
Citation: Fernández, J.;

Perez-Cerrolaza, J.; Agirre, I.;

Calderon, A.J.; Abella, J.; Cazorla, F.J.

On the Safe Deployment of Matrix

Multiplication in Massively Parallel

Safety-Related Systems. Appl. Sci.

2022, 12, 3779. https://doi.org/

10.3390/app12083779

Academic Editor: Dusica Marijan

Received: 14 March 2022

Accepted: 6 April 2022

Published: 8 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

On the Safe Deployment of Matrix Multiplication in Massively
Parallel Safety-Related Systems
Javier Fernández 1,2,* , Jon Perez-Cerrolaza 1 , Irune Agirre 1 , Alejandro J. Calderon 1 , Jaume Abella 3

and Francisco J. Cazorla 3

1 Ikerlan Technological Research Center, Basque Research and Technology Alliance (BRTA),
20500 Mondragon, Spain; jmperez@ikerlan.es (J.P.-C.); iagirre@ikerlan.es (I.A.); ajcalderon@ikerlan.es (A.J.C.)

2 Departament d’Arquitectura de Computadors, Universitat Politècnica de Catalunya (UPC),
08034 Barcelona, Spain

3 Barcelona Supercomputing Center, 08034 Barcelona, Spain; jaume.abella@bsc.es (J.A.);
francisco.cazorla@bsc.es (F.J.C.)

* Correspondence: javier.fernandez@ikerlan.es; Tel.: +34-616-597-463

Abstract: Deep learning technology has enabled the development of increasingly complex safety-
related autonomous systems using high-performance computers, such as graphics processing units
(GPUs), which provide the required high computing performance for the execution of parallel com-
puting algorithms, such as matrix–matrix multiplications (a central computing element of deep
learning software libraries). However, the safety certification of parallel computing software algo-
rithms and GPU-based safety-related systems is a challenge to be addressed. For example, achieving
the required fault-tolerance and diagnostic coverage for random hardware errors. This paper con-
tributes with a safe matrix–matrix multiplication software implementation for GPUs with random
hardware error-detection capabilities (permanent, transient) that can be used with different architec-
tural patterns for fault-tolerance, and which serves as a foundation for the implementation of safe
deep learning libraries for GPUs. The proposed contribution is complementary and can be combined
with other techniques, such as algorithm-based fault tolerance. In particular, (i) we provide the
high-performance matrix multiplication CUTLASS library with a catalog of diagnostic mechanisms
to detect random hardware errors down to the arithmetic operation level; and (ii) we measure the
performance impact incurred by the adoption of these mechanisms and their achievable diagnostic
coverage with a set of representative matrix dimensions. To that end, we implement these algebraic
operations, targeting CUDA cores with single instructions and multiple-thread math instructions in
an NVIDIA Xavier NX GPU.

Keywords: safety; reliability; CNN; matrix multiplication; GPU; fault detection

1. Introduction

deep neural networks (DNNs) and convolutional neural networks (CNNs) are exten-
sively used in autonomous systems to implement complex functionalities, such as object
detection [1] and image classification [2]. CNNs comprise a large number of neurons
distributed and interconnected in different layers. These structures have an intrinsic high
level of computational parallelism that requires handling massive volumes of data. As a
result, these applications demand high-performance computational capabilities, such as
those provided by GPUs. The high level of computing parallelism of GPUs, together with
their complex memory hierarchy, may spread a single random hardware error to multiple
errors [3], jeopardizing the computation correctness. Furthermore, because the use of these
platforms in the safety-critical domain is still in its infancy, there are no established common
practice solutions to diagnose all internal components that take part in the computations,
which are often barely documented by the platform manufacturer.

Appl. Sci. 2022, 12, 3779. https://doi.org/10.3390/app12083779 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12083779
https://doi.org/10.3390/app12083779
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4867-8115
https://orcid.org/0000-0001-6389-648X
https://orcid.org/0000-0002-9507-8841
https://orcid.org/0000-0003-2426-306X
https://orcid.org/0000-0001-7951-4028
https://orcid.org/0000-0002-3344-376X
https://doi.org/10.3390/app12083779
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12083779?type=check_update&version=1

Appl. Sci. 2022, 12, 3779 2 of 16

Besides, Figure 1 illustrates the possible consequences of a single error on a CNN-based
object detector. We classify an image (“9e75b2a9-98437b5b.jpg” from “10K Image” package)
from Berkeley DeepDrive dataset [4] with YOLOv3 [5] based on a pre-trained model
with the COCO dataset (“yolov3.cfg” and “coco.data” extracted from the configuration
folder (https://github.com/AlexeyAB/darknet/tree/darknet_yolo_v3, accessed on 12
March 2022). Activation weights from https://pjreddie.com/media/files/yolov3.weights,
accessed on 12 March 2022) [6]. In the absence of errors, the CNN correctly detects 35
classes, such as people or traffic lights, among others (Figure 1a). However, a single-bit
error injection in a weight of the first layer of the CNN leads to detecting 11 classes not
present in the image, such as three wine glasses or four dining tables (Figure 1b), but no
people or traffic lights. In contrast, if the error is injected at bit 705, it does not impact
the CNN inference, becoming a latent error if further diagnostics are not in place. These
errors are of particular concern in safety-related systems, where misclassifications can have
catastrophic consequences.

(a) (b)

Figure 1. Example of a single-bit error impact in an object detection application based on CNNs.
(a) Error-free or single-bit error (bit 705) inference; (b) Single-bit error (bit 734) inference.

Current solutions focus on selectively hardening the most vulnerable parts [7] or
guaranteeing consistency among inputs and outputs matrices [8,9], but not on arithmetic
operations or all combinatorial (e.g., muxes, bypasses) and sequential elements (e.g., latches)
between memories and arithmetic units. In the context of commercial off-the-shelf GPUs,
implementation-specific tests [10] or software-based self tests (SBSTs) [11] of individual
components are not viable since they require fine-grain knowledge of the GPU component
design and implementation. However, safety standards require not only guaranteeing
that outputs are correct but also that internal components are periodically diagnosed to
detect random hardware errors and reduce the probability of latent errors. Hence, existing
built-in hardware safety mechanisms shall be complemented with software-based diagnosis
mechanisms whenever the required diagnostic coverage is not achieved.

This paper paves the way towards the safe implementation of CNN-based safety
solutions on massively parallel GPU-based platforms through the application of error-
detection mechanisms using execution signatures (ESs), which also support an indirect
functional diagnosis of used GPU components (without the need of component design and
implementation details knowledge). To this end, we focus on the most computationally
expensive operation of the CNNs, the matrix–matrix multiplication (MMM), that is the
central part of machine learning libraries such as YOLOv3, accounting for 67% of YOLO’s
execution time [12]. In this way, and focusing on the CUTLASS library [13], we make the
following contributions:

• We define and implement a catalog of diagnostic mechanisms to compute an array of
ESs in a matrix–matrix multiplication defined in CUTLASS for GPUs. Additionally,
we define two commonly used architectural safety patterns where this catalog can be
implemented to support fault-tolerance;

• We analyze the performance impact and the diagnostic coverage (DC) of this catalog of
mechanisms for multiple matrix dimensions in a NVIDIA Jetson Xavier NX GPU and

https://github.com/AlexeyAB/darknet/tree/darknet_yolo_v3
https://pjreddie.com/media/files/yolov3.weights

Appl. Sci. 2022, 12, 3779 3 of 16

compare our results against sequential and advanced vector extensions (AVX)-based
implementations [14];

• We perform an in-depth analysis of the tradeoff between DC and performance for a
specific matrix dimension evaluating the required achievable DC by the IEC 61508 stan-
dard for different safety integrity levels (SILs) and architectural patterns.

The rest of the paper is structured as follows: Section 2 presents the required back-
ground. Section 3 describes the error-detection adaptations for the matrix–matrix multipli-
cation. Section 4 describes and analyzes the results and makes a comprehensive analysis.
Section 5 discusses related work. Finally, Section 6 concludes the paper and presents
directions for future research.

2. Background

This section provides a brief introduction to the two main axes of our work: safety
certification and CUTLASS. Additionally, acronyms are summarized in Table 1:

Table 1. Lists of acronyms.

ABFT algorithm-based fault tolerance

ABED algorithm-based error detection

AVX advanced vector extensions

CNN convolutional neural network

DC diagnostic coverage

DNN deep neural network

CRC cyclic redundancy check

DTI diagnostic time interval

ES execution signature

GPU graphics processing unit

HFT hardware fault tolerance

HPEC high-performance embedded computing

MMA matrix multiply–accumulate

MMM matrix–matrix multiplication

PTX parallel thread execution

SBST software-based self test

SIL safety integrity level

SIMT single-instruction multiple thread

2.1. Safety Certification

Safety-related systems are subject to certification, which is often achieved based on
functional safety standards. IEC 61508 [15] is the reference standard for many domain-
specific standards, such as road-vehicles [16] and railway [17]. These standards define the
necessary requirements, techniques, and measures to avoid, mitigate, and detect random
hardware errors and systematic errors. The SIL defines a safety integrity range where
four is the highest and one is the lowest level (SIL1. . .SIL4). According to this safety
criticality level, functional safety standards require the adoption of demanding safety
measures and techniques. Particularly, standards require that systematic faults are duly
mitigated through the measures adopted in the development process and that random
hardware errors (transient and permanent) are detected, mitigated, and controlled at

Appl. Sci. 2022, 12, 3779 4 of 16

runtime. In this context, ISO 26262 also refers to latent errors to denote errors not detected
by safety mechanisms.

The assessment of the effectiveness of diagnostic mechanisms is generally evaluated in
the form of DC. As defined in reference [18], “Diagnostic Coverage (DC) denotes the effective-
ness of diagnosis techniques to detect dangerous errors, expressed in coverage percentage with respect
to all possible dangerous errors”. IEC 61508 [15] classifies DC as low (60% < DC < 90%),
medium (90% ≤ DC < 99%), and high (99% ≤ DC). The required DC is determined
by the SIL and hardware fault tolerance (HFT) (IEC 61508-2 Table 3). For example, if the
architecture is not redundant (HFT = 0), a SIL1 safety function requires a low DC and a
SIL3 requires a high DC. In a dual-channel redundant architecture instead (HFT = 1), a SIL3
safety function can be implemented with a medium DC. As stated in reference [18], the im-
plementation of DC techniques based on software becomes relevant in order to diagnose
the proper operation of the hardware components periodically (e.g., against permanent
errors), or for the safe operation of the device concerning possible errors not detected by
hardware built-in diagnosis (usually ranked as low or medium DC) or to complement them.

2.2. CUTLASS

CUTLASS is a collection of templates coded in CUDA and C++ that abstract the
high-performance matrix-multiplication implementation. This open-source and low-level
library decomposes this algebraic operation into software modules using C++ template
classes. These modules divide matrix multiplication into threads, warps, blocks, and
device levels, as can be seen in Figure 2. This figure highlights the memory transfer in
each iteration of the most external loop of the matrix multiply–accumulate (C += A × B).
Additionally, CUTLASS allows tuning through custom data types, tiling sizes, and other
algorithmic policies.

matrix C

Global memory Shared memory Register file SM CUDA Cores

matrix B
matrix A

Thread tileWarp tileThread block tileBlocked GEMM

Figure 2. Cutlass GEMM hierarchy [13].

3. Enhancing MMM Safety

In this section, we elaborate a catalog of diagnostic techniques that compute an array
of execution signatures to detect matrix–matrix multiplication execution errors. We also
study their reproducibility and memory usage to minimize the performance impact. Finally,
we also define two examples of safe architectural patterns in which the presented diagnostic
catalog can be employed to support fault-tolerance.

3.1. Diagnostic Techniques

The main idea is to compute an array of ESs at runtime to enhance the matrix–matrix
multiplication execution with error-detection capabilities. We propose to compute this
array of ESs and protect the data employed at the arithmetic operation level by including a
diagnostic mechanism or a combination of diagnostic mechanisms. These diagnostic tech-
niques can be integrated using different safety architectural patterns, as will be explained
in Section 3.4.

Appl. Sci. 2022, 12, 3779 5 of 16

A set of existing checksum techniques provide varying degrees of DC and perfor-
mance impacts [19,20]. Their usage has been focused on assuring integrity in data trans-
mission [21], and as a result, their error-detection effectiveness has been widely studied.
We refer the interested readers to references [19,20] for an in-depth discussion on check-
sums effectiveness from which we select the following: XOR, one’s and two’s complement,
Fletcher, and cyclic redundancy check (CRC). Furthermore, we adapt these checksums
to detect the execution errors of the matrix–matrix multiplication function extracted from
CUTLASS [13] based on the single-instruction multiple-thread paradigm. At thread level,
the CUTLASS library performs a matrix-multiply–accumulate operation in a triple-nested
loop denoted as inner (I), intermediate (M), and external (E), as shown in Algorithm 1.

Algorithm 1 MMM loops computed by a thread

1: for each column of a tile from A matrix do
2: External loop statements
3: for each column of a tile from B matrix do
4: Intermediate loop statements
5: for each row of a tile from A matrix do
6: Internal loop statements (compute the multiplication)
7: [Checksum (I)]
8: end for
9: [Checksum (M)]

10: end for
11: [Checksum (E)]
12: end for

Depending on the employed checksum and the matrix–matrix multiplication loop
at which it is applied, we obtain a wide catalog of solutions with varying levels of DC
and performance impact. We classify them into two categories: (i) individual—in which
we implement a single checksum in each matrix–matrix multiplication loop, and (ii)
combinations—in which we implement combinations of two different checksums in the
inner and intermediate loops. We design this latter category to offer additional trade-offs
between DC and performance impact. In this way, we give the option to the safety en-
gineer to choose from the different solutions of the catalog based on the specific DC and
performance requirements of each safety application.

The GPU implementation of the checksums is performed as follows. XOR and
one’s and two’s complement checksums and employ a low-level parallel thread execu-
tion (PTX) [22]. We code these checksums with an instruction set provided by this inter-
mediate language, aiming to be portable across multiple GPU architectures. Among the
benefits, the extended-precision integer arithmetic instructions allow holding carry-in and
carry-out with a carry-bit flag in an integer-addition operation. This feature is highly
desirable in one’s complement checksum as it reduces the performance impact incurred
by its inclusion. In Algorithm 2, readers can observe the one’s complement checksum
implementation based on PTX instructions:

Algorithm 2 One’s complement checksum

1: function __A1C(uint32_t ui32_a, uint32_t ui32_b)
2: uint32_t acc;
3: asm (“add.cc.u32 %0, %1, %2; ”
4: “addc.u32 %0, %0, 0; ”
5: “not.b32 %0, %0; ”
6: “=r” (acc)
7: “=r” (ui32_a), "r"(ui32_b));
8: return acc;
9: end function

Appl. Sci. 2022, 12, 3779 6 of 16

For the Fletcher, we employ the implementations provided by reference [14]. Finally,
we resort to lookup tables for implementing the CRC. This method accelerates the protec-
tion of multiply–accumulate operations as follows: (1) we precompute the ES applying the
CRC algorithm to all chunk’s possible values of a prefixed number of bits (n). These values
are stored in a 2n lookup table; (2) we access these CRC values at runtime.

3.2. Reproducibility

Another crucial factor for the safe deployment of CNN algorithms in high-performance
embedded computing (HPEC) platforms exploiting parallelism is the execution order.
The matrix–matrix multiplication involves the use of floating-point data types that do
not satisfy the associative property. Therefore, their use is considered as a source of
numerical reproducibility errors [23,24]. In reference [25], NVIDIA highlights that despite
all individual operations accomplished with the IEEE 754 standard [26], the result may not
be bit-identical. Consequently, neither the order-independent checksums based on sums
operations (XOR, one’s and two’s complement) nor the order dependent ones (Fletcher and
CRC) can be implemented directly without assuring a deterministic execution order.

As a solution, we propose employing as many ESs as threads are involved in the matrix–
matrix multiplication. Each thread executes a tile of the matrix–matrix multiplication in
sequential order in a CUDA core. We use the global identifier of each thread to store the final
ES computed by each thread at its relative address in an array of ESs. Note that, instead,
combining ESs from different threads into a single ES would challenge reproducibility if
we cannot enforce a specific computation order which is not trivial.

3.3. Memory Hierarchy

Applying previous checksum techniques to the matrix–matrix multiplication involves
as many accesses to memory as the variables we intend to protect. As some implementa-
tions protect all variables involved in the matrix–matrix multiplication, the matrix–matrix
multiplication computation entails protecting three times the number of performed matrix
multiply–accumulate operations. In GPU-based implementations, the memory access
speed is essential for achieving a good performance, mainly for real-time applications that
are subject to strict execution-time requirements. Therefore, the type of memory chosen
in the hierarchical memory model can be crucial. In our implementation, we allocate the
ES into the global memory device. During the matrix–matrix multiplication execution,
these ESs are transferred to registers (the memory with the highest speed) and returned
to global memory when the computation is finished. In Figure 3, we depict the employed
memory hierarchy. The grayscale used in the GPU memories denotes the memory access
time, with the darkest gray requiring a higher latency.

Device Memory Block Memory

Registers
d_ES_a_reg
d_ES_b_reg
d_ES_c_reg

Shared Memory

d_table_shared[CRC_nElem]

Constant Memory

d_CRC_table[CRC_nElem]

Global Memory

d_ES_a[n_Elem]
d_ES_b[n_Elem]
d_ES_c[n_Elem]

Host Memory

h_ES_a[n_Elem]
h_ES_b[n_Elem]
h_ES_c[n_Elem]

h_CRC_table
[CRC_nElem]

Figure 3. ES transference among GPU memory hierarchies (CRC_nElem: number of CRC lookup
table memory addresses. n_Elem: number of ES memory addresses).

A particular concern arises in the CRC implementation, which requires further accesses
to the lookup table. As all threads share these values, we have chosen shared memory
instead of global memory to reduce memory access time. However, the shared memory has
a reduced memory size that limits the CRC lookup table dimension. The safety designer

Appl. Sci. 2022, 12, 3779 7 of 16

has to consider such a limitation at the design phase according to the target GPU’s memory.
In this paper, we perform CRC execution byte-by-byte, which requires 28 shared memory
addresses and, hence, four accesses to shared memory per protected 32-bit data word.

In Figure 3, we schematize the transfer of the CRC lookup table and the ESs across the
memory hierarchy of the chosen platform. This transfer starts from the host memory, where
it is initialized, to the shared memory, where it is finally accessed by each thread. Since
GPU shared memory cannot be statically initialized, we initially store the CRC lookup table
in constant memory before it is transferred to the shared memory at runtime. This memory
presents a lower latency than global memory, especially in memory accesses where several
threads access the same memory addresses consecutively. We can exploit this since the
matrix–matrix multiplication executes as many blocks as k tiles it is decomposed in, and all
these blocks store the CRC table in their own shared memory. Although the first block
accesses occur serialized, the remaining blocks access the constant cache memory (which
has the required 1 KB to store the entire table) that is faster than the global memory.

3.4. Safety Architectural Patterns

Considering the safety measures proposed by current functional safety standards
(ISO 26262, IEC 61508) and the architectural patterns described in reference [18] for HPEC
platforms, we define two examples of safe architectural patterns that support the inte-
gration of the previously defined ’safe MMM’ (see Figure 4) with different HFT levels
(e.g., HFT = 0,1,2).

• Periodic diagnosis with design-time fixed data pattern(s): The ’safe MMM’ is executed at
least once every diagnostic time interval (DTI) (Figure 4b) with predefined design-
time reference input data vectors that should lead to known reference outputs and
an array of ESs values (see Figure 4a). This approach can be used in a single-channel
architecture (HFT = 0) or in redundant architectures (e.g., triplicated architecture with
HFT = 2). The error detection can be used to detect the erroneous channel prior to the
voting process and application-specific measures can be implemented (e.g., restart
erroneous channel, activate safe state);

• Redundancy (with or without diversity): This pattern redundantly executes the ’safe
matrix–matrix multiplication’ with n replicas, each of which uses the same real-time
input data and generates both an output and ESs array (Figure 4c) for each com-
putation cycle (Figure 4d). A voting mechanism continuously compares those ESs
arrays (and even the outputs), discarding the replicas with discrepancies and/or
implementing application-specific measures (e.g., restart erroneous channel).

Safe MMM

Known outputs
and ES data

Fi
xe

d
in

pu
t d

at
a

Er
ro

r d
et

ec
ti

on detected
error

output

(a)

MMM1
…

M x N N

MMM1
 Channel 1

t

Safe MMM1

DTI

MMM2 …MMM2
 Channel 2 Safe MMM2

… ……… …

MMMn …MMMn
 Channel n Safe MMMn

MMM1

MMM2

…

MMMn

(b)

Safe MMM1

…

Safe MMMn O
ut

pu
t v

ot
in

g
an

d
er

ro
r d

et
ec

ti
on

In
pu

t d
at

a

ouput

detected
error

(c)

Safe MMM2

…

Safe MMMn

Safe MMM2

…

Safe MMMn

Safe MMM2

…

Safe MMMn

Channel 2

Channel n

Safe MMM1 Safe MMM1 Safe MMM1
Channel 1

 …

…

…

…

…

DTI

t

(d)
Figure 4. Safety architectural patterns. (a) Periodic diagnosis pattern; (b) Periodic diagnosis pat-
tern scheduling; (c) Redundancy pattern; (d) Redundancy pattern scheduling.

Appl. Sci. 2022, 12, 3779 8 of 16

4. Evaluation

Next, we evaluate the DC and performance impact incurred by the different diagnostic
techniques in the matrix–matrix multiplication.

4.1. Experimental Set-Up

We use an NVIDIA Jetson Xavier NX platform, designed to accommodate DNN
applications. We use the clang compiler with CUDA (both version 10) in an Ubuntu
system. In order to minimize system interference, we employ the PREEMPT-RT patch
and isolate the NVIDIA Carmel ARM core that executes the program with the highest
real-time priority and configure it to run at the maximum frequency. We launch a single
matrix–matrix multiplication stream to the GPU to avoid the uncertainty in the order of
execution of the streams associated with several applications running simultaneously [27].
We employ the same matrix dimensions and nomenclature as in reference [14], seeking a fair
comparison. In reference [14], the authors also include a catalog of diagnostic techniques,
but based on a sequential and an AVX-based implementation. Table 2 shows the matrix–
matrix multiplication dimensions, dividing them into two groups:

• Square matrices: seek to evaluate the influence of matrix size. We represent the
dimensions of input matrices A and B and output matrix C as N×N;

• Unbalanced matrices: focus on assessing the representativeness of the matrix dimen-
sions in performance impact experiments and assessing the variability of the DC
when modifying the relationship between rows and columns. We denote the matrix
dimensions of A as M×K, B as K×N, and C as M×N. In the performance results,
L91 refers to a particular layer position extracted from a CNN. We follow the same
notation in DC.

Table 2. Matrix dimensions employed in the experiments.

Square Unbalanced

Experiments N N M N K Name

Performance
Impact

80 80 18 230,400 64 L91
160 160
320 320

Diagnostic
Coverage

20 20 32 29 144 L1
40 40 8 900 8 L2
80 80 15 225 48 L3

In performance impact experiments, we run the matrix–matrix multiplication function
1000 times and measure the execution time with <time.h> library to reach a nanoseconds
resolution and calculate the mean value. We disregard the initial 100 measurements to
avoid the cold-start problems associated with caches and the delays associated with the
initial kernel launches [28].

In DC experiments, we perform a bit-exhaustive fault-injection campaign in both
A and B matrices (as in reference [14]). This evaluation requires as many matrix–matrix
multiplication executions as bits positions have those matrices. This is the reason for em-
ploying smaller matrix dimensions in DC in contrast with performance impact experiments.
We have performed these bit-flips in the host before launching the kernels executing the
matrix–matrix multiplication in the GPU.

4.2. Performance Impact

In order to derive the relative performance impact, we divide the execution time of
the matrix–matrix multiplication, including the diagnostic techniques, by the execution
time of the original matrix–matrix multiplication, with identical matrix dimensions and
compiler optimization. This performance impact is relative to single-matrices execution.

Appl. Sci. 2022, 12, 3779 9 of 16

However, performance impact varies at system level depending on the safety architectural
pattern in which the safety designer includes the diagnostic mechanism(s). Thus, the impact
on the periodic diagnostic pattern described in Section 3.4 is calculated by dividing the
single ’safe matrix–matrix multiplication’ execution by the DTI, not depending only on the
performance impact of a single ’safe matrix–matrix multiplication’ execution but also on
the number of iterations of the matrix–matrix multiplication in the DTI. According to the
implementation of redundant patterns, the performance impact can either: (i) be multiplied
by a factor of two (in cases where the matrix–matrix multiplication is re-executed on the
same hardware) or (ii) maintain the same value as that observed for single MMMs (double
hardware cost). This subsection provides the performance impact relative to single-matrices
execution. From these results and according to the implemented safety architectural pattern,
safety designers can compute the final performance impact in their systems.

Initially, we perform timing experiments by disabling compiler optimizations to avoid
additional safety challenges brought by optimizations (compiler option -O0). Throughout
this paper, we use compiler optimizations to refer to both host and device compilers. In this
way, we perform the performance impact experiments with the same optimizations for both.
Figure 5 shows how the performance impact caused by the inclusion of both individual
or a combination of checksums is rather small (between 1× and 1.25× for all matrix
dimensions). In reference [14], the authors show that increasing matrix dimension sizes
lead to decreasing performance impacts for sequential and AVX-based implementations.
Furthermore, we also show significant differences across different checksums. Moreover,
in Figure 5 we observe a very similar impact for different matrix dimensions in our GPU-
based implementation, as well as across different checksums. This behavior relates to the
fact that execution time is dominated by memory accesses. Hence, arithmetic operations
due to the different checksums have a very limited impact that barely changes when
varying the matrix dimensions or the specific checksum used.

1.00

1.05

1.10

1.15

1.20

1.25

X
O

R
 (E

)
X

O
R

 (M
)

X
O

R
 (I

)
O

N
E

's
 (E

)
O

N
E

's
 (M

)
O

N
E

's
 (I

)
TW

O
's

 (E
)

TW
O

's
 (M

)
TW

O
's

 (I
)

Fl
et

ch
er

 (E
)

Fl
et

ch
er

 (M
)

Fl
et

ch
er

 (I
)

C
R

C
 (E

)
C

R
C

 (M
)

C
R

C
 (I

)
X

O
R

_F
le

tc
he

r
X

O
R

_C
R

C
O

N
E

's
_F

le
tc

he
r

O
N

E
's

_C
R

C
TW

O
's

_F
le

tc
he

r
TW

O
's

_C
R

C
Fl

et
ch

er
_C

R
C

Checksum(s) algorithms

P
er

fo
rm

an
ce

 Im
pa

ct
 (

lo
g)

80x80
160x160
320x320
L91

Figure 5. Performance impact with -O0 optimization.

Since real-time safety applications may need optimizations to achieve the required
performance, we evaluate the performance impact with a higher compiler optimization
too (compiler optimization option -O3). In Figure 6, we can observe that the performance
impact increases across all checksums, but particularly for the Fletcher and CRC if imple-

Appl. Sci. 2022, 12, 3779 10 of 16

mented in the internal loop. Such impact further exacerbates when increasing the matrix
dimensions, as opposed to the case of sequential and AVX-based implementations. CRC
implementation involves four accesses to the shared memory to protect each word in the
loop. In GPUs, memory latency is crucial from a performance point of view. That ex-
plains the performance impact produced by the CRC implementation, reaching an impact
of up to ≈100× the original implementation. Concerning the Fletcher implementation,
the performance impact relates to the modulo operation, used twice in each protected
word, whose implementation is not efficient in NVIDIA GPUs compared to the sequential
implementation evaluated in reference [14]. These results show that with optimizations not
all checksum combinations may be affordable in terms of computing performance impact
in contrast with -O0. It should be noted that with -O3 the MMM execution time is three
orders of magnitude smaller than with -O0. This explains the higher relative impact of -O3
optimization experiments.

1

10

100

X
O

R
 (E

)
X

O
R

 (M
)

X
O

R
 (I

)
O

N
E

's
 (E

)
O

N
E

's
 (M

)
O

N
E

's
 (I

)
TW

O
's

 (E
)

TW
O

's
 (M

)
TW

O
's

 (I
)

Fl
et

ch
er

 (E
)

Fl
et

ch
er

 (M
)

Fl
et

ch
er

 (I
)

C
R

C
 (E

)
C

R
C

 (M
)

C
R

C
 (I

)
X

O
R

_F
le

tc
he

r
X

O
R

_C
R

C
O

N
E

's
_F

le
tc

he
r

O
N

E
's

_C
R

C
TW

O
's

_F
le

tc
he

r
TW

O
's

_C
R

C
Fl

et
ch

er
_C

R
C

Checksum(s) algorithms

P
er

fo
rm

an
ce

 Im
pa

ct
 (

lo
g)

80x80
160x160
320x320
L91

Figure 6. Performance impact with -O3 optimization.

4.3. Diagnostic Coverage

We have performed a fault-injection campaign (following the same methods used in
reference [14]) in input matrices A and B in all bit positions before launching the execu-
tion in the GPU to evaluate the achievable DC with every single-diagnostic mechanism
implementation and the combinations included in our catalog. Initially, we perform the
matrix–matrix multiplication without fault-injections, and we store the ES computed as the
reference or golden value. Then, we perform the single-bit fault-injection campaign and
the ESs comparison with the golden value for each execution. Finally, we quantify the DC
as the number of detected faults relative to the total number of injected faults.

Table 3 gathers the results of our fault-injection campaign implemented in GPU to-
gether with the DC of the sequential and AVX-based implementations extracted from
reference [14], excluding the combinations that reach 100% in all cases. This table shows
that GPU-based implementations achieve a higher DC than the less parallelized implemen-
tations for external (E) implementations. This occurs due to the specific implementation
details of the MMM for the GPU, where the entire matrix is decomposed into block tiles that
independently compute partial matrix multiplications. In this implementation, the number

Appl. Sci. 2022, 12, 3779 11 of 16

of values protected in the most external loop increases with a consequent increment in the
achievable DC.

We observe the same trend in the intermediate implementations in square matrices
with dimensions greater than 20 and unbalanced matrices L2 and L3, with an exception in
the XOR implementation in L3, which was motivated by the nature of XOR which does not
detect even single-bit errors. In the rest of the matrices, the DC of AVX is superior to that
achieved in GPUs. The reason lies in the AVX-based implementation that protects eight
values in the intermediate loop and, in small matrices, the number of values protected is
larger than those for the GPU.

Internal loop implementations reach 100% DC in all matrix dimensions with one’s
complement, Fletcher, and CRC. XOR implementation has identical DC to sequential
and AVX in all dimensions except in the L3 matrix. DC drops because our GPU-based
implementation for these matrix sizes divides the matrix–matrix multiplication into an
even number of computations performed by each thread, and this checksum fails to detect
even failures. Two’s complement provides similar results to the other implementations.

Finally, all combinations of checksums reach the maximum DC, excluding the ones
presented in Table 3 that still provide a high DC. In the GPU-based implementation,
the combinations, including Fletcher in the intermediate loop, do not provide as much
DC as the other implementations. This relates to the location of the Fletcher checksum
computation in the code, which could not be kept identical to the other implementations in
the GPU-based implementation.

Table 3. DC in sequential [14], AVX-based [14], and GPU-based implementations.

Square Unbalanced

Checksum
Implemented

20 40 80 L1 L2 L3

Seq AVX GPU Seq AVX GPU Seq AVX GPU Seq AVX GPU Seq AVX GPU Seq AVX GPU

XOR (E) 2.5 2.5 10.0 1.3 1.3 10.0 0.6 0.6 12.5 0.4 0.4 6.6 0.1 0.1 12.4 0.1 0.1 12.1
XOR (M) 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 52.5 52.5 52.5 0.9 0.9 0.9 6.6 10.0 6.3
XOR (I) 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 52.5 52.5 52.5 0.9 0.9 0.9 100.0 100.0 6.3
One’s (E) 2.5 2.5 10.0 1.3 1.3 10.0 0.6 0.6 12.5 0.4 0.4 6.6 0.1 0.1 12.4 0.1 0.2 12.1
One’s (M) 52.5 79.2 62.5 51.2 59.2 62.5 50.6 54.4 62.5 54.1 72.9 63.9 1.0 2.2 25.7 7.1 9.9 30.0
One’s (I) 98.5 99.2 100.0 97.7 99.2 100.0 96.9 93.8 100.0 98.4 98.9 100.0 97.7 99.2 100.0 96.9 99.9 100.0
Two’s (E) 2.5 2.5 10.0 1.3 1.3 10.0 0.6 0.6 12.5 0.4 0.4 6.6 0.1 0.1 12.4 1.0 0.2 12.1
Two’s (M) 52.3 68.8 61.7 51.1 59.1 61.7 50.6 54.2 61.7 54.1 63.5 63.2 1.0 1.7 24.1 7.1 9.6 28.5
Two’s (I) 96.9 96.9 95.7 95.3 95.3 95.7 93.8 99.2 95.7 98.4 92.6 95.9 90.7 90.7 91.5 96.9 100.0 92.0
Fletcher (E) 2.6 3.5 10.0 1.3 1.5 10.0 0.6 0.7 12.5 0.4 0.5 6.6 0.1 0.2 12.4 0.1 0.2 12.1
Fletcher (M) 52.2 68.8 62.5 51.1 60.0 62.5 50.6 55.0 62.5 54.1 73.8 63.9 1.0 2.2 25.7 7.1 10.0 30.0
Fletcher (I) 100.0 96.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 10.0 100.0 100.0 100.0 100.0 100.0
CRC (E) 2.6 3.5 10.0 1.3 1.5 10.0 0.6 0.7 12.5 0.4 0.5 6.6 0.1 0.2 12.4 0.1 0.2 12.1
CRC (M) 52.5 80.0 62.5 51.3 60.0 62.5 50.6 55.0 62.5 54.1 73.8 63.9 1.0 2.2 25.7 7.1 10.0 30.0
CRC (I) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
XOR_Fletcher 99.8 100.0 90.6 99.8 100.0 90.6 99.8 100.0 90.6 99.8 100.0 91.0 99.8 100.0 81.4 99.8 100.0 82.5
One’s_Fletcher 100.0 100.0 96.3 100.0 100.0 95.6 100.0 100.0 95.6 100.0 100.0 95.5 100.0 100.0 90.7 100.0 100.0 91.3
Two’s_Fletcher 97.9 100.0 96.3 97.8 100.0 95.6 97.7 100.0 95.6 99.6 100.0 95.5 99.8 99.9 90.7 99.6 100.0 91.3

4.4. Trade-Off between Performance Impact and DC

In this subsection, we analyze the suitability of our catalog of diagnostics for an 80×80
square matrix–matrix multiplication, searching for a proper trade-off between DC and
performance impact. As explained in a previous subsection, the performance impact varies
substantially from the non-optimized compilation to the highest optimization, which has
led to assessing both implementations, as can be seen in Figure 7.

Regardless of the compiler optimizations, both reach the same DC. However, in -O0
experiments, we obtain performance impacts between 1.01 and 1.23 in contrast with -O3,
which increases this range to 1.18–17.98. We can confirm that combining one’s and two’s
complement checksums with Fletcher is not suitable, reducing DC in contrast with the
single-internal-loop implementation of these diagnostics.

We can realize from Figure 7 that all combinations, including CRC in the intermediate
loop as well as the individual implementations of Fletcher, CRC, and one’s complement
in the most internal loops, allow us to reach 100% DC. Among all of them, the one’s
complement incurs the smallest performance impact and is, therefore, the most suitable

Appl. Sci. 2022, 12, 3779 12 of 16

for detecting single-bit errors for this matrix–matrix multiplication dimension (1.09 in non-
optimization compilation and 3.70 the highest compiler optimization). For medium DC,
the most suitable option for -O0 compilation remains the same but with -O3 optimization
the best trade-off can be reached with two’s complement (I) (3.33 performance impact).
Finally, the best performance for low DC is achieved in both optimizations with two’s
complement (M) (1.01 and 1.44 performance impact).

1

3

10

30

50

100

X
O

R
 (

E
)

X
O

R
 (

M
)

X
O

R
 (

I)
O

N
E

's
 (

E
)

O
N

E
's

 (
M

)
O

N
E

's
 (

I)
T

W
O

's
 (

E
)

T
W

O
's

 (
M

)
T

W
O

's
 (

I)
F

le
tc

he
r

(E
)

F
le

tc
he

r
(M

)
F

le
tc

he
r

(I
)

C
R

C
 (

E
)

C
R

C
 (

M
)

C
R

C
 (

I)
X

O
R

_F
le

tc
he

r
X

O
R

_C
R

C
O

N
E

's
_F

le
tc

he
r

O
N

E
's

_C
R

C
T

W
O

's
_F

le
tc

he
r

T
W

O
's

_C
R

C
F

le
tc

he
r_

C
R

C

Checksum(s) Algorithms

P
er

fo
rm

an
ce

 Im
pa

ct
 (

lo
g)

D
ia

gn
os

tic
 C

ov
er

ag
e

(D
C

)

80x80 DC 80x80 (-O0) Performance Impact 80x80 (-O3) Performance Impact

Figure 7. Trade-off between performance impact vs. DC.

After analyzing the most suitable checksums according to the DC range, performance
impact, and compiler optimization for 80 × 80 square matrix dimensions, we examine the
DC required to achieve the SIL and HFT established in the functional safety standards.
For that, we recur to IEC 61508-2 in Table 2, where those relationships are defined. Notice
that in practice, although the standards do not specify it, conscientious safety system
designs for those HFT and SIL combinations involving DC below 60% (e.g., SIL = 1 with
HFT = 1) require a DC closer to 60% than 0%. As DC and performance impact are MMM
dimension-dependent—safety designs have to analyze both values based on the dimensions
of their particular CNN. As a representative example, in Table 4 we provide the most
suitable checksums and the incurred performance impact to reach the required DC for each
HFT and SIL with square matrices with dimensions of 80x80. We employ a grayscale to
denote the DC ranges defined in IEC 61508, with higher DCs being darker gray cells.

Table 4. Selected checksums for 80 × 80 matrix dimension according to SIL and HFT.

HFT

0 1 2

SIL -O0 -O3 -O0 -O3 -O0 -O3
4 Non achievable One’s (I) (1.09)(iv) One’s (I) (3.7) (iv) One’s (I) (1.09)(iii) Two’s (I) (3.33)(iii)

3 One’s (I) (1.09)(iv) One’s (I) (3.7)(iv) One’s (I) (1.09)(iii) Two’s (I) (3.33)(iii) One’s (M) (1.01)(ii) Two’s (M) (1.44)(ii)

2 One’s (I) (1.09)(iii) Two’s (I) (3.33)(iii) One’s (M) (1.01)(ii) Two’s (M) (1.44)(ii) XOR (M) (1.01)(i) XOR (M) (1.25)(i)

1 One’s (M) (1.01)(ii) Two’s (M) (1.44)(ii) XOR (M) (1.01)(i) XOR (M) (1.25)(i) Non specified
NOTE: (i) DC < 60% (ii) 60% < DC < 90% (iii) 90% ≤ DC < 99% (iv) 99% ≤ DC.

Appl. Sci. 2022, 12, 3779 13 of 16

In Table 4, the reader can observe the influence of the compiler optimization option in
the election of the most appropriate diagnostic mechanism. For instance, for a SIL = 2 with
a single-channel implementation (HFT = 0), the chosen checksum changes from one’s (M)
to two’s (M) according to the compilation (-O0 and -O3, respectively).

5. Related Work

The functional safety certification challenges of DNN and CNN-based software so-
lutions have been studied recently [9,29,30]. MMMs are at the heart of DNN and CNN
software solutions; for example, over 90% of a CNN execution time is due to matrix–matrix
multiplication-based convolutions [9] and matrix–matrix multiplication accounts for 67%
of YOLO’s execution time [12].

Several fault-injection experiments have analyzed the reliability of GPU-based CNN
software implementations (e.g., references [31,32]). These analyses are fundamental to un-
derstanding the importance of random-hardware-errors management, and understanding
the nature of errors and their propagation. Concerning GPU-based matrix–matrix multi-
plication software implementations, different technical approaches have been proposed
for random-hardware-errors management (detection, correction, and mitigation), ranging
from GPU and matrix–matrix multiplication software implementation-specific techniques
to generalizable techniques.

GPU device and software implementation-specific techniques (e.g., references [7,33])
can potentially provide high error-detection rate claims with a low performance impact
(e.g., detecting 84.5% of errors that lead to misclassification with 0.3035% performance
impact [7]). However, the analysis, selection, evaluation (e.g., DC estimation), and im-
plementation of techniques become software implementation- and GPU device-specific
(reduced portability). This effort, and the impact analysis due to software or GPU device
updates, is not neglectable in the context of safety-critical systems development and cer-
tification. Analogously, SBST [11] for specific components generally builds on low-level
knowledge of the device under testing (e.g., gate-level implementation of the GPU) to
devise software-only solutions with high coverage, and hence, SBST is neither portable
across designs nor usable in COTS GPUs, whose low-level (circuit) design is unknown (no
public information is available).

Generalizable techniques for matrix–matrix multiplication algorithms, such as
algorithm-based error detection (ABED) and algorithm-based fault tolerance (ABFT) [9],
are algorithm-specific dependent but less dependent on specific GPU architectures. ABFT
leverages matrix–matrix multiplication algorithmic knowledge to provide fault-tolerance
with the detection and correction of random hardware errors with performance impacts
as low as 20% for square matrices or higher than 50% for non-square matrices [9]. More-
over, ABED-based techniques can potentially lead to high error-detection rate claims with
low performance impact (e.g., 100% hardware errors with 6–23% performance impact) [9].
However, these techniques need to consider software implementation restrictions, such
as considered data type (e.g., fixed-point integers or rounding errors with floating-point
numbers [9]) and detect errors (only) in the generated output values. Moreover, since their
coverage is much more limited than that of ESs, ABED-based techniques cannot be used
for periodic diagnostics and need to be used continuously, which leads to high costs for
real-time applications, such as autonomous driving, where ESs allow for a tailoring of the
cost by setting the diagnostics frequency accordingly.

While these techniques focus on the reliability improvement of the matrix–matrix
multiplication algorithm itself, the safety developer needs to consider several technical chal-
lenges not covered by previously described techniques. For example, the need to perform a
periodic diagnosis of the GPU components used in such computations (e.g., memory, cache,
warp scheduler, arithmetic logic unit) with the required DC during the periodic test interval
in order to detect transient and permanent errors, and reduce the probability of undetected
latent errors. The proposed generalizable safe matrix–matrix multiplication technique
provides both an indirect diagnosis of the GPU components used in such computations

Appl. Sci. 2022, 12, 3779 14 of 16

and the MMM execution itself, which require a bit-exact array of ESs considering also
floating-point data types, and using different architectural patterns to achieve HFT levels
(e.g., single-channel execution with HFT = 0, triple-redundancy execution with HFT = 2).

This technique should be considered complementary to the previously described
techniques. For example, the safe matrix–matrix multiplication could be executed once
every diagnostic test interval (with higher performance-impact cost), while the rest of
the executions could be based on the original matrix–matrix multiplication algorithm or
ABFT/ABED-based matrix–matrix multiplication algorithms that can further improve the
overall reliability or error-detection coverage with a lower computational performance im-
pact.

6. Conclusions and Future Work

This paper describes and evaluates the DC and performance impact of a catalog of
diagnostic techniques integrated into the high-performance matrix–matrix multiplication
CUTLASS library (’safe matrix–matrix multiplication’) to detect GPU transient and per-
manent errors. This ’safe matrix–matrix multiplication’ software implementation can be
used to detect random hardware errors in the matrix–matrix multiplication software ex-
ecution itself and perform an indirect diagnosis of the GPU components that compute
the matrix–matrix multiplication, to detect permanent and transient errors, and reduce
the probability of undetected latent errors. This paper paves the way toward the safe
implementation of CNN-based safety solutions implemented in GPU-based platforms by
enhancing the reliability of the most computationally expensive component of DNN in
general and CNN in particular, the MMM, and represents a step forward in adherence
to the current functional safety standards of safety systems involving ML components
implemented in high-performance embedded computing platforms. With the selected GPU,
the developed ’safe matrix–matrix multiplication’ software implementation and 80 × 80
square matrix dimensions, low, medium, and high DCs are achieved with a minimum of
1.01, 1.09, and 1.09 performance impacts for the -O0 compiler optimization option and 1.44,
3.33, and 3.7 for the -O3 option.

Moreover, the ’safe matrix–matrix multiplication’ can be integrated in different safety
architectural patterns with different diagnostic approaches (e.g., design-time fixed pattern,
real-time input data) and different fault-tolerance levels based on redundant architectures.
Furthermore, as explained in the related work (Section 5), this approach should be also be
considered potentially complimentary with respect to other existing techniques, such as
ABFT and ABED.

The ’safe matrix–matrix multiplication’ technique is generalizable to different GPU
devices and matrix dimensions. However, achievable DC and the associated performance
impact varies with GPU devices/architectures, software libraries, matrix dimensions, and
compiler optimizations. Thus, whenever this technique is instantiated, experiments should
be re-executed for the given GPU device/architecture, compiler, software library, and
application-specific matrix dimensions to select the most suitable candidate from the
catalog of integrated diagnostic techniques (e.g., DC vs. performance impact).

Author Contributions: Introduction and abstract, J.F., J.P.-C., I.A., A.J.C., J.A., and F.J.C. ; methodol-
ogy, J.F., J.P.-C., I.A., A.J.C., J.A., and F.J.C.; software, J.F., J.P.-C., I.A., A.J.C., J.A., and F.J.C.; validation,
J.F., J.P.-C., I.A., A.J.C., J.A., and F.J.C.; formal analysis, J.F., J.P.-C., I.A., A.J.C., J.A., and F.J.C.; in-
vestigation, J.F., J.P.-C., I.A., A.J.C., J.A., and F.J.C.; writing—original draft preparation, J.F., J.P.-C.,
I.A., A.J.C., J.A., and F.J.C.; writing—review and editing, J.F., J.P.-C., I.A., A.J.C., J.A., and F.J.C.;
visualization, J.F., J.P.-C., I.A., A.J.C., J.A., and F.J.C.; supervision, I.A., J.P.-C., J.A., and F.J.C. All
authors have read and agreed to the published version of the manuscript.

Funding: The research of this paper has received funding from the European Union’s Horizon 2020
research and innovation programme (grant agreement No 871465 (UP2DATE)).

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2022, 12, 3779 15 of 16

References
1. Jiao, L.; Zhang, F.; Liu, F.; Yang, S.; Li, L.; Feng, Z.; Qu, R. A Survey of Deep Learning-Based Object Detection. IEEE Access 2019,

7, 128837–128868. https://doi.org/10.1109/ACCESS.2019.2939201.
2. Guo, H.; Liu, J.; Yang, J.; Xiao, Z.; Wu, Z. Deep Collaborative Attention Network for Hyperspectral Image Classifi-

cation by Combining 2-D CNN and 3-D CNN. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4789–4802.
https://doi.org/10.1109/JSTARS.2020.3016739.

3. Ibrahim, Y.; Wang, H.; Adam, K. Analyzing the Reliability of Convolutional Neural Networks on GPUs: GoogLeNet as a Case
Study. In Proceedings of the International Conference on Computing and Information Technology (ICCIT-1441), Tabuk, Saudi
Arabia, 9–10 September 2020; pp. 1–6. https://doi.org/10.1109/ICCIT-144147971.2020.9213804.

4. Yu, F.; Chen, H.; Wang, X.; Xian, W.; Chen, Y.; Liu, F.; Madhavan, V.; Darrell, T. BDD100K: A Diverse Driving Dataset for
Heterogeneous Multitask Learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Seattle, WA, USA, 14–19 June 2020.

5. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767.
6. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in

context. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; Springer:
Cham, Switzerland, 2014; pp. 740–755.

7. Adam, K.; Mohamed, I.I.; Ibrahim, Y. A Selective Mitigation Technique of Soft Errors for DNN Models Used in Healthcare
Applications: DenseNet201 Case Study. IEEE Access 2021, 9, 65803–65823. https://doi.org/10.1109/ACCESS.2021.3076716.

8. Zhao, K.; Di, S.; Li, S.; Liang, X.; Zhai, Y.; Chen, J.; Ouyang, K.; Cappello, F.; Chen, Z. FT-CNN: Algorithm-Based Fault Tolerance
for Convolutional Neural Networks. IEEE Trans. Parallel Distrib. Syst. 2020, 32, 1677–1689.

9. Hari, S.K.S.; Sullivan, M.; Tsai, T.; Keckler, S.W. Making Convolutions Resilient via Algorithm-Based Error Detection Techniques.
IEEE Trans. Dependable Secur. Comput. 2021. https://doi.org/10.1109/TDSC.2021.3063083.

10. Siewiorek, D.; Lai, L.K.W. Testing of digital systems. Proc. IEEE 1981, 69, 1321–1333. https://doi.org/10.1109/PROC.1981.12169.
11. Kranitis, N.; Paschalis, A.; Gizopoulos, D.; Xenoulis, G. Software-based self-testing of embedded processors. IEEE Trans. Comput.

2005, 54, 461–475. https://doi.org/10.1109/TC.2005.68.
12. Tabani, H.; Pujol, R.; Abella, J.; Cazorla, F.J. A Cross-Layer Review of Deep Learning Frameworks to Ease Their Optimization and

Reuse. In Proceedings of the International Symposium on Real-Time Distributed Computing (ISORC), Nashville, TN, USA, 19–21
May 2020; pp. 144–145.

13. NVIDIA. CUTLASS: CUDA Templates for Linear Algebra Subroutines. 2020. Available online: https://github.com/NVIDIA/
cutlass (accessed on 12 December 2021).

14. Fernández, J.; Perez, J.; Agirre, I.; Allende, I.; Cazorla, F.J.; Abella, J. Towards Safety Compliance of Matrix-Matrix Multiplication
for Machine Learning-based Autonomous Systems. J. Syst. Archit. 2021, 121, 102298.

15. IEC 61508(-1/7): Functional Safety of Electrical/Electronic/Programmable Electronic Safety-Related Systems; IEC: Geneva, Switzerland,
2010.

16. ISO 26262(-1/11) Road Vehicles—Functional Safety; IEC: Geneva, Switzerland, 2018.
17. EN50128—Railway Applications: Communication, Signalling and Processing Systems—Software for Railway Control and Protection

Systems; European Committee for Standardization: Brussels, Begium, 2011.
18. Perez Cerrolaza, J.; Obermaisser, R.; Abella, J.; Cazorla, F.J.; Grüttner, K.; Agirre, I.; Ahmadian, H.; Allende, I. Multi-core Devices

for Safety-critical Systems: A Survey. ACM Comput. Surv. 2020, 53, 1–38. https://doi.org/https://doi.org/10.1145/3398665.
19. Maxino, T.C.; Koopman, P.J. The Effectiveness of Checksums for Embedded Control Networks. IEEE Trans. Dependable Secur.

Comput. 2009, 6, 59–72. https://doi.org/10.1109/TDSC.2007.70216.
20. Koopman, P.; Driscoll, K.; Hall, B. Selection of Cyclic Redundancy Code and Checksum Algorithms to Ensure Critical Data Integrity;

Report; Carnegie Mellon University: Pittsburg, PA, USA, 2015.
21. Ben Slimane, N.; Bouallegue, K.; Machhout, M. Designing a multi-scroll chaotic system by operating Logistic map with fractal

process. Nonlinear Dyn. 2017, 88, 1655–1675. https://doi.org/10.1007/s11071-017-3337-0.
22. NVIDIA Corporation & Affiliates. Parallel Thread Execution ISA. 2021. Available online: https://docs.nvidia.com/cuda/

parallel-thread-execution/index.html#integer-arithmetic-instructions (accessed on 1 December 2021).
23. Suenobu, F.; Ito, M.; Kubo, F. Algebras over floating point numbers. JP J. Algebr. Number Theory Appl. 2013, 31, 51.
24. Apostal, S.F.J.; Apostal, D.; Marsh, R. Improving Numerical Reproducibility of Scientific Software in Parallel Systems. In

Proceedings of the International Conference on Electro Information Technology (EIT). IEEE, Chicago, IL, USA, 31 July–1 August
2020. https://doi.org/10.1109/EIT48999.2020.9208338.

25. Whitehead, N.; Fit-Florea, A. Floating Point and IEEE 754 Compliance for NVIDIA GPUs. Available online: https://docs.nvidia.
com/cuda/floating-point/index.html#floating-point (accessed on 22-02-2022).

26. ISO/IEC 60559:2020(E) IEEE Std 754-2019; ISO/IEC/IEEE International Standard—Floating-Point Arithmetic. IEEE: Piscataway,
NJ, USA, 2020; pp. 1–86. https://doi.org/10.1109/IEEESTD.2020.9091348.

27. Olmedo, I.S.; Capodieci, N.; Martinez, J.L.; Marongiu, A.; Bertogna, M. Dissecting the CUDA scheduling hierarchy: A Performance
and Predictability Perspective. In Proceedings of the Real-Time and Embedded Technology and Applications Symposium (RTAS),
Sydney, Australia, 21–24 April 2020; pp. 213–225. https://doi.org/10.1109/RTAS48715.2020.000-5.

https://github.com/NVIDIA/cutlass
https://github.com/NVIDIA/cutlass
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#integer-arithmetic-instructions
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#integer-arithmetic-instructions
https://docs.nvidia.com/cuda/floating-point/index.html#floating-point
https://docs.nvidia.com/cuda/floating-point/index.html#floating-point

Appl. Sci. 2022, 12, 3779 16 of 16

28. Calderón, A.J.; Kosmidis, L.; Nicolás, C.F.; Cazorla, F.J.; Onaindia, P. GMAI: Understanding and Exploiting the Internals of GPU
Resource Allocation in Critical Systems. ACM Trans. Embed. Comput. Syst. 2020, 19, 34. https://doi.org/10.1145/3391896.

29. Tabani, H.; Kosmidis, L.; Abella, J.; Cazorla, F.J.; Bernat, G. Assessing the Adherence of an Industrial Autonomous Driving
Framework to ISO 26262 Software Guidelines. In Proceedings of the ACM/IEEE Design Automation Conference (DAC), Las
Vegas, NV, USA, 2–6 June 2019.

30. Salay, R.; Czarnecki, K. Using Machine Learning Safely in Automotive Software: An Assessment and Adaption of Software
Process Requirements in ISO 26262. arXiv 2018, arXiv:1808.01614.

31. Condia, J.E.R.; Santos, F.F.d.; Reorda, M.S.; Rech, P. Combining Architectural Simulation and Software Fault Injection for a Fast
and Accurate CNNs Reliability Evaluation on GPUs. In Proceedings of the 39th VLSI Test Symposium (VTS), San Diego, CA,
USA, 25–28 April 2021; pp. 1–7. https://doi.org/10.1109/VTS50974.2021.9441044.

32. Ruospo, A.; Bosio, A.; Ianne, A.; Sanchez, E. Evaluating Convolutional Neural Networks Reliability depending on their Data
Representation. In Proceedings of the 23rd Euromicro Conference on Digital System Design (DSD), Kranj, Slovenia, 26–28 August
2020; pp. 672–679. https://doi.org/10.1109/DSD51259.2020.00109.

33. Li, G.; Hari, S.K.S.; Sullivan, M.; Tsai, T.; Pattabiraman, K.; Emer, J.; Keckler, S.W. Understanding error propagation
in deep learning neural network (DNN) accelerators and applications. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, Denver, CO, USA, 12–17 November 2017; p. 8.
https://doi.org/10.1145/3126908.3126964.

https://doi.org/doi: 10.1145/3126908.3126964

	Introduction
	Background
	Safety Certification
	CUTLASS

	Enhancing MMM Safety
	Diagnostic Techniques
	Reproducibility
	Memory Hierarchy
	Safety Architectural Patterns

	Evaluation
	Experimental Set-Up
	Performance Impact
	Diagnostic Coverage
	Trade-Off between Performance Impact and DC

	Related Work
	Conclusions and Future Work
	References

