CSV 
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dfcsv = pd.read_csv("drive/MyDrive/TFG - Laura Vazquez -

 PREDICTION OF 4D DRONE TRAJECTORIES FROM DEMONSTRATION DATA/CSVs/"

+ callsignComparar + "_" + delv +".csv") 

spl1 = callsignComparar.split('_') 

csvfinal = retocarcsv(dfcsv,spl1[1]) 

 

################################################################## 

 

#Trajectory of a flight in CSV file 

if len(csvfinal) != 0: 

  alt_min = csvfinal['altitude'].idxmin() 

  TOT = csvfinal['datetime(utc)'].iloc[0] 

  delv = find_delivery(csvfinal['longitude'].iloc[alt_min], csvfina

l['latitude'].iloc[alt_min],DP) 

else: 

  print('The maximum height of the flight is less than 30 meters') 

 

################################################################## 

 

#Delivery port number calculation 

d = delv.split("_") 

numdelv = int(d[1]) 

 

################################################################## 

 

#Map plot  

mapa(tra, kml, dfcsv, 'gold', 'purple', 'limegreen') 

 

################################################################## 

 

#Vertical profile plot 

fig = plt.figure(figsize=(20,20)) 

plt.plot(tra['secs'],tra['alt'],color='gold',label = "Scheduled Fli

ght") 

plt.plot(tra['secs'],kml['Alt'],color='limegreen', label = "Flight 

Plan") 

plt.plot(dfcsv['time(millisecond)']/1000,dfcsv['height_above_takeof

f(meters)'],color='purple', label = "Real Flight") 

plt.xlabel('Time (secs)') 

plt.ylabel('Altitude (m)') 

plt.legend(fontsize=15, loc='upper right') 

 

################################################################## 

 

#JSON files to DataFrames 

VERSION='v8.A.2' 

filetemplate=Template('drive/MyDrive/TFG - Laura Vazquez -

 PREDICTION OF 4D DRONE TRAJECTORIES FROM DEMONSTRATION DATA/JSON/c

astelldefels.corusxuam.${version}.mitigated.traffic.${ext}') 

FILENAME=filetemplate.substitute(version=VERSION, ext="json") 

with open(FILENAME) as f: 
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  contents = json.loads(f.read()) 

dfjsonA = pd.DataFrame.from_dict(pd.json_normalize(contents), orien

t='columns') 

 

VERSION='v9.B.1' 

filetemplate=Template('drive/MyDrive/TFG - Laura Vazquez -

 PREDICTION OF 4D DRONE TRAJECTORIES FROM DEMONSTRATION DATA/JSON/c

astelldefels.corusxuam.${version}.mitigated.traffic.${ext}') 

FILENAME=filetemplate.substitute(version=VERSION, ext="json") 

with open(FILENAME) as f: 

  contents = json.loads(f.read()) 

dfjsonB = pd.DataFrame.from_dict(pd.json_normalize(contents), orien

t='columns') 

 

VERSION='v9.C.1' 

filetemplate=Template('drive/MyDrive/TFG - Laura Vazquez -

 PREDICTION OF 4D DRONE TRAJECTORIES FROM DEMONSTRATION DATA/JSON/c

astelldefels.corusxuam.${version}.mitigated.traffic.${ext}') 

FILENAME=filetemplate.substitute(version=VERSION, ext="json") 

with open(FILENAME) as f: 

  contents = json.loads(f.read()) 

dfjsonC = pd.DataFrame.from_dict(pd.json_normalize(contents), orien

t='columns') 

 

dfjson = pd.concat([dfjsonA, dfjsonB, dfjsonC], axis=0,ignore_index

=True) 

 

################################################################## 

 

#Total flights in day A 

vuelosAJUNO = 0 

vuelosAOMAHA = 0 

vuelosAUTAH = 0 

vuelosASWORD = 0 

for i in dfjsonA.index: 

  spl1 = dfjsonA['callsign'][i].split('_') 

  if spl1[1] == 'JUNO': 

    vuelosAJUNO = vuelosAJUNO + 1 

  if spl1[1] == 'OMAHA': 

    vuelosAOMAHA = vuelosAOMAHA + 1 

  if spl1[1] == 'UTAH': 

    vuelosAUTAH = vuelosAUTAH + 1 

  if spl1[1] == 'SWORD': 

    vuelosASWORD = vuelosASWORD + 1 

 

################################################################## 

 

#Total flights in day B 

vuelosBJUNO = 0 

vuelosBOMAHA = 0 
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vuelosBUTAH = 0 

vuelosBSWORD = 0 

for i in dfjsonB.index: 

  spl1 = dfjsonB['callsign'][i].split('_') 

  if spl1[1] == 'JUNO': 

    vuelosBJUNO = vuelosBJUNO + 1 

  if spl1[1] == 'OMAHA': 

    vuelosBOMAHA = vuelosBOMAHA + 1 

  if spl1[1] == 'UTAH': 

    vuelosBUTAH = vuelosBUTAH + 1 

  if spl1[1] == 'SWORD': 

    vuelosBSWORD = vuelosBSWORD + 1 

 

################################################################## 

 

#Total flights in day C 

vuelosCJUNO = 0 

vuelosCOMAHA = 0 

vuelosCUTAH = 0 

vuelosCSWORD = 0 

for i in dfjsonC.index: 

  spl1 = dfjsonC['callsign'][i].split('_') 

  if spl1[1] == 'JUNO': 

    vuelosCJUNO = vuelosCJUNO + 1 

  if spl1[1] == 'OMAHA': 

    vuelosCOMAHA = vuelosCOMAHA + 1 

  if spl1[1] == 'UTAH': 

    vuelosCUTAH = vuelosCUTAH + 1 

  if spl1[1] == 'SWORD': 

    vuelosCSWORD = vuelosCSWORD + 1 

 

################################################################## 

 

#Scheduled Flights Plot 

index = ['Day A','Day B','Day C'] 

jsonA = pd.DataFrame({'JUNO': [vuelosAJUNO,vuelosBJUNO,vuelosCJUNO]

,'OMAHA': [vuelosAOMAHA,vuelosBOMAHA,vuelosCOMAHA],'UTAH': [vuelosA

UTAH,vuelosBUTAH,vuelosCUTAH],'SWORD': [vuelosASWORD,vuelosBSWORD,v

uelosCSWORD]}, index=index) 

ax = jsonA.plot.bar(figsize=(10,10)) 

plt.ylim(0,90) 

plt.legend(fontsize=15, loc='upper right') 

plt.title('Scheduled Flights') 

 

################################################################## 

 

#Scheduled/Perfromed/Contingency flights of JUNO day C 

dia='C' 

operador ='JUNO' 

vuelosCJUNO = 0 
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vuelosCJUNOcsv = 0 

vuelosCJUNOcont = 0 

vuelos =  pd.read_table('drive/MyDrive/TFG - Laura Vazquez -

 PREDICTION OF 4D DRONE TRAJECTORIES FROM DEMONSTRATION DATA/TXTFLI

GHTS/Vuelos_'+ dia + '_' + operador +'.txt', delimiter = ',') 

vuelos = vuelos.replace({np.nan:None}) 

for i in vuelos.index: 

  if vuelos['callsignJSON'][i] is not None: 

    vuelosCJUNO=vuelosCJUNO + 1 

  if vuelos['callsignCSV'][i] is not None: 

    vuelosCJUNOcsv = vuelosCJUNOcsv + 1 

  if vuelos['Contingencia'][i] is not None: 

    vuelosCJUNOcont = vuelosCJUNOcont + 1 

 

################################################################## 

 

#Scheduled/Perfromed/Contingency flights of OMAHA day C 

dia='C' 

operador ='OMAHA' 

vuelosCOMAHA = 0 

vuelosCOMAHAcsv = 0 

vuelosCOMAHAcont = 0 

vuelos =  pd.read_table('drive/MyDrive/TFG - Laura Vazquez -

 PREDICTION OF 4D DRONE TRAJECTORIES FROM DEMONSTRATION DATA/TXTFLI

GHTS/Vuelos_'+ dia + '_' + operador +'.txt', delimiter = ',') 

vuelos = vuelos.replace({np.nan:None}) 

for i in vuelos.index: 

  if vuelos['callsignJSON'][i] is not None: 

    vuelosCOMAHA=vuelosCOMAHA + 1 

  if vuelos['callsignCSV'][i] is not None: 

    vuelosCOMAHAcsv = vuelosCOMAHAcsv + 1 

  if vuelos['Contingencia'][i] is not None: 

    vuelosCOMAHAcont = vuelosCOMAHAcont + 1 

 

################################################################## 

 

#Scheduled/Perfromed/Contingency flights of UTAH day C 

dia='C' 

operador ='UTAH' 

vuelosCUTAH = 0 

vuelosCUTAHcsv = 0 

vuelosCUTAHcont = 0 

vuelos =  pd.read_table('drive/MyDrive/TFG - Laura Vazquez -

 PREDICTION OF 4D DRONE TRAJECTORIES FROM DEMONSTRATION DATA/TXTFLI

GHTS/Vuelos_'+ dia + '_' + operador +'.txt', delimiter = ',') 

vuelos = vuelos.replace({np.nan:None}) 

for i in vuelos.index: 

  if vuelos['callsignJSON'][i] is not None: 

    vuelosCUTAH=vuelosCUTAH + 1 
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  if vuelos['callsignCSV'][i] is not None: 

    vuelosCUTAHcsv = vuelosCUTAHcsv + 1 

  if vuelos['Contingencia'][i] is not None: 

    vuelosCUTAHcont = vuelosCUTAHcont + 1 

 

################################################################## 

 

#Scheduled/Perfromed/Contingency flights of SWORD day C 

dia='C' 

operador ='SWORD' 

vuelosCSWORD = 0 

vuelosCSWORDcsv = 0 

vuelosCSWORDcont = 0 

vuelos =  pd.read_table('drive/MyDrive/TFG - Laura Vazquez -

 PREDICTION OF 4D DRONE TRAJECTORIES FROM DEMONSTRATION DATA/TXTFLI

GHTS/Vuelos_'+ dia + '_' + operador +'.txt', delimiter = ',') 

vuelos = vuelos.replace({np.nan:None}) 

for i in vuelos.index: 

  if vuelos['callsignJSON'][i] is not None: 

    vuelosCSWORD=vuelosCSWORD + 1 

  if vuelos['callsignCSV'][i] is not None: 

    vuelosCSWORDcsv = vuelosCSWORDcsv + 1 

  if vuelos['Contingencia'][i] is not None: 

    vuelosCSWORDcont = vuelosCSWORDcont + 1 

 

################################################################## 

 

#Scheduled/Perfromed/Contingency flights of JUNO day B 

dia='B' 

operador ='JUNO' 

vuelosBJUNO = 0 

vuelosBJUNOcsv = 0 

vuelosBJUNOcont = 0 

vuelos =  pd.read_table('drive/MyDrive/TFG - Laura Vazquez -

 PREDICTION OF 4D DRONE TRAJECTORIES FROM DEMONSTRATION DATA/TXTFLI

GHTS/Vuelos_'+ dia + '_' + operador +'.txt', delimiter = ',') 

vuelos = vuelos.replace({np.nan:None}) 

for i in vuelos.index: 

  if vuelos['callsignJSON'][i] is not None: 

    vuelosBJUNO=vuelosBJUNO + 1 

  if vuelos['callsignCSV'][i] is not None: 

    vuelosBJUNOcsv = vuelosBJUNOcsv + 1 

  if vuelos['Contingencia'][i] is not None: 

    vuelosBJUNOcont = vuelosBJUNOcont + 1 

 

################################################################## 

 

#Scheduled/Perfromed/Contingency flights of OMAHA day B 

dia='B' 

operador ='OMAHA' 
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vuelosBOMAHA = 0 

vuelosBOMAHAcsv = 0 

vuelosBOMAHAcont = 0 

vuelos =  pd.read_table('drive/MyDrive/TFG - Laura Vazquez -

 PREDICTION OF 4D DRONE TRAJECTORIES FROM DEMONSTRATION DATA/TXTFLI

GHTS/Vuelos_'+ dia + '_' + operador +'.txt', delimiter = ',') 

vuelos = vuelos.replace({np.nan:None}) 

for i in vuelos.index: 

  if vuelos['callsignJSON'][i] is not None: 

    vuelosBOMAHA=vuelosBOMAHA + 1 

  if vuelos['callsignCSV'][i] is not None: 

    vuelosBOMAHAcsv = vuelosBOMAHAcsv + 1 

  if vuelos['Contingencia'][i] is not None: 

    vuelosBOMAHAcont = vuelosBOMAHAcont + 1 

 

################################################################## 

 

#Scheduled/Perfromed/Contingency flights of UTAH day B 

dia='B' 

operador ='UTAH' 

vuelosBUTAH = 0 

vuelosBUTAHcsv = 0 

vuelosBUTAHcont = 0 

vuelos =  pd.read_table('drive/MyDrive/TFG - Laura Vazquez -

 PREDICTION OF 4D DRONE TRAJECTORIES FROM DEMONSTRATION DATA/TXTFLI

GHTS/Vuelos_'+ dia + '_' + operador +'.txt', delimiter = ',') 

vuelos = vuelos.replace({np.nan:None}) 

for i in vuelos.index: 

  if vuelos['callsignJSON'][i] is not None: 

    vuelosBUTAH=vuelosBUTAH + 1 

  if vuelos['callsignCSV'][i] is not None: 

    vuelosBUTAHcsv = vuelosBUTAHcsv + 1 

  if vuelos['Contingencia'][i] is not None: 

    vuelosBUTAHcont = vuelosBUTAHcont + 1 

 

################################################################## 

 

#Scheduled/Perfromed/Contingency flights of SWORD day B 

dia='B' 

operador ='SWORD' 

vuelosBSWORD = 0 

vuelosBSWORDcsv = 0 

vuelosBSWORDcont = 0 

vuelos =  pd.read_table('drive/MyDrive/TFG - Laura Vazquez -

 PREDICTION OF 4D DRONE TRAJECTORIES FROM DEMONSTRATION DATA/TXTFLI

GHTS/Vuelos_'+ dia + '_' + operador +'.txt', delimiter = ',') 

vuelos = vuelos.replace({np.nan:None}) 

for i in vuelos.index: 

  if vuelos['callsignJSON'][i] is not None: 

    vuelosBSWORD=vuelosBSWORD + 1 
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  if vuelos['callsignCSV'][i] is not None: 

    vuelosBSWORDcsv = vuelosBSWORDcsv + 1 

  if vuelos['Contingencia'][i] is not None: 

    vuelosBSWORDcont = vuelosBSWORDcont + 1 

 

################################################################## 

 

#Scheduled/Perfromed/Contingency flights of JUNO day A 

dia='A' 

operador ='JUNO' 

vuelosAJUNO = 0 

vuelosAJUNOcsv = 0 

vuelosAJUNOcont = 0 

vuelos =  pd.read_table('drive/MyDrive/TFG - Laura Vazquez -

 PREDICTION OF 4D DRONE TRAJECTORIES FROM DEMONSTRATION DATA/TXTFLI

GHTS/Vuelos_'+ dia + '_' + operador +'.txt', delimiter = ',') 

vuelos = vuelos.replace({np.nan:None}) 

for i in vuelos.index: 

  if vuelos['callsignJSON'][i] is not None: 

    vuelosAJUNO=vuelosAJUNO + 1 

  if vuelos['callsignCSV'][i] is not None: 

    vuelosAJUNOcsv = vuelosAJUNOcsv + 1 

  if vuelos['Contingencia'][i] is not None: 

    vuelosAJUNOcont = vuelosAJUNOcont + 1 

 

################################################################## 

 

#Scheduled/Perfromed/Contingency flights of OMAHA day A 

dia='A' 

operador ='OMAHA' 

vuelosAOMAHA = 0 

vuelosAOMAHAcsv = 0 

vuelosAOMAHAcont = 0 

vuelos =  pd.read_table('drive/MyDrive/TFG - Laura Vazquez -

 PREDICTION OF 4D DRONE TRAJECTORIES FROM DEMONSTRATION DATA/TXTFLI

GHTS/Vuelos_'+ dia + '_' + operador +'.txt', delimiter = ',') 

vuelos = vuelos.replace({np.nan:None}) 

for i in vuelos.index: 

  if vuelos['callsignJSON'][i] is not None: 

    vuelosAOMAHA=vuelosAOMAHA + 1 

  if vuelos['callsignCSV'][i] is not None: 

    vuelosAOMAHAcsv = vuelosAOMAHAcsv + 1 

  if vuelos['Contingencia'][i] is not None: 

    vuelosAOMAHAcont = vuelosAOMAHAcont + 1 

 

################################################################## 

 

#Scheduled/Perfromed/Contingency flights of UTAH day A 

dia='A' 

operador ='UTAH' 
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vuelosAUTAH = 0 

vuelosAUTAHcsv = 0 

vuelosAUTAHcont = 0 

vuelos =  pd.read_table('drive/MyDrive/TFG - Laura Vazquez -

 PREDICTION OF 4D DRONE TRAJECTORIES FROM DEMONSTRATION DATA/TXTFLI

GHTS/Vuelos_'+ dia + '_' + operador +'.txt', delimiter = ',') 

vuelos = vuelos.replace({np.nan:None}) 

for i in vuelos.index: 

  if vuelos['callsignJSON'][i] is not None: 

    vuelosAUTAH=vuelosAUTAH + 1 

  if vuelos['callsignCSV'][i] is not None: 

    vuelosAUTAHcsv = vuelosAUTAHcsv + 1 

  if vuelos['Contingencia'][i] is not None: 

    vuelosAUTAHcont = vuelosAUTAHcont + 1 

 

################################################################## 

 

#Scheduled/Perfromed/Contingency flights of SWORD day A 

dia='A' 

operador ='SWORD' 

vuelosASWORD = 0 

vuelosASWORDcsv = 0 

vuelosASWORDcont = 0 

vuelos =  pd.read_table('drive/MyDrive/TFG - Laura Vazquez -

 PREDICTION OF 4D DRONE TRAJECTORIES FROM DEMONSTRATION DATA/TXTFLI

GHTS/Vuelos_'+ dia + '_' + operador +'.txt', delimiter = ',') 

vuelos = vuelos.replace({np.nan:None}) 

for i in vuelos.index: 

  if vuelos['callsignJSON'][i] is not None: 

    vuelosASWORD=vuelosASWORD + 1 

  if vuelos['callsignCSV'][i] is not None: 

    vuelosASWORDcsv = vuelosASWORDcsv + 1 

  if vuelos['Contingencia'][i] is not None: 

    vuelosASWORDcont = vuelosASWORDcont + 1 

 

################################################################## 

 

#All the performed flights 

index = ['Day A','Day B','Day C'] 

jsonC = pd.DataFrame({'JUNO': [vuelosAJUNOcsv, vuelosBJUNOcsv, vuel

osCJUNOcsv],'OMAHA': [vuelosAOMAHAcsv, vuelosBOMAHAcsv, vuelosCOMAH

Acsv],'UTAH': [vuelosAUTAHcsv, vuelosBUTAHcsv, vuelosCUTAHcsv],'SWO

RD': [vuelosASWORDcsv, vuelosBSWORDcsv, vuelosCSWORDcsv]}, index=in

dex) 

ax = jsonC.plot.bar() 

plt.title("Performed Flights") 

 

################################################################## 

 

#OMAHA Flights 
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index = ['Day A','Day B','Day C'] 

jsonC = pd.DataFrame({'Scheduled Flights': [vuelosAOMAHA, vuelosBOM

AHA, vuelosCOMAHA],'Performed Flights': [vuelosAOMAHAcsv, vuelosBOM

AHAcsv, vuelosCOMAHAcsv],'Contingencies': [vuelosAOMAHAcont, vuelos

BOMAHAcont, vuelosCOMAHAcont]}, index=index) 

ax = jsonC.plot.bar() 

plt.title('OMAHA Flights') 

 

################################################################## 

 

#JUNO Flights 

index = ['Day A','Day B','Day C'] 

jsonC = pd.DataFrame({'Scheduled Flights': [vuelosAJUNO, vuelosBJUN

O, vuelosCJUNO],'Performed Flights': [vuelosAJUNOcsv, vuelosBJUNOcs

v, vuelosCJUNOcsv],'Contingencies': [vuelosAJUNOcont, vuelosBJUNOco

nt, vuelosCJUNOcont]}, index=index) 

ax = jsonC.plot.bar() 

 

plt.title('JUNO Flights') 

 

################################################################## 

 

#UTAH Flights 

index = ['Day A','Day B','Day C'] 

jsonC = pd.DataFrame({'Scheduled Flights': [vuelosAUTAH, vuelosBUTA

H, vuelosCUTAH],'Performed Flights': [vuelosAUTAHcsv, vuelosBUTAHcs

v, vuelosCUTAHcsv],'Contingencies': [vuelosAUTAHcont, vuelosBUTAHco

nt, vuelosCUTAHcont]}, index=index) 

ax = jsonC.plot.bar() 

plt.ylim(0,80) 

plt.title('UTAH Flights') 

 

################################################################## 

 

#SWORD Flights 

index = ['Day A','Day B','Day C'] 

jsonC = pd.DataFrame({'Scheduled Flights': [vuelosASWORD, vuelosBSW

ORD, vuelosCSWORD],'Performed Flights': [vuelosASWORDcsv, vuelosBSW

ORDcsv, vuelosCSWORDcsv],'Contingencies': [vuelosASWORDcont, vuelos

BSWORDcont, vuelosCSWORDcont]}, index=index) 

ax = jsonC.plot.bar() 

plt.ylim(0,80) 

plt.title('SWORD Flights') 

 

################################################################## 

 

#Calculation Total Scheduled/Performed Flights 

PvuelosC = vuelosCJUNO + vuelosCOMAHA + vuelosCUTAH + vuelosCSWORD 

PvuelosB = vuelosBJUNO + vuelosBOMAHA + vuelosBUTAH + vuelosBSWORD 

PvuelosA = vuelosAJUNO + vuelosAOMAHA + vuelosAUTAH + vuelosASWORD 



72  Prediction of 4D drone trajectories from demonstration data 

 

RvuelosC = vuelosCJUNOcsv + vuelosCOMAHAcsv + vuelosCUTAHcsv + vuel

osCSWORDcsv 

RvuelosB = vuelosBJUNOcsv + vuelosBOMAHAcsv + vuelosBUTAHcsv + vuel

osBSWORDcsv 

RvuelosA = vuelosAJUNOcsv + vuelosAOMAHAcsv + vuelosAUTAHcsv + vuel

osASWORDcsv 

 

################################################################## 

 

#Scheduled/Performed Flights 

index = ['Day A','Day B','Day C'] 

jsonC = pd.DataFrame({'Scheduled Flights': [PvuelosA, PvuelosB, Pvu

elosC],'Performed Flights': [RvuelosA, RvuelosB, RvuelosC]}, index=

index) 

ax = jsonC.plot.bar() 

plt.title('Scheduled/Performed Flights') 

 

################################################################## 

 

#List of Scheduled flights and Flights made 

dia = 'C' 

callsign = 'SWORD' 

 

jsontotal = pd.DataFrame() 

jsontraffic =  pd.read_table('drive/MyDrive/TFG - Laura Vazquez -

 PREDICTION OF 4D DRONE TRAJECTORIES FROM DEMONSTRATION DATA/JSON/'

+ dia + '_' + callsign +'_JSON.txt', delimiter = ',') 

jsontraffic = jsontraffic.drop('Unnamed: 0', axis=1) 

jsontotal = jsontraffic['callsign'] + '_' + jsontraffic['Take Off T

ime'] + '_' + jsontraffic['delivery'] 

jsontot = pd.DataFrame() 

jsontot['callsignJSON'] = jsontotal 

 

csvtotal = pd.DataFrame() 

i = 0 

for i in range(2000): 

  for x in range(15): 

    if x < 10: 

      if os.path.isfile('drive/MyDrive/TFG - Laura Vazquez -

 PREDICTION OF 4D DRONE TRAJECTORIES FROM DEMONSTRATION DATA/CSVs/'

 + dia + '_' + callsign + '_'+ str(i) + '_DELV_0' + str(x) +'.csv')

: 

        nueva_fila = {'callsignCSV': dia + '_' +callsign + '_' + st

r(i) + '_' + 'DELV_0' + str(x)}  

        csvtotal = csvtotal.append(nueva_fila, ignore_index=True) 

    else: 

      if os.path.isfile('drive/MyDrive/TFG - Laura Vazquez -

 PREDICTION OF 4D DRONE TRAJECTORIES FROM DEMONSTRATION DATA/CSVs/'

 + dia + '_' + callsign + '_'+ str(i) + '_DELV_' + str(x) +'.csv'): 
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        nueva_fila = {'callsignCSV': dia + '_' +callsign + '_' + st

r(i) + '_' + 'DELV_' + str(x)}  

        csvtotal = csvtotal.append(nueva_fila, ignore_index=True) 

 

kmltotal = pd.DataFrame() 

i = 0 

for i in range(2000): 

  for x in range(15): 

    if x < 10: 

      if os.path.isfile('drive/MyDrive/TFG - Laura Vazquez -

 PREDICTION OF 4D DRONE TRAJECTORIES FROM DEMONSTRATION DATA/KML/' 

+ dia + '_' + callsign + '_'+ str(i) + '-DELV-0' + str(x) +'.kml'): 

        nueva_fila = {'callsignKML': dia + '_' +callsign + '_' + st

r(i) + '_' + 'DELV-0' + str(x)}  

        kmltotal = kmltotal.append(nueva_fila, ignore_index=True) 

    else: 

      if os.path.isfile('drive/MyDrive/TFG - Laura Vazquez -

 PREDICTION OF 4D DRONE TRAJECTORIES FROM DEMONSTRATION DATA/KML/' 

+ dia + '_' + callsign + '_'+ str(i) + '-DELV-' + str(x) +'.kml'): 

        nueva_fila = {'callsignKML': dia + '_' +callsign + '_' + st

r(i) + '_' + 'DELV-' + str(x)}  

        kmltotal = kmltotal.append(nueva_fila, ignore_index=True) 

 

comparacion = pd.concat([jsontot, kmltotal, csvtotal], axis=1) 

 

comparacion.to_csv('Flights_'+ dia + '_' + callsign + '.txt', sep="

,") 

 

################################################################## 

 

#Match Scheduled and Performed Flights and Rename CSV's 

dia = 'C' 

callsign = 'SWORD' 

comparacion = pd.read_csv("drive/MyDrive/TFG - Laura Vazquez -

 PREDICTION OF 4D DRONE TRAJECTORIES FROM DEMONSTRATION DATA/TXTFLI

GHTS/Vuelos_"+ dia + '_' + callsign + '.txt') 

i = 0  

for i in comparacion.index: 

  spl1 = comparacion['callsignJSON'][i].split('_') 

  spl11 = spl1[3].split(':') 

  hora1 = spl11[0] 

  minute1 = int(spl11[1]) 

  j = 0 

  for j in comparacion.index: 

    spl2 = str(comparacion['callsignCSV'][j]).split('_') 

    if spl2!=['nan']: 

      spl3 = spl2[2].split(':') 
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      hora = int(spl3[0]) 

      minute = int(spl3[1]) 

      if hora < 9: 

        if callsign == 'SWORD':  

          horaf = '0'+str(hora) 

        else: 

          horaf = '0'+str(hora + 1) 

      if hora == 9 and callsign == 'SWORD':  

          horaf = '0'+str(hora) 

      else: 

        if callsign == 'SWORD':  

          horaf = str(hora) 

        else: 

          horaf = str(hora + 1) 

      if spl2[4] == spl1[5] and horaf == hora1: 

        if minute1 <= minute and (minute-minute1) <= 3: 

          print(spl1[2] + ' ' + spl1[3] + ' ' + spl1[5] + '/' + spl

2[2] + ' ' + spl2[4]) 

          if callsign == 'SWORD': 

            if os.path.isfile("drive/MyDrive/TFG - Laura Vazquez -

 PREDICTION OF 4D DRONE TRAJECTORIES FROM DEMONSTRATION DATA/CSVs/"

 + dia + "-HAR-" + callsign + "-" + str(j + 1) + ".csv"): 

              csv = pd.read_csv("drive/MyDrive/TFG -

 Laura Vazquez -

 PREDICTION OF 4D DRONE TRAJECTORIES FROM DEMONSTRATION DATA/CSVs/"

 + dia + "-HAR-" + callsign + "-" + str(j + 1) + ".csv") 

              csvf = retocarcsvSWORD(csv,callsign) 

              TOT = str(csvf['time'].iloc[0]).split(" ") 

              time = TOT[1] 

              if time == spl2[2]: 

                print('a') 

                renamefile("drive/MyDrive/TFG - Laura Vazquez -

 PREDICTION OF 4D DRONE TRAJECTORIES FROM DEMONSTRATION DATA/CSVs/"

 + dia + "-HAR-" + callsign + "-

" + str(j + 1) + ".csv", "drive/MyDrive/TFG - Laura Vazquez -

 PREDICTION OF 4D DRONE TRAJECTORIES FROM DEMONSTRATION DATA/CSVs/"

 + spl1[0] + "_" + spl1[1] + "_" + spl1[2] + "_" + spl1[4] + "_" + 

spl1[5] + ".csv") 

            if os.path.isfile("drive/MyDrive/TFG - Laura Vazquez -

 PREDICTION OF 4D DRONE TRAJECTORIES FROM DEMONSTRATION DATA/CSVs/"

 + dia + "-HEFO-" + callsign + "-" + str(j + 1) + ".csv"): 

              csv = pd.read_csv("drive/MyDrive/TFG -

 Laura Vazquez -

 PREDICTION OF 4D DRONE TRAJECTORIES FROM DEMONSTRATION DATA/CSVs/"

 + dia + "-HEFO-" + callsign + "-" + str(j + 1) + ".csv") 

              csvf = retocarcsvSWORD(csv,callsign) 

              TOT = str(csvf['time'].iloc[0]).split(" ") 

              time = TOT[1] 

              if time == spl2[2]: 
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                print('a') 

                renamefile("drive/MyDrive/TFG - Laura Vazquez -

 PREDICTION OF 4D DRONE TRAJECTORIES FROM DEMONSTRATION DATA/CSVs/"

 + dia + "-HEFO-" + callsign + "-

" + str(j + 1) + ".csv", "drive/MyDrive/TFG - Laura Vazquez -

 PREDICTION OF 4D DRONE TRAJECTORIES FROM DEMONSTRATION DATA/CSVs/"

 + spl1[0] + "_" + spl1[1] + "_" + spl1[2] + "_" + spl1[4] + "_" + 

spl1[5] + ".csv") 

          else: 

            if os.path.isfile("drive/MyDrive/TFG - Laura Vazquez -

 PREDICTION OF 4D DRONE TRAJECTORIES FROM DEMONSTRATION DATA/CSVs/"

 + dia + "_" + callsign + "_" + str(j + 1) + ".csv"): 

              print('a') 

              csv = pd.read_csv("drive/MyDrive/TFG -

 Laura Vazquez -

 PREDICTION OF 4D DRONE TRAJECTORIES FROM DEMONSTRATION DATA/CSVs/"

 + dia + "_" + callsign + "_" + str(j + 1) + ".csv") 

              csvf = retocarcsv(csv,callsign) 

              if len(csvf) != 0: 

                TOT = str(csvf['datetime(utc)'].iloc[0]).split(" ") 

                time = TOT[1] 

                if time == spl2[2]: 

                  print('a') 

                  renamefile("drive/MyDrive/TFG - Laura Vazquez -

 PREDICTION OF 4D DRONE TRAJECTORIES FROM DEMONSTRATION DATA/CSVs/"

 + dia + "_" + callsign + "_" + str(j + 1) + ".csv", "drive/MyDrive

/TFG - Laura Vazquez -

 PREDICTION OF 4D DRONE TRAJECTORIES FROM DEMONSTRATION DATA/CSVs/"

 + spl1[0] + "_" + spl1[1] + "_" + spl1[2] + "_" + spl1[4] + "_" + 

spl1[5] + ".csv") 

 

################################################################## 

 

#Creating JSON TXT 

delvjson = pd.DataFrame() 

 

for i in range(3000): 

  tr = pd.DataFrame() 

  dia = 'A' 

  CS = 'UTAH' 

  callsign = dia + '_' + CS + '_' + str(i) 

  df = dfjson 

  if dia == 'A': 

    tr = trajectoryA(callsign,dfjson) 

  else: 

    tr = trajectory(callsign,dfjson) 

  if tr is not None: 

    alt_min = tr['alt'].idxmin() 
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    delv = find_delivery(tr['lon'].iloc[alt_min], tr['lat'].iloc[al

t_min], DP) 

    dfc = dfjson.loc[dfjson['callsign'] == callsign] 

    time = dfc['request'].iloc[0] 

    hora = "{:02d}:{:02d}:{:02d}".format(time.hour, time.minute, ti

me.second) 

    nueva_fila = {'callsign': callsign, 'Take Off Time': hora , 'de

livery': delv}  

    delvjson = delvjson.append(nueva_fila, ignore_index=True) 

with open('drive/MyDrive/TFG - Laura Vazquez -

 PREDICTION OF 4D DRONE TRAJECTORIES FROM DEMONSTRATION DATA/JSON/J

SON-A-UTAH.txt','w') as fo: 

  fo.write(delvjson.to_string(index=False)) 

 

delvjson.to_csv('A_UTAH_JSON.txt', sep=",") 

 

################################################################## 

 

#Prediction Table 

 

Dia = ['A','B','C'] 

dfx = pd.DataFrame() 

dfx2 = pd.DataFrame() 

dfy = pd.DataFrame() 

dfy2 = pd.DataFrame() 

kmlcornerradiusdelv = pd.DataFrame() 

for i in range(len(Dia)): 

  dia = Dia[i] 

  if dia == 'A': 

    VERSION="v8.A.2" 

  if dia == 'B': 

    VERSION="v9.B.1" 

  if dia == 'C': 

    VERSION="v9.C.1" 

  dfjson = JSON(VERSION) 

  Callsign = ['JUNO','OMAHA','SWORD','UTAH'] 

  for j in range(len(Callsign)): 

    callsign = Callsign[j] 

    flights = pd.read_csv("drive/MyDrive/TFG - Laura Vazquez -

 PREDICTION OF 4D DRONE TRAJECTORIES FROM DEMONSTRATION DATA/FLIGHT

S/Flights_" + dia + "_" + callsign + ".txt") 

    if 'callsignCSV' in flights: 

      flightcsv = flights['callsignCSV'].dropna() 

      for z in range(len(flightcsv)): 

        spl = flightcsv[z].split('_') 

        delv = DP[int(spl[4])-1] 

        callsignComparar = str(spl[0]) + '_' + str(spl[1]) + '_' + 

str(spl[2]) 

        if dia == 'A': 
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          tra = trajectoryA(callsignComparar,dfjson) 

        else: 

          tra = trajectory(callsignComparar,dfjson) 

        for y in tra.index:   

          if tra['lat'][y] == delv[1] and tra['lon'][y] == delv[0]: 

            altdelv = tra['alt'][y] 

            posaltdelv = y 

          if altdelv != "": 

            if y < posaltdelv: 

              if tra['alt'][y] == tra['alt'][y+1]: 

                altcreuer = tra['alt'][y] 

                break 

        if callsign == 'SWORD' and dia=='C': 

          vel = 'Nan' 

        else: 

          kml = KML(spl[0] + '_' + spl[1] + '_'+ spl[2] + '-

' + spl[3] + '-' + spl[4]) 

          kml = kml.drop(kml.index[-1]) 

        num = 0 

        speed = 0 

        for k in kml.index: 

          if kml['Alt'][k] == kml['Alt'][k+1] and k < posaltdelv: 

            altcreukml = kml['Alt'][k] 

            break 

        for k in kml.index: 

          if kml['Alt'][k] == altcreukml: 

            num = num + 1 

            speed = speed + int(kml['Speed'][k])  

        speed = speed / num 

        csv = pd.read_csv("drive/MyDrive/TFG - Laura Vazquez -

 PREDICTION OF 4D DRONE TRAJECTORIES FROM DEMONSTRATION DATA/CSVs/"

 + flightcsv[z] + ".csv") 

        if callsign =='SWORD': 

          csvf = retocarcsvSWORD(csv,callsign) 

          TOF = csvf['time'].iloc[0] 

          alt_min = csvf['altitude'].idxmin() 

          TOD = csvf['time'].iloc[alt_min] 

        else:           

          csvf = retocarcsv(csv,callsign) 

          TOF = csvf['datetime(utc)'].iloc[0] 

          alt_min = csvf['altitude'].idxmin() 

          TOD = csvf['datetime(utc)'].iloc[alt_min]   

        TOFm = str(TOF).split(' ') 

        TOFm = TOFm[1].split(':') 

        TOFm = int(TOFm[0])*60 + int(TOFm[1]) 

        TODm = str(TOD).split(' ') 

        TODm = TODm[1].split(':') 

        TODm = int(TODm[0])*60 + int(TODm[1]) 
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        nueva_fila = {'lat0': tra['lat'][0], 'lon0': tra['lon'][0],

'alt0':tra['alt'][0], 'cornerRadius0':kml['CornerRadius'][0], 'latd

elv': delv[1], 'londelv': delv[0], 'altdelv':altdelv,  'altcreuer':

 altcreuer, 'velcreuer': speed, 'Time Entering Airway (min)': TOFm}

  

        dfx = dfx.append(nueva_fila, ignore_index=True) 

        nueva_filay = {'Time of Delivery (min)': TODm}  

        dfy = dfy.append(nueva_filay, ignore_index=True) 

 

################################################################## 

 

#Prediction with Linear Regression Model 

X_train, X_test, y_train, y_test = train_test_split(dfx, dfy, test_

size=0.2) 

 

regression_model=LinearRegression() 

regresion = regression_model.fit(X_train,y_train) 

 

y_pred = regresion.predict(X_test) 

print('MAE',mean_absolute_error(y_test, y_pred)) 

print('SQMES',np.sqrt(metrics.mean_squared_error(y_test, y_pred))) 

print('score', regresion.score(X_train,y_train)) 

 

################################################################## 

 

#Prediction with Logistic Regression Model 

X_train, X_test, y_train, y_test = train_test_split(dfx, dfy, test_

size=0.2) 

LRG = LogisticRegression() 

LGRRegression = LRG.fit(X_train,y_train) 

y_pred = LGRRegression.predict(X_test) 

 

print('MAE',mean_absolute_error(y_test, y_pred)) 

print('MSE',mean_squared_error(y_test, y_pred)) 

print('SQMES',np.sqrt(metrics.mean_squared_error(y_test, y_pred))) 

print('score', LGRRegression.score(X_train,y_train)) 

 

################################################################## 

 

#Prediction with Ridge Regression Model 

X_train, X_test, y_train, y_test = train_test_split(dfx, dfy, test_

size=0.2) 

 

model = Ridge(alpha = 0.5, normalize = False, tol = 0.001, solver =

'auto', random_state = 42) 

modelr = model.fit(X_train, y_train) 

y_pred = model.predict(X_test) 

 

print('MAE',mean_absolute_error(y_test, y_pred)) 
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print('MSE',mean_squared_error(y_test, y_pred)) 

print('SQMES',np.sqrt(metrics.mean_squared_error(y_test, y_pred))) 

print('score', modelr.score(X_train,y_train)) 

 

################################################################## 

 

#Prediction with Bayesian Regression Model 

X_train, X_test, y_train, y_test = train_test_split(dfx, dfy, test_

size=0.2) 

 

BayReg = linear_model.BayesianRidge() 

BRModel = BayReg.fit(X_train, y_train) 

 

 

y_pred = BayReg.predict(X_test) 

print('MAE',mean_absolute_error(y_test, y_pred)) 

print('SQMES',np.sqrt(metrics.mean_squared_error(y_test, y_pred))) 

print('score', BRModel.score(X_train,y_train)) 

 

score = BayReg.score(X_test, y_test) 

print("\n\nModel score : ", score) 

 

################################################################## 

 

#Prediction with Elastic Net Regression Model 

from sklearn.linear_model import ElasticNet 

X_train, X_test, y_train, y_test = train_test_split(dfx, dfy, test_

size=0.2) 

 

EN = ElasticNet() 

ENModel = EN.fit(X_train, y_train) 

 

y_pred = EN.predict(X_test) 

print('MAE',mean_absolute_error(y_test, y_pred)) 

print('SQMES',np.sqrt(metrics.mean_squared_error(y_test, y_pred))) 

print('score', ENModel.score(X_train,y_train)) 

 


