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Abstract

Agent-based modeling is one of the most suitable ways to simulate and an-
alyze complex problems and simulations, such as the simulation of societal
environments and scenarios. The kind of platform most commonly used in
these endeavors is that of a multi-agent system.

Multi-agent systems are comprised of various actors (agents) in a concrete
simulation environment, each of them possessing an individual knowledge
and an individual behavior. These systems can be used to analyze collective
emergent behavior in contexts such as sociology, economics, policy making,
etc.

Current Multi-agent platforms either scale in computation quite well but
implement very simple reasoning mechanisms, or employ complex reasoning
systems at the expense of scalability. In recent work done at UPC, a platform
enabling complex agents with HTN planning to scale and run parallelly was
proposed, theorized, and implemented. This project extends said platform to
enable a better analysis of the social relationships between agents by means
of preferences over their objectives, preferences over their plans, actions, and
moral values, while making sure our additions are scalable, to maintain the
spirit and purpose of the platform.

In this work, we start from the previous work done by Dmitry Gnatyshak
on implementing said platform, and we expand it, both formally and imple-
mentation-wise. We formalize the additions to the model of the system, as
well as its modifications, and we do the same for the implementation. In the
end, we provide a complex example scenario to showcase all the additions we
have created.
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Chapter 1

Introduction

Agent-based modeling (ABM) is a computational approach for simulating
the activities and interactions of autonomous agents (individual or collective
entities such as organizations or groups) in order to better understand how
a system behaves and how its results are determined. Furthermore, they
allow for the simulation of complex environments where its perception, the
decision-making processes, and the actions carried out are dispersed among
several stakeholders or agents. The purpose of ABM is therefore to obtain
explanatory insight into the behavior of a group of agents which share a
common environment.

The fields in which ABM can be applied are numerous: biology, social
sciences, ecology, economics, policy-making, etc. A specific application of
ABM would be to analyze the social relationships between agents by means
of norms, moral values, and social conventions, their adherence to those
norms and values, how they affect and limit their actions, and how they may
change over time as the agents interact with each other and the environment
they are in.

One concept that is closely related to ABM is that of multi-agent system
(MAS). Despite their similarities, a multi-agent system and an agent-based
model are not always the same. An ABM’s purpose is to find explanatory
insight into the collective behavior of agents who follow basic rules, usually
in natural systems, whereas the concept of MAS refers to the implementation
of systems used to carry out simulations of environments featuring multiple
agents. In summary, ABM is more related to studying the phenomenon
of numerous agents co-existing in a shared environment, and MAS is more
related to modeling these systems in a computational manner.

Many ABMs have been built using basic reactive agents1. Simulators like

1As we explain in section §2.1.1, reactive agents are the simplest type of agents: they
simply react to changes in the environment.

1



2 CHAPTER 1. INTRODUCTION

this are crucial for understanding complex environments and exploring the
fundamental principles of emergent social behavior. These models may be
elevated to and examined at genuinely large scales thanks to recent advances
in high-performance computing (HPC), assisting to find answers to critical
scientific or social issues. Some well-known ABM systems worth mentioning
are Repast[31], NETLOGO[27], and MASON[6].

One of the main downsides that these models present, is that many of
them feature agents with very little reasoning capabilities, sometimes even
reducing agents to mere rule-based or functional input-to-output transform-
ers. There are some simulation scenarios in which these simplifications of
the agents’ reasoning suffices (e.g., if we want to simulate the general flow of
traffic in a big city, it may be enough to have agents with simple behaviors
who simply react to changes in the environment arround them), but there
are other scenarios which require agents capable of more complex reasoning
and behaviors.

One of the most widely used designs to model complex reasoning capabili-
ties in agents is the Beliefs-Desires-Intentions (BDI) model2. In a typical BDI
model, agents, which are goal-oriented, perceive their environment and gather
some knowledge from it (represented as their beliefs) and then, based on it
(and other factors as well), they decide what they want to achieve (in relation
to their desires and intentions), and how to achieve it (typically through
some means-ends reasoner). This is called the perceive-reason-actuate cycle,
and there exist many MAS implementations whose agents feature this cy-
cle, or some variation of it (for instance, Jadex[14], 2APL[8], Soar[15], and
GOAL[12]).

The BDI model is more in line with the complex reasoning we described
before. On the downside, however, these systems typically lack scalability.
While they are great when it comes to simulating agents that exhibit complex
behavior and reasoning, they fail at enabling simulations with larger numbers
of agents, due to the need to explore multiple potential instantiations of
abstract goals (which of all my goals are feasible/reachable now?) and plans
(which plans are applicable now) in a given state of the system. Upon closer
inspection of the BDI, one reaches the conclusion that it features a very
prohibitive time complexity, and that any system designed to run sequentially
will only be able to sport a very limited number of agents before displaying
unacceptable execution times, as is the case with the four MASs cited in the
above paragraph.

In 2019, one of my advisors, Dmitry Gnatyshak, took on a project to
address this issue as his Master’s thesis[10]. The problem he focused on solv-

2We provide a more detailed description of the BDI model in §2.1.4.
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ing was that of the poor scalability in MASs that feature BDI-like agents.
In collaboration with the Knowledge Engineering and Machine Learning
Group (KEMLG) at UPC, and the High Performance Artificial Intelligence
research group at Barcelona Supercomputing Center (HPAI BSC), he de-
veloped a custom Python-based BDI-agent simulation framework capable of
both hosting agents imbued with complex reasoning capacity and running
simulations with large numbers of these agents. The theoretical grounds for
this framework were laid out in 2019 as well, and can be checked here [11]

The framework accomplishes this by using the COMPSs[1] to allow ef-
ficient and effective scalability on clusters. Put very briefly, he tackled the
scalability problem by creating a framework capable of parallelizing the rea-
soning cycle of its agents, allowing them to run concurrently whenever pos-
sible.

In this work, we address the issue of further enhancing the platform im-
plemented by Gnatyshak in 2019, by enhancing the agents’ reasoning capa-
bilities, as well as dotting them with social aspects such as preferences over
their objectives, preferences over the actions they take in order to accomplish
those objectives, values, making them aware of social norms.

Another equally important objective is carrying out an extensive explo-
ration and research on the state of the art regarding MASs and microsim-
ulation using BDI-like agents. This second goal will feed directly into the
first described goal, as we will use the results of our research in order to
implement and come up with concrete enhancements.

This chapter is structured as follows: first, we lay out the problem at
hand in §1.1, then in §1.2 we give a description of how the platform worked
before we enhanced it; in §1.3 we list and illustrate the objectives of this
work, and finally in §1.4 we summarize the structure of the thesis.

1.1 Problem statement

In this work, we address the problem of enhancing the scalable BDI-based
microsimulation platform created by Dmitry Gnatyshak[10] to provide its
agents with more complex reasoning capabilities and social aspects such as
norms, values, and preferences, as well as exploring the state of the art on
MASs and microsimulation using BDI-like agents.

At the beginning of this project, we also set ourselves another objective,
independent from that of bettering the agents. We also wanted to expand
into the monitoring capabilities of the system. The platform has a controller
that handles the running of the simulation: it manages the agents’ messages,
runs and updates the environment, and implements some basic monitoring
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functionalities as well. At the end, this goal was not finally addressed. This
happened because, when we assiduously examined the state of the agents
and their reasoning capabilities in the current implementation, we determined
that enhancing them was much higher priority than increasing the monitoring
capabilities, and we also envisaged that doing so would require a higher
amount of work than we previously had thought and, therefore, we dropped
the objective of improving the monitoring in order to divert all our resources
and time into improving the overall state of the platform by enhancing the
agents’ reasoning capabilities, as well as their capacity to express desires and
intentions.

The other main direction we thought of in order to improve the platform
was to enhance its agents’ reasoning capabilities. As stated before in the
introduction to §1, the platform supports simulations sporting a high number
of agents capable of somewhat complex reasoning running in parallel. We
also wanted to improve the platform by enhancing the agents’ reasoning
capabilities, thus making display of even more complex reasoning in the ways
they pursue goals, make choices and, in general, the ways they behave.

In §1.2, we will give a fully detailed description of every feature that
was present in the system before we started adding improvements, and in
§1.3 we will elaborate a complete list of the specific objectives that we have
established in order to tackle the problems described in this section.

1.2 Description of the current implementa-

tion

In order to understand the state of the platform before this project took
over it, several key concepts must be introduced. Firstly, we will shortly
describe the COMPSs framework. We will not go as deep as our co-advisor
did, since this project does not focus on parallelism. Then, we will explain
the theoretical specification of the platform, and we will finish by describing
how it was implemented.

Regarding COMPSs, aside from the official documentation, a more in-
depth explanation of its inner workings is provided in [10] (pages 23–30).
In the same document, detailed descriptions of the theoretical model (pages
30–39), and its previous implementation (pages 41–59), can also be found.

1.2.1 COMPSs

COMPSs[1] is a framework developed by BSC aimed at making parallel ap-
plication creation and execution for distributed infrastructures easier. Its
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fundamental goal is to make it possible to create distributed cloud or grid-
based apps without having to worry about the underlying systems that will
run them. As a result, it provides a layer of abstraction, allowing the devel-
opment of hardware-agnostic apps (which will then be automatically dissem-
inated), saving developers the time and effort required to learn the low-level
characteristics of the hardware in use. In simpler terms, it eases the task of
programming code that will later be distributed and executed in parallel.

Its main runtime is written in Java, but COMPSs also has versions dedi-
cated to dealing with programs written in C/C++ and Python. Since all the
code produced in this thesis is Python code, in the next section we will briefly
introduce the version of PyCOMPSs that works with Python programs.

1.2.1.1 PyCOMPSs

PyCOMPSs[26] is the version of the COMPSs framework created to work
with programs written in Python, and the version of COMPSs that we will
be making extensive use of in this project. Very briefly, its runtime features
some extra layers that transform the Python data types into Java data types,
as this is required in order to conduct the dependency analysis that are
characteristic or parallel solutions.

1.2.2 Theoretical model of the platform

The formal model of our agent-based HPC simulation system will be pre-
sented in this section. We will mainly focus on showcasing its most relevant
features and important definitions.

This formal model features a collection of elements that together build it,
as well as sets of transition rules, for both agents and the model itself, that
collectively define its operational semantics. Additionally, it also exhibits a
concrete instantiation of its reasoning model, which we will also explain.

1.2.2.1 Elements and formal definitions

The multi-agent system M is defined as the following tuple:

M = {E,A+, C} (1.1)

where:

• E is an environment, in which the agents reside, that they can per-
ceive, gather information from, and act on

• A+ is a non-empty set of agents
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• C is a controller, a structure that maintains the environment, handles
agent-to-agent communication, and regulates how agents access and
act on the environment

And individual agent Ai is defined as the following tuple:

Ai = {ID,msgQs,Bh,B,G,P , outAcs} (1.2)

where:

• ID = {AgID,AgDesc} is Ai’s identity data:

– AgID is the unique identifier of Ai

– AgDesc is an arbitrary description of Ai

• msgQs = {I,O} is the set of Ai’s message queues

– I = {. . . ,msgi, . . . } is the Inbox, the set of messages sent to Ai

– O = {. . . ,msgi, . . . } is the Outbox, the set of messages sent by
Ai

– msgi = {AgIDs, AgIDr, performative, content, priority} is ames-
sage sent agent with ID = AgIDs to the agent with ID = AgIDr,
with the corresponding performative type, content, and priority.
performative are FIPA-compliant

• Bh = {MendR,RG} is ’s role behavior

– MendR is the means-ends reasoner that Ai uses to generate
plans

– RG is the set of goals associated with the Bh which Ai is enacting

• B is the set of Ai’s beliefs. It has the same internal structure than the
environment E has

• G is the set of Ai’s goals

• P = {. . . , abi, . . . } is Ai’s current plan

– abi = {. . . , aij, . . . } is an action block, i.e., an ordered set of
actions (each aij is an action). The system features three mutually
exclusive types of actions:

∗ Internal actions: these are the actions that are executed by
the agent in order to change their beliefs
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∗ External actions: these are the actions that are sent by
the agent to the controller in order to be executed on the
environment, i.e., that are executed to alter the environment

∗ Message actions: these are the actions that are used to
generate messages intended to other agents

• outAcs is the set of external actions to be executed on the environment.
It is composed of tuples of the form:

– {senderID, ae}, where ID is the sender’s ID, and ae is the action
that is being sent

Finally, the controller C is defined as the following tuple:

C = {I, inAcs} (1.3)

where:

• I is the inbox for all the agents’ outgoing messages

• inAcs is the set of all the actions to be exercised on the environment

1.2.2.2 Means-ends reasoner

The implementation of the means-ends reasoner for the platform was origi-
nally a hierarchical task network (HTN) planner[13]. The reason to choose
an HTN as the way for agents to reason was because it was shown in the
document that HTN planners could fit well in BDI reasoning processes.

The HTN is a tree composed of three types of nodes: (i) Primitive Tasks,
(ii) Methods, and (iii) Compound Tasks. Primitive Tasks are always leaves,
while methods and compound tasks are always nodes with at least one child.

Primitive Tasks represent the concrete actions to be added to a plan and
a way to decompose abstract tasks into concrete actions. They have an
associated action block, which is simply a collection of actions that make up
the Primitive Task, and possess a set of preconditions that help determine if
the primitive task is available to be executed or not.

Compound Tasks are one way to represent abstract tasks. They are, put
simply, an ordered set of Methods, and cannot have preconditions. On the
other hand, Methods are the alternative way to represent abstract tasks.
They retain a set of preconditions, and are an ordered set of either Primitive
or Compound Tasks. The main difference between Compound Tasks and
Methods is that the former are used to establish an ‘or’ relationship between
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Figure 1.1: HNT example [10]

their children, while the latter are used to enact an ‘and’ (more specifically,
‘seq’) relationship between their children nodes.

An example of an HTN planner can be seen in Figure 1.1. The root
is a Compound Task, which represents the goal (in this specific case, to
‘produce goods’). As its only child, sits the Method ‘produce goods’, which
has two children, ‘get resources’ and ‘produce’. As mentioned before, the
children of Method nodes must be completed following a ‘seq’ relationship;
therefore, this is interpreted in the HTN planner as: “first, get resources;
then, produce goods”. Now let us take a look at the children of the ‘get
resources’ Compound Task. They are two Methods, one to ‘gather resources’,
and another to ‘buy resources’. As their names suggest, they are alternative
ways of achieving the same subgoal and, as said before, we can see how the
children nodes of Compound Tasks are governed by an ‘or’ relationship, as
only one must be completed. It is interpreted in the HTN planner as “in
order to get resources, we can either gather them or buy them”. Finally, two
more details to cover: the first one is to notice that only Primitive Tasks and
Methods have preconditions, and the second one is to look at how, as we
previously stated, all the leaves are Primitive Tasks, and it is at them where
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the HTN ‘ends’.
One may have noticed that the only situation where there are choices is

when dealing with the children of Compound Tasks. The children of Com-
pound Tasks are also always Methods. Therefore, the only part of the HTN
where we can introduce alternative choices or preferences is when dealing
with Methods (children of Compound Tasks).

Briefly, let us introduce how the HTN currently deals with this scenario.
What it does is it picks the first available3 method that it finds by iterating
through the children of the Compound Task from left to right. Finally, let
us advance that there is where we will modify the HTN in order to introduce
preferences over plans, subplans, and actions.

1.2.3 Implementation of the platform

In this section we will briefly introduce how the previously described formal
model of the platform has actually been implemented. We will provide a
small and succinct description of every formal concept’s implementation, as
well as highlight any simplifications done to the model or any liberties taken
that make it diverge from its theoretical declaration. Lastly, let us remember
that all the code produced is Python code.

The totality of the MAS is organized as a package with numerous sub-
modules and a list of main classes that support redefinition of functions by
the user, and some methods are even left explicitly as trivial functions left
for the user to implement their actual inner workings. The most important
modules are:

• Agent: module which implements the concept of Agent through the
class Agent. This class acts as a simple container for the description of
an agent

• Behavior: contains the Behavior class, which is what governs all
aspects of an agent’s behavior: its deliberative cycle, its reasoning, what
it does with the messages it receives, how it perceives the environment,
when (and how) it replans, etc. Users might need to inherit from this
class and reimplement some of its methods in order to allow for more
complex behaviors.

• Controller: this module is perhaps one of the most important ones,
along with Behavior. It contains the Controller class, which is solely
responsible for running the simulation, handling the messages, updating
the environment, hosting the agents, running PyCOMPSs tasks, etc.

3‘Available’ here means that its preconditions are satisfied
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• HTN: contains the HTNPlanner class, which is the implementation of
the HTN, as well as all the other related classes, such as PrimitiveTask,
Method, and other auxiliary classes such as Conditions or BeliefSet

• State: this module contains the State class, which is a very basic
structure that contains all the relevant information and status of an
agent at a given moment in time: its current goal, its current plan,
etc. It is separated from the agent and used to transfer and work with
persistent states

Regarding goals, notice how they have not been mentioned so far. This
is because one of the biggest simplifications that the implementation does
with regards to its formal definition, is that agents do not have a set of
goals. Instead, all they have is a plan with a root task acting as the agent’s
only goal. That is, not only does the system not support the declaration of
multiple goals, it also has its only goal coupled to a plan (while, ideally, goals
should be independent from plans in a BDI approach).

Another thing one might notice whilst inspecting the source code is that
the Conditions class does not support disjunctions of statements, only con-
junctions. That is, the preconditions of a task can only be of the form
α1∧α2∧ . . .∧αn, where each individual αn is a logical statement that can be
either true or false. This structure will be expanded in order for it to allow
expressions such as (α1 ∧ α2 ∧ . . . ∧ αn) ∨ . . . ∨ (β1 ∧ β2 ∧ . . . ∧ βm).

Finally, one more thing we will mention is that, among all the avail-
able Python classes, users wishing to build their own simulations using our
framework should only have direct access to, actively modify, and/or ex-
pand on the following: ActionBlock, Behavior, BeliefSet, CompoundTask,
Conditions, Controller, Effect, Method, and PrimitiveTask. We, how-
ever, since not only do we intend to design and run simulations, but also
to expand on the platform and its capabilities, will need to modify classes
beyond the ones mentioned in this list, such as the HNTPlanner class, as well
as creating our own classes.

This has just been a quick overview of how the model was implemented,
where we have highlighted its main classes, as well as pointed at its bigger
simplifications and details that we will attempt to polish. For a holistic,
thorough, and comprehensive analysis and examination of all the platform’s
code and classes, please refer to [10], pages 41–59.

1.3 Objectives

The objectives of this work are the following:
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1. Regarding goals:

(a) Adding an explicit structure that encodes goals in agents

(b) Totally decoupling goals from plans, i.e., making plans and goals
totally independent

(c) Adding the capacity for agents to have many goals, not just one

2. Adding preferences over goals. That is, adding a data structure that
allows the designer to specify in which order the agent will pursue its
goals. This structure should be based on widely used techniques, and
most preferably, it should be in line with the state-of-the-art approaches
of the field

3. Adding preferences over plans and subplans. That is, adding
a data structure that allows the designer to specify preferences over
multiple valid plans or subplans that achieve the same goal or subgoal.
If goal gi can be accomplished through any plan in the set {P1, . . . ,Pn},
then this structure (which should encode the agents’ preferences over
plans) should pick P∗, that is, the plan that adheres the most to the
agent’s preferences

4. Adding preferences over actions. We should also devise another
data structure that allows the designed to specify preferences over mul-
tiple applicable actions that help achieve the same plan or subplan. The
same as in objective 2 is true for actions: if plan Pi or any subplan of
it can be completed through any action block in the set {ab1, . . . , abn},
then this structure should pick ab∗, that is, the action block that ad-
heres the most to the agent’s preferences over actions

5. Adding values. That is, adding a data structure that allows the de-
signer to specify (moral) values in the agent. When the agent plans in
order to achieve a goal, these values should be taken into account, and
different agents with different values might come up with different plans
for the same goal, even if all of the other contextual circumstances are
the same

6. Make sure our additions are scalable. There is no doubt that, with
all the new features we will be adding to the system, time-efficiency
is bound to decrease. However, we should take every action and pre-
caution at hand to ensure that the loss of time-efficiency is as small
as possible, and does not affect the runtime of the system very much.
Therefore, when programming and designing, we should always have
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this goal in mind to ensure the scalability of the code. In other words,
all the extra additions should not have a great impact on the scalability
of the system and its overall performance.

7. Related to the objectives regarding preferences (objectives 2–4), one
extra objective is to try to see how ‘far’ we can go without using
numbers to encode preferences, since we have limited our design to
not using them. The main reason why this goal was added is because
we humans do not reason using hard numbers, at least explicitly. We
do not think “today I prefer to go to the beach with a weight of 86,
but to go to the cinema with a weight of 91; therefore, I will go to
the cinema”; we, simply, think “today I would rather go to the cinema
than to the beach; therefore, I will go to the cinema”, that is, we think
in qualitative terms, at least when we deliberate explicitly. However,
all state-of-the-art approaches we have consulted, sooner or later, end
up adding hard numbers to their implementations. For this reason,
we have set this goal: we wish to see how not using numbers limits
the expressiveness of our system, to what degree (how severe) this
limitation is, and finally draw some conclusions as to whether it is
acceptable to not use numbers or, on the contrary, we should use them
if we wish to attain the desired level of complex reasoning for agents.

Initially, we also had the goal of enhancing the platform’s monitoring
capabilities. However, as stated in §1.1, early in the development of this
project it was decided to drop this goal and to fully focus on making the
agents’ reasoning more complex, as the current state of the framework would
require a lot of effort to achieve that objective alone.

In summary we have objectives to add goals to the platform (objective
1), to add social aspects (objectives 2–6), to test the quality of our imple-
mentation (objective 7), and finally, to see how not using numbers to encode
preferences in a BDI approach can limit the expressiveness of the system.

1.4 Structure

This document is divided into 6 chapters and an appendix.
Chapter 1 is the introduction, which we are currently in. Here, we have

established the purpose of this project, both in terms of the problem it at-
tempts to solve and the ‘gap” it tries to fill in the current state of the art.
We have also provided a list and description of the goals we have set our
minds out to accomplish, and finally, here we are providing a description of
the thesis’s structure.
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Right after this introduction, in Chapter 2 we provide a study of numerous
works that are related to our own. We analyze different MASs, both their
formal definitions and their practical implementations. Additionally, we also
explore the state of the art on all the features we wish to materialize into the
platform. All the information, knowledge, and insights gained here will be
used in further chapters when it comes to either formally designing features
or implementing them.

Following that, in Chapter 3 we present all the proposed improvements we
wish to add to the framework. For every feature we add, we specify whether
it is a brand new addition to the model, or an enhancement of an already
existing one. This chapter is limited to the formalization aspect, that is, here
we will only describe our extensions in terms of formal definitions, transition
rules, etc.

Right after laying down the theoretical grounds of our work, in Chapter
4 we provide all the technical aspects of the implementations of the fea-
tures described and presented in Chapter 3. We introduce all the relevant
changes done to the Python code, the newly created classes, the modifications
done to the reasoning cycle, to the means-ends reasoner, etc. Additionally,
and insomuch as one of the main focuses of this framework is to allow for
time-efficient simulations of a high number of agents, we will also provide a
complexity analysis of all the relevant code we have produced, and reason
about how the newly added code alters the overall complexity of the whole
system.

Posterior to the description of the implementation of the model and all
the technical aspects related to it, in Chapter 5 we uncover the experiments
we have devised in order to test our additions. For every experiment, we
delineate its structure, its purpose, the expected results, the actual results,
and we draw conclusions from those results.

Finally, in Chapter 6 we synopsize all the results and the knowledge we
have obtained throughout the development of this project. We provide a
thorough revision of our initial objectives, commenting on how each goal has
been brought about and to what degree; thereafter, we summarize the main
contributions of this work to the field of AI and MASs, and we conclude
with an analysis of possible lines of future work and provide a list of several
improvements that could be added to the framework.

In the appendix, we will find all the information related to project plan-
ning (budget, methodology, tasks, etc.), as well as some extra examples from
the tests we perform. Appendix A will cover project planning, Appendix
B will contain the budget and sustainability analysis of this work, and Ap-
pendix C will contain extra examples for our tests.





Chapter 2

Related work

In the previous chapter, we provided context for this work in the field of Ar-
tificial Intelligence (AI), and stated the main problem we will be attempting
to solve. We also presented the framework we will be expanding, its main el-
ements, and its current state. Additionally, we stated the main objectives of
this work, and briefly explained the general structure to which this document
will adhere.

In this chapter, we provide a thorough analysis of the state of the art in all
the important areas related to this project, as well as provide justifications
for which works influenced our design decisions later on, and for the ones
that did not. This chapter is of the utmost importance, since it is from
here we will be drawing inspiration and knowledge to later be used in the
accomplishment of the objectives laid out in Chapter 1.

This chapter is structured as follows: we begin in §2.1 with an intro-
duction to the main concepts in the field of multi-agent systems (such as
agents, the BDI model and so on). Then, in §2.2, we cover our research into
goals, their representation, their implementation, and how plans are traced to
achieve goals in various real-world platforms; we continue with our research
into the state of the art of social aspects in §2.3, where we will cover different
modern approaches on representing and simulating agents that possess pref-
erences over their objectives, their plans, and the actions that make up their
plans, as well as the representation of values. Finally, in §2.4 we provide a
summary of the main findings we have obtained from the research into the
state of the art.

15
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2.1 Main Multi-agent Systems’ concepts

One of the most essential works in the field of multi-agent systems is Wooldridge’s
“An Introduction to MultiAgent Systems”[30]. In his work, Wooldridge con-
centrates on the definition of what an agent is, the properties it should have,
different types of agents, how they should interact, etc. Other aspects of
agents and MAS are also extensively covered in another crucial work on the
field: Russell and Norvig’s “Artificial Intelligence: A Modern Approach”[23].

Additional, it has been indispensable to the enrichment of my knowledge
on MASs that Javier, this thesis’s advisor, allowed me to attend his classes
on Multiagent Systems Design during the development of this project. A
great amount of the knowledge used to develop this project comes from me
attending his classes, and they have been a general influence on this thesis,
since I have had to understand, design, and implement many concepts taught
in the classes.

In this section, we will define the most relevant and key concepts in the
field of MAS. We will provide thorough and precise definitions according to
the cited bibliography, as well as illustrate with the aid of examples wher-
ever it may be necessary or helpful. The key concepts we will cover are:
agents, multi-agent systems, the BDI-model, the concept of environment,
and planning.

2.1.1 Agents

An agent is a computational system that is capable of independent action,
usually on behalf of its user or owner. This is one of the most common defi-
nitions of an agent, and is the one given by Wooldridge in his aforementioned
work.

Agents differ from other systems such as objects from object-oriented
programming (OOP) in that their actions are autonomous: they do not need
to be told what to do at every given moment. Instead, they are given goals or
directives, a set of actions they can perform, and a knowledge base they can
use to reason, and they independently make use of all these tools in order to
figure out what actions to carry out to satisfy the objectives they have been
given. Agents can be embodied (i.e., they have a physical body that exists
in the real world with sensors to perceive the environment and actuators to
perform actions) or totally virtual (all perceptions refer to digilat elements,
and actions have effects in a igital environment). An agent can be both
embodied (connected to the real world) and virtual (connected to a digital
environment).

An example of a very simple embodied agent is smart thermostats: the
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user specifies an ideal temperature and the thermostat will try to keep the
room around said temperature. Notice how the user does not need to tell
the thermostat to lower or raise the temperature, it will instead have sensors
and a set of internal rules that it will use to decide when to turn on the
heating and when to turn it off, and at what level of power it should be
working at. All the user does is give the thermostat a goal (e.g., ”keep the
room at around 22 ºC”), and the agent decides on their own the best means
to fulfill that goal (always within the frame of the actions they know how to
perform and the rules they have in their knowledge base). More instances of
embodied agents could be a 4.0 industry production plant, or the more classic
example: the robot. The clearest example of a virtual (non-embodied) agent
would be a chat-bot or an investment fund management bot (because they
do not exist in the physical world, but they can perform very real actions
nonetheless). Finally, an example of an agent both embodied and virtual
would be Amazon’s Alexa, or any other smart home assistant, as is capable
of both acting in the physical world (e.g., opening windows, turning lights
on and off) and in the digital one (e.g., buying a movie to watch at home
tonight).

Over the years, many properties of agents have been proposed and dis-
cussed by experts on the field. Some have proven to be fundamental over
time (e.g., reactivity or autonomy), while others have been deemed imprac-
tical for complex, real-life applications. The above-cited source names a set
of properties that agents should have:

• Autonomy: Agents need to be able to act on their own without users
instructing every step of their actions. Autonomy is thus the ability
of acting independently, exhibiting a certain level of control over their
internal state

• Reactivity: Agents need to respond to changes in their environment.
Reactive agents therefore maintain an ongoing monitoring of the envi-
ronment they are in, and react to (meaningful) changes that may occur
in it

• Proactiveness: Agents need to strive towards meeting their objec-
tive(s). Agents therefore are not limited to reacting to stimuli from
the environment (reactivity), they also should have goals and need to
attempt to achieve them and find ways to succeed. The scope of proac-
tiveness then covers the acts of generating intermediate goals to meet
final ones, recognising opportunities, etc.

• Social ability: Agents need to interact with each other, or humans.
This includes exchanging information, cooperating, etc
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• Flexibility: An agent is said to possess flexibility when it is reactive,
proactive, and social (see above)

Other properties worth mentioning that agents also need to have are, for
instance, rationality (all the actions of an agent should have the purpose of
bringing them closer to achieving their goals) and reasoning capabilities
(an agent should be able to reason about their environment, their goals, and
actions, and plan possible courses of action).

Some extra minor properties worth looking into are: veracity, benevo-
lence, and learning/adaptation. These are by no means mandatory, and
should only be added to agents when they are necessary. For instance, there
are many situations in which we may not need an agent to be able to learn
from past experiences, and thus granting them the ability to do so would be
ultimately useless.

Finally, the cited bibliography proposes 3 main architectures for agents:
reactive, deliberative, and hybrid. Reactive agents are the simplest type of
agents: they simply react to changes in the environment (i.e., they respond to
stimuli in a functional manner), as they only possess the autonomy, reactivity,
and social ability properties. Contrariwise, deliberative agents, rather
than reacting to meaningful changes in their environment, they model it and
perform comprehensive planning. And then, there are hybrid agents, which
are a middle-ground approach: they strive to maintain a balance between
reactivity and deliberation, two parameters which are very often in opposition
to one another.

2.1.2 Multi-agent system

Briefly, a multi-agent system is a system in which a number of agents coexist
and interact with each other and the environment. Typically, they all exist
in the same environment and have the capabilities to interact, socialize, and
even cooperate with one another, as they all perform actions that affect their
shared scenario and each other.

2.1.3 Environment

This far, throughout this document, we have been using the word ‘environ-
ment’ without providing a formal definition for it. In the topic of intelligent
agents, their environment is the physical or virtual context in which the
agents exist. Normally, the most important properties of an environment
are that it is partially accessible (the agents can obtain some, but not all,
information about it through their sensors) and dynamic (it can be altered
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through the agents’ actions, its own internal processes, time, etc.), although
there are other properties as well.

Most implementations of environments describe the world as a collection
of relevant1 variables (normally referred to as ‘names’), and their current
values. Thus, in most cases, an environment is formally a set of the form:

E = {(n1, v1), (n2, v2), . . . , (nn, vn)}

where each ni is a unique name for a variable that is relevant to the descrip-
tion of the world, and each vi is the value that ni has at that moment.

As an example, a concrete instance of an environment could be:

E = {(is raining, True), (day,Monday), (temperature, 12◦C)}

and a possible interpretation of it would be: “the current day is a Monday,
it is raining, and it is 12 degrees Celsius in this environment”.

In most of the MAS implementations (that we will see in §2.2), envi-
ronments are represented through the structure commonly referred to as
dictionary or hashmap in most programming languages. It makes sense to
use a dictionary to represent the concept of environment introduced in the
previous paragraph, as it provides an easy way to store values that are paired
with unique keys (the names), and an efficient way to access those values by
indexing them through the keys.

2.1.4 The BDI model

As we mentioned in Chapter 1, in a BDI approach, agents perceive their
environment and gather some knowledge from it (represented as their be-
liefs) and then, based on it (and other factors as well), they decide what
they want to achieve (in relation to their desires and intentions), and how
to achieve it (typically through some means-ends reasoner). This concept is
called the BDI cycle, and every agent that is part of a simulation performs
it in a loop-like manner at every iteration or step.

We provide a both more formal and more complete version of the concept
defined above in Algorithm 1. Its most important parts are:

• B are the agent’s beliefs. They represent the knowledge the agent has
about the environment. In most implementations, an agent’s beliefs
are usually myopic, and not necessary fully in tune with the actual
state of the environment.

1What is ‘relevant’ to describe the world is most of the times determined by hand by
the designer of the system.
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• D are the agent’s desires. They represent the motivational state of the
agent: objectives or situations that the agent would like to bring about,
but not ones that it has necessarily committed to achieve.

• I are the agent’s intentions. They represent the deliberative state of
the agent: objectives or situations that the agent has committed to
bring about. Summed up, intentions are desires that the agent has
committed to achieve.

• π is the agent’s current plan. Typically, plans are an ordered set of
actions that an agent can perform. If performed in the correct order,
the intention that the agent was trying to accomplish, should be at-
tained, assuming no extra changes in the environment occur due to
other reasons or other actors.

• brf(. . . ) is the agent’s belief revision function. It takes the agent’s
current beliefs (B) and the latest perception of the world (ρ), and it
updates the beliefs accordingly. It is, in most scenarios, user-defined.
In general, all the following functions are typically user-defined, as they
need to adapt to their current context and the specific situation that
is being simulated.

• options(. . . ) is the agent’s function to obtain and renew its desires
(options). It takes the current beliefs (B) and intentions (I) as input,
and it determines a set of desirable states of the world that the agent
may or may not immediately commit to.

• filter(. . . ) is the agent’s function to obtain and renew its intentions.
It takes its current beliefs (B), desires (D) and intentions (I) as input,
and it returns a new set of intentions that have been revised according
to the input. Typically, what this function does is choose from, among
the set of desires, one desire to commit to achieve in the short term or
to actively focus on.

• plan(. . . ) is the agent’s function to draw plans. It takes its current
beliefs (B) and intentions (I) as input, and it returns an ordered set of
action that, according to the agent’s knowledge (beliefs), should achieve
its goals (intentions).

• reconsider(. . . ) is a useful function that allows the agent to reconsider
its current desires and intentions according to its updated beliefs. This
function is run right after the agent has executed an action. The execu-
tion of said action may have drastically altered the agent’s knowledge
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of the world, and this new knowledge might (or might not) trigger a
need in the agent to reconsider its desires and intentions. This is akin
to when in real life we carry out an action the consequences of which
makes us realize that we were taking the wrong approach and/or that
we had wrong knowledge or assumptions, and then we are forced to
take some step backs and re-think our approach.

• sound(. . . ) is a function that determines whether the current plan π is
sound or not. We say that a plan π to achieve intentions I is sound
according to some beliefs B, if after fully executing π, we would have
achieved I. To draw some real-life parallels, this is akin to when we try
to determine whether a plan we have in our heads will succeed (or not)
at accomplishing our goals and, obviously, we infer from our current
knowledge of the world (beliefs). What this function does is, taking
those elements as inputs, try to determine if the current plan is sound.

Algorithm 1 BDI cycle, from [5]

B := B0; ▷ Initial beliefs
I := I0; ▷ Initial intentions
while true do

get next percept ρ;
B := brf(B, ρ); ▷ Belief revision function
D := options(B, I); ▷ Option generation function
I := filter(B,D, I); ▷ Alternative filtering beliefs
π := plan(B, I); ▷ Means-ends reasoner
while not(empty(π) or succeeded(I, B) or impossible(I, B)) do

α := hd(π); ▷ Next action in plan π
execute(α); ▷ Executing the next action
π := tail(π); ▷ The current plan is updated (last executed action is

popped)
get next percept ρ;
B := brf(B, ρ); ▷ Update beliefs to account for the action just

executed
if reconsider(I, B) then ▷ Reconsideration function

D := options(B, I);
I := filter(B,D, I);

if not sound(π, I, B) then ▷ Plan soundness function
π := plan(B, I);

Most MASs that are modeled after the BDI model dot adhere to it fully.
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Instead, they use it as the main inspiration source, drawing many of its ele-
ments from it, but ultimately end up differing in some place or another. This
is because the BDI approach is a theoretical model, and some implementa-
tions may have extra requirements that cannot be met by fully adhering to
the BDI (e.g., the BDI cycle as defined in Algorithm 1 is very computation-
ally expensive, and some implementations may simplify it in order to strive
for balance between BDI-likeness and efficiency).

The most typical ways in which the majority of MASs stray away from
the theoretical BDI model are simplifying one or more of its elements (e.g.,
not distinguishing desires from intentions, limiting the expressiveness of de-
sires, etc.) or simplifying the BDI cycle (e.g., skipping some functions like
reconsider(. . . ) or sound(. . . ), or making their structure and return values
very trivial and easy to compute). Even the MASs designed with the in-
tention of being as faithful to the theoretical BDI model as possible are not
totally compliant with it, due to one more of the reasons given in the previous
paragraph.

2.2 Related research on agents’ goals and plans

When it came to research the concept of goals, and reasoning using goals, the
model of goals and priorities that we have developed has been inspired by two
agent frameworks with working implementations: GOAP and BDI4JADE.

2.2.1 Goals and Plans in GOAP

The work of Jeff Orkin on the Goal-Oriented Agent Planning (GOAP) model
[18] has proven fundamental to this thesis’s general progress, and has also
been the main inspiration source for our model of goals2.

GOAP is the AI created for the enemies of the video game F.E.A.R,
which was mainly formalized and created by Orkin. Its agents follow a BDI
approach, and behave according to the BDI cycle. In this section, we provide
a summary of GOAP’s main elements, as well as dive into some independent
users’ adaptations of Orkin’s GOAP.

Summarized, the way Orkin represents goals in GOAP is by specifying
a desired state of the world that agents strive to achieve. Agents can
have many independent goals, but they can only pursue one at the same
time. The main paper on GOAP can be found here [21], although Orkin did
write on the topic of agent planning[20] and representation of the world for

2Our proposed Goal model and all other modifications introduced to the platform’s
model are described in detail in Chapter 3.
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agents[19] in the past, and he uses this previous work in the implementation
of the aforementioned AI of F.E.A.R[21].

Agents can sense the world through sensors that can be either polling or
event-based. They have a belief base that follows the same structure used
to describe the world, separate from it. Beliefs (called attributes) have a
confidence value [0, 1] with different meanings, depending on the variable,
and they can be inaccurate (not consistent with the true state of the world).

The state of the world and beliefs are both represented by a conjunction
of literals, and an assignment of values to these literals, which are basically
names of variables that, put all together, represent a current state of the
world.

To build plans, agents use Actions. Actions have a name, a list of precon-
ditions, and a list of effects. They can only be executed if all its preconditions
are true, and change the world (as well as the beliefs of agents who perceive
the action being executed) by making its effects become true. They have a
cost associated to them, which is there to basically guide plan creation, which
we will cover later in this chapter. The preconditions and effects of Actions
can have procedural conditions and effects, meaning that they are not limited
to some hard-coded assignment of values, but rather they can have a function
that, depending on the current context, computes the necessary value of the
effects or the preconditions.

As said before in this section, goals describe a state of the world we want
to achieve. This state of the world is described using the same syntax to
describe the current state of the world, an agent’s beliefs, actions’ effects,
etc. Agents can have many goals, and each goal has a dynamic priority,
that can be altered due to external events or internal actions, changes in the
world, stimuli, etc. Finally, only one goal is pursued at a time (this would be
akin to the Intentions concept of the theoretical BDI model, while non-active
goals would be Desires).

In order to plan, an agent must have: a set of available actions, a set of
beliefs about the world and sensors to periodically update those beliefs, and a
set of goals. Each goal has a current priority, and the agent will choose to plan
for the goal with the highest current priority. These are numeric priorities
(i.e., a quantitative relation, not a qualitative one). The generated plan will
be the cheapest cost plan (in terms of cost of actions). Finally, agents use
A* to plan. The heuristics used is trying to minimize the weighted number
of actions used to reach the desired state, i.e., minimize the sum of costs of
the actions in the plan.

The selected plan for a goal will always be the cheapest available plan for
that goal. Replanning can happen because of:
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• Another goal has become more prioritary than the current goal (re-
planning for a new goal)

• The current goal has been achieved (and the next goal is selected)

• The current plan has failed but there exists another more costly plan
for the same goal (replanning for the same goal)

• The current plan has failed and the agent can’t find a plan for the
current goal (replans for a new, different goal instead)

A plan is only to satisfy one goal purposefully (i.e., it does not support plans
to satisfy multiple goals). However, it could be the case that, by pure chance,
an agent’s plan achieves two or more goals than once. This would be purely
coincidental and it should not be taken as the agent planning more efficiently.
Finally, note that replanning does not take into account the cost of plans,
only the priorities of goals, that is, if we have two goals, gi and gj, with
priorities 51 and 52, respectively, and the cheapest plan for gi has a cost of
1 (cheapest possible plan), while the cheapest plan for gj has a cost of, say,
106 (or any arbitrarily large cost), the agent would still select gj over gi, only
because 52>51.

We also reviewed some independent users’ implementations of Orkin’s
GOAP: GPGOAP[25], and ReGOAP[9].

In the case of GPGOAP the main differences are that GPGOAP is a very
stripped down and simplified version of GOAP. It has no concept of beliefs,
agents simply perceive the environment all the time. Additionally, the world
can only be described by boolean atoms, that is, variables that are either
True or False, and there is a maximum of 64 variables that can represent
the world at the same time. These atoms are also used to specify pre- and
postconditions (effects) of actions, which can also feature a cost, just as in
the original GOAP. Goals are directly specified to the agent in the code,
defined as a desired worldstate, using a subset of atoms that describe the
world, along with their desired values. They are decoupled from plans, but
they do not have a priority or importance field, as they did in the original
GOAP. Only one goal can be defined for an agent, and it is the only goal
that the agent will try to achieve. Therefore, this implies that there is no
reevaluation of goals and no replanning due to a sudden change of goals, and
no goal selection either, because there is only one. Finally, it uses A* to plan,
with the same heuristic and general strategy as GOAP.

In the case of ReGOAP, it is a more fleshed-out implementation of GOAP,
but still has some limitations. Represents the memory of the agent (beliefs) as
a conjunction of literals and their values, stored in a dictionary. As opposed
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to GPGOAP, agents can have inaccurate or myopic views of the world, being
both wrong and incomplete about its variables and their values, which they
can partially sense through some sensor function. The state of the world is
represented using the same structure as the beliefs of the agents. Agents also
have actions. Each action is defined by its name, and a list of preconditions
and effects. Both lists are also described using the same structure used for
beliefs, and they can be compared against an agent’s beliefs or the current
state of the world, etc. Agents can have many goals (represented as a desired
state of the world), and goals have different priorities, but only one may
be active at a time. Always picks the most prioritary goal, and it replans
whenever a goal becomes more prioritary or when it achieves the committed
goal. It uses A* to plan, just as GOAP.

2.2.2 Goals and Plans in BDI4JADE

Another source of inspiration for our model of goals was Ingrid Nunes’s BDI
platform called BDI4JADE[17][16]. BDI4JADE, as it name suggests, is a
BDI layer on top of JADE[2], an agent development framework whose agents
lack the typical BDI abstractions and the reasoning cycle featured by other
similar models. It was the purpose of BDI4JADE’s authors to, among other
things, enhance JADE’s agents with BDI abstractions and the theoretical
BDI cycle.

After a careful analysis of BDI4JADE, we concluded that it uses the same
structure as Orkin’s GOAP to represent goals (desired state of the world),
which made us commit harder to that design decision, as we saw it was a
very popular design decision, since it was present in almost any MAS we
checked. However, we should also highlight that BDI4JADE supports the
declaration of different types of goals, among which there are ‘belief goals’
(goals that deal with states of the world described through boolean variables),
‘beliefset value goals’ (same as before, but now the variables are continuous
or have more than two possible values), ‘composite goals’ (used to represent
goals composed of subgoals which have to be achieved sequentially or in
parallel), etc. It also differentiates between desires (non-committed goals)
and intentions (committed goals).

Plans are an ordered set of actions and are executed with the aim of
achieving a specific goal. The reasoning cycle functions this way:

1. Beliefs are updated

2. Finished goals are removed. So far, this is new. Before, in all the other
systems that we have checked, goals were either achieved or not. Here,
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they can also be removed. This allows BDI4JADE to specify goals
other than maintaining a state of the world always being true.

3. Options are generated. In this step, the goals available to the agent are
determined (its desires). It can generate new desired goals, determine
that existing goals are no longer desired, or keep existing goals that are
still desired.

4. Removal of dropped goals: when a goal, or set of goals, is determined
as no longer desired in the previous step, it is removed from the set of
goals of the agent in this next step

5. Deliberating goals: in this step, the agent’s current goals are partitioned
into two subsets: goals to be tried to be achieved (intentions), and goals
to not be tried to be achieved (desires)

6. Updating goals’ status: based on the partition performed in previous
step, the status of the goals are updated. Selected goals are updated to
the status of trying to achieve (committed), and not selected goals are
updated to the status of waiting. When a goal has the status of trying
to achieve, the agent will select plans for achieving that goal, and the
goal has become an intention

The main inspiration we took from BDI4JADE, however, was not its
model of goals, but its approach on how agents build and/or choose their
plans. Up until now, all the models we had looked into used a similar strat-
egy for their agents to build plans: the agents had a set of actions with an
associated set of preconditions and effects, and they use these actions, along
with a heuristic search algorithm, in order to build a plan (an ordered se-
quence of actions) that can achieve their desired goal (desired state of the
world). For instance, Orkin’s GOAP uses A* for this purposes. What sets
BDI4JADE apart from these approaches, is that its agents do not posses
a set of actions that they can use to build plans, but rather, they have a
library of plans that the agents can choose from. Each plan in the library
has some applicability conditions (equivalent to actions’ preconditions), and
agents choose directly from a set of available plans that the designer added
to the library.

There are three main reasons to why we choose this approach instead
of building plans using a search algorithm. Firstly, it is more in line with
the state of the art on agent design: the majority of papers we would go on
to read after researching BDI4JADE, which happen to be more recent than
GOAP, all feature examples of agents having a static library of plans, instead
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of having an amorphous set of actions they can use to build concrete plans.
These papers are the ones cited in §2.3. Secondly, it is more in line with the
spirit of our original platform, as we use an HTN planner as a means-ends
reasoner, and choosing to use a heuristic search algorithm would mean having
to discard the already-implemented HTN. And finally, it gives the designer
more control over the way in which the agents behave, as he/she can directly
trace the shape of one plan the agents may end up using, instead of giving
them an unordered set of actions that they have to figure out how to sort in
order to achieve their goals.

2.3 Related research on social aspects

After the research on goals, plans, and plan-formation, we moved on to one
of the main aspects and purposes of this project: the integration of social
aspects in the MAS. After careful consideration, we determined that, first
of all, we should start by providing agents with preferences. So far, our
agents now have goals, and plans decoupled from those goals, but still lack
any integrated way to specify preferences over them, and that is what we
intend to implement next: a preference-based system allowing the designer
to specify preferences over both goals and plans (and sub-plans and actions).

2.3.1 Research: preferences over goals

Our main inspiration for the implementation of preferences over goals comes
from CP-nets[4]. Although our actual implementation is definitely not an im-
plementation of a CP-net, the main inspirations we have drawn from them
is to establish one default and many conditional preorder relationships over
goals, and building a graph to both visualize them and interpret them. We
also had looked into the approach that Dignum et al. take in [7] to model
values and adapting it to model preferences over goals, but upon closer in-
spection, we decided against modeling our implementation based on it, since
it uses a lot of numerical values under the hood, and we decided to favor
more qualitative approaches over quantitative ones.

Other papers which we also consulted and that either make use of CP-
nets or that employ the idea of having conditional preferences based on some
trigger conditions are [22] and [28].

The theoretical details of our implementations of preferences over goals
will be discussed in Chapter 3, and the practical aspects in Chapter 4.
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2.3.2 Research: preferences over plans and actions

Moving on to preferences over plans, we drew a great deal of inspiration from
the paper “Preference-based reasoning in BDI agent systems” by Visser et
al.[29]. Here, they introduce the concepts of goals’ properties, which we use
extensively in our modeling of priorities over plans. We also make use of
their mechanism for the propagation of properties in our implementation.
We should note that our implementation is simpler than theirs, since we
decided to apply only a subset of the concepts defined in the paper. For
instance, the paper defines both properties of goals (discrete values that a
property can take) and resources of goals (numerical values and intervals that
represent how much of a resource (e.g., money, food) is being consumed by
a goal or a sub-goal), but we have chosen to simplify the approach and add
only properties of goals, as we have determined that, for the expressiveness
purposes we had in mind, those are enough.

Let us briefly introduce the concepts of properties of goals and their
propagation. These concepts will be explained and linked in detail in Chap-
ter 3, as we will be using them in our formal model, but seeing as they are
the core of the paper cited in this section, we feel it would be natural to first
introduce them here.

A property of a goal (or plan, or action) is the representation of one
relevant3 aspect of reality which is of particular interest in describing how a
goal is achieved (or how a plan is achieved, or what implications executing
an action has). For example, a plan to go to school using a car could have
the property ‘transport’ equal to ‘car’, while an alternative plan to go there
on foot could have its property ‘transport’ equal to ‘walk’. These properties
can be used to express preferences on how to achieve goals and can help
us set up a system where an agent can reason with preferences and choose
among equally valid plans using preferences. For example, if an agent prefers
going to school by car, then this preference could be easily encoded in any
appropriate data structure and, whenever possible, the agent will use the car
over walking to go to school.

And then, the concept of propagation of properties is very straight-
forward. In short, if a goal can be achieved through alternative plans, then
the properties of said plans are propagated ‘upwards’ to the goal in an ‘or
manner. Following our example from before, the goal to go to school would
have the property ‘transport’ equal to a structure that implies that it can
take either the value ‘car’ or the value ‘walking’, for example, a set. Like-
wise, if a plan can be achieved through sequential subgoals or actions, then

3Again, what is ‘relevant’ to describe reality is most of the times determined by hand
by the designer of the system.
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it will have the union of the properties of the children as its own properties.
For instance, if we have plan πi with subgoals gi,1 and gi,2 as children, with
gi,1 having the single property p1 = {v1} and gi,2 having the single property
p2 = {v1, v2}, then plan πi will have both p1 and p2 as its properties, each
with their corresponding possible values.

On top of that, the paper ultimately gives preferences some numerical
weights as well, and we have decided to keep the system qualitative and use
the order of declaration of the preferences as some form of implicit hierarchy.
Nonetheless, our implementation (that will be discussed in Chapters 3 and
4), is still very faithful to the one devised in the cited paper.

2.3.3 Research: values

The research we have conducted on values also mainly came from the paper
“No Pizza for You: Value-based Plan Selection in BDI Agents”[7]. Here, they
implement something akin to the concept of properties of goals we mentioned
before, but using moral values instead. Therefore, values can be modeled
by taking the same approach as ‘hard’ preferences over plans and actions.
Consider the previously defined example of the goal to go school by either
car or on foot. Just as we defined ‘hard’, objective properties over each of the
goal’s plans, we can also ingrain moral values into each plan. For example, we
could give the plan to walk the property ‘environmentalism’ with the value
‘high’, and give the plan to use the car the property ‘environmentalism’ with
the value ‘poor’ or ‘low’. Just to give an extra example, we could give the
action of stealing (supposing it formed part of a plan) the property ‘evil’ with
the value ‘very’, and so on.

2.4 State of the art summary

Throughout this chapter, we have discussed numerous research papers and
books on the related topics. We started giving an introduction to multi-
agent systems and defining some core concepts to our project, and we con-
tinued with our research into how goals are represented in state-of-the-art
approaches, as well as how goals and plans are related in those approaches;
then, we moved on to our analysis of social aspects, be it preferences over
goals, plans, or values.We have also highlighted how most BDI-like MASs
implementations simplify the theoretical BDI model and the reasons as to
why it happens.

The main contribution of the analysis of the related research to our project
have been some relevant ideas that have inspired the improvements on the
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model (that we will discuss in Chapter 4). On one hand, from GOAP we
get the conception of goals as desired world states, an agent possibly having
many goals at the same time but only pursuing one at a time. On the other
hand, from BDI4JADE we get inspiration on its plan selection strategy. CP-
nets are the main inspiration for our goal preference strategy. And Visser’s
propagation of goal properties has shaped our way to introduce preferences
on plans.

When it comes to which ‘gap’ in the state of the art we are ‘filling’
with this work, the answer is the same for this project than it is for its
predecessor[10]: we are creating (in our case, improving) a BDI-like MAS
populated with complex agents that is able to scale and perform simulations
with a high number of those agents, through the use of parallelism and HPC.



Chapter 3

Adding Goals and Preferences
to the Multi-agent Platform

In the previous chapter, we reviewed some relevant works and papers related
to our research into the state of the art. As we mention in $2.4, the analysis of
this works has provided inspiration on how we can add goals and preferences
to the agent platform.

In this chapter, we explore, one by one, all the improvements and addi-
tions we will introduce in the system, from a theoretical point of view. To do
so, we will revisit the contents of §1.2.2, and modify the formal definitions
of the applicable elements to represent and cover all the additions we have
inserted in the model. Throughout all sections of this chapter, we will be
making extensive use of the research we conducted and explain in Chapter
2 and, in general, we will always talk in terms of things we add, subtract, or
modify from the elements described in §1.2.2.

This chapter is structured as follows: first, in §3.1, we describe everything
related to the addition of goals: definition of the concept of goal, set of goals,
their properties, decoupling goals from plans, how plans will be traced in
order to achieve goals, etc. Then, we follow with the addition of preferences
over goals in §3.2, where we will explain its theoretical definition, its elements,
how it works, etc. The same explanation, but for preferences over plans and
actions, will be introduced in §3.3. Moving on, in §3.4 we will briefly explain
how our additions also support the expression of moral values. Lastly, this
chapter will be concluded by providing a list of limitations stemming from
our theoretical model in §3.5.

31



32 CHAPTER 3. ADDING GOALS AND PREFERENCES TO THE ...

3.1 Addition of goals and a library of plans

Let us revisit the appropriate element regarding goals from the original formal
model. Recall that an individual agent Ai was defined as the tuple:

Ai = {ID,msgQs,Bh,B,G,P , outAcs} (3.1)

The only element we are concerning ourselves now, however, is G, the
set of goals. Formally, in the original formal model it was declared that an
agent has a set of goals, but goals were left undefined. Therefore there were
no notions of what a goal is, how it is defined, or how they are related with
plans. In this section, we will cover all these aspects and explain how they
have been integrated into the formal model.

We have chosen to model goals as desired states of the world, that agents
strive to achieve. It is equivalent to the concept of desires in BDI. A goal
is therefore defined by a collection of subsets of the variables that describe a
state of the world (its conditions), and an assertion of their desired value(s).
These conditions are expressions such as ‘cash==10’ or ‘speed>=50’ to mean
that having exactly 10 units of cash and that maintaining a speed of 50 or
above are part of the desired state of the world, respectively. Each subset
describes a conjunction of variables that describe a desired state of the world,
and in order for a goal to be considered achieved it is required that all the
variables of at least one of these subset have the desired values in the eyes
of the agent (their beliefs).

Let us formally define the structure of G, the set of goals just described.
It is an unordered set of goals of the form:

G = {g1, g2, . . . , gn} (3.2)

where each gi is an individual goal among the many goals an agent has.
Simultaneously, a goal is defined by:

gi = {name, descr,C, status} (3.3)

where:

• name is a unique identifier of the goal

• descr is an optional text describing the goal

• C is the set of conditions for the goal to be considered achieved

• status is a boolean value that is True ⇐⇒ the conditions C are
satisfied according to the agent’s current beliefs B
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The set of conditions of a goal deserves a more thorough definition. It
is therefore formally defined as unordered collections of assertions over the
state of the world (the environment) of the form:

C = {a1, a2, . . . , an} (3.4)

where:

• ai = {n1 ⋆ v1, n2 ⋆ v2, . . . , nm ⋆ vm} is a conjunction of statements over
the values of variables of the agent’s beliefs, defined by:

– ni, which is the unique name of a variable of the agent’s beliefs

– ⋆, which is any of the following binary operators:

{=, ̸=, >,≥, <,≤}

– vi, which is the value of interest that is being asserted to ni

Let us explicitly note that the agent possesses the capabilities to check
whether or not an individual goal has been achieved according to its be-
liefs: check goal(gi,B) outputs True if, according to the agent’s beliefs, the
conditions of the goal have been met, and false otherwise.

Other important aspect of our implementation is that our agents are
allowed to have multiple goals, but are restricted to pursuing only one at a
time (this commitment to a goal that is intended to be pursued is equivalent
to the concept of intention in BDI). They have the capability to re-consider
which goal they want to pursue, and may change the goal they are committed
to even if they have not achieved their current one, depending on their current
beliefs and the state of the world they perceive. This single, committed goal
is expressed by adding an extra element to the definition of the agent, which
now looks like:

Ai = {ID,msgQs,Bh,B,G,P , outAcs, gc} (3.5)

where gc ∈ G (the current committed goal) is simply a goal selected among
the non-achieved goals contained in G.

Now that we have carefully defined what goals are and their properties,
let us move on to doing the same thing for the library of plans and how
plans for goals are traced.

Before we took on this project, as we mentioned in §1.2.3, the definition
of agents included only a single plan in them, and no explicit way to specify
different plans for the same goal or to pick a totally different plan from the
current one. Also, since we could only have a single plan, it meant that
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agents, in practice, only had a single goal as well. We have addressed and
fixed that part of the issue with our definition of goals.

Now, we will define a new element that will act as a library of plans,
and a means for the agent to pick from those plans and relate them with
goals. As stated in §2.2, we decided to take the approach of having a library
of already defined plans that the agent can pick for, and these plans will
be related to goals by means of the structure of the metaplanner. Let us
formally introduce it in the definition of the agent:

Ai = {ID,msgQs,Bh,B,G,P , outAcs, gc,MP} (3.6)

The metaplanner MP is, a library of plans for each goal. Formally, it
can be viewed as a matching relationship from goals towards plans. It is a
structure that, given a single goal as input, returns all the plans that can be
used to achieve said goal:

MP : G −→ P∗ (3.7)

where P is the set of plans P associated with goal gi and P∗ is used to
indicate that it can output tuples of plans of arbitrary cardinality (meaning
one specific goal may have, for instance, three plans associated to it, while
a different goal might have five, or two). So we can better understand the
concept, one can see that, programmatically, the object that resembles a
metaplanner the most is a dictionary where the keys are goals and the values
associated to those keys are sets of plans.

Before moving on to explaining more about the metaplanner, we need
first to make a small addition to plans. Now, all plans have applicability
conditions, as opposed to before, where we only had a single plan (therefore,
it always applied). As it now stands, every plan has a some applicability
conditions that must be true before it can be picked.

Other noteworthy aspects of the metaplanner are that it will incorporate
appropriate functions for plan selection. Therefore, it will not simply act as a
library/collection of plans, but it will also perform part of the reasoning. This
reasoning includes both checking which of the associated plans are available
for application, as well as ordering them based on the preferences1.

For the first functionality, the metaplanner will feature a function of the
form get available plans(gi,B) which, taking into account the current beliefs
of the agent, will output a subset of the set of plans associated with the goal,
containing only all plans that are applicable. For the second functionality, the
metaplanner will have a function of the form pick plans(gi,B, prefsP), where
prefsP are the agent’s preferences over plans, that will pick the plan that is

1We describe how we model preferences over plans in §3.3.
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more adequate to the current situation according to the agent’s preferences
and beliefs, from among all the applicable plans.

One alternative approach that we considered but did not follow was to,
instead of employing a library of plans, building plans directly from actions
using heuristic search. We, however, made the decision to keep the HTN
and to implement the concept of having a library of plans instead of using
heuristic search to build plans as an ordered sequence of actions, and in
section §2.2 we justified our choice.

So far, in this section we have formally defined goals, the set of goals,
and their most useful properties and features that can be used. Additionally,
we have expanded the definition of plans, and introduced the concept of
metaplanner as a library of plans, as well as its most relevant features and
properties. And throughout all, we have been updating the formal definition
of the concept of agent, carefully adding its new elements at every step of
the way.

3.2 Addition of preferences over goals

Now that we have defined a specific concept of goals, set of goals, and how to
associate plans with goals, we move on to specifying preferences over goals.
As we cover in §2.3.1, we drew inspiration from CP-nets and conditional
preference formulas, to some extent, but we simplified the approach in order
to be able to work without scalars, that is, having a fully qualitative approach
to specifying preferences over goals.

In order to encode preferences over goals in our agents, we have added
the following element, Pg (which stands for “Preferences over goals”) to their
definition, making it now be of the form:

Ai = {ID,msgQs,Bh,B,G,P , outAcs, gc,MP ,Pg} (3.8)

where Pg = {dGP, cGP1, cGP2, . . . , cGPn}:

• dGP are the default preferences over goals. That is, under ‘normal’
circumstances, these are the preferences that apply.

• cGPi are conditional preferences over goals. That is, they have some
trigger set of conditions Ci of the same form of the conditions defined
in Definition 3.4 (§3.1).

The dGP and each cGPi are all the same type of element, a directed
acyclic graph (DAG) that corresponds directly to a strict partial order
relationship between goals, and the only difference between them is that the
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dGP is the one active by default (does not need any conditions to be met),
while the various cGPi become active and replace dGP if some associated
conditions are true. The way in which the conditional preferences replace
the default preferences will be explained later in this section. Now, let us
first focus on the DAGs and the relationships they characterize.

A binary relation R over a set X is called a strict partial order if it is
irreflexive, transitive and asymmetric. In other words, it has to satisfy:

1. Irreflexivity: a ̸R a, for all a ∈ X

2. Transitivity: (a R b) ∧ (b R c) ⇒ a R c for all a, b, c ∈ X

3. Asymmetry: (a R b) ⇒ (b ̸R a) for all a, b ∈ X

Although asymmetry is implied by the conjunction of irreflexivity and tran-
sitivity, it is nice to enumerate it in order to better understand the nature of
the strict partial order relation (sometimes called a strict preorder as well).
A nice property of strict preorders is that they have always a unique DAG
associated to them.

Please take note of the word ‘partial’, which implies that not every pair
of elements is necessarily comparable. That is to say, there may be pairs of
elements where neither element comes first.

To define preferences over a set of goals, the approach we have taken is
to establish a strict partial order relation between them to indicate which
goals must be pursued before trying to achieve other goals. To model the
context-dependent nature of preferences, we allow the declaration of condi-
tional preferences, which are also a strict preorder relation over goals, but
they only apply when their trigger conditions are met.

Once all the strict preorder relations have been established, we deduce
their associated DAGs. From those DAGs, we compute a valid topological
ordering of each, and this orders are the ones in which goals will be pursued
by the agents (the first non-achieved goal in the topological ordering will be
the agent’s current goal). Let us visualize it better with an example.

Consider the following context:

• We have one agent: A′

• Agent A′ has the following goals G0 = {g0, g1, g2}. For clarity’s sake,
let us consider that g0 is a goal to tidy the agent’s bedroom, g1 is a
goal to tidy the agent’s kitchen, and g2 is a goal to store clothes that
are hanging out to dry in the open.

• Let us denote “goal i must be achieved before goal j” by gi → gj.
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• With this, we define the default preferences over goals of the agent:
{g0 → g2, g1 → g2}, that is, before going to store the clothes that are
outside, the agent must have cleaned both his bedroom and his kitchen.
Notice how both g0 and g1 must be accomplished before focusing on
g2, but there is no established order between g0 and g1, because it is a
strict partial order.

• Let us also define one set of conditional preferences over goals: {g2 →
g0, g1 → g0} with the associated trigger conditions that the variable
‘raining’ must be True. That is, if it is raining, the agent’s most priority
goal will be to collect the clothes, and then either cleaning his kitchen
or his bedroom, again, in no specific order.

Figure 3.1: Example of default and conditional preferences over goals [Own
making]

From this example’s context, we draw the illustration of the example that
can be checked in Figure 3.1. The left graph is the one deduced from the
relation that defined the default preferences over goals, while the graph on
the right-hand side is the one defined by the trigger conditions described in
the example’s context. A valid topological ordering of the left graph might
be: g0, g1, g2, but also g1, g0, g2. By default, the agent will pursue his goals
in either of those orders, but the moment it starts to rain, he will switch
to any of the topological orderings that can be given to the right graph, for
instance, g2, g1, g0. The concepts of this example are extendable to having
many conditional preferences.
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What to do when two (or more) conditional preferences can be picked at
the same time will be explained in §4.2.2, but let us advance here that it is a
choice that will be left for the designer ultimately, and we provide a default
approach (that can be overridden and replaced by the designer at any time).

3.3 Addition of preferences over plans and

actions

We now understand how preferences over goals can be specified, that is, we
know how to provide agents with the capacity to choose what to pursue. But
we also need to provide them with means to have preferences over how to
achieve what they are pursuing. At the end of the day, even if your goal is
to eat, it is not the same to achieve that goal by eating a delicious pizza or
to achieve it by eating a boring, plain white rice, even if both actions achieve
the goal all the same.

We humans have preferences not only over what goals we want to achieve,
but also over how we want to achieve them. Some people might prefer to
walk to their workplace, while some others would rather drive there; a spe-
cific individual might prefer to have fun by going to the beach, but will
resort to reading a nice book if the weather turns bad, etc. These exam-
ples provide us with further, key information: the preferences we have over
how we achieve things are also context-dependent; we may wish achieve a
specific goal by means of some actions under some circumstances, but under
different circumstances we might prefer to achieve the same goal through
different actions. Since the purpose of this work is to imbue agents with
human-like social aspects for simulation purposes, we will need to take all
these considerations into account when modeling preferences over plans and
actions.

In order to encode preferences over plans and actions in our agents, we
have added the following element, Pp (which stands for “Preferences over
plans”) to their definition, making it now be of the form:

Ai = {ID,msgQs,Bh,B,G,P , outAcs, gc,MP ,Pg,Pp} (3.9)

where Pp = {gP1, gP2, . . . , gPn} will have preferences defined over the plans
of each goal. We denote the preferences over plans for goal gi by gPi =
{dPP, cPP1, cPP2, . . . , cPPn}, where:

• dPP are the default preferences over plans for goal gi. That is, under
‘normal’ circumstances, these are the preferences that apply to all plans
for that goal.
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• cPPi are conditional preferences over plans for goal gi. That is, they
have some trigger set of condi¡tions Ci of the same form of the condi-
tions defined in Definition 3.4 (§3.1).

The dPP and each cPPi are all the same type of element, the only dif-
ference being that dPP is applied by default and a cPPi is applied if their
trigger conditions are true. Notice that the structure of each gPi is the same
as the preference over goals (Pg). However, as we need to specify a whole
set of preferences for each goal (e.g., one might prefer to go to work on foot,
but go to their second residence by car), we need to encapsulate them all in
a single set, Pp.

Let us explain the element dPP , which will also explain the structure
behind each cPPi, given that they are the same. Recall the concept of
properties of a goal, and the concept of propagation of these properties,
both introduced in §2.3.2. In order to give each agent preferences over plans,
the basic actions of these plans must be populated with properties. Also recall
that when we defined the structure of the means-ends reasoner in §1.2.2.2,
we mentioned that it had Compound Tasks, Methods, and Primitive Tasks.

Here, we make use of the Primitive Tasks and the concept of properties
and, for each plan, we attach an arbitrary number of properties to every
Primitive Task of the Plan. These properties are then propagated ‘upwards’
to the non-leaf nodes, and finally, agents sort the available plans and actions
according to how much they are compatible with their preferences. Please
note that these preferences are ‘soft’ restrictions, that is, they are used to
give priority to one plan over another, never to discard plans or actions.
Therefore, we might encounter one situation where an agent carries out an
action that goes against all of its preferences and values because no other
actions were available. In human behavior, for example, we might one day
have to eat our least favorite food in an scenario where it is the only food
available and it is our current goal to eat something.

In the following subsections (§3.3.1 to §3.3.4), we compliment the def-
initions of properties and propagation made in Chapter 2, formalize their
structure, how they are used, and give an example to better explain the
concepts.

3.3.1 Properties of goals

A property of a goal is the name of a variable of interest that a goal has
the capacity to alter. Said variable does not necessarily have to be the name
of a variable in the set of beliefs of an agent. It is simply something note-
worthy that achieving a goal has the capacity to give a specific set of values.
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For example, if a goal is to ‘cook dinner’, some of the properties might be
‘vegetarian’ and ‘cuisine’, and their possibles values might be {True, False}
and {‘French’, ‘Italian’, ‘Spanish’, ‘Turkish’}, respectively. These properties
are always set on the actions of plans, and are propagated to subplans and
subgoals until they reach the root goal, using the process that we will define
in the §3.3.2.

Each goal, plan, subplan, and action will have a set of properties PS, of
the form:

PS = {prop1, prop2, . . . , propn} (3.10)

And each property propi is of the form:

propi = {v1, v2, . . . , vn} (3.11)

where:

• propi is the unique name/identifier of the property

• vi is one of the possible values that the property can take. These values
can be boolean, numeric, etc., depending on the nature of the property
itself

The set of values that make up each property are used to indicate possible
values the property can take. All properties can have the special None
value inside the set of their possible values. The presence of this value in
a property of a plan or subplan indicates that said plan or subplan can be
achieved through one or more actions that do not use or alter the property
in question at all.

3.3.2 Propagation of properties

Briefly explained, propagation of properties consists in sending the proper-
ties ‘upwards’ from the most concrete actions, up to the root goal, passing
through every subplan and subgoal in the way. This happens in a very intu-
itive way: without loss of generality (WLOG), let us consider two sequential
actions that have the same parent. The parent’s set of properties will be the
result of computing the union between the two children’s properties. Notice
that each child will not have different possible values for the same properties,
since they are sequential actions, and it would not make sense to design a
plan in which child action no. 1 sets ‘cuisine’=‘Spanish’ only for the child
action no. 2 to set the cuisine to be ‘French’. Therefore, the properties of
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the two (sequential) children will always be different, and the resulting prop-
erties of the parent node will simply be the joining of the children’s sets of
properties, and it is trivial to see that this process applies to n sequential
children actions.

Now, WLOG, consider two alternative actions that have the same parent.
The parent’s set of properties will be the result of merging the properties of
the children in the following manner: if both children set different values for
the same property then, for the father, the values of the property will be
the union of the values that the children had (e.g., if child no. 1 had ‘cui-
sine’=‘Spanish’ and child no. 2 had ‘cuisine’=‘French’, the parent task will
have ‘cuisine’={‘Spanish’, ‘French’} to indicate that if that node is chosen,
we will limit the possible values of ‘cuisine’ to those two values). And if
either child has a property that the other does not, the parent will simply
take the same properties of the child that has it, and will add the special
value None, to indicate that if that node is chosen, there is a path of the
plan that accomplishes the goal without ever giving a value to that property.

3.3.3 Selection of plans and actions using properties

Now that we know what properties of goals are, how they are set, and how
they are propagated, let us explain how an agent uses them and specifies
preferences over his plans for a goal. Given a concrete goal gi an agent has
a set of preferences over the plans to achieve gi. We defined this set earlier
as gPi = {dPP, cPP1, cPP2, . . . , cPPn}, where every element is either the
default set of preferences, or a conditional set of preferences. The dPP and
each cPPi are all an ordered instantiation of the values of different properties
of the goal’s plans. Besides being ordered, it has the exact same structure
as the set of properties described in Definition 3.10. In fact, mathematically
speaking, the dPP and each cPPi are all subsets of their goal’s property set.

As an example, let us consider the goal of ordering food delivery. A possi-
ble instance of dPP can be dPP = {cuisine = {Chinese, Italian}, veggie =
{True}, local = {True}}. We will use this example to explain how an agent
would choose plans and actions to order food, assuming that the current
preferences are dPP . When the agent is planning, and it finds itself having
to choose among multiple, alternative subplans or actions, it will always put
first the ones who have their property ‘cuisine’ equal to either ‘Chinese’ or
‘Italian’. If there are no subplans or actions satisfying these conditions, then
it will do the same for the second property, and so on. If, however, there were,
it will choose, among those, from the ones that have their ‘veggie’ property
equal to True, and so on with the third property, etc. If the special value
None is found, it will be treated as satisfying the property.
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In summary, it tries to find all plans which satisfy the first property, and
among those, the ones that satisfy the second property, and so on, essentially
making the first property the most important and, in general terms, making
the ith property more important than all its following properties put together.

The way in which conditional preferences over plans and actions are ac-
tivated and replace the default one is identical to the case preferences over
goals. Once again, we have favored a qualitative system over a quantitative
one, for the same reasons than we did when implementing preferences over
goals, but just as it was the case with preferences over goals, the designer
can redefine this process.

3.3.4 Example of properties, propagation, and appli-
cation of properties

Let us provide an example that is an expansion of the previously described
situation. Our goal is to order food from a restaurant in town. Let us assume
that we have three plans for that: a plan to order burgers, a plan to order
falafel, and a plan to order pizza. Let us also assume that there is only a local
burger, a local falafel, and both a local pizza restaurant and a big company
that makes pizza. Other assumptions that we take are that all burgers and
pizzas are non-vegan, and that all falafels are vegetarian. Let us first see
what the designer would have produced, in Figure 3.2.

Notice how only the actions have properties. This exemplifies how prop-
erties are declared and encoded in plans, beginning from actions. Now, let
us show the result of property propagation in Figure 3.3. It is the same
collection of plans as in Figure 3.2, but now all vertices have their own set of
properties that have propagated upwards, from the leaves (actions). Notice
how, in general, all properties have propagated towards the upward nodes.
However, most of these propagations have been very simple ones: from single
child to parent, although there are two cases worth looking at.

The first one is the propagation from the subplans to order local pizza and
order from big pizza company. Notice how their properties are the same in
all fields except for the ‘local’ field, with one holding it as True, and the other
as False. However, these two alternative subplans share a common parent,
and when their properties are propagated to it, they are merged in the way
we described earlier. Now, the parent has its property ‘local’ with all of its
children values, to represent that, if that subgoal (or its parent subplan) is
picked, then we can still order from either a local restaurant or a big chain.
The other note-worthy example is the propagation of properties to the root
node, where all options have been compiled in its properties.
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Figure 3.2: Example of the initial status of a set of plans to order food [Own
making]

This is, however, a very small example provided to understand the basics
of propagation of properties. A much more complex example is provided here
[29] (page 9, Figure 2).

Now, let us complete this example by showing the process of choosing a
plan taking preferences into account. An assumption we make throughout
this whole example is that all plans are available, that is, our choices are not
restricted by the environment in any way, shape, or form.

Let us assume that we have the following preferences over how to achieve
the goal to order dinner:

1. {cuisine = {falafel}}

2. {cuisine = {falafel, pizza}}
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3. {cuisine = {falafel, pizza}, local = {True}}

4. {local = {False}, vegetarian = {True}}

5. {vegetarian = {True}, local = {False}}

6. {local = {False}, vegetarian = {False}, cuisine = {burger}}

In case no. 1, the agent would simply order from the falafel restaurant. In
case no. 2, the agent would order either falafel or from any pizza restaurant.
In case no. 3, it would either order from the falafel, or from the local pizza
place. Cases no. 4 and 5 help us exemplify the importance of the order in
preferences over plans. In case no. 4, the agent would order from the big
pizza company, despite it being not vegetarian. This is because the preference
over the value of property ‘local’ goes before the preference over the value
of property ‘vegetarian’, and therefore trumps it. In order to specify that
we want to order from a non-local, vegetarian place (if applicable), with
emphasis on the food being vegetarian, we should do it like case no. 5.
Finally, case no 6 helps us further exemplify this phenomenon: even if we
wanted to order non-vegetarian burgers, we would still get pizza from the big
company, due to the first property being that ‘local’ has to be false.

In general, one can think of it in the following way: the agent picks from
all the plans that satisfy the leftmost property, then, from those plans, it
picks from those that satisfy the next leftmost property, etc. Again, as said
before, the process for picking between subplans, subgoals, and actions using
properties and preferences over those properties is the same. Finally, remark
that this process is how it works for both default and conditionally triggered
preferences, as they have the same structure, the only difference being that
the latter need to be activated in order to take over and replace the default
properties.

3.4 Addition of values

As mentioned in §2.3.3, we note that moral values can be simulated using
the above described system of preferences over plans and actions. Consider
the previous example of ordering food. Just as we defined ‘hard’, objective
properties over each of the goal’s plans (the cuisine, whether it is vegetarian
or not etc.), we can also ingrain moral values into each plan. For instance,
we could associate an action to steal with the property ‘evil’ equal to ‘very’,
and so on.



3.4. ADDITION OF VALUES 45

Figure 3.3: Example of property propagation [Own making]

At first glance, this looks like we are presupposing moral absolutism2,
but in actuality, that is not true. This is because properties are defined for
each plan of each agent. That is, we can create an agent who thinks that
lying is morally wrong, and an agent that thinks that it is morally right,
or morally gray, etc. Also, since the same action can be part of different
subplans, we can also encode the fact that the morality of actions depends
on their context. For example, if an agent kills an animal as part of a subplan
to have fun, we can label that action as morally evil, but if the same agent
puts down an animal in his job as a veterinarian, then that action was not
morally evil, even though they were the same action.

2Moral absolutism is the position that there are universal ethical standards that apply
to actions, and according to these principles, these actions are intrinsically right or wrong,
regardless of what any person thinks, or context.
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3.5 Limitations of the model and possible im-

provements

Along the previous sections, we have explained every addition we have made
to the agent model from a formal point of view. Now, in this section we will
discuss about the limitations that our modifications carry, and possible ways
in which those limitations can be fixed or palliated.

3.5.1 Limitations from goals

One of the biggest limitations stemming from our declaration of goals is
that, at any given moment, our agent can only pursue one goal at a time.
We cannot have two or more goals active at the same time, and we also
cannot ‘merge’ goals together, either. But it is important to note here that
this limitation is present in the theoretical BDI model, and it is also common
in many BDI-inspired implementations. Only few agent platforms (such as
Jason[3] or 2APL[8]) allow to pursue several goals at the same time.

Another limitation is that we only encode goals as a desired state of the
world. Therefore, this does not allow goals such as ‘maximize X variable’
or ‘perform Y action’. This limitation is also present in many BDI-inspired
implementations. However, in our case these expressions can be simulated by,
for instance, encoding them in goals such as ‘X > ∞’, or having a variable
named ‘Y has been performed’ that is only set to True after Y has been
performed, respectively. Nonetheless, it would be good to explicitly support
these and other kinds of goals.

Finally, our agents do not support the addition (or subtraction) of goals
mid-simulation. That is, and agent is created and dies with the same goals.
These goals can be either achieved or not achieved at any given moment, but
they cannot be eliminated (nor new goals can be added). This is a limitation
not present in other BDI-inspired implementations that we have introduced
for performance reasons3, however, the ability for an agent to create new-
goals or to drop existing goals mid-simulation could be interesting to have in
a future extension of the platform.

3.5.2 Limitations from preferences over goals

Perhaps the biggest limitation in our declaration of preferences over goals
is that they are absolute, and this stems from the fact that we do not use
numbers anywhere here. Therefore, we cannot express things like ‘I prefer

3We will better discuss this limitation in §4.1
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this a little more than that’, or ‘I prefer that a lot more than this’: it is all
absolute.

A bit of an issue regarding the trigger conditions of non-default prefer-
ences over goals is what to do when those conditions overlap. As of right
now, our approach is to pick whichever, and to allow the designer to imple-
ment an ad-hoc, more complex solution, if their scenario so requires, but it
would be better to modify the structure to allow for a native way to handle
this issue that is more complex than simply picking one among many.

3.5.3 Limitations from preferences over plans, and moral
values

The main limitation of our preferences over plans is that it is a simplifi-
cation of Visser’s approach to doing the same, where he provides a more
complex structure that allows his agents to have more complex preferences.
For instance, his agents can reason about quantities, prefer to maximize or
minimize a quantity, prefer that a quantity never exceeds a certain value,
etc. Also, his agents are able to automatically extract properties of goals by
looking at the actions, and then derive the relevant properties of the goals,
while our model relies on the designer carefully listing the properties.

The limitation regarding overlapping trigger conditions also exists here,
as both are handled in the same way.

Finally, our encoding of moral values also totally relies on the designer
carefully listing which actions have what moral implications and, while this
is good from an expressiveness point of view (it allows us to declare moral
relativism (different agents having different moral convictions) and context-
dependent morality (the same action carried out under different circum-
stances having different moral implications), it is a very exhaustive and
daunting task, and it would be good to have the system partly automated,
perhaps employing some matching between the purpose of an action and
some pre-existing model of values such as Schwartz’s[24], which is employed
by Dignum et al. in [7].





Chapter 4

Implementation

In the previous chapter, we explored, one by one, all the improvements we
introduced into the multi-agent model, from a theoretical/formal point of
view. We revisited the contents of the original model (in §1.2.2), and modified
the formal definitions of all the applicable elements to represent and cover
all the additions we have inserted.

In this chapter, we will describe the actual implementation of all the
additions, the object classes used, the ones that have been expanded, etc.,
in order to understand both how the implementation works and also how
simulations must be designed and specified. Throughout every section of
this chapter, all modified classes and modified members of each class will be
listed, and their modifications will be highlighted and explained, along with
providing the complexity for the most relevant algorithms and parts.

This chapter is structured as follows: first, in §4.1, we will detail every
element of our implementation of goals and the library of plans, closely fol-
lowed by the explanation of our implementation of preferences preferences
over plans in §4.2. Then, in §4.3, we provide an explanation of the same
degree for our implementation of preferences of plans, actions, and moral
values. Finally, in §4.4, we describe other relevant modifications that may
have been done to any of the classes that may not have been covered in the
earlier sections, or that may be the consequence of any of our main imple-
mentations, but it is something secondary (like, for instance, updating the
code of a parameter-passing function to accommodate for extra parameters).

49



50 CHAPTER 4. IMPLEMENTATION

4.1 Implementations of goals and the Meta-

planner

As said in section §3.1, the first improvement we added to the model was the
concept of goals. With them, now agents have a data structure independent
from the HTN, that they can use to specify their objectives (the desires of
the BDI model). Furthermore, they can have many independent goals, as
opposed to ultimately having a single goal like they did before.

In this section, we will go over of our implementation of goals and the
library of goals, formally described in §3.1. If we recall, we defined goals as
a desired state of the world that the agent strives to achieve, and we defined
the library of plans (Metaplanner), as a collection, for each goal, of all the
plans that can be used to achieve that goal in particular.

4.1.1 Goal class

For the purposes stated above, we created the Goal class from scratch. This
class contains all the functions necessary to declare goals, check their status,
update them, etc. In it, the basic structure and syntax of a Goal is specified,
as well as the function check goal is defined, which is what determines if a
goal has been achieved or not, according to some set of beliefs.

The structure of a Goal is defined as follows:

1 def __init__(self , name=None , conditions=None , description=

None):

2 self.name = name

3 self.description = description

4 self.conditions = conditions # conditions = Set of

Dictionary <belief name: str , (operation: str , value)>

5 if self.conditions is None:

6 self.conditions = []

7 self.achieved = False

Source Code 4.1: Constructor of Goal

As we can see, a Goal is defined by a name (which should be used as a
unique identified), a description, and the most important part, its conditions.
The conditions of the Goal are directly specified as a list of dictionaries. Each
dictionary works as a way to express conjunctions (logic ‘and’) of different
assertions, and the list that holds the dictionaries implicitly establishes a
disjunctive (logic ‘or’) relationship between them. A Goal is achieved if,
and only if, all the conditions at least one of its dictionaries are true. Each
assertion is done by matching the name of the variable to a tuple, where
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the first element is a binary operator and the second element is what we are
comparing the variable to. An example of the conditions of a Goal could be:

1 conditions = [{’money ’: (>=, 10)}, {’friend_can_pay ’: (==,

True), ’friend_is_here ’: (==, True)}]

which encodes, what in natural language could be expressed at “either we
have at least 10e, or we have a friend that can pay for us and that friend is
here with us”.

A Goal has other attributes, such as the attribute ‘achieved’, which tells
us whether its conditions have been met or not, according to some belief
base.

Finally, we have the check goal method, which takes a BeliefSet as
input and returns True if, and only if, the Goal’s conditions are met under
said belief base. It is defined by the following code:

1 def check_goal(self , beliefs): # beliefs: BeliefSet

2 if self.conditions == []:

3 return True

4 ret = False

5 for dic in self.conditions: # in this loop we iterate

through every dictionary ’dic’ of the set ’self.

conditions ’

6 curr_set = True

7 for name in dic:

8 op , desired_val = dic[name]

9 if name in beliefs:

10 real_val = beliefs[name]

11 else:

12 curr_set = False

13 continue

14 if op == "==":

15 if real_val != desired_val: curr_set = False

16 if op == "!=":

17 if real_val == desired_val: curr_set = False

18 if op == ">=":

19 if real_val < desired_val: curr_set = False

20 if op == ">":

21 if real_val <= desired_val: curr_set = False

22 if op == "<=":

23 if real_val > desired_val: curr_set = False

24 if op == "<":

25 if real_val >= desired_val: curr_set = False

26 ret = ret or curr_set

27 if ret == True:

28 self.achieved = True

29 return True

30 self.achieved = ret
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31 return ret

Source Code 4.2: Function check goal

Very briefly, what this function does is return True if the set of conditions is
empty. Otherwise, it iterates through every dictionary of it (there is at least
one), and checks whether all the assertions of at least one dictionary are met.
Its syntax and inner workings are a bit rudimentary, but it allows to express
any logic formula (by using conjunctions, disjunctions, and negations). Fi-
nally, it also sets to either True or False the value of the ‘achieved’ attribute,
which will be useful later on. If we let n be the total number of assertions
made in the conditions, then its cost would be O(n), seeing as we perform,
in the worst case, n iterations and, at each iteration, we check six conditions
(which has cost O(1)), and we access a dictionary, which is a hashmap, and
the average cost of getting an item from a hashmap is also O(1).

4.1.2 GoalSet class

Now that we have fully implemented the Goal class, we implement a col-
lection of Goals. The concept and the inner workings of this class are very
straightforward: the GoalSet class serves as an unordered set of Goals, serv-
ing to keep the Goals of each agent stored together. It is, basically, a Python
list, but with extra functionalities. It is solely defined by a set of Goals, it is
iterable, and specific Goals can be extracted from it by unique name:

1 def __init__(self , goals=None):

2 if goals is None:

3 self.goals = []

4 else:

5 self.goals = goals

6
7 def __iter__(self):

8 for each in self.goals:

9 yield each

10
11 def __len__(self):

12 return len(self.goals)

13
14 def __getitem__(self , item):

15 for g in self.goals:

16 if g.name == item:

17 return g

Source Code 4.3: Constructor of GoalSet

It has other functions, such as remove goal, add goal, get status (which
returns a dictionary with the status of every Goal, and all achieved (which
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returns True if, and only if, all Goals have been achieved the last time they
were checked).

4.1.3 Metaplanner class

The next step we took to finally decouple goals from plans was to implement
the Metaplanner class. It is a very simple class, which inherits from the
HTNPlanner class, and modifies some of its elements to its advantage. It is
defined by:

1 class MetaPlanner(HTNPlanner):

2 def __init__(self , goal , methods):

3 root_task = CompoundTask(methods=methods , name="

Achieve " + goal.name)

4 self.goal = goal

5 HTNPlanner.__init__(self , root_task=root_task ,

preconditions=None , postconditions=None , verbose=True)

Source Code 4.4: Declaration and constructor of Metaplanner

As can be seen in Source Code 4.4, each alternative plan for a goal is
described by a concrete instance of the Method class, and the constructor of
the Metaplanner automatically puts them all together as alternative children
of a CompondTask to achieve the appropriate goal. It has a single method,
pick plan, which is responsible for picking among the different plans that
are defined for a concrete goal. Its code is the following:

1 def pick_plan(self , beliefs , preferences):

2 methods = self._root_task.methods

3 avail_methods = []

4 for m in methods:

5 if m.conditions.check_conditions(beliefs):

6 avail_methods.append(m)

7 chosen_method = choose_method(avail_methods , beliefs ,

preferences)

8 if chosen_method is None:

9 chosen_method = Method(name="Empty method")

10 root_task = CompoundTask(methods =[ chosen_method], name="

CompTask: Plan to: " + chosen_method._name)

11 return HTNPlanner(root_task=root_task , verbose=True)

Source Code 4.5: Function pick plan

Very briefly, this function takes as input a belief base and preferences over
plans (which we will not analise here, as we will discuss them in the next
section). It uses the belief base to filter out all the plans are not available for
execution, and all we are left is the plans that we can actually follow given
the current circumstances. Out of all these plans, it uses the choose method
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function (which picks the available plan that adjusts the most to the agent’s
preferences), and it automatically creates an instance of an HTNPlanner ob-
ject that has a single plan, the plan that has been chosen. The content of
the choose method will be covered in §4.3.

The cost of this function will be O(mα+β), where m is the total number
of alternative plans, α is the cost of checking a plan’s preconditions, and
β is the cost of the choose method function. Likewise, O(α) is actually
O(|C|), where |C| is the total number of assertions that make up a plan’s
preconditions, and O(β) will be expanded in its corresponding section (§4.3).

So far, we have already introduced remarkable improvements to the sys-
tem. Before we added these, agents could only have a single goal, and said
goal was given to the agent in the form of a plan (or plan with alternative
subplans). Now, the agent has a whole collection of goals to pick from, a
structure to encode goals that is independent from plans, and a library of
plans for goals.

4.2 Implementation of preferences over goals

Thus far, have given our agents a set of goals, and ways to know which goal
has been achieved and which is yet to be achieved. Now, we will explain
how the agents’ capabilities to reason about which goal to pursue first or, in
general, in which order to pursue goals, have been implemented.

In this section, we will go over of our implementation of preferences over
goals, formally described in §3.2. If we recall, preferences over goals would be
stated by defining one default strict partial order relationship between goals,
and potentially many alternative strict partial orders between the same goals,
with trigger conditions associated to them. From whichever strict partial
order is currently active, we deduce its associated DAG (because every strict
partial order has a unique DAG associated to it), and from its DAG we
compute a valid topological ordering, which is the order in which the goals
will be pursued, as long as the current active preferences’ conditions hold.

For these purposes, we defined two classes: GoalPreference, which im-
plements a single strict preorder relation over a GoalSet, and its associated
conditions, and the GoalPreferenceSet class, which basically acts as a col-
lection of GoalPreferences, keeps the currently active preferences updated,
and picks the current or next Goal to pursue according to them.
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4.2.1 GoalPreference class

The GoalPreference class which, as said before, implements one strict par-
tial order relation over goals, is instantiated as follows:

1 def __init__(self , conditions=None , goals=None , ** kwargs):

# conditions: same as in Goal class , goals: GoalSet ,

kwargs: g_i=[g_j ,g_k], g_j =...

2 self.conditions = conditions

3 self.goals = goals

4 self.adj_list = kwargs

5 self.topo = None

6 for g in self.goals:

7 if g.name not in self.adj_list:

8 self.adj_list[g.name] = []

Source Code 4.6: Constructor of GoalPreference

It has a set of goals, and the relationship is specified in the keyword argu-
ments, and it acts directly as the graph as an adjacency list. If one Goal

was not specified preferences over, it is added to the graph without children.
Its attribute ‘conditions’ is of the form and it works exactly the same as
Goal class’s conditions. It possesses a check conditions function that is
the same as Goal’s, a compute topo sort which computes the topological
ordering, with a cost of O(|V | + |E|), where |V | is the number of Goals,
and |E| is the number of edges in the DAG. This cost, however, is not per
iteration, it is per simulation, because the topological ordering is computed
only once, before the beginning of the simulation, and simply consulted ev-
ery time that it needed. This is one of the cases where we are interested in
trading off memory space to gain time efficiency.

Finally, it also comes with other utility functions, such as pick goal and
goal available, which pick the next goal according to the agent’s prefer-
ences beliefs, and check if a goal is available or not according to the agent’s
beliefs, respectively. In order to do so, the former iterates through the topo-
logical ordering and returns the first goal that has not been achieved, with
a cost of O(|V |); and the latter uses the former to obtain the next goal and
compare it to a given goal, and therefore has the same cost.

4.2.2 GoalPreferenceSet class

Finally, we have the GoalPreferenceSet class, which acts as a collection of
GoalPreferences and helps the agent decide which conditional preferences
apply, etc. Its whole body looks is implemented by this code:

1 class GoalPreferenceSet(object):
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2 def __init__(self , default=None , alternatives=None ,

beliefs=None): # default: GoalPreference , preferences =

set of GoalPreference

3 self.default = default

4 if alternatives is not None:

5 self.alternatives = sorted(alternatives , reverse

=True , key=lambda x: len(x))

6 else:

7 self.alternatives = []

8 self.current = self.select_preference_set(beliefs)

9
10 self.default.compute_topo_sort ()

11 for gp in self.alternatives:

12 gp.compute_topo_sort ()

13
14 def select_preference_set(self , beliefs): # we return

the first alternative that is available due to its

trigger conditions being true. Remember that alternatives

are sorted based on the # of trigger conditions from

more to less

15 for p in self.alternatives:

16 if p.check_conditions(beliefs):

17 self.current = p

18 return p

19 self.current = self.default

20 return self.default

21
22 def pick_goal(self , beliefs):

23 return self.current.pick_goal(beliefs)

Source Code 4.7: GoalPreferenceSet class

As we can see from its constructor method in Source Code 4.7, it computes
the topological ordering of every graph at declaration time (and therefore we
can save that part during the simulation), and orders the alternatives in the
manner described in Chapter 3: from most conditions to less (as the length of
a GoalPreference is defined as the sum of all its assertions). Finally, it has a
select preference set method which, just as its name indicates, traverses
the alternatives in order (that order is from most number of assertions in
their conditions to least) and returns the first one that applies (and, if none
apply, it returns the default preferences, which is always applicable), and a
very naive pick goal method, which simply calls the pick goal method of
the GoalPreference that applies right now.

With all these classes and methods, our agents can now choose their next
goals based on their preferences, and these preferences are not static, they
are context-dependent and might change as the environment changes and
evolves.
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4.3 Implementation of preferences over plans

and moral values

Finally, here we will describe the implementation aspects of our last major
addition: preferences over plans, actions, and moral values. After this is
implemented, our agents will be able to reason using preferences over both
what they want to achieve and how they want to achieve it.

In this section, we will go over of our implementation of preferences over
plans, actions and moral values, formally described in §3.3 and §3.4. If we
recall, we defined the concept of Properties of a goal, which were a collection
of relevant variables that describe the different ways in which a goal can
be achieved and how they would affect the world. We defined preferences
over plans and actions as an instantiation of a subset of the goal’s properties,
assigning them a subset of their values, which represent the values the agents
prefer (and assumes that the agents does not prefer values and properties not
mentioned). Then, we specify many trigger-based preferences over plans for
the same goal, to make these preferences also context-dependent.

4.3.1 Properties class

First of all, let us start with the Properties class. Very briefly, the class
works mostly as an ordered dictionary, with some additional methods and
features, such as being iterable, searchable, etc. Its most important code is
its constructor function:

1 def __init__(self , dict=None , ** kwargs): # kwargs = Dict[

Str , List]

2 if not dict and not kwargs:

3 self.props = OrderedDict ()

4 elif not dict:

5 self.props = OrderedDict(kwargs)

6 else:

7 self.props = OrderedDict(dict)

Source Code 4.8: Constructor of the Properties class

As we can see from Source Code 4.8, the class mostly works as a ordered dic-
tionary. It has some nice methods, such as add property or remove property,
which do as their names suggest, but overall it just exists to store Properties
(with unique names) and a list of their possible values. When used to specify
preferences over plans, the list of possible values acquires a new meaning: it
becomes the list of preferred values for the Property.
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4.3.2 PlanPreferences class

This class basically works as a collection of Properties objects for each Goal

of an agent. Its body and concept is the exact same as the GoalPreference
class: it has one default Properties, and potentially many alternative,
trigger-based Properties. They are selected and replace the default ones
in the exact same way as it happens in the GoalPreference class.

Finally, it also possesses a method to update the current/active prefer-
ences based on the most recent beliefs of the agent. In general, all these
methods that update the preferences (or that check if the preferences should
be updated) are constantly run at each iteration, and where exactly they are
run and under which conditions will be explained in detail in §4.4.1.

Its most relevant source code is the following:

1 def __init__(self , goalname=None , default_prefs=None ,

beliefs=None , *args): # goalname: Str , default_prefs:

Properties , args: [( Properties obj , conditions as in

goals)]

2 self.goalname = goalname

3 self.default = default_prefs

4 self.alternatives = sorted(args , reverse=True , key=

lambda x: len(x[1]))

5 self.current = self.select_preference_set(beliefs)

Source Code 4.9: Constructor of the PlanPreferences class

As we can see in Source Code 4.9, it mainly works as a container for con-
ditional preferences over plans. It differs a bit from the way in which its
sibling class GoalPreference it is initialized because here the alternatives
are defined in the optional arguments, but this is mostly cosmetic, as this
way, if there are no alternatives, the code looks smoother.

Finally, let us mention that due to PyCOMPSs utilizing Python 2.*, we
need to make the declaration of Properties for preferences a bit annoying.
Because we need them to maintain an order, we need to create them as an
empty Properties, and then fill them one by one. This is because every
other way of creating them implies using a (non-ordered) dict, which in our
current version of Python we are not guaranteed that it will preserve order,
and in many instances it does not. We are only guaranteed to maintain order
if we declare them empty and fill them one by one using the add property

method.

4.3.3 Adaptation of the HTN nodes

In order for preferences over plans to work, we need to actually embed the
Properties to the HTN nodes. If we recall, we only specified them by hand
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to the leaves (i.e., the Primitive Tasks), and they were propagated automat-
ically to the nodes. All HTN node classes (PrimitiveTask, CompoundTask,
and Method) have been given ‘properties’ attribute, and we have created a
merge properties method, whose code is Source Code 4.10. As we can see,
it takes two Properties object as input, along with a boolean to signify
whether we are merging alternative or sequential tasks. The process it car-
ries out is the implementation of the merging process described in Chapter
3. If we let n = max(|p1|, |p2|), then its cost would be O(n).

1 def merge_properties(p1 , p2 , alt=True): # alt means if we’

re merging properties of alternative tasks (True) or of

sequential tasks (False)

2 if p1.props == {} or p2.props == {}:

3 return p1 if p2.props == {} else p2

4 res = {}

5 dic1 = p1.props

6 dic2 = p2.props

7 for v in dic1:

8 if v in dic2:

9 res[v] = list(set(dic1[v] + dic2[v])) # dic1[v]

and dic2[v] contain a list , we merge them , make them a

set , then a list again to remove repetitions

10 else:

11 if "__none__" not in dic1[v] and alt:

12 res[v] = dic1[v] + ["__none__"]

13 else:

14 res[v] = dic1[v]

15 for v in dic2:

16 if v not in dic1:

17 if "__none__" not in dic2[v] and alt:

18 res[v] = dic2[v] + ["__none__"]

19 else:

20 res[v] = dic2[v]

21 return Properties(res)

Source Code 4.10: Code of method merge properties

This function is later used to generalize the process of propagating properties
in the following way:

1 def propagate_properties(self):

2 res = Properties(dict ={})

3 for prim_t in self._subtasks:

4 res = merge_properties(res , prim_t.properties , alt=

False)

5 self.properties = res

Source Code 4.11: Function to propagate the properties of all sequential
children, from the Method class
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As we can see, it iterates through every child of the root Method and it starts
by merging the first child’s Properties with an empty one, then the result
is merged with the second child’s, and so on. All these propagation processes
are executed only once, before the simulation is run, and they could even
potentially be stored to reduce even further the number of times they have
to be executed.

4.3.4 Adaptation of the means-ends reasoner

Finally, we adapted the means-ends reasoner to actually take preferences over
plans into account. If we recall from earlier, the only place where there are
alternative choices in the HTN is when having to pick one Method among
the many that a CompoundTask has as children. What the HTN did before
was picking the first Method whose preconditions were satisfied. Now what
it does is filter the non-applicable Methods, and pick the one that satisfies
the currently active preferences the most. Here is the whole code in charge
of planning:

1 def _plan(self , beliefs , planprefs): # beliefs: BeliefSet

2 current_beliefs = beliefs.copy()

3 tasks_to_process = [self._root_task]

4 decomp_history = []

5 while tasks_to_process:

6 current_task = tasks_to_process.pop (0)

7 if isinstance(current_task , CompoundTask): #

treatment of Compound Tasks

8 current_method = None

9 # here is where preferences come into action , as

methods are the ONLY place where there are alternative

choices in the HTN

10 avail_methods = []

11 for m in current_task.methods:

12 if m.conditions.check_conditions(

current_beliefs): avail_methods.append(m)

13 current_method = choose_method(avail_methods ,

current_beliefs , planprefs)

14 if current_method is None:

15 if decomp_history:

16 current_task , self._current_plan =

decomp_history.pop()

17 else:

18 return

19 else:

20 decomp_history.append (( current_task , self.

_current_plan [:]))
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21 tasks_to_process [0:0] = current_method.

subtasks [:]

22 else: # treament of Primitive Tasks

23 if current_task.preconditions.check_conditions(

current_beliefs):

24 for effect in current_task.effects:

25 current_beliefs = effect.apply(

current_beliefs)

26 if self._current_plan and self._current_plan

[-1]. append == current_task.append:

27 for action in current_task.action_block:

28 self._current_plan [-1].

add_raw_action(action)

29 else:

30 self._current_plan.append(current_task.

action_block.copy())

Source Code 4.12: Code of method plan, from the HTN class

We only need to pay attention to lines 7–13, as these are the only lines we
have introduced. As we can see, these lines do exactly what we just described.
However, if we look closely, we see that the choose method function appears
again. This is because the same process is used to pick alternative plans than
to reason about preferences at every level of the HTN. Let us take a closer
look upon that function’s code:

1 # this function will sort all available plans according to

how much they fit our priorities , and return the one that

fits them the most. Used both by MetaPlanner (in

pick_plan) and by HTNPlanner (in _plan)

2 def choose_method(avail_methods , beliefs , preferences): #

prefs: PlanPreferences

3 preferences.update_preference_set(beliefs) # we check

to see if new conditions apply

4 current = preferences.current # we extract the current

preferences

5
6 if not current:

7 return avail_methods [0]

8
9 classes = [[] for _ in range(len(current))] # classes[i

] contains all the methods (plans) that satisfy the i-th

preference

10 i = 0

11 for p in current:

12 for m in avail_methods:

13 if p in m.properties:

14 if check_preferred(current[p], m.properties[

p]):
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15 classes[i]. append(m)

16 i += 1

17
18 first = True

19 candidates = []

20 for i in range(len(classes)):

21 if first: # at this point we still have not found

the first non -empty class

22 if classes[i]:

23 first = False

24 candidates = classes[i]

25 else:

26 continue

27 else: # we have already found the first non -empty

class

28 if not classes[i]:

29 continue

30 if classes[i]:

31 inter = intersect(classes[i], candidates)

32 if inter:

33 candidates = list(inter)

34 else:

35 continue

36 if len(candidates) == 1:

37 break

38 if first:

39 return avail_methods [0] if avail_methods else None

40 return candidates [0]

Source Code 4.13: Code of function choose method

This code implements the functionality used to pick plans according to pref-
erences over them described in §3.3.3. For that purpose, it creates a list it
calls ‘classes’ and a list it calls ‘candidates’. The classes list holds one position
for each property our current preferences have some assertions over. Thus,
classes[i] stores all the applicable Methods which can satisfy our desired
preferences. This is done through the check preferred function, which ba-
sically checks if some preferences are a subset of a method’s preferences. Its
code can be checked in Source Code 4.14.

Once the ‘classes’ list is fully defined, it tries to find the fittest Method
candidates. Again, it replicates the functionality described in §3.3.3: it tries
to find the left-most satisfied preference, and then it tries to see, from all the
Methods that satisfied it, if they satisfy the next ones, and so on. It achieves
this by intersecting the Methods that satisfy i with the Methods that satisfy
i+1, as long as the intersection is not empty. If it is empty, it skips to i+2,
assuming i is the left-most first preference satisfied by a Method or more.
At the end, it has a list of potential candidate Methods, and it returns the
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first one (all would be equally valid) for more determinism. If there were no
candidates at all (i.e., not even a single preference was satisfied), it attempts
to return the first applicable Method. Again, we could return any Method,
but for repetition of simulations and determinism purposes, we choose to
return always the same.

Finally, let us reason about the function’s cost. There are two main
sequential loops that dominate the function’s complexity. The first one is
where we instantiate the ‘classes’ list, and the second one is where we actually
pick the candidate Methods. The first loop has a cost of O(pmv̄), where p is
the number of properties we have preferences over,m the number of candidate
methods, and v̄ the average number of preferred values per property we have
preferences over. The second loop’s cost is, in the worst case (i.e., assuming
we always have to perform an intersection), O(p2), because it iterates through
the ‘classes’ list (p elements) and it calculates the intersection (and, for that,
it iterates through every element again). Therefore, the total cost of the
dominant parts of algorithm would be O(p2) +O(pmv̄) = O(p ∗ (p+mv̄)).

1 def check_preferred(own , method):

2 for v in own:

3 if v in method or v == "__none__":

4 return True

5 return False

Source Code 4.14: Code of function check preferred

At this point, we have covered every substantial modification done to the
code to implement our additions. However, we have had to alter more parts
of the code as a side effect, to accommodate for our modifications, and these
changes will be addressed in the next section.

Finally, it should be noted that, while some of the costs we have deduced
from our code might seem a bit prohibitive, mostly because they have prod-
ucts of many variables in them (and those products are not accounting that
some functions are run for each iteration, for each agent), but reality could
not be further away from the truth. Since, in most instances, these variables
usually do not exceed one digit-length, let alone two. That is, in most cases,
the number of alternative methods will range between 3 and 7, the number
of preferences will be between 5 and 10, the number of preconditions will
be bounded between 0 and 10, and so on, just to give some numbers as an
example.
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4.4 Alterations to the reasoning cycle and other

modifications

In this section, we will briefly cover all the collateral changes of classes, code,
etc., made necessary to accommodate all the newly added elements. These
changes have happened mostly as a side effect of our main implementations,
that is, as a consequence of it instead of being a main feature or addition,
and therefore are not explained or covered in the same depth as our actual,
main implementation objectives.

4.4.1 The new reasoning cycle

Here, we will cover how all our implementations have been totally integrated
into each agent’s reasoning cycle. The Source Code 4.15 shows the function
step, which each agent executes for each iteration. There, the agents update
their beliefs, pick their next goal using their knowledge of the world and their
preferences over goals, and plan according to their preferences over plans and
over moral values.

The first new thing we see is in line no. 5, where the agent updates the
status of its goals at the very beginning, to see if other agents’ actions or the
environment have altered the status of their goals. Then, it goes on to check
if the preferences over goals have changed in line no. 7. Seeing as checking if
the preferences over goals have changed and computing them has the same
cost, we compute them directly, but they may retain their value from last
iteration. Then, we do the same for goals in lines no. 11–18, where we check
if the agent should continue to pursue the goal it committed to in the last
iteration or if it should change. Here, it is also checked if all goals have been
achieved and should therefore transition intro ‘idle’ state.

Then, it goes on to do the equivalent process for the preferences over
plans. In line no. 21 we check if we have defined preferences for a specific
goal, and then in line no. 26 we update them. This function not only update
the preferences over plans, it also returns True if, and only if, they changed
with respect to the last iteration. This is done to check if we need to update
the root of the planner or not, as seen in lines no. 29–34.

The rest of the lines have not been modified and remain the same as they
were before we took over this project. They mostly deal with the processing
of messages, reasoning once a plan has been picked, acting upon the plan,
etc. We have included two extra functions we use at the end of the Source
Code. We do not comment on them because their behavior is trivial.

1 def step(self , inbox , agent , environment , directory , state):
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2 # perceive the environment:

3 state.beliefs = self.perceive(environment , state.beliefs

)

4 # update status of goals:

5 self.update_goals_status(state.beliefs , state.goals)

6
7 # (possibly) update preferences over goals:

8 state.goalprefs.select_preference_set(state.beliefs)

9
10 # (possibly) update the current goal:

11 new_goal = state.goalprefs.pick_goal(state.beliefs)

12 goal_changed = state.current_goal != new_goal

13 if goal_changed:

14 state.current_goal = new_goal

15
16 # check if the agent needs to go to the idle state

17 if state.current_goal is None:

18 state.current_goal = Goal(name="Idle", description="

Idle")

19
20 # update preferences over plans:

21 if state.current_goal.name in state.planprefset:

22 planprefs = state.planprefset[state.current_goal.

name]

23 else:

24 planprefs = PlanPreferences ()

25
26 planprefs_changed = planprefs.update_preference_set(

state.beliefs)

27
28 # choose a NEW plan if necessary:

29 if goal_changed or planprefs_changed: # if the goal

changed , we need to pick a plan for the new goal

30 if state.current_goal.name != "Idle":

31 metaplanner = state.metaplanners[state.

current_goal]

32 state.planner = metaplanner.pick_plan(state.

beliefs , planprefs)

33 else:

34 state.planner = state.idle_planner

35
36 # process messages:

37 for message in inbox:

38 state.beliefs , state.planner , reply = self.process(

message , state.beliefs , state.planner)

39 if reply is not None:

40 self.outbox.put(reply)

41
42 # goal check
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43 state.planner = self.goal_check(state.beliefs , state.

planner)

44
45 # reason:

46 if state.planner is None:

47 block = state.default_block.copy()

48 else:

49 state.planner = self.reason(state.beliefs , state.

planner , planprefs)

50 print("CURRENT PLAN: {0}\n".format(state.planner.

_current_plan))

51 block , state.planner = state.planner.next_block ()

52
53 # act upon a plan:

54 state.beliefs = self.execute(agent , block , state.beliefs

, directory)

55
56 # check role:

57 role = self.role_check(state.beliefs)

58 if role is not None:

59 self.outbox.put(agent.compose_command("behavior", {"

behavior": role}))

60
61 self.outbox.put(Message(agent.id , agent.id , "state",

state , special="s"))

62
63
64
65 def choose_goal(self , beliefs , goalprefs):

66 return goalprefs.pick_goal(beliefs)

67
68
69
70 def update_goals_status(self , beliefs , goals):

71 for g in goals:

72 g.check_goal(beliefs)

Source Code 4.15: Code of the reasoning cycle and other auxiliary functions

4.4.2 Changes to State class and other inner changes

The State class was also modified as a side effect. It was added all the
newly introduced elements to actually represent the state of an agent. Its
constructor method now looks like this:

1 def __init__(self):

2 self.beliefs = BeliefSet ()

3 self.planner = None
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4 self.default_block = ActionBlock ()

5
6 # elements we have added in this work:

7 self.goals = GoalSet(goals=None)

8 self.current_goal = None

9 self.metaplanners = None

10 self.goalprefs = None

11 self.planprefset = None

12 self.idle_planner = None

13 # ignore all the ’None’s, since they are all set in the

function set_state , not in the constructor. The

constructor is only used to first instantiate an agent ’s

state , but it is actually filled when the aforementioned

function is called

Source Code 4.16: New attributes of the State class

As we can see, we have separated the elements that were already there
from the elements we have needed to add.

Along the way, all functions that are used to pass parameters to generate
agents, mostly located in the Controller class, have been adapted to be able
to create new agents with all the necessary components listed below. The
code is not included since it is a trivial passing of parameters.

It is also worth noting that another secondary feature we have bestowed
upon agents is the possibility of exhibiting an idle behavior. In general, when
an Agent is created, it will be given a set of goals. When these goals have
been achieved, what should the agent do? We have added a functionality
to address that specific question. By default, if not specified otherwise, all
agents will have a default ‘idle planner’ plan, that they will follow if, and
only if, all their goals have been achieved. This default idle plan will have
the agent do nothing for the whole iteration. However, we have given the
designer to give each agent a custom idle plan. This is useful and it helps
produce more realistic simulation, as we now can have agents with different
‘idle’ behavior. For instance, if we are simulating a house cleaning agent, its
most likely idle plan will be to shut down and wait to be activated again, but
if, however, we were simulating a taxi-driver agent, perhaps it would be more
useful to have it wander around the city looking for potential customers as
its idle behavior.

4.4.3 Changes to preconditions of the HTN nodes

Finally, the class used to set the preconditions for HTN nodes and actions
was upgraded to allow to express ‘or’s with them. Before, it could only
express conjunctions of assertions. Now, it can also express disjunctions of
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conjunctions of assertions. For that purpose, we have reused its old code
and embedded it in a class that acts as an implicit disjuncturator of all
the conjunctions. It is called CondSet implemented as, basically, a list of
Conditions. Its check conditions returns True if, and only if, at least one
of the Conditions in the set return True when executing its homologous
method.



Chapter 5

Testing and examples

In the previous chapter, we outlined the details and specifics of our concrete
implementation of the elements introduced in Chapter 3. We highlighted
every modification done to every class affected, explained the inner workings
of every newly added function and method, and provided a cost analysis of
every major function that is run.

In this chapter, we aim to exhibit how our system works, and we will
do so through the execution of a number of experiments. Each of these
experiments has its own purpose, and putting them all together, we achieve
the purpose of showcasing every new feature of our modified model. First,
we will describe the experiments that are meant to display the performance
of the system. Then, we will present a complex scenario that is supposed to
show how our agents fare with the new additions: agents having many goals,
goals decoupled from plans, preferences over goals, plans, and over moral
values, etc.

This chapter is structured as follows: first, we will provide a general
structure for all the tests and better present them in §5.1; then, in §5.2, we
will introduce all our functionality and performance tests, along with their
results and comparisons. Lastly, in section §5.2, we will thoroughly explain
the complex scenario which will be used to showcase all the new additions
to the system, along with the expectations and results of that test too.

5.1 Structure of the tests

All tests will follow the same structure: the scenario will be described, and we
will briefly cover how they have been implemented using the classes defined in
Chapter 4. We have two big families of tests based on their complexity, basic
and complex. Basic tests are about showing or proving a small functionality
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or subset of functionalities that we have in our system, and complex tests
are about showcasing most, if not all, the features of the system working at
the same time. In the former, the scenario is easily described in one or two
sentences, while in the latter, the scenario is normally complex to describe
and modeled after a real-life scenario.

Based on their purpose, tests can be divided into either functionality
or performance. The purpose of functionality tests is to demonstrate and
showcase the system at work, while the sole purpose of performance tests
is to test the platform’s performance, time to run based on the size of the
input, and scalability.

For these purposes, we have defined three tests. Two of them are basic,
and one of them is complex. The basic tests are actually the adaptation
of some of the tests carried out by Gnatyshak when he was designing the
original system, while the complex test is the simulation of some citizens’
days in a made-up town, where they have to complete their daily chores, and
have preferences over in what order to achieve them, and over how to achieve
them.

When it comes to the functionality/performance dichotomy, the afore-
mentioned tests will act as both functionality and performance tests. When
they are acting as functionality tests, they will be verbose (showing the state
of each agent at every iteration), we will make some predictions about what
should happen, and we will contrast these predictions with the results we
get. If, however, they are acting as performance tests, then they will not be
verbose (because verbose implies the creation of multiple log elements that
directly alter the execution time), and we will run them with an increas-
ing number of agents to measure their runtime and derive other interesting,
performance-related metrics.

For the performance tests, it is imperative that we compare them with
their original version. Otherwise, we would just see some metrics (e.g., time
to run the whole simulation, time to run each step, etc.) which, on their
own, have no much value, besides from knowing if the overall runtime is
appropriate or not. However, when compared to their predecessor, we can
get a much richer insight into how scalable our implementations are, and what
amount of efficiency we have traded for extra features such as preferences, or
moral values.

Finally, let us give a detailed description of the environment all the per-
formance tests will be run in:

• Asus Desktop Computer (7 years of age)

• 16 GB RAM DDR3
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• Intel(R) Core(TM) i7-4790 CPU @ 3.6 GHz (8 CPUs)

• OS: Windows 10 (64-bit)

• Average room temperature: 27◦C

This will be the host computer, as the simulations will be run in a VM that
has installed all the necessary components to run COMPSs and PyCOMPSs,
with the following settings:

• OS: Ubuntu 18.04 LTS (64-bit)

• 10 GB RAM from host

• 8 (virtual) processors from host

5.2 Basic scenarios

We have implemented two basic scenarios for our tests, and both are adapta-
tions of the original tests from [10], adapted to run with the new Goal class
and other elements.

The first one is the incrementation scenario, where we will have some
agents with a very simple HTN to increment an internal counter in their
beliefs. For the functionality part, we will see that this very basic examples
can be encoded with Goals and other classes. For the performance scenario,
we will run this test many times with different input sizes, and we will derive
some performance-related metrics; then, we will run the old version of this
test under the same conditions, extract the same metrics, and compare results
to try to quantify any drops in performance.

The second test is the ping-pong scenario, where agents randomly ‘ping’
other agents by default. When an agent is ‘pinged’, then it tries to ‘pong’
whoever agent ‘pinged’ him. When an agent has been ‘pinged’ three times,
then it will finish the execution and be removed from the simulation, until no
agents remain. We will reimplement this scenario with goals, preferences over
goals, etc., and then compare it with the original one. For both functionality
and performance objectives, we will perform the same type of tests described
in the above paragraph.

5.2.1 Incrementation test

This first test is also the simplest one. The default scenario is, basically,
three agents with a default HTN. Said default HTN has only one internal
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action which increments the value of a counter field in the agent. It is run
for 10 steps.

5.2.1.1 Outline and implementation

The implementation of this test is very simple as well. We create 3 agents (for
the performance part, the number of agents is variable). Each of the agents
has the same set of beliefs ({counter=0}), a single goal (counter==numiter),
and a very simple HTN associated to it, that only increments the variable
by one. This goal is inserted into the agents’ set of goals, this HTN is
associated with the goal through a MetaPlanner, and the agent is given
empty preferences over goals (because there is only one) and actions (for the
same reason). The scenario is summarized in Figure 5.1.

Figure 5.1: Increment scenario summary [Own making]

We expect the following:

1. The counter to increase equally for every agent and to be the same as
the current number of steps

2. Since there are no messages, the only message should be the state of
each agent at each step

3. In general, from a functional point of view, we expect it to work exactly
as it worked in [10]

For the functionality version of this test, we will attempt to see that
the scenario works as intended, while for the performance-related results we
will run both our version and the original version of the test, and compute
the appropriate performance-related metrics. For this scenario, and for all
scenarios in this thesis, when displaying a time measurement for a runtime,
that value displayed is always the average result of ten consecutive runs.
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5.2.1.2 Functionality-related results

Figure 5.2: Fragment of verbose output of the incrementation scenario [Own
making]

First of all, let us start with the functionality version of this test. A
fragment of the output can be seen in Figure 5.2. As we can see, the agent
picks the goal correctly, and from the goal it picks the appropriate plan,
through the MetaPlanner, and the general correct functioning of the scenario.

All of our expectations have been met, and we mark this functionality
test as successfully passed.

5.2.1.3 Performance-related results

When it comes to the performance test, we expect the increase in runtime
to be negligible when compared to the old test. This is because in this very
simple test, our agents have one single goal, one single plan for the goal, no
preferences whatsoever, and a very simple set of beliefs and environment.
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No. of agents Old runtime (s) New runtime (s) Difference (s) Old runtime per ag. (s) New runtime per ag. (s)
Default (3) 4.43 4.45 0.02 0.6772009029 0.6741573034

4 4.52 4.49 -0.03 1.13 1.1225
8 5.12 5.16 0.04 0.64 0.645
16 5.99 6.02 0.03 0.374375 0.37625
32 7.71 7.75 0.04 0.2409375 0.2421875
64 10.26 10.40 0.14 0.1603125 0.1625
128 15.24 15.45 0.21 0.1190625 0.120703125
256 25.19 25.88 0.69 0.0983984375 0.10109375

Table 5.1: Performance results of increment scenario [Own making]

Therefore, they do not have to check for any applicability conditions of pref-
erences over goals or over plans, only one goal has to be checked at each
iteration, etc.

We have computed the runtime for the scenario with the default number
of agents (3), 4, 8, 16, 32, 64, 128, and 256, for both the old and new
implementations of this test. Then, we have computed the differences in
runtime between the old and the new versions of the scenario, for each number
of agents. Finally, we also provide the average time that an agent was running
in the simulation. All this information is displayed in Table 5.1.

As we can see, we have successfully predicted what would happen. There
is close to no increment in runtime, and this is likely due to the fact that
in this specific scenario, our additions are almost never used, and therefore
they do not have the ability to delay the program’s execution.

5.2.2 Ping-pong test

This next test is also somewhat basic, but here we can put our implementa-
tion of preferences over goals to the test. This scenario also has three agents
in it, all having the same goals, the same library of plans, and the same
preferences over goals. They will, by default, message other agents. If they
have been messaged, they will switch to a different goal of responding; all
that, until they have been messaged for a set number of times.

5.2.2.1 Outline and implementation

The environment has a single field: counter. The beliefs of every agent are
a bit more complex, and they amount to:

• list message: the messages the agent has received

• boolean got msgs: True if, and only if, the agent has received a message

• integer to env: the value to be sent to the environment to be added to
its counter field
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• integer reply count: the number of replies the agent has to send

• integer counter: stores the number of ‘pongs’ received by the agent

Their behavior is described as follows. At the beginning of every simu-
lation step, if an agent has received a ‘ping’ message from any other agent,
its goal will be to respond to that agent with a ‘pong’ message. If, how-
ever, it was a ‘pong’ message, then the agent will simply increase both its
counter belief and the environment’s by one. If no messages were received,
then the agent will send a ‘ping’ message to another agent at random. When
an agent’s counter belief reaches 3 or more, they finish the execution.

Finally, the goals, and the preferences over goals, are defined by the fol-
lowing code:

1 # goals:

2 g1 = Goal(name=’g1’, conditions =[{’counter ’: (">=", 10)}],

description="Goal to treat incomming Messages")

3 g2 = Goal(name=’g2’, conditions =[{’counter ’: (">=", 10)}],

description="Goal to send Messages")

4 goals = GoalSet(goals =[g1, g2])

5
6 # preferences over goals:

7 gpref1 = GoalPreference(goals=goals , g2=[’g1’]) # by

default , we want to send messages

8 gpref2 = GoalPreference(goals=goals , g1=[’g2’], conditions

=[{’got_msgs ’: ("==", True)}]) # if we have received

messages , we want to treat them

9 goalprefs = GoalPreferenceSet(default=gpref1 , alternatives =[

gpref2], beliefs=beliefs)

Source Code 5.1: Instancing of goals and preferences over goals for the ping-
pong scenario breaklines

As we can see in Source Code ??, we have two goals, g1 and g2. Both have
the same fulfillment conditions, which are only there to keep the goals active
until the agents die, but they have different plans associated to them in the
library of plans. If we look at the preferences over goals, we will see that, by
default, g2 goes before g1; that is, by default, we want agents to randomly
message other agents. However, if the belief got msgs becomes true, then
we switch preferences over goals, and now g1 comes before g2, thus switching
the agent from randomly sending messages to treating the received messages.
The plans for each goal can be seen in Figure 5.3.

From this test, we expect the following:

1. Agents to have goal g1 by default
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Figure 5.3: Plans for ping-pong scenario [Own making]

2. When an agent has been sent a message, we expect for it to switch to
goal g2

3. In general, we expect it to work exactly as its original implementation
worked, from a functional point of view

Just like with the increment test, here, for the functionality version of this
test, we will attempt to see that the scenario works as intended, while for
the performance-related results we will run both our version and the original
version of the test, and compute the appropriate performance-related metrics.

5.2.2.2 Functionality-related results

Let us now see the results of the functionality versions of this scenario. Fig-
ures 5.4 and 5.5 are two fragments of the output. As we can see in them, the
agents that are following goal g2 are sending ‘ping’ messages, while the agents
following g2 are sending ‘pong’ replies. Whenever an agent’s counter reaches
3, the agent is eliminated. Agents switch goals depending on weather they
have been ‘pinged’ or not, and function properly. In general, our expectations
have also been satisfied.

5.2.2.3 Performance-related results

Now, for this performance test, we actually expect the runtime to slightly
increase for our new version. This is because now the scenario is a bit more
complex. We have more than one goal to choose from, and the same goes
for the number of libraries of plans and preferences over goals. Therefore, at
each iteration, every agent will have to check the status of every goal, check
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Figure 5.4: Fragment of verbose output of the ping-pong scenario (1/2) [Own
making]

for the applicability of conditions, choosing a plan from the library, etc., thus
making the agents take longer to run on average.

We have, again, computed the runtime for the scenario with the default
number of agents (3), 4, 8, 16, 32, 64, 128, and 256, for both the old and new
implementations of this test, and all the same metrics from the increment
scenario. All this information is displayed in Table 5.2.

As we can see, we have again successfully predicted what would happen.
At the beginning, with a small number of agents, the difference appears
negligible. However, as we increase the number of agents, we can appreciate
how the difference in runtime slightly increases, just as we said it would.

No. of agents Old runtime (s) New runtime (s) Difference (s) Old runtime per ag. (s) New runtime per ag. (s)
Default (3) 4.25 4.44 0.19 0.7058823529 0.6756756757

4 4.51 4.63 0.12 1.1275 1.1575
8 4.85 5.1 0.25 0.60625 0.6375
16 5.86 6.08 0.22 0.36625 0.38
32 6.93 7.64 0.71 0.2165625 0.23875
64 9.62 11.03 1.41 0.1503125 0.17234375
128 13.38 15.59 2.21 0.10453125 0.121796875
264 22.83 28.73 5.9 0.08647727273 0.1088257576

Table 5.2: Performance results of ping-pong scenario [Own making]
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Figure 5.5: Fragment of verbose output of the ping-pong scenario (2/2) [Own
making]

5.3 Complex scenario: a day in Goodsprings

In the previous section, we introduced a couple of toy examples to both show-
case our implementation’s features in a simple manner, under a very limited
environment, and also to compare how these recreated tests scaled in their
previous version (before to made any additions to this project) compared to
our current version (with all our additions).

Now, however, we move on to the next scenario, which is a complex one.
It features a very rich environment with several variables and resources for
the agents to interact with. The environment will be randomly generated
using a seed (so that the same random simulation can be repeated), it will
be changing based on some user-defined probabilities, and the agents will
react and plan accordingly to these changes of the environment. Agents have
several goals, and different preferences over goals, as well as having different
plans for every goal, preferences over these plans, and even moral values.
The default value of the seed is ’2022’ (as a string), but it can be given any
other string value.
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5.3.1 Outline and implementation

Welcome to the proud town of Goodsprings! Goodsprings is a small town
with some citizens living in it. These citizens are people, just like you and me,
and they have their own set of daily goals (e.g., go to their workplace, have
fun, eat dinner, etc.). Like the real people they are, they have preferences
over in which order to pursue their goals, as well as preferences over how to
achieve them: at the end of the day, it is not the same to work and then have
dinner, or vice versa; and it is not the same either to go somewhere on foot,
by car, etc. Additionally, for instance, we might prefer to go somewhere
on foot if the weather is clear, but as soon as it starts raining, we might
prefer to go by car instead. Finally, we might have some moral inquiries
into the actions we perform (e.g., are we environmentalists and we think the
unnecessary usage of cars is immoral?, etc.). We will be able to simulate all
these characteristics in this complex scenario that we now present.

Goodsprings is a small town with the following features:

• It has a town center through all the other locations of the town are
connected. People can live in the city center, too

• There are places where people go to have fun:

– A beach

– A park

– A cinema

• There are also workplaces:

– A factory

– Corporate offices

• A residential neighborhood away from the city center, where some cit-
izens live

• Places to go shopping:

– A local market and farm. In the local market there are:

∗ A local Italian restaurant

∗ A local Chinese restaurant

∗ A local falafel restaurant

– A shopping center and supermarket. Inside the shopping center
there are:
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∗ A big chain pizza company

∗ A fast food, burger company

∗ A big chain, wholefood/vegetarian meals company

• It has other public facilities:

– A school for kids to attend

– A hospital to treat the ailments of citizens. Citizens of Good-
springs might, by chance, experience a medical emergency, in
which case, if they go to the hospital, they will be tended to and
cured for free, so they can carry on with their day

• The town can experience the following weather conditions:

– Clear weather (sunny)

– Cloudy weather

– Rainy weather

– Snowy weather (schools are closed under this weather conditions)

• It also sports a public bike rental system. There are bike stations
scattered among the many locations of the town, which any citizen can
approach and take a bike out of, in order to use it to move in the city.
When they get off the bike, they must leave it in the new location,
and other citizens can potentially take that bike for their commutes. it
is possible that some locations might not have any bikes at any given
moment.

• There are three main ways to go around the city: by car, by bike, or
on foot. In order to drive a car, an agent needs to own one. In order to
drive a bike, an agent needs to be at a location where a bike is available,
and pick it.

For a more visual overview of the town of Goodsprings, one can take a look
at Figure 5.6. Other aspects of the town not present in the map are: the
current weather, the current time, and the number of bikes at every location.

5.3.1.1 Environment

The environment implements the map from Figure 5.6, as well as other
variables such as the current weather, the time, and extra internal variables
for purposes of running the simulation. It is initialized by a random seed,
and ht has the following fields:
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• location name: a dictionary with information about every location,
for every location (i.e., one for ‘school’, one for ‘factory’, etc.). In
actuality, it keeps track of how many bikes are at each location

• weather: the current weather

• time: a list of two elements. The 0th element is the hour, while the
1st element is the minute

• control : a dictionary of control variables for the Controller, not
visible for any of the agents. It contains numbers for internal and
random calculations, all derived from the seed, for purposes such as
randomly changing the weather, etc.

• rands : a list of random numbers derived from the random seed that
will be used throughout the whole simulation, for random calculations
as well

The simulation consists of 64 steps. It starts at 08:00, and ends at 00:00
of the next day. Each simulation step corresponds to 15 minutes in the town.
By default, the town starts with clear weather. Every iteration, there is a
10% chance of the weather changing. If that chance happens, there is a 60%
chance of the weather becoming clear, 30% chance of becoming cloudy, 9%
chance of raining, and 1% chance of snowing. At every iteration, there is
also a 0.2% chance, for every agent, to experience a medical emergency. All
these numbers can be set by the user at will at the start of every simulation,
as well as the initial weather.

When an agent perceives the environment, they will only perceive the
current time, the current weather, and the information of the location that
they are currently in. For instance, if an agent is at the city center, it will
not update its information about the state of the school, only about the state
of the city center, the weather, and the time.

For performance test purposes, the user can also specify a number of
extra agents, that will be generated along the main actors. These agents are
copies of the main actors, with the same goals and plans, but will stress the
system all the same in big numbers.

Finally, there is always a ‘hidden’, observer agent, who does nothing but
perceive the environment, to show it at every step of the simulation.
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Figure 5.6: Map of the town of Goodsprings [Map: Own making; Icons: images free of use from www.flaticon.es]
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5.3.1.2 Agents

There are two main actors in our environment. They both are complex agents
with numerous goals, conditional preferences over these goals, a rich library
of plans, and preferences over those plans, along with moral values. These
two agents are Alice and Bob.

5.3.1.2.1 Alice
Citizen Alice is described by the following:

• Alice is the CEO of a big TMT company. She, therefore, works at the
offices every day until 16:45

• Alice lives in the neighborhood

• She is the single mother of two children. Thus, she has to take the
children to school every morning, collect them from school at 17:00,
and go have fun with them in the afternoons (until 19:45). Then, they
order food at 21:00

• Her goals are the following:

1. Take children to school

2. Go to work

3. Work

4. Go collect her kids to school

5. Have fun with her kids

6. Go back home

7. Eat dinner

8. Attend any medical emergency that might happen during the day

– Goals no. 1, 2, 4, 5, and 6, include commuting. We will be able
to see the agent’s preferences on means of transportation, as well
as its moral values, when it tries to achieve these

– Goal no. 5 also has many options to be achieved. We will be able
to see the agent’s preferences on how to have fun when it tries to
achieve this goal

– Goal no. 7 will display the agent’s preferences over food, as well
as its moral values, when it tries to achieve this goal
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• Her preferences over goals are the following:

– Default: g1 → g2 → g3 → g4 → g5 → g6 → g7

– Conditional preferences (if medical emergency): g8 → g1 →
g2 → g3 → g4 → g5 → g6 → g7

– Conditional preferences (if it is snowing): g2 → g3 → g4 → g5 →
g6 → g7

• Her preferences over plans and moral values are the following:

– For transport goals:

∗ Above all, Alice prefers to travel by car

∗ On top of that, she is not an environmentalist

– For fun-related goals:

∗ Above all, and by default, Alice prefers to take her kids to the
beach

∗ If it gets cloudy, Alice prefers to go to the park

∗ If it rains or snows, Alice then prefers to go to the cinema

– For food-related goals:

∗ Above all, Alice likes pizza from the big pizza company

∗ On rainy days, however, Alice prefers to eat Chinese food

• Her initial beliefs are her current location, the current weather and
time, the current location of her children, whether she owns a car,
whether she has worked, if her children have gone to school, if she is at
the center of the city, and whether there is a medical emergency. How-
ever, extra beliefs might be added during the simulation, for instance,
if she has eaten dinner, her current goal and plan, what food she has
eaten, etc. The purpose of many of these goals is to understand Alice’s
reasoning process, and not for her to use.

Now, we will provide Alice’s library of plans for each of her goals in the form
of figures. In Figure 5.7 can be seen all her plans for transport goals. In
Figure 5.8, we can see all her plans for the fun-related goals. Finally, in
Figure 5.9, we can see all her plans for ordering food. The root Methods are
each individual plan. When stored in their MetaPlanner, the data structure
that selects the plan automatically adds them a Compound Task on top as
the true root task.
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Figure 5.7: Library of plans for transport goals [Own making]
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Figure 5.9: Library of plans for food goals [Own making]
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The other plans for other goals are not included because they are trivial:
they have a single plan, with a single action (e.g., in the case of the plan to
work, there is only one method, with a single action). Finally, we make not
that, for Alice, some of the internal actions have extra arguments dedicated
to dealing with baeliefs about her kids, but they have not been included in
the diagram because they have no effects in any of her preferences over goals,
plans, or values.

From Alice, we expect her to, among other things:

• Attend any medical emergency, at any given moment

• Follow her goals in the right order and applying the right preferences

• Order pizza from the big pizza chain, unless it is raining

• Go by car anywhere

• Have fun in the beach by default, in the cinema if there is bad weather,
and at the park if it is cloudy

5.3.1.2.2 Bob
Bob is the second agent we have created for this demonstration. Like Alice,
he has his own set of beliefs, a place where he lives, a place where he goes to
work, preferences over how to have fun, etc. Citizen Bob is described by the
following:

• Bob is a worker in the local factory. He, therefore, works at the factory
every day until 16:45

• Bob lives in the city center

• Bob has no children. Thus, he goes to work directly every morning.
Then, once he is done, he goes to have fun in whatever way he prefers.
Then, goes back home, and orders food at 21:00

• Her goals are the following:

1. Go to work

2. Work

3. Have fun

4. Go back home

5. Eat dinner
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6. Attend any medical emergency that might happen during the day

– Goals no. 1, 3, and 4 include commuting

– Goal no. 3 is Bob’s fun goal

– Goal no. 5 is Bob’s food goal

• His preferences over goals are the following:

– Default: g1 → g2 → g3 → g4 → g5

– Conditional preferences (if medical emergency): g6 → g1 →
g2 → g3 → g4 → g5

• His preferences over plans and moral values are the following:

– For transport goals:

∗ By default, he to take the bike, if possible

∗ On top of that, he is an environmentalist

∗ If it is cloudy, he likes to walk instead

∗ And if the weather is bad, he takes the car

– For fun-related goals:

∗ Above all, and by default, if the weather is sunny, he likes to
go to the beach

∗ If the weather is not sunny, he prefers to go to the cinema
instead

– For food-related goals:

∗ Above all, Bob likes pizza

∗ Additionally, he believes in sustainability and in local busi-
nesses

• His initial beliefs are like Alice’s (excluding children-related beliefs)

From Bob, we expect him to, among other things:

• Attend any medical emergency, at any given moment

• Follow his goals in the right order and applying the right preferences

• Order local pizza from the big pizza chain

• Go biking anywhere by default if he cans, but switch to walking if it is
cloudy, and if the weather turns bad, to use the car
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• Have fun in the beach by if it is sunny, and go to the cinema if the
weather is not clear

• Additionally, from Both Alice and Bob, and this scenario in general, we
expect to see how complex can the situations we simulate get without
using numbers in our implementations of preferences over goals and
over plans. This was one of the original objectives of the thesis, and
we intend to put it to the test here.

If we notice, Bob’s goals are a subset of Alice’s goals. That is why Bob’s
plans have the same structure as Alice’s, and he essentially has the same
plans. This, however, does not mean that Bob will act like Alice, as his
personal preferences and moral beliefs differ quite a bit from Alice’s. Since
Bob’s plans are the same as Alice’s, we do not include figures of them.

For more details in how either Alice or Bob are implemented, please refer
to the delivered code, in file ExampleBehaviors.py, methods init alice(...)

and init bob(...).

5.3.2 Functionality-related results

For the functional part of this scenario, we will attempt to see that agents
plan according to their preferences and values, and that they respond to
changes in the environment that might cause them to reconsider their con-
textual preferences and, therefore, need to replan, or even reconsider their
goals.

Let us first see a change in preferences over goals. Take a look at Figure
5.10. This is the result of a simulation with all default parameters except
for emergencyodds = 0.2 (20%). In it, we can see that Alice is working
in her workplace, the offices, when he receives a medical emergency. Then,
her conditional preferences over goals activate, she changes her current goal,
and she rushes to the hospital, as we can see in the next step. Although
not shown in the picture, when she goes to the hospital and is cured, her
preferences over goals revert to default, and she goes back to the offices to
continue working.

Now, let us see a change in preferences over plans in a action. Please refer
to Figure 5.11. This is the result of a simulation with all default parameters
except for changeodds = 1, rainodds = clearodds = 0.5, and cloudoods

= snowodds = 0. As we can see, at step 43, both agents were having fun at
the beach. However, it suddenly started to rain, and then their preferences
over plans changed. Notice how the goal does not change, it remains the
same, their goal to have fun. What changes, however, is how they decide to
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Figure 5.10: Agent changing preferences over goals [Own making]

have fun. Under the previous conditions, sunny weather, they preferred to
have fun by being at the beach. But when it started to rain, suddenly, while
they still wanted to have fun, they did not want to have fun at the beach
under those conditions (bad weather), and therefore replanned, and chose to
have fun by going to the cinema instead.

For further examples of our features in action, please refer to Appendix
C.

In general, we see that our agents react to changes in their current con-
text (environment, circumstances), and they reflect that by changing their
priorities, and always plan according to them. Additionally, by looking at
the whole verbose dump of a simulation, we see that they function as ex-
pected: pursue their default goals in the correct order, change priorities over
goals whenever they should, replan according to changes in both priorities
over goals and plans, and make choices according to them, too.

Finally, we have also been able to see how ‘far’ we could go without using
any numbers to express preferences over goals, plans, and moral values. As
we have seen, we have been able to express conditional preferences over both,
have these preferences change based on context, and agents replan based on
changes of their environment.

Therefore, we conclude this test has been a success.
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Figure 5.11: Agent changing preferences over plans [Own making]

5.3.3 Performance-related results

No. of agents Runtime (s) Runtime per ag. (s)
Default (2) 8.11 4.055

4 10.79 2.6975
8 15.13 1.89125
16 23.84 1.49
32 43.8 1.36875
64 89.34 1.3959375
128 189.58 1.48109375

Table 5.3: Performance results of Goodsprings scenario [Own making]

Finally, for the performance version of this scenario, since we have no old
version to compare it to, we will simply compute the performance metrics
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for our scenario, and see if the runtimes are acceptable, and the number of
agents is scalable. Here is where we expect the most time-consuming results,
because now agents have several goals, several preferences over goals, plans,
and moral values, that they have to check at every step. Additionally, their
set of beliefs, the environment they are in, and their plans, are all also more
complex than in previous scenarios. Adding all that up, thus, we expect
bigger runtimes.

We have, again, computed the runtime for the scenario with the default
number of agents (3), 4, 8, 16, 32, 64, and 128, and all the same applicable
metrics from the other scenarios. All this information is displayed in Table
5.3. For the extra agents, we have simply added copies of Alice and Bob,
which is enough for the obtaining of performance-related metrics.

We can appreciate bigger runtimes for the same input size as in the pre-
vious performance tests. This is in line with what we expected and stated in
the above paragraphs. Still, we have still managed to run a simulation with
128 agents in just 190 seconds. Taking into account that the simulation
was 64 steps, this leaves us with a ratio of roughly 3 seconds per step, and
at each step we have 128 agents running. For numbers of agents above or
equal to 16, we get similar ratios as well. These figures are practical for real,
complex situations. We also have to take into account that these results are
from runs performed in a personal computer hosting a virtual machine, and
would be much smaller if we were running them in an appropriate hardware
oriented at running parallel simulations.





Chapter 6

Conclusions

In this work we have presented several improvements and additions to the
platform presented in [11] and implemented in [10], focusing primarily on
imbuing the platform’s agents with social aspects such as preferences or moral
values, as well as expanding other crucial aspects of it, like the addition of
goals or the decoupling of plans from goals.

This last chapter works as a conclusion of all the work that has been
done, to analyze how our initial goals have been addressed, and to lay out
possible lines of future work and alternative ways in which our work could
be improved.

This conclusion is structured as follows: in §6.1 we revisit the goals es-
tablished in Chapter 1, assess to which degree they have been achieved, and
how. Then, in §6.2, we discuss how this work contributes to the field of AI,
and to the field of ABM in particular. Lastly, and to conclude the contents of
this thesis, in section §6.3 we deliberate and examine several possible ways in
which the work we have done could be expanded, complemented, improved
and/or redesigned.

6.1 Revisiting objectives

The original list of objectives that we set before taking over this project were:

1. Regarding goals:

(a) Adding an explicit structure that encodes goals in agents

(b) Totally decoupling goals from plans, i.e., making plans and goals
totally independent

(c) Adding the capacity for agents to have many goals, not just one
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2. Adding preferences over goals

3. Adding preferences over plans, subplans, and actions

4. Adding values

5. Make sure our additions are scalable

6. See how ‘far’ we can go without using numbers to encode pref-
erences

Objective 1 has been fully covered, seeing as we added a structure that
encoded goals for agents (1.a), have totally decoupled goals from plans (1.b),
and our agents can have many independent goals (1.c). The formal definition
of goals can be found in §3.1, and their implementation into the platform, in
§4.1.

Objectives 2, 3, and 4, have also been totally achieved. Our agents can
now express conditional preferences over the order in which to pursue their
goals, conditional preferences over how to achieve their committed goal, and
can endow their actions with moral values by using the same structures that
are used to specify preferences over plans. The version of moral values that
we have implemented is not necessarily constrained by moral objectivism, as
different agents can associate the same actions with different moral values,
as well as add different moral values to the same action done under different
contexts. The formal definition of preferences over goals can be found in
§3.2, and their implementation, in §4.2. The formal definition of preferences
over plans can be found in §3.3, and their implementation, in §4.3. Finally,
these additions were tested, and the tests we conducted are described, and
their results, analyzed, in Chapter 5.

Objective 5 was also accomplished. This goal was attained by, on top
of running functionality tests to verify that our implementations work as
intended, also running performance test. The structure of these tests was
also laid out, and they were all conducted throughout Chapter 5. After
running these tests, we came to the conclusion that our additions scaled
reasonably well with the number of agents, and that the richness they add
to the agents reasoning capabilities was worth the slight decrease in runtime
that they contributed to.

Finally, Objective 6 was also accomplished, and mainly demonstrated
in §5.3. Here, we saw that we could express preferences over goals, plans,
actions, and values without using numbers. Additionally, we also have been
able to make these preferences conditional (i.e., context-dependent), and add
as many conditional ones as desired. All that without using a single number
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in the back. The most apparent limitation that we have found when taking
this approach is that agents can reason about whether they prefer X over
Y (where X and Y can be goals, actions, etc.), bu they can only do so in
absolute terms. In other words, an agent can express the statement “I prefer
X over Y ”, but cannot add gradations or nuances to it, such as “I prefer X
twice as much as I prefer Y ”, or “I prefer X over Y , by a margin of Z”, they
can only do so on absolute terms.

6.2 Main contributions of this work

This work adds to the field of artificial intelligence in different ways. In
particular, its main additions are to the fields of MAS and ABM.

First of all, this work improves on an already-existing platform by endow-
ing its agents with capabilities to reason over preferences over their goals, the
actions they make, and also moral values. These additions have been focused
on integration social aspects in the platform. Additionally, other improve-
ments to the framework have also been made, such as introducing goals for
agents, allowing them to have multiple goals, decoupling goals from plans,
and having a library of plans as a way to reason on how to achieve said goals.

Additionally, we also had the goal of seeing how much we could accom-
plish, in terms of complex reasoning, by limiting our approaches on imple-
menting preferences to be fully qualitative (i.e., not based on numbers). By
doing that, we have seen the extent of social situations we are able to model,
their complexities, and also have found some hard limitations, as stated in
the last paragraph of §6.1.

Finally, as one of the main, foundational goals of the platform we took
over was that it should be able to run scalable simulations of complex agents.
Therefore, it was our objective too, to make sure our additions kept the
system scalable. Thus, we have also contributed to the field of BDI-like
agent micro-simulations on HPC, by making sure our implementations were
scalable.

6.3 Possible lines of future work

Although our additions to the framework have been numerous, there are
still many ways in which it could be enhanced and improved upon, both by
adding completely new features, or by expanding or improving the already-
existing ones. In this section, we present several possible lines of future work,
classified by their nature.
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6.3.1 Adding different types of goals

One of the main limitations of the system when it comes to goals is that
it only really supports maintain goals (i.e., goals about maintaining some
conditions about the state of the world), but these are not the only types of
goals that exist. For instance, there are perform goals, which are goals whose
main idea is that the plans associated to them should not necessarily reach
their desired states, only that the plan should be executed, regardless of the
results. In other words, if an agent acquires a maintain type of goal, he will
draw a plan for the goal, execute the plan, and drop the goal after the plan
has finished, regardless of whether the goal has been achieved or not.

Another type of goal worth mentioning is the achieve type of goal. These
goals, when an agent acquires them, he draws a plan for the goal, and tries
to achieve it. If the plan fails, the agent replans, and does so repeatedly
until the goal has been achieved. Once that happens, the goal is dropped,
and even if the conditions of the goal become false, the agent will not try to
achieve it again.

Finally, agents could be expanded to be able to commit to more than one
goal at once. This could perhaps be done through the addition of compound
goals, which are the result of merging two separate goals into a single goal.

6.3.2 Improving preferences’ trigger conditions

In the current version of the platform, the trigger conditions for both prefer-
ences over goals and preferences over actions are limited by a design choice:
it tries to apply the preferences whose conditions apply, and it always starts
checking by the preferences who have more conditions. Therefore, if pref-
erences pi have three assertions in their conditions, and preferences pj have
four assertions, and both trigger conditions are met, pj will be selected. This
becomes a problem in situations where we have more than one available pref-
erence, especially if their conditions have the same size, because all but one
will be ignored.

This issue could be tackled in many ways. One of these ways would be
to implement some sort of preferences merger method, which would take as
input all the preferences that can be applied in a situation, and it will output
a single set of preferences, product of merging all the preferences of the input.
A different way in which this issue could be solved is by adding numbers to
the way preferences are triggered.
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6.3.3 Adding preferences over resource usage

Our current version of preferences over goals is limited in the way that the
implementation of properties of goals we have made only let us assign discrete
values to these properties. The full concept of properties of goals also includes
resources. By expanding properties of goals to also include resources, and
then expanding preferences to also be able to deal with resource usage, our
agents could express preferences over plans of the type “I would rather not
spend more than X dollars when attempting to achieve goal Y”, which, as of
right now, they cannot.

The best way to do this would simply be to implement the full concept
of properties of goals and resource usage developed in [29].

6.3.4 Improving the efficiency on the evaluation of con-
ditions for Goals and plans

In this thesis we have implemented the checking of which goals have been
achieved in a given state of the world and which plans may be applied in
a given state by performing a sequential check of their conditions against
the belief base of the agent, and seeing whether the current assignment of
variables is compatible with the assertions of the conditions. This is done
sequentially, one condition after the other, for every goal, and for every plan,
at each iteration.

One possible improvement to the way conditions are checked in our imple-
mentation could be to implement a version of Charles Forgy’s Rete algorithm,
creating a graph of partial activations of conditions for goals and plans. It
would be interesting to investigate if the memory space requirements required
by the Rete network (especially if implemented with some useful improve-
ments such as hashed memories) would be compensated by the drastic time
complexity reduction Rete provides.

6.3.5 Improving the monitoring capabilities of the frame-
work

One of our original goals we had to drop was this one. The controller of
the simulation could be expanded to better (i.e., more in detail) monitor
the behavior of its agents. For instance, the controller could draw some
performance-related metrics associated to every agent, it could track the
state of agents and notify us when their preferences change, it could check
the adherence of agents to simulation-wide policies, or it could add an expli-
cability layer to the behavior of agents, that is, having a way to communicate
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with agents, where agents tell the controller why they performed X action
over Y action, why their goals changed, etc.

6.3.6 Adding social norms

The use of social norms by BDI-like agents in social simulations is another
addition which could complement very well the ones we have introduced.
Norms are social rules that specify what should and should not be done, as
well as the expected repercussions of different behaviors. In a complex setting
with many options to achieve a desired state, checking the consequences of
an agent’s actions apropos of adherence (or non-adherence) to social norms
may both add an extra layer to the reasoning of agents and also might reduce
the size of the search space for farther planning, thus also helping to make
the platform more scalable.

The most common implementations of norms include obligations (i.e.,
things that should be done) and prohibitions (i.e., things that should not be
done). Common formalizations of computatitional norms tend to use Deon-
tic Logic specifications whose influence on the agents’ behaviours is formally
defined by several options, including possible worlds semantics. This may
require a modification of the language for conditions we introduced in this
work to be able to model rich norm-based specifications in the platform.

This addition of social norms would also require agents to be expanded, in
order to add different kinds of agents, classified by their both their awareness
and their compliance with social norms. The former classification includes
agents that are norm-aware and agents that are not, that is, agents that know
that norms exist, and agents that do not. The latter classification includes
agents that always try to follow the norms, agents that may sometimes not
follow the norms, and even agents that try not to follow (i.e., break) the
norms whenever possible. This would be very relevant for our platform,
as the way social norms influence the agents preferences will be different
depending on the level of norm awareness and norm compliance for each of
the agents.
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Appendix A

Project Planning

This chapter is about everything related to the planning and management
of this project: laying the objectives, their requirements, breaking down into
smaller tasks, the resources we will require, how we will carry out the agile
planning and iterations, etc.

The project will take approximately 545 hours over 128 days. The work
will take place between the 21st of February and the 28th of June (date of
the project’s oral defense), hence, 128 days. It is estimated that this project
will take, according to the numbers above, an average of 4.26 hours per day.

A.1 Description of tasks

In this section, we will be covering all the tasks in which the project will be
divided, defining them, giving time estimates for each tasks, establishing and
justifying their dependencies, as well as stating the resources we will require
in order to accomplish the tasks. We will also provide a table as a means of
summary at the end of this section.

A.1.1 Definition and time estimates

Firstly, we need to strictly define and delimit what our tasks will be. They
need to be as atomic as possible, so as not to overload tasks with an excessive
number of actions or things that could be done better separately.

We will begin by stating the different kinds of tasks that we will have.
These are project management tasks, research tasks, and technical
tasks. Project management tasks will deal with everything related to the
correct development of the thesis: planning, deciding a budget, setting dead-
lines, agile iterations, managing obstacles, re-planning, etc. Research tasks
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will involve searching for information, exploring the state of the art of MAS
and reasoning models, reading scientific papers and books, etc. And finally,
technical tasks will cover the implementations of all our ideas into code as well
as executing them: the enhancing of the monitoring system, the improvement
of the agents’ reasoning capabilities, running the code in the supercomputer,
etc.

Project management tasks
Project management tasks are of vital importance to the thesis’s correct
development. Without them, we would not be able to meet the deadlines,
know when a task is finished, have a correct structure for the project, and we
would not be able to keep correct track of our progress. Therefore, we need
to be very careful when planning them. We have differentiated the following
project management tasks:

• Contextualization and scope: We must state the project’s overall
goal(s), contextualize it, and justify why this particular topic matter
was chosen.

• Project planning: This is a ”meta-task”, as it involves planning all
the other tasks. It is crucial to know which tasks are more important,
to meet deadlines, and to organize the project properly.

• Budget and sustainability: It is critical to understand the entire
cost of a project as well as the influence that said cost will have on
its progress. As a result, this work focuses on creating a budget and
assessing the project’s long-term viability.

• Meetings: Meetings with the project’s director are arranged every
two weeks as per our agile methodology. We’ll talk about the current
situation and the next steps to take. Due to the possibility of an
unexpected need of extraordinary meetings, this task will be added
extra time.

• Final version of the document: This task will deal with listing all
the work we have actually done, clearly stating which objectives have
been met, which have not been possible to meet (hopefully, none), and
to set the final version of the scope.

• Writing of the document: This task is the actual writing of the
thesis’s document: putting into words and paragraphs all the work and
findings we have done, as well as documenting all the process.
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• Preparing the thesis’s defence: We will have to rehearse the de-
fence of this thesis, prepare questions in advance, set up some slides to
smoothly present our ideas, etc.

Research tasks
This project features a significant amount of research. As a result, prior to
beginning the experimental phase, it is necessary to do research into previous
studies in order to see what has been done previously and recently in the
related fields.

On the research part of this thesis, we will focus on reading research
papers and books related to agents and MAS with the objective of finding
ways to complement and enhance the agents’ current reasoning mechanisms.
Additionally, we will also be looking into similar platforms and frameworks
in order to see what features they included in their monitoring systems with
the intent to find additional functionalities that would go very well with our
system. This part has been divided into the following tasks:

• Research to improve the agents’ reasoning abilities: Explore
the state of the art of agents and MAS in order to find different ways
in which we can viably enhance our agents’ reasoning capabilities. The
exact ways or techniques that will be researched have not yet been
defined, as that is also included in the purpose of the task, since this
part of the thesis is about research.

• Research to improve the systems’ monitoring capabilities: Ex-
plore methods on behaviour monitoring in agent-based social simula-
tion platforms. This task was included in our original planning but, as
we have explained in §1.1, in the first stages of project development it
was decided to drop all tasks related to behaviour monitoring to focus
on a richer agent reasoning cycle.

• Other research: As we progress in our search for information regard-
ing the topics of agents and MAS, we may stumble upon concepts,
constructs, or ideas that may fit well into our project but that we
hadn’t thought of before. This task will be about looking into all other
interesting (and worth spending time into) things that we might come
across as we develop this project.

Technical tasks
Once we have done sufficient research on different reasoning techniques and
possible ways to enhance our platform’s monitoring system, we will have to
attempt to implement the features we have chosen. The technical part of
this thesis has been subdivided among the following tasks:
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• Assess the requirements to implement each feature: For each
feature we decide to implement, we will need to elaborate a list of
needs that we will require to implement them: code libraries, minimum
hardware specs, extra necessary knowledge, etc.

• Implement the improvements for the agents: Add the necessary
enhancements to the agents’ code to include the improvements we have
researched. Since we are working using an agile methodology, all these
improvements will be reviewed every two weeks, and they may be fur-
ther modified or even outright deleted if better and non-compatible
alternatives are found later in time.

• Implement the improvements for monitoring: Add the neces-
sary enhancements to the platform’s monitoring systems to add the
features we have found. As discussed in §1.1, this task was dropped to
concentrate efforts in the improvements on the agents’ reasoning cycle.

• Validate the results: After we carry out the implementation of any
feature, we will have to test it to see how it affects the system. We will
have to develop different, independent tests, to see if the agents reason
better (or just differently), as well as some performance tests to see
if the changes are worth keeping or if the improvements they provide
come at a performance cost that is too high to be acceptable.

A.1.2 Sequence of tasks and dependencies

We have a set of several tasks that we have to accomplish in order to suc-
cessfully conduct this thesis. Now, we need to add time estimates to each
task, state what resources each will need, and set the dependencies between
the tasks.

First, we will need to organize the tasks into groups, for better man-
agement. Some groups will be the same as mentioned before (management,
research, etc.), but additional groups will need to be created for better clarity.
We have devised the following groups:

• T1: Project Management: This group comprises all tasks in the
project management group from §A.1.1, except for the last two:
document writing and thesis defence preparation, as these two tasks
will have to be done at the end of the project.

• T2: Research: This group comprises all tasks in the research group
from §A.1.1.
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• T3: Technical: This group comprises all tasks in the technical group
from §A.1.1.

• T4: Documentation: This task is the actual writing of the document
and all the findings and conclusions we produce.

• T5: Oral defence: This task is the preparation of slides, speech, and
everything related to this thesis’s defence.

A.2 Resources required

The purpose of this section is to list all the resources that are available to us,
as well as which resource each task will need. We have divided all available
resources between the following categories: software (SW), hardware (HW),
human, and material.

SW resources group everything that is a program which we will be em-
ploying. These are: the Overleaf editor, Google Calendar and Google Meet,
the repository to store and edit the code, an IDE and code editor, the Python
programming language, a Gannt chart editor, and the previous code for the
framework and the platform adaptation made by Dmitry.

HW resources group everything that is a computer or hardware which we
will be using:

• Microsoft Surface Pro 7 laptop: 8 GB RAM, Intel(R) Core(TM)
i5-1035G4 CPU @ 1.10GHz (8 cores).

• ASUS desktop computer: 16 GB RAM, Intel(R) Core(TM) i7-4790
CPU @ 3.60GHz.

• MareNostrum 4: We have 256 processors (2048 cores) of the super-
computer at our disposal to run benchmarks and other tests. These
are approximate numbers that are subject to change due to availability
reasons.

Human resources are the human capital which will be involved in this
project. This is me (the author), who will have to write, plan, and execute
this project. Then we have the director, Javier, who will conduct this project
and direct my efforts towards meaningful goals, as well as Dmitry and Sergio,
who will play similar roles. Finally, we have the GEP tutor, Joan, who will
oversee the management of this project and correct all deficiencies he detects
in this process.
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Material resources refer to books, scientific papers, articles, etc., that we
will employ in order to broaden our knowledge and to get ideas from.

A summary of everything stated here, plus an initial estimate of hours
for every task, can be consulted in Table A.1.

However, when we finished the project, we realized we had invested more
hours than stated. Therefore, we provide an updated table with the real
hours that have been worked in this project in Table A.2.
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ID Name of task Time (h) Dependencies Resources required
T1 Project Management 90
T1.1 Contextualization and scope 25 PC, Overleaf, GEP notes, D&R
T1.2 Project planning 10 PC, Overleaf, GEP notes
T1.3 Budget and sustainability 20 T1.2 PC, Overleaf, GEP notes
T1.4 Meetings 20 PC, Google Meet, D&R
T1.5 Final version of the document 15 T1.1, T1.2, T1.3 PC, Overleaf, GEP notes, D&R
T2 Research part 110
T2.1 Research to improve agents 50 PC, papers, books
T2.2 Research to improve monitoring 50 PC, papers, books
T2.3 Other research 10 PC, papers, books
T3 Technical part 150
T3.1 Assess the requirements of each feature 20 T2.1, T2.2 PC, papers, books
T3.2 Implement the improvements for the agents 55 T3.1 PC, papers, books, code, IDE
T3.3 Implement the improvements for monitoring 55 T3.1 PC, papers, books, code, IDE
T3.4 Validate the results 20 T3.2, T3.3 PC, D&R, supercomputer
T4 Documentation 90 T1.5, T3.* PC, results obtained, Overleaf, code, D&R
T5 Oral defence preparation 20 T4 PC, Office 365, results obtained, code
Total 460

Table A.1: Initial summary of all tasks [Own making]
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By inspecting Table A.1, we draw the (one of the many) critical path:
T1.1 → T1.2 → T1.3 → T1.5 → T2.1 → T2.2 → T3.1 → T3.2 → T3.3 →
T3.4 → T1.4 → T5

Which would take 430 hours, roughly the whole project. This project
seems to be very linear, because the final tasks, the ones about unifying all the
documentation, require all the research into the agents and the monitoring
system to be finished beforehand. If we were in a situation that required to
cut one of these two research options, the critical path would be reduced to
325 hours, assuming no extra hours.

In Table A.2 we can see that actually the tasks related to behaviour mon-
itoring have dissapeared, but that effort was moved to other tasks (mainly
T2.1 and T3,1, but also T2.3 and T3.4).
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ID Name of task Time (h) Dependencies Resources required
T1 Project Management 90
T1.1 Contextualization and scope 25 PC, Overleaf, GEP notes, D&R
T1.2 Project planning 10 PC, Overleaf, GEP notes
T1.3 Budget and sustainability 20 T1.2 PC, Overleaf, GEP notes
T1.4 Meetings 20 PC, Google Meet, D&R
T1.5 Final version of the document 15 T1.1, T1.2, T1.3 PC, Overleaf, GEP notes, D&R
T2 Research part 150
T2.1 Research to improve agents 135 PC, papers, books
T2.3 Other research 15 PC, papers, books
T3 Technical part 175
T3.1 Assess the requirements of each feature 25 T2.1, T2.2 PC, papers, books
T3.2 Implement the improvements for the agents 120 T3.1 PC, papers, books, code, IDE
T3.4 Validate the results 30 T3.2, T3.3 PC, D&R, supercomputer
T4 Documentation 110 T1.5, T3.* PC, results obtained, Overleaf, code, D&R
T5 Oral defence preparation 20 T4 PC, Office 365, results obtained, code
Total 545

Table A.2: Updated summary of all tasks [Own making]
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A.3 Initial Gantt chart

Figure A.1: Initial Gantt chart for this project [Own making]
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A.4 Updated Gantt chart

Figure A.2: Updated Gantt chart for this project, taking into account the actual work done [Own making]
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A.5 Risk management: alternative plans and

obstacles

Throughout the whole life cycle of this project, some obstacles may arise
and threaten to delay it, or even stop its progress. These potential risks are
listed below, and we will assign a risk level to them, according to both their
likelihood to materialize and how disruptive they would be if they occurred:

• Delays in the deadlines [high chance] [medium impact]: This
risk can be caused by many factors: an underestimation of the work-
load, interference with exams, simply lack of time, getting stuck on a
part of the project, etc. It is very likely that some internal deadlines
will not be met, however, that could also be corrected internally and
not end up affecting the whole project. If this risk were to materialize,
the alternative action would be to re-plan the rest of the project with
haste. This alternative task does not require any additional physical
resources. In fact, the only additional resource we would need is extra
time, not in the form of more days to work, but in the form of needing
to work more hours per day. This obstacle would mostly affect tasks
in the groups T4 and T5.

If it was not solved, it could heavily affect the duration of the project
by extending it, but we will take every precaution and action necessary
to prevent this from happening.

• Lack of familiarity with the platform [high chance] [medium
impact]: This risk is also highly likely to happen, as I, the author,
have never employed this project’s platform before. Its impact is still
somewhat limited, as the solution is very similar to that of the risk
above: re-schedule and re-plan in order to get back on schedule. Again,
the only necessary extra resource we would need is time, and also in
the form of working more hours per day (not extra days). This obstacle
would mostly affect tasks in the group T3.

If this obstacle was not solved, it would also heavily affect the duration
of the project by extending it, and we will take all the necessary actions
to avoid that as well.

• Very time-inefficient simulation results [medium chance] [high
impact]: It may be the case that every new addition to the platform
we produce makes running a multi-agent simulation on it unfeasible.
While the chance of this risk materializing is not very high, its impact
would indeed be: because it would mean we would not have improved
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the platform at all. If this were to happen, hopefully among the early
stages of development, the only correcting actions available would be to
either reduce the number of agents or, more in line with our objectives,
invest more hours into this task to find ways to optimize the code.
The only necessary resources here would be, once again, more working
hours in order to produce better code, and in case that was not enough,
we would need to make use of the MareNostrum to run the agents at
much higher speeds and therefore allow more complex simulations to
run smoothly (thus ”hiding” or ”disguising” the inefficiencies in the
code). This obstacle would mostly affect tasks in the groups T3.

If this obstacle was not solved, it could also affect the duration of the
project, but it would most likely affect the quality of the final results.
It is not likely that this happens, but in the worst-case scenario (we
produce inefficient code and we are unable to fix it), it would result in
the quality of the end product being lower, i.e, we would deliver the
project, and we would state that we have not been able to produce a
more efficient version of it.

The task that would most effectively deal with all these risks would be,
apart from the research and technical tasks, the meetings tasks, as with them
we could meet with the researchers in an effort to make use of their hindsights
and expertise on the field to correct the deficiencies as rapidly as possible.





Appendix B

Budget analysis and
Sustainability

The purpose of this annex is to provide a budget estimate for this project,
outlining all personnel costs per activity, generic costs, and other costs such
as incidents, and compare them with a cost analysis after the end of the
project. Furthermore, management control methods will be defined to con-
trol deviations that may occur due to unanticipated difficulties or obstacles.
Finally, aspects regarding the sustainability of the project will be covered.

B.1 Budget

B.1.1 Staff costs

Here we will provide a full list of all the roles that a project of this magnitude
needs in order to operate normally, as well as who will be covering those roles.
Additionally, we will relate each employee position with the tasks defined in
Appendix A, and how much it would cost per task and per employee.

In this project, we will distinguish between five different roles. Firstly,
the project manager will be tasked with the correct planning and natural
development of the project, as well as correcting the possible deviations that
might occur. This role will be played mainly by me, the author, but also
partly by the GEP tutor and the director of the project. Then, we have
the positions of the researcher, whose main goal is to explore the state of
the art on agents and to find different ways in which we can achieve the
goals we set in Chapter 1. This role will be mainly carried out by me, but
some help will be provided by the directors in case it were needed. The tasks
regarding programming and adding new features to the platform, and testing

119
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Role Cost (e/h)
Project manager 25
Researcher 27
Programmer 20
Tester 15
Technical writer 18

Table B.1: Average hourly wages per position [Own making]

and verifying the results, will be carried out by the programmer and the
tester, respectively. Both roles will be played mainly by me as well. Finally,
we will need to document all the results we produce and the findings we
discover, and this will be done by the technical writer, a role which will
also be played by me, the author.

Now, we will try to estimate the average economic compensation that
these positions would be receiving in a real project. The results have all
been extracted from the Glassdoor online portal, a website which allows to
compute the average salary for a position in a geographical area. The results
obtained can be checked in Table B.1. These hourly wages are gross, that is,
they already take into consideration the social charges and taxes in Spain.
From now on, when we speak about the total cost of a worker, we will be
referring to both their net salary, the taxes they pay in the form of personal
income, and the taxes that we have to pay as their employers.

Now, according to the hours destined for each task, in Table B.2 can
be seen the exact number of hours that each employee will be working and,
thus, how much it would cost to compensate them economically for their
work. In the table we have all the relevant information regarding cost per
activity: how many hours each staff will need to invest in the project, as
well as the total cost per task, which would be (without taking into account
corrections) of 14020e. Again, it should be noted that this figure already
includes taxation and social charges, since the hourly rates compiled in Table
B.1 take into consideration net perceived salary, personal income tax, and
the taxes that employers have to pay in Spain.

However, when actually doing the project, we had to update the numbers
of hours, as well as divert the hours of research into monitoring in favor of
research into improving the agents. All these new changes can be seen in
Table B.3.
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Task Proj. Man. Researcher Programmer Tester Tech. Wrt. Total cost (e)
Contextualization and scope 25h - - - - 625
Project planning 10h - - - - 250
Budget and sustainability 20h - - - - 500
Meetings 20h 20h 20h 20h 20h 2100
Final version of the document 5h - - - 10h 305
Research to improve agents - 50h - - - 1350
Research to improve monitoring - 50h - - - 1350
Other research - 10h - - - 270
Assess the requirements of each feature - - 20h - - 500
Implement the improvements for the agents - - 55h - - 1375
Implement the improvements for monitoring - - 55h - - 1375
Validate the results - - - 20h - 300
Documentation - - - - 90h 1620
Oral defence prep. 20h (simult.) 20h (simult.) 20h (simult.) 20h (simult.) 20h (simult.) 2100
Total 14020

Table B.2: Initial costs per task and per role [Own making]

Task Proj. Man. Researcher Programmer Tester Tech. Wrt. Total cost (e)
Contextualization and scope 25h - - - - 625
Project planning 10h - - - - 250
Budget and sustainability 20h - - - - 500
Meetings 20h 20h 20h 20h 20h 2100
Final version of the document 5h - - - 10h 305
Research to improve agents - 135h - - - 3645
Other research - 15h - - - 405
Assess the requirements of each feature - - 25h - - 500
Implement the improvements for the agents - - 120h - - 2400
Validate the results - - - 30h - 450
Documentation - - - - 110h 1980
Oral defence prep. 20h (simult.) 20h (simult.) 20h (simult.) 20h (simult.) 20h (simult.) 2100
Total 15260

Table B.3: Updated final costs per task and per role [Own making]
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HW resource Years of use Cost (e) Amortization (e)
Surface Pro laptop 3 1100 183.24
ASUS desktop 5 1000 99.95

Table B.4: Amortization per HW resource [Own making]

B.1.2 Amortization of the resources

Now, we will compute the amortization of the HW resources that will be
used to develop this project. We will take into account the updated number
of hours. However, we will still provide the previously computed costs, to
see the difference, at the end of this major section. The amortization of any
given piece can be calculated as follows:

Amort = price× 1
years of use

× 1
days of use

× 1
hours per day

× hours used

In Table B.4 then can be consulted the amortization of both computers that
we will be employing. The MareNostrum will not be taken into consideration
because the platform makes use of the COMPSs library, which allows scala-
bility to be tested in any system, and we will only resort to using HPC (and,
therefore, using the MareNostrum) if we deem it necessary due to our com-
puters being too slow. In summary, we will not be using the MareNostrum
from the beginning, only if need it during the development of the project,
and in that case we would provide an analysis of the costs that making use of
the supercomputer would carry. The work will be approximately evenly dis-
tributed between each HW piece, and the resources will be used all the time
(including meetings (virtual), reading (PDFs and electronic books), etc.).
Therefore, if the project would normally last 545 hours over 128 days (4.26
h/day), it will be assumed that each computer will be used 272.5, according
to the previous assumption.

These numbers have been calculated as follows, using the aforementioned
formula:

• Surface Pro Laptop: Amort = 1100 × 1
3yrs

× 1
128days

× 1
4.26hrs

×
272.5hrs = 183.24e.

• ASUS Desktop: Amort = 1000× 1
5yrs

× 1
128days

× 1
4.26hrs

×272.5hrs =
99.95e.

SW resources will not be taken into consideration because all SW we will
be using are free-of-charge, and so are all the books and sources we will be
consulting.

Therefore, the total amortization costs amount to 283.19e.
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B.1.3 Other indirect costs

In order to make the budget more realistic, here we will include all the
other indirect costs that are worth taking into account. That is, Internet
access (crucial for the meetings, writing on Overleaf, etc.), electricity costs
(electricity is crucial to work on a computer, for obvious reasons), and travel
costs. These costs have also been updated to reflect the newly added hours.

• Internet cost: My usual Internet bill is of 100e. Therefore, the total
Internet cost for this project has been of: (100e/(24*30)) * 545h =
75.69e. This has been calculated by computing the hourly cost of my
Internet bill, and then multiplying by the total number of hours that
the project will take (since every one of those hours will require access
to the Internet).

• Electricity cost: The average power consumption by a laptop is 75
W/h, and the average power consumption by a desktop is 200 W/h.
In terms of energy, that is 270 kJ/h and 720 kJ/h, respectively. Since
we will be using each computer for 272.5 hours, the total consumption
of the laptop is expected to be of 270 kJ/h * 272.5 h = 75.575 MJ,
and for the laptop the figure would be of 720 kJ/h * 272.5 h = 196.2
MJ, for a total of 271.775 MJ of energy. Now, how to translate that
into euros is a bit complicated, seeing how at the current year (2022),
we are in the middle of a Europe-wide energy crisis, where the average
price of electricity has seen an increase of over 10 times (1000%) what
it used to be just a year ago. Nonetheless, we will assume that the last
two week’s average price of a MWh of energy will stay constant for the
almost 5 months of the project. That cost is 350e/MWh. Given that
271.775 MJ are 0.0755 MWh, we get a total energy cost of 26.43e.

• Transportation costs: Since we will be working fully from home:
from meetings, to doing research, to coding, etc., the costs associated
with commuting will amount to a total of 0e.

• Workplace costs: Our employees need a place where they can meet,
develop the project, and carry out their roles’ designated activities.
All the work of this project will be done either online (e.g., meeting
through Google Meet) or at the author’s home. Rent around their zone
is of about 1100e/month on average, and since the project will take 4
months, the total workplace costs amount to 4400e.

The total indirect costs are of 4502.12e.
Therefore, the total genetic costs (amortization + indirect) amount to

283.19e+ 4502.12e= 4785.31e.
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B.1.4 Deviations and contingencies

Contingency costs
In order to ensure the natural and correct development of the project, we need
to take into account the very real possibility that our initial budget may not
be enough. That is, we need to plan for contingencies and deviations in our
original planning. Due to this, it is always necessary to prepare a contingency
fund to act as a reserve of capital that we may need to make use of, should
any deviations occur. Here, we provide these costs with the original number
of working hours, since the whole point and nature of contingency costs is
that they are calculated before work on the project starts.

For the staff costs, we will add a 15% of its cost as a contingency fund
(15% of 14020e= 2103e).

Finally, for the indirect costs, due to the nature of the project (limited by
a hard deadline), we consider that it is less likely that we will need to make
further use of indirect resources than we have planned. Because of that, we
will only be adding a 5% contingency fund for them: 5% of 433,48 = 21,68e.

Additionally, due to this current year’s geopolitical and global context
regarding energy prices, we will be including a flat 200eextra contingency
fund that can only be spent on electricity, just in case energy prices go even
higher.

Therefore, all contingency costs amount to a total of 2065.5e+ 21.68e+
200e= 2324.68e.

Incidental costs:
We have identified possible risks that might delay the natural course of the
project. Now, in this section, we will quantify the cost of each of these risks
materializing, and then estimate the probability of them happening, in order
to decide how much money we should be assigning to each potential incident.
The results can be checked in Table B.5.

Since all the risks’ solutions involved working more hours than planned,
the estimated costs all come directly from having to cover higher staff costs
than foreseen. The probability of a risk happening has been roughly esti-
mated, always using conservative figures and trying to overestimate instead
of underestimate. Finally, the actual cost is the result of multiplying the
estimated cost by the estimated chance of it happening.

As can be seen in the aforementioned table, the total budget destined to
incidental costs amounts to 915e.
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Incident Solution Estimated costs (e) Risk (%) Final cost (e)
Delays in the deadlines 20h extra work for everyone 2100 25 525
Lack of familiarity with the platform 30h extra work for programmer 600 30 180
Very time-inefficient simulation results 30h extra work for programmer and tester 1050 20 210
Total 915

Table B.5: Summary of incidental costs [Own making]

Type Cost(e)
Staff costs 14020
Amortization 285.07
Other indirect 4486.05
Contingency 2324.68
Incidents 915
Total 22030.80

Table B.6: Initial summary of all costs [Own making]

B.1.5 Total costs

In this section, we will provide a table summarizing all the costs calculated
before starting the project. Such table is Table B.6. However, the actual
costs of the project, calculated after it was finished, are displayed in Table
B.7.

As can be seen, the total, final cost of the project, accounting for contin-
gencies, incidents, etc., would amount to 23284.99e. The initially calculated
costs are of 22030.80e. Therefore, we have spent more than initially planned,
more concretely 1254.19e. However, this extra cost can be covered by the
contingency funds, that exist specifically to deal with these deviations.

B.1.6 Management control

Despite the fact that we have described the subset of the budget set aside
for incidents and contingencies, we still have not described how the potential

Type Cost(e)
Staff costs 15260
Amortization 283.19
Other indirect 4502.12
Contingency 2324.68
Incidents 915
Total 23284.99

Table B.7: Final summary of all costs [Own making]
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budget deviations will be modeled and detected.

The approach will be the following: during the development of each task,
we will calculate how much it is costing so far, compare it to the estimated
cost, and then deliberate. If at any given point we have consumed less or
equal money than expected, then nothing is to be done besides writing down
the ”good” deviation of the budget. If, however, at any given point we
have consumed more money than expected at that point, then we would
compute deviation = (estimated cost) - (current cost), and swiftly access
the contingency and the appropriate incident funds in order to correct the
deviation.

It should be noted that the deviation factor reveals how far the actual
cost differs from the estimated cost. If the difference between the estimated
and actual costs is positive, it indicates that the job cost was overestimated,
and we might redirect this extra resources for other possible risks. If the
difference is negative, on the other hand, we must allocate a portion of the
contingency budget to the work in order to cover the deviation, as stated in
the above paragraph.

How the process works
Every agile iteration, we will compute the following indicators:

• Current cost: this will be computed ad-hoc, by taking into account the
hours invested so far, and using them to calculate how much we have
spent up to the current agile sprint.

• Estimated cost: this represents how much we should have spent on a
task given its current state and the duration of the task. For example,
if the cost of a task is set to 200e, and we have currently completed
50% of the task, then the estimated cost would be 100e.

• Deviation: the deviation will simply be the difference between the es-
timated cost and the current cost. A positive deviation will be a good
sign, and a negative deviation will trigger an extraordinary meeting to
discuss which corrective actions to carry out and which contingency
mechanisms to activate. Most of these corrective actions will proba-
bly be in the form of working more hours per day, at least until the
deviation is fixed.
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B.2 Sustainability

B.2.1 Self-assessment

Whenever we find ourselves involved with a new project in the 21st century,
it is of the utmost importance to carefully measure the sustainability of
the enterprise we are undertaking, not only to analyze its impact on the
environment and society, but also to consider whether it is actually worth
carrying out or if its impacts may be too high in comparison to its boons
and benefits.

In today’s modern world, it is crucial to analyze every detail of the work
we conduct to ensure not only that it will have the minimum negative impact
on the environment, but also how it will affect society, both on its economic
dimension and its social dimension as well: how will our work be used? Who
will benefit from it the most? Will it help empower minority groups that
have had it rough in the past? Will it have negative economic impacts on
groups already in a precarious situation? Or, in the contrary, could such
groups benefit from our work?

Before taking this poll, my main thoughts regarding sustainability were al-
ways related to the environment: I always thought sustainability only meant
having the smallest possible footprint on the environment and on Earth.
However, upon deeper inspection and reflection, I have come to realize that
sustainability is not as one-dimensional and most people (myself included)
normally think of it. We also have to take into consideration the mark that
our projects might have on society as a whole and also on individuals and
groups of people.

All these very important questions will have an answer during this section,
as we explore everything related to the sustainability of our project.

B.2.2 Economic dimension

Regarding PPP: Reflection on the cost you have estimated for the
completion of the project
Section B.2.1 of this appendix is dedicated in its entirety to estimate the
total cost of the project, breaking it down into different categories and also
taking into account contingencies, deviations, and incidents.
Regarding Useful Life: How are currently solved economic issues
(costs...) related to the problem that you want to address (state
of the art)?, and how will your solution improve economic issues
(costs ...) with respect other existing solutions?
The idea of using this agent platform is to make reasoning more scalable to
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different computer architectures, which could allow people running simulators
to take advantage of different infrastructure and be more efficient in their
simulations, thus requiring a smaller computation time and, thus, consuming
fewer energy or other valuable resources (computational time is one of such
valuable resources, because time spent computing one thing is time not spent
computing another thing).

B.2.3 Environmental dimension

Regarding PPP: Have you estimated the environmental impact of
the project?
Since an important part of the nature of this project is research, it is difficult
to estimate. However, the biggest environmental impact will probably come
from running benchmarks at the MareNostrum, which we will try to mini-
mize, or to outright avoid, and in case we need to run them, we will carefully
analyze its cost and its impact.
Regarding PPP: Did you plan to minimize its impact, for example,
by reusing resources?
Since we will be programming and researching, we will not use any physical
resources to produce anything physical. And the computers we will be using
are my personal computers which I will continue to use after this project.
Regarding Useful Life: How is currently solved the problem that
you want to address (state of the art)?, and how will your solution
improve the environment with respect other existing solutions?
We aim to do a powerful micro-simulation that will make it easier to analyze
more complex social phenomena with fewer runs, and the reduction of runs
may have a positive effect in the environment or, more accurately, a less
negative impact.

B.2.4 Social dimension

Regarding PPP: What do you think you will achieve -in terms of
personal growth- from doing this project
Related to the topic of the project: knowledge about agents, multi-agent
systems, high-performance computing and parallel computational models,
etc.

More general skills: project management skills, assessing the sustainabil-
ity and impact of the project, planning using contingency plans, learn how
to work using agile methodology, etc
Regarding Useful Life: How is currently solved the problem that
you want to address (state of the art)?, and how will your solution
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improve the quality of life (social dimension) with respect other
existing solutions?
Because the study is exploratory, this is a question that will be answered
once the project is completed. However, the techniques we will integrate are
likely to already exist; our work will mostly focus on integrating and evaluat-
ing the scalability of the aforementioned techniques. In that sense, progress
over the current state of the art will mostly consist in enabling researchers
all over the world to run these methods in a more scalable manner.
Regarding Useful Life: Is there a real need for the project?
Yes. The field of MAS and agent-based simulations has a myriad of real-world
applications that rise in demand every year. Some worth mentioning are
social sciences, simulation of complex environments, traffic, policy-making,
economic, behavioural sciences, etc.





Appendix C

Extra Goodsprings examples

This appendix provides some screen captures to other examples of the execu-
tions of Bob and Alice in the Goodsprings scenario. These captures provide
further proof that goal selection an task selection works properly with respect
to the defined priorities.

Figure C.1: Agent Bob choosing his default preferred means of transport
[Own making]
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Figure C.2: Agent Bob choosing his second preferred means of transport, as
the first was not available [Own making]

Figure C.3: Agents Alice and Bob choosing their preferred means of transport
for when it snows [Own making]
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Figure C.4: Agent Alice having chosen her preferred meal for when it rains,
while agent Bob has used his preferred means of transport for when it rains
[Own making]


