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Chronic lymphocytic leukemia (CLL) is a disease commonly
diagnosed in the elderly with a median age of ~70 years.
However, CLL can also be detected in adolescent and young
adults (AYA). According to different studies, 0.85–3.7% of patients
with CLL are diagnosed in AYA and 3% of these patients had a
first-degree relative with CLL [1]. Families with multiple individuals
affected with CLL and other related B-cell tumors have been
described with contradictory findings regarding their potential
early age at diagnosis [2]. Despite these observations, our
knowledge about the molecular profile and predisposing factors
in AYA CLL is scarce [3, 4].
Comprehensive studies have dissected the (epi)genomic, and

transcriptomic landscape of CLL [5]. Approximately 9–18% of CLL
harbor del(11q) which occurs in younger patients with bulky
disease and poor survival. These deletions are frequently
associated with germline and acquired mutations of ATM [6].
Patients with the inherited disorder ataxia telangiectasia have
biallelic alterations of the ATM gene and increased susceptibility to
lymphoid malignancies [7]. Rare, protein-coding germline ATM
variants are associated with CLL in adults [8]. However, ATM
mutations are uncommon in familial CLL [9].
Here, we describe an 18-year-old woman diagnosed with CLL

whose family history included a younger brother with B-cell acute
lymphoblastic leukemia (B-ALL) and other family members
carrying germline ATM mutations. A combination of whole-
genome and single-cell characterization of this CLL at diagnosis
and during the course of the disease provided an opportunity to
understand the genomic profile of AYA CLL and the sequence of
events driving its evolution.
An 18-year-old female was diagnosed with CLL, Binet-Rai stage

AI, at another institution, in the study of a lymphocytosis detected
in a routine blood test. She had a past medical history of anxiety-
depressive syndrome during childhood and chronic headache, but
no neurological symptoms were reported. The patient had a
younger brother diagnosed with B-ALL when he was 3 years old,
and was in complete remission 13 years later, and an older sister
with epilepsy. Her parents were both healthy.
At the time of CLL diagnosis, the patient was asymptomatic

with a normal physical exam. Her white blood cell count (WBC)
was 9.08 × 109/L, with 75% lymphocytes. Hemoglobin and platelet
count were normal. Peripheral blood smear showed small atypical
lymphocytes consistent with CLL, which phenotype was CD5+,
CD23+, CD43+, CD200+, CD10−, CD20 and CD22 weakly positive
with weak kappa light chain restriction. The fluorescence in situ
hybridization (FISH) analysis for ATM (11q22), D12Z3 (cen 12), DLEU
(13q14.3), LAMP1 (13q34), and TP53 (17p13) were normal. One
year after diagnosis, the patient received two cycles of rituximab

plus fludarabine and cyclophosphamide (FCR) due to progressive
disease, achieving a complete remission. The patient was then
referred to our hospital. Physical examination was normal without
evidence of lymphadenopathy or splenomegaly. WBC count was
2 × 109/L with 10% lymphocytes, hemoglobin 117 g/L, and normal
platelet count. Watchful waiting was recommended.She was
diagnosed of a CLL as a result of the study of a lymphocytosis
in a routine analysis requested by her gynecologistFue diagnos-
ticada de CLL como resultado del estudio de una linfocitosis en un
análisis de rutina solicitado por su ginecólogo.She was diagnosed
with CLL in the wake of the study of a lymphocytosis in a routine
analysis requested by her gynecologist. Five years later, the CLL
progressed with increased lymphocytosis, inguinal, axillary, and
laterocervical lymphadenopathy (2–3 cm) and splenomegaly of
4 cm below the costal margin. At that time, the karyotype was 46,
XX,del[13](q12q21)[6]/46,XX[10] and a heterozygous del(13q14.3)
was detected by FISH in 92% of nuclei. FISH for ATM, D12Z3, and
TP53 were normal and no TP53 mutations were observed. The
sequence of the IGHV genes showed a clonal rearrangement of
the IGHV3-21 with 100% homology to the germline, not belonging
to any major stereotype subset (Supplementary Tables 1, 2). Due
to CLL progression, ibrutinib 420 mg per day was started and the
patient achieved a partial response. However, after 20months,
ibrutinib had to be discontinued due to the severe diarrhea and
acalabrutinib 100mg every 12 h was started. Progression of CLL
was observed after 13months of treatment and rituximab and
venetoclax were initiated (Fig. 1A).
The patient was included in the CLL program of the

International Cancer Genome Consortium and the whole genomes
of the germline and tumor sample at diagnosis were sequenced
[5]. No somatically-acquired driver alterations were detected but
three germline ATM mutations were identified, including a
pathogenic 28-base frameshift deletion (p.N3003Dfs*6) and two
missense single nucleotide variants (p.K2204M and p.Y1961C).
Although the p.K2204M missense variant has not been identified
in previous studies, the p.Y1961C has been reported in a CLL
patient and its modeling showed reduced ATM kinase activity [10].
Based on this result, we studied the segregation of these
mutations in the family members by Sanger sequencing. The
mother harbored the frameshift deletion, while the father and the
sister carried the two missense variants. Both the patient and her
brother with B-ALL inherited all three variants (Fig. 1B, Supple-
mentary Tables 3, 4). A milder ataxia telangiectasia phenotype,
where the disease progresses at a slower pace, has been observed
in patients with reduced levels of ATM kinase activity [11]. At time
of last follow-up the two siblings (28 and 16 years old) had not
developed neurological symptoms.
To better unfold the contribution of somatic alterations during

the evolution of the disease, whole-genome sequencing (WGS)
was performed at 3 additional time points over a period of 8 years
and complemented with single-cell DNA-sequencing (Fig. 1A,
Supplementary Table 1). Using a longitudinal sample-aware
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mutation calling pipeline that increases sensitivity, we identified 689
genome-wide and 7 non-synonymous variants in the WGS at
diagnosis, increasing up to 1779 genome-wide and 18 non-
synonymous at the latest sample analyzed. Among them, four
mutations were found in CLL driver genes over the course of the
disease: XPO1 (p.E571K), SF3B1 (p.G742D),MGA (p.C1238G), and POT1
(p.C44S). The mutations in XPO1 and SF3B1 were already present at
diagnosis but were missed in our previous study [5] due to their very
low frequencies. After 4 years (time point 2), their clonal size
expanded, and the remaining two driver mutations inMGA and POT1
were detected. Regarding structural alterations, only del(13q) was
clonally detected at the second time point and onwards (Fig. 1C,
Supplementary Methods, Supplementary Tables 5, 8).
Somatic driver alterations were present at different allele

frequencies through the disease course, suggesting an ongoing
clonal evolution driving the pre- and post-treatment progression
of the disease. To dissect the underlying clonal evolution, we
reconstructed the subclonal evolution and explored the muta-
tional processes active during the CLL course (Fig. 1D, Supple-
mentary Methods, Supplementary Tables 9, 10). This analysis
revealed a branching pattern of evolution in which the founding
CLL clone did not carry any recognized driver alteration beyond
the ATM germline variants. Additionally, two minor subclones
were already present at diagnosis: subclone #3 carrying del(13q),
XPO1 and MGA, and subclone #4 which originated from subclone
#3 and acquired the SF3B1 mutation (Fig. 1D). These lineage
trajectories are in line with previous literature in which ATM loss
preceded del(13q) in a familial CLL study [12] and with a recently

described combinatorial effect of ATM loss and SF3B1 mutation
[13]. Intriguingly, these small subclones at diagnosis expanded
after treatment with FCR, that, on the other hand, reduced or
eliminated the initial subclones #1 and #2, with no additional CLL
drivers, suggesting that decreased competition allowed the
expansion of subclones carrying potent drivers. Of note, subclone
#4 carrying the SF3B1 mutation represented the largest sub-
population of cells at relapse post-treatment with FCR (time point
2), in line with the poor prognosis of SF3B1 mutated cases under
FCR therapy [14]. Nonetheless, this subclone slightly diminished at
time point 3 and was virtually eradicated at time point 4 after
treatment with ibrutinib, which is in line with the higher sensitivity
of SF3B1 mutated CLL cells to BCR inhibition in vitro [13].
Additional diversification was observed in subclone #3 at time
point 2 which led to the emergence of subclone #6 harboring the
POT1mutation. This subclone expanded under ibrutinib treatment
and accounted for 54% at the last time point analyzed 3 years
after its detection (Fig. 1D). To confirm these evolutionary
trajectories, we performed single-cell DNA-sequencing of 32 CLL
driver genes and identified the reported mutations in XPO1, SF3B1,
and POT1 [note that MGA was not included in the commercial
gene panel used]. This single-cell analysis confirmed the timing of
acquisition of these driver mutations and the clonal dynamics
inferred from WGS (Fig. 1E, Supplementary Methods, Supplemen-
tary Tables 11, 14).
Here we have reported the 8-year genomic evolution of a CLL

diagnosed in a young patient that inherited three ATM variants,
two of them previously reported to inactivate or reduce ATM
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Fig. 1 Clinical course and genomic characterization. A Clinical course and samples analyzed. B Pedigree tree of germline variants in ATM.
The two missense variants carried by the mother and the frameshift variant from the father were inherited by the chronic lymphocytic
leukemia (CLL) case studied and her brother that developed acute lymphoblastic leukemia (ALL). C The upper barplots show the number of
mutations [single nucleotide variants (SNV) and short insertions and deletions (indels)] and copy number alterations (CNA) or structural
variants (SV) at each time point. The lower oncoprint shows the driver alterations, the transparency of the color is proportional to the cancer
cell fraction (CCF). D The fishplot [left] depicts the subclonal architecture and clonal dynamics inferred from WGS. Each vertical line represents
a time point analyzed. Each subclone is painted in a different color, and its height is proportional to the CCF at each time point. The upper-
right tree shows the phylogeny of the tumor cell subpopulations, the length of the branches is proportional to the number of acquired SNV,
and they are colored by contribution of mutational signatures identified in CLL [right]. The clock-like signatures SBS1 and SBS5 contributed
most of the mutations acquired. E The fishplot (left) shows the clonal dynamics measured by single-cell analysis. For each available time point,
the integrated barplot shows the proportion of cells harboring each specific combination of alterations in the driver genes illustrated on the
“Mutation tree” (middle). The total number of analyzed cells at each analyzed sample is shown at the bottom. The “Co-occurrence of
mutations” plot (right) indicates the presence or absence of mutations in each cell. For illustrative purposes, cells have been merged in bins
of 100.
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activity (Supplementary Table 4) [10]. The combination of these
three germline ATM variants predisposed to two distinct B-cell
neoplasm in two siblings. These ATM variants represented the only
recognized driver events in the founding CLL clone, suggesting
that ATM inactivation might be a genomic factor contributing to
CLL initiation. Tumor evolution and disease progression was
dictated by the acquisition of secondary driver alterations, which
could be detected in small subclones years before their expansion,
and by different types of treatment that influenced subsequent
clonal dynamics. Of note, this patient responded well to initial FCR
therapy and later to ibrutinib treatment when ATM inactivation
was accompanied by an SF3B1 mutation, which is in line with the
favorable clinical behavior of del(11q) CLL under BTK inhibitors
[15]. Altogether, the lack of somatically-acquired, genetic driver
alterations in the founding CLL of this patient emphasizes the
need to study the germline as well as non-genetic aspects of the
tumors to further understand the mechanisms leading to CLL.
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