
Discrimination in the reading of an optical
encoder

Degree Thesis
submitted to the Faculty of the

Escola Tècnica d’Enginyeria de Telecomunicació de Barcelona
Universitat Politècnica de Catalunya

by

Brenda Juliana Fernández Alayo

In partial fulfillment
of the requirements for the degree in

(Grau en Enginyeria de Tecnologies i Serveis de Telecomunicació) ENGINEERING

Advisor : Olga Muñoz Medina
Barcelona, January 2021

Contents

List of Figures 5

List of Tables 5

1 Introduction 9
1.1 Requirements and specifications . 9
1.2 Work’s continuation . 10
1.3 Work plan, Tasks and Milestones . 10

1.3.1 Define specifications . 10
1.3.2 Encoder emulation and data processing 10
1.3.3 Neural Network . 11
1.3.4 Milestones . 11

1.4 Gantt Diagram . 12
1.5 Deviations and incidences . 13

2 State of the art of the technology used or applied in this thesis: 15
2.1 The use of encoders . 15
2.2 Optical encoder . 16

2.2.1 Fordward and backward . 16
2.2.2 Performance with errors . 16

2.3 Neural Networks . 18
2.3.1 Structure of an artificial neuron . 18
2.3.2 Model of an artificial neuron . 18
2.3.3 Back-propagation . 19
2.3.4 Application list . 19

2.4 Digilent Cmod A7 35T FPGA . 20
2.4.1 Characteristics . 20
2.4.2 Useful data . 21

2.5 TCL language . 21
2.5.1 Applications . 21

3 Encoder parameters 22

4 Vivado modules 24
4.1 Frequency divisor . 24
4.2 Encoder emulation . 24

4.2.1 Encoder operator . 24
4.2.2 Encoder units position . 25
4.2.3 Encoder units to AB signals . 26
4.2.4 Error generator . 28

4.3 Cmod A7 . 31
4.3.1 AB’s transition change . 31
4.3.2 Address control . 31
4.3.3 Read data’s RAM . 32

2

4.4 RAM Memory . 32
4.5 Store data to a file . 33
4.6 Constraints . 33

4.6.1 CmodA7 constraints xdc file . 33

5 Vivado waveform results 35
5.1 Encoder emulation . 35
5.2 Cmod A7 . 38
5.3 Final block diagram . 39

6 Python code 41
6.1 Data process code . 41
6.2 Neural Network code . 43

6.2.1 Neural Network training process . 44

7 Budget 46

8 Conclusions 47

9 Future Work 47

References 49

Appendices 50

A Encoder parameters 50

B Frequency divisor 51

C Encoder Operator 52

D Encoder position 54

E Error generator and control 55

F Encoder position to AB signal 58

G Transition’s AB capture 59

H Memory controller 60

I RAM Emulation 62

J Pulse train to read RAM 63

K Store data to text file 64

L Python data process 65

3

M Python Neural Network Analysis 67

4

List of Figures

1 Project’s Gantt diagram 1 . 12
2 Project’s Gantt diagram 2 . 13
3 HP printer Multi Jet Fusion . 15
4 Encoder’s signals A and B . 16
5 Appearance of errors in a positive direction 17
6 Appearance of errors in a negative direction 17
7 structure . 18
8 Cmod A7 FPGA . 20
9 FPGA’s Cristal clock . 24
10 Module: Encoder operator . 25
11 Integral to obtain posOut . 25
12 Module: Encoder position . 26
13 States in a single peu . 26
14 Error in a X”7F” euPos7,6 . 27
15 Error in a X”3F” euPos7,6 . 27
16 Module: Error generator . 28
17 Analysis error in a positive direction . 30
18 Analysis error in a negative direction . 30
19 Module: AB’s transition change . 31
20 Module: Address control . 32
21 Module: Read data from RAM . 32
22 Module: RAM Memory . 32
23 Module: Data to file . 33
24 Cmod A7 conexions . 34
25 Encoder emulation . 36
26 Encoder emulation wave 1 . 36
27 Encoder emulation wave 2 . 37
28 Encoder emulation wave 3 . 37
29 Encoder emulation wave 4 . 37
30 Module: Cmod A7 . 38
31 Cmod A7 wave 1 . 39
32 Cmod A7 wave 2 . 39
33 Project . 40
34 Cumulative error . 45

List of Tables

1 Constant’s table . 22
2 Equivalences’s table . 23
3 Calculation’s table . 23
4 AB’s table . 26

5

Abbreviations

ANS Automatic Neural System

BP Back Propagation

CE Chip Enable

ETSETB Barcelona School of Telecommunications Engeneering

EU European Union

HP Hewlett-Packard

MAE Matlab i les seves Aplicacions a l’Enginyeria

MLP MulriLayer Perceptron

MSE Mean Squared Error

NN Neural Network

OE Output Enable

PCB Printed Circuit Board

PEU Physical Encoder Unit

PWM Pulse Width Modulation

RAM Random Access Memory

TCL Tool Command Language

VHDL VHSIC (Very High Speed Integrated Circuits) Hardware Description Language

WE Write Enable

6

Abstract

The analysis of an electrical fault in an industrial machine goes through several tests
to narrow down the actual problem from a mechatronic subsystem. The process itself
brings along an economic and time inversion which in some cases can affect the timeline.
This study aims to determine the presence of anomalies in a strip encoder in order to
avoid electrical issues in future performances. Specifically, it investigates whether the
data collected from an optical encoder is reliable.

To imitate the output signal from the encoder, an FPGA was used to reproduce it using
VHDL language. With the help of the Cmod A7 buttons, the PCB emulates an encoder
and stores the data into the RAM for its subsequent analysis. The result of the sequence
is done by a neural networks process code with Python.

These results suggest whether the data’s collection has any damages or it can be considered
meaningful.

7

Revision history and approval record

Revision Date Purpose
0 09/12/2021 Document creation
1 22/01/2022 Document revision

DOCUMENT DISTRIBUTION LIST

Name e-mail
Brenda Juliana Fernández Alayo brenda.fernandez@estudiantat.upc.edu
Olga Muñoz Medina olga.munoz@upc.edu

Written by: Reviewed and approved by:
Date 09/12/2021 Date 23/01/2022
Name Brenda Juliana Fernández Alayo Name Olga Muñoz Medina
Position Project Author Position Project Supervisor

8

1 Introduction

The project is based on personal growth for discoveries that could solve several issues in
the industrial sector.

The potential system approach is to capture all information from an optical encoder into
an FPGA. The module function is to store data and pin down if there has been an anomaly
in the reading.

The motivation of this topic is to avoid any troubleshooting when a workflow that includes
displacement is running. The following text expose a situation where the procedure could
be useful:

“An industrial machine needs to move a carriage with a certain potency from point A to B. The

motor and its optical encoder allow the element to complete the order. In case the strip encoder

was damaged, the firmware would indicate a wrong position, then the machine would inject more

PWM to compensate the deviation. If a certain timeout was exceeded, an electrical fault would

appear.”

To sum up, the main goals that determine the success of this project are two. First of
all, the system must solve the algorithm, that collects all data, to detect any error on the
strip encoder. On another note, the product is expected to be working properly on an
industrial machine.

1.1 Requirements and specifications

In order to get a successful system is crucial to establish the following requirements:

• Capture the optical encoder information into a FPGA.

Among all the possible modules I can use, the FPGA is the one that allows to store
data on its memory with a certain sample frequency. Another option would be to
save it on a processor ARM, even though the code can slow down the process.

• Save data sensor in real time.

The “real time” aspect is really significant to bring about the installation in a
machine while it is running and catch all the movement whether the test fails or
not.

• Make use of neural networks to analyse the encoder data

With the help of Python and Tensorflow, the data can be analysed to define an only
output that reflects how much the strip encoder is damaged.

The way forward is to rule some specifications of the system that are going to conditionate
the metrics:

• System of 150 LPI (Lines Per Inch).

• Physic encoder unit 1/4/150 inches.

• Acceleration of 0.12 of the gravity value.

9

1.2 Work’s continuation

It is fair to point out that my final project on MAE was based on this idea. The MATLAB
code had encoder states and timestamps as inputs. With this information the algorithm
analyses the data in pack of 4 samples to nail down the direction of the movement.

The encoder behaves different if it goes backward or forward, so each of cases follows a
pattern that can be easily detected.

Once the assumed direction is fixed, some calculus must be done to obtain the position
and speed. Moreover, the inputs were transitions of states, that means that between each
sample, there were never the same one, so in case there were more than one loss of count
the pattern determined previously would not be useful. This system worked, but taking
into account the timeline of the subject, the analysis was just done for a loss of 1 sample
in both directions. It entails that all the possibilities were not enclosed, that is why my
final degree work want to achieve this fact and make it functional on a real machine.

1.3 Work plan, Tasks and Milestones

The project consists of three work packages that will mark the workflow and organize the
tasks to be implemented.

1.3.1 Define specifications

The first work package is the most important for the FPGA implementation. The list of
parameters is not trivial because that time is when all the specifications get involve in
the project and influence the FPGA choice.

• Internal task 1: List of parameters.

• Internal task 2: FPGA match.

• Internal task 3: Create a MATLAB file.

1.3.2 Encoder emulation and data processing

The encoder data processing is approached in this section. An encoder emulation simulates
a real output so the test can use it instead of catching traces from a running machine.
Once the first internal task is accomplished, the storage data into memory takes part in
the work package.

• Internal task 1: : Introduction in Xilinx.

• Internal task 2: Module designed to mark the movement transitions where the be-
haviour will be determined.

• Internal task 3: Generate encoder units.

• Internal task 4: Convert encoder units to signals A and B.

10

• Internal task 5: Contains tasks 3 and 4, its purpose is to transform the speed and
position to its binary designation of A and B channels.

• Internal task 6: The tasks 3 and 4 were modified in order to take into account
possible error introduced from the environment.

• Internal task 7: Generate encoder units using Ca2 to detect the backwards direction
too.

• Internal task 8: Control the flow of errors introduced and behaves depending on
physical encoder position.

• Internal task T9: [Matlab] Choose the first error´s appearance probability.

• Internal task T10: [Matlab] Choose the type of probability for the length of the
error.

• Internal task T11: [Matlab] Choose the probability in which the error is reproduced
repeatedly.

• Internal task T12: Transfer data into FPGA’s memory.

• Internal task T13: Extract data from FPGA to text file.

1.3.3 Neural Network

The neural network is used to determine the state of the strip encoder. In order to create
a network well structured, there must be several tests to narrow down the one that suits
better for this issue.

• Internal task T1: Neural Network background.

• Internal task T2: Process dara from file.

• Internal task T3: Decide the inputs on the neuronal network.

1.3.4 Milestones

• Create a MATLAB file: Once the MATLAB file is created, the parameters for the
Xilinx simulation are set and the VHDL code can be started.

• Emulatation into a text file: This task is a tipping point for the transition to the
neuronal network to begin with the next issue, so the data is ready to be analysed.

• Python NN: Focused of the matter of finding out if the reading of an encoder
emulation carries an error.

11

1.4 Gantt Diagram

Two main topics have been addressed: the emulation of an encoder that can reproduce
errors when counts are lost, but at the same time the generation of random errors on the
sample is studied, along with the simulation of a RAM memory.

On the other hand, the neural network analysis is correlated to the previous topic status,
that implicates druging the delays accumulated from the emulation.

The work package 2 contains a gradual evolution where a lot of time is dedicated to each
module and it is not until November that several tasks overlap. It is important to highlight
that although the timing indicates that a module is apparently finished but it is not until
time after that unforeseen situations appear and hcange the course of schedule and VHDL
code needs to be redone.

Figure 1: Gantt diagram of the project [October - November]

In December it was possible to make considerable progress on the project, but at the same
time modifications were made that delayed it. Crucial decisions for the work were made
on those dates, such as parameters with which the neural networks were going to measure
to decide if the sample had faults or not.

12

Figure 2: Gantt diagram of the project [December - January]

1.5 Deviations and incidences

Throughout the project, modifications have been made to the work plan. The fact of
having a full-time schedule while studying the TFG has affected the amount of time
applicable to the subject.

On the one hand, the initial delays were caused by the lack of knowledge of the tools.
Vivado was used at the end of the degree but its use can not be compared to this time. On
the other hand, the data analysis was to be implemented through a neural network, but
this topic had not been studied before, so various tools were used, such as video tutorials
on YouTube, informative web pages and the purchase of a specialized book. in ”Neural
networks and fuzzy systems” [6].

As soon as block-by-block simulations began, no problems were found, but when doing the
final project, the execution time increased considerably, so obtaining a sample involved
almost 30 minutes.

The generation of errors started in MATLAB where the necessary calculations were made
and saved in a text file that was going to be read later by one of the modules in Vivado.
This was changed and ended up randomly generating errors in one of the tool’s modules.

In the work, two frequencies have been used, which have had to be generated starting
from the crystal clock that the Cmod A7 module had. The 1.5 MHz frequency has been
used for encoder emulation and the 10 MHz frequency is entered into the module’s RAM
for reading and writing.

13

Lastly, by spending a lot of time to obtain the simulation, it has been difficult to obtain
data. That is why, in order to solve this inconvenience, it has been decided to reduce the
length of the sample from 4 meters round trip to 1.

14

2 State of the art of the technology used or applied

in this thesis:

Nowadays the 3D printers market has been expanded to its highest level, where the area
envolves plastic and metal products. As it is known, a 3D pieces can be made with different
materials that achieve the creation of a build. It is fair to point out that in my current
job the principal material used in the printing workflow is powder plastic. This plastic is
composed by particles that can produce errors on the printing if the sealing is not in good
condition. In case of air leaks the powder could be filtered to several subsystems of the
printer and affect its performance.

Printing machines used in HP has a component which paints on the bed (surface trolley)
the plot demanded, this one uses a motor for its displacement and an optical encoder to
accomplish a certain precision. There has been some issues related with bad performance
of this element, these have inspired the thesis in question.

Figure 3: HP printer Multi Jet Fusion (arrow indicates the carriage element).

2.1 The use of encoders

The previous explanation introduces the source of the main objective in this analysis.

Many devices use encoders along with motors to operate with high accurary. A machine
in client can behave incorrectly in case the optical encoder indicates a wrong position,
the workflow tries to compensate the disruption to reach out the reference position, so
the firmware demands more PWM (Pulse-width modulation) to redirect the motor. This
order does not solve the issue but worsen the course, which can lead to a crash with
another component or a surpass of threshold of displacement. The workflow ends with an
electrical fault, so the impact was considered an obstacle which had to be surpassed by
an increase of potency that ended up exceeding the maximum in a certain timeout.

In order to avoid that situation it is necessary to corroborate the state of the strip encoder
but in a build where the engine needs to be ready, the error above can be easily narrowed
down to an encoder issue with a system that analysies the traces of its output and inform
its reliability.

15

2.2 Optical encoder

An optical encoder is a type of motion sensing device that uses light shone through a
coded disk to track the movement of a shaft. The encoder provides feedback based on
the interruption of light [1]. The light beam is picked up by a photodiode array which
responds producing a sinusoidal wave form that is transformed into a square wave or pulse
train. The electronic signals from the photodetector are analysed in the same manner as
the quadrature signals from an interferometer [2], this second signal is used to determine
more detailed motion information, like the orientation of the signals [3].

2.2.1 Fordward and backward

As forementioned, the output from an optical encoder are two signals in quadrature. The
signal A follows the same performance as the strip encoder while B has an offset in phase
of 90 positive degrees with forward directions and negative otherwise.

An encoder period contain four states that allow to distinguish the orientation of the
movement and catch errors when the time between two transitions is not the expected.
The delay among states is fixed by the speed of the test, and is called ”T state”.

The signals A and B follow the next pattern {”00”, ”10” , ”11”, ”01”} on a forward
direction, however the backward matches with {”01”, ”11” , ”10”, ”00”} . These four
transitions are asociated this way:

S0 : ”00”, S1 : ”10”, S2 : ”11”, S3 : ”01”

Figure 4: Signals A and B performance.

2.2.2 Performance with errors

When there is a loss of count the signals do not always match theirs patterns, moreover
delays are inserted on the operation. On a forward situation, the loss of one count affects
the next two transition periods. State S2 looks forward to receive a S3, but the system
goes back to S1 with the double of its expected T state, T line. This last state remains
three times the T state and continues decreasing to S0. On top of it, the channel starts
to recompose and increment to S1 with a T line delay.

16

Figure 5: Appearance of errors in a positive direction.

Regarding the backward performance, when a count is missed the pattern is not affected,
instead the shift from S1 to S0 carries out a retard of 5 times the T state.

Figure 6: Appearance of errors in a negative direction.

It turns out that in forward mode, the theory says that B is activated in high level,
however on the opposite direction the signal is triggered in low level.

17

2.3 Neural Networks

Neural networks, also known as artificial neural networks (ANNs) or simulated neural
networks (SNNs), are a subset of machine learning and are at the heart of deep learning
algorithms. Their name and structure are inspired by the human brain, mimicking the
way that biological neurons signal to one another [8].

2.3.1 Structure of an artificial neuron

The ANS mimic the hardware structure of the nervous system, with the intention of
building parallel, distributed and adaptive information processing systems, which can
present a certain ”intelligent” behavior.

Figure 7: Artificial neuron structure.

2.3.2 Model of an artificial neuron

General model of artificial neuron: an elementary processor or neuron is a simple cal-
culation device that, based on an input vector from the outside or from other neurons,
provides a single response or output.

The following elements make up a neuron:

• Set of inputs

• Synaptic weights that represent the intensity of interaction between each presynaptic
neuron and the postsynaptic neuron.

• Propagation rule, which provides the value of the postsynaptic potential of the
neuron as a function of its weights and inputs.

• Activation function, provides the state of the current activation of the neuron as a
function of the previous state and postsynaptic se current.

18

• Output function, gives the current output of the neuron based on its activation
state.

The input and output variables can be binary or continuous, depending on the application
model.

2.3.3 Back-propagation

A solution to the problem of training the hidden layer nodes of multilayer architectures
is provided by the back-propagation algorithm or BP.

The procedure to follow to train a given MLP architecture using BP is as follows:

1. Randomly set initial weights and thresholds

2. For each pattern µ in the learning set:

(a) Perform an execution phase to get the network response to the µ-th pattern.

(b) Calculate the associated error signals ∆µ
k and ∆µ

j

(c) Calculate the partial increase in weights and thresholds due to each pattern µ

3. Calculate the current total increment of the weights and do the same for the biases.

4. Update weights and bias

5. Compute the current error and return to point if still not successful.

2.3.4 Application list

The examples of application of neural networks that we will comment on below always
correspond to commercial products.

• Telecommunications. They have been used to build linear equalizers and echo can-
cellers that are used in modems that work with high-speed transmission.

• Fraud with credit cards.

• Recognition of printed characters.

• Speech recognition.

• Medical applications.

19

2.4 Digilent Cmod A7 35T FPGA

The Digilent Cmod A7 is a small, 48-pin DIP form factor board built around a Xilinx
Artix 7 FPGA. There are 44 Digital FPGA I/O signals and two FPGA Analog inputs that
are routed to 100-mil-spaced through-hole pins so that users can integrate programmable
logic design directly into a solderless breadboard circuit [5].

2.4.1 Characteristics

The following information predetermine the entire project, due to the capacity able to
store in its memory and the length of information to analyse.

Moreover, the buttons allow the user to take part in the modality of the FPGA code.

Features

• 512 kB SRAM with an 8-bit bus and 8 ns access times

• 4 MB Quad-SPI Flash o USB-JTAG Programming Circuitry

• Powered from USB or external 3.3 - 5.5 V supply connected to DIP pins

Interaction and Sensory Devices

• 2 LEDs

• 1 RGB LED

• 2 Push Buttons

Expansion Connectors and System Connectivity

• 48-pin DIP connector with 44 Digital I/O and 2 Analog inputs (0-3.3V)

• One Pmod connector with 8 Digital I/O

• USB-UART bridge

Figure 8: Cmod A7 FPGA.

20

2.4.2 Useful data

The capacity of the RAM determine the clock used in the encoder emulation, thus specifies
the length measurable. The maximum data is 512 kB, which means that the address bus
contains 19 bits.

The second and most important information fall on the 8 bit bus of data. Taking into
account that two of them are reserved for the channels A and B, the remaining data is
fixed further down.

2.5 TCL language

TCL is a very simple programming language. If you have programmed before, you can
learn enough to write interesting TCL programs within a few hours. This page provides a
quick overview of the main features of TCL. After reading this you’ll probably be able to
start writing simple TCL scripts on your own; however, we recommend that you consult
one of the many available TCL books for more complete information [?].

TCL was designed from the outset as a flexible language with a small core, that could
be adapted in ways the original authors couldn’t have foreseen. Indeed, thanks to this
flexibility, TCL has been used in everything from Cisco routers and Tivo set top boxes,
to AOL’s web servers, to the NBC television network’s control center.

2.5.1 Applications

Thanks to its strong string manipulation and networking capabilities, TCL is a great
match for web applications. Available software runs the gamut from client side libraries
and utilities, web servers ranging from skinny embeddable libraries to full blown enterprise
class servers like AOLServer, to a variety of application frameworks.

In the early years, Tk helped establish TCL’s popularity as the only sane way to write
GUI applications under Unix and X11. People found TCL’s dynamic approach a natural
fit for GUI’s, making GUI development much easier and faster than with lower-level C
and C++ oriented toolkits.

In modern times, Tk is still the leader when it comes to delivering a high level GUI cross-
platform toolkit that naturally fits in with dynamic languages. Furthermore, theming
support added in Tk 8.5 enables a native look on Unix, Windows and Mac OS X platforms.

Long before ”test-driven development” had become a buzzword, TCL had been well estab-
lished as a testing powerhouse, leveraging its ability to easily interface with other software
and hardware.

Because TCL is a very compact language, and is easily integrated with special hardware,
it is a popular choice for embedded development. You’ll find TCL hidden away on many
devices, including many networking products from Cisco and others, and set-top boxes
including Tivo. Embedding TCL within other software projects is of course also hugely
popular, and has become the dominant control language in some industries, such as in
electronic design automation (EDA) and computer-aided design (CAD) applications.

21

3 Encoder parameters

The MATLAB tool was used in order to specify if the project could done accomplishing
the specifications demanded.

The order of the process was to fix a number of meters to know if the FPGA could handle
it with its capacity. The whole amount of calculations were done using the following
specifications:

• An strip encoder por 150 LPI (lines per inch)

• Speed of 20 IPS (inches per second)

A pysical encoder unit, which can be black or white, must be fractioned in a number
power of 2 in order to easy the problem. This subdivision is named ”eu” and is going to
be the resolution of the system, so a new abstract unit is created. This eu is the number of
times the FPGA triggers its cristal clock to receive information from the optical encoder
in one pyshical encoder unit. As it can be seen below, the number power of two chosen is
7.

1peu = 27eu

It is crutial to mentioned that the data stored in the module Cmod A7 are just the
transitions of change of the channels A and B, so the capacity needed follows the next
rule.

2capacity−7 < 219

With this operation, the length of eu is fixed to 24 bits that allows negative values. The
next step is to define the constants of equivalence; as it is a system of 150 LPI, one physical
encoder unit is is equal to 150 multiply by 4 because each signal (A and B) generates 2
states. Once the convertions are stablished, this thesis applies all the calculations on a 2
meters lenght base. The equivalence to encoder units informs the amount of bits used for
this operation and rooted in this phylosophy, the period of time for the simulation in the
Vivado tool is defined as the number of total encoder units devided for the time of that
traject.

With this information, the system evolve increasing the number of encoder units by one
each clock’s cycle, let’s point out that this set is directly related with the speed of the
system.

The following table shows the constants that define the project.

Table 1: Constant’s table.

Parameter Value
speed ips 20
long meters 2
lpi system 150
bits eu 24
k signalsAB 4

22

The equivalences mentioned in the previous sections are summarized below.

Table 2: Equivalences’s table.

150 ∗ 4 peu 1 inch k peu inch = lpi system ∗ k signalsAB
27 eu 1 peu k eu peu = 27

150 ∗ 4 ∗ 27 eu 1 inch k eu inch = k peu inch ∗ k eu peu

Finally, the results of the necessary calculations are included to determine the clock fre-
quency that has to be applied to the Vivado tool when doing the simulation

Table 3: Calculation’s table.

2 m
78.74 inches
6047244 eu
log2(6047244) = 22.53 bits
22.53 < 24
round(222.5) = 5931642 eu = 78.86 inches

tsim = inchtotal

IPS
= 78.86

20
= 3.94 s

TCLK = tsim
totaleu

= 3.94
5931642

= 664ns s

fCLK = 1
TCLK

= 1.5 MHz

speedeu/s =
totaleu
tsim

= 5931642
3.94

= 1.5 eu/s
speedeu/T = speedeu/s ∗ TCLK = 1.5 ∗ 664 ∗ 10−9= 0.9996 eu/T
accelm/s2 = 0.12 ∗ g = 0.12 ∗ 9.81 = 1.1772 m/s2

acceleu/s2 = accelm/s2 ∗ 39.37inch
1m

∗ 76800eu
1inch

= 3.5594 ∗ 106 eu/s2

acceleu/T 2 = acceleu/s2 ∗ T 2
CLK = 3.5594 ∗ 106 ∗ (664 ∗ 10−9)2 = 1.57 ∗ 10−6 eu/T 2

50 cm
19.7 inches
1511811 eu
log2(1511811) = 20.53 bits
20.53 < 24
round(220.5) = 1482910 eu = 19.30 inches

sim = inchtotal

IPS
= 19.30

20
= 0.965 s

23

4 Vivado modules

Xilinx’s Vivado Design Suite is an integrated design environment for embedded develop-
ment. Vivado has been chosen because of the previous experience with the tool along the
seventh quarter of the degree. This software suite is used to code the encoder emulation,
storage data control and RAM behaviours. It is one of the most reliable tools when it
comes to waveforms simulations and VHDL/Verilog code verification.

The Vivado tool implements four differents situacions. Each of them defines a role and
its is crutial to be sincronized with the following so the entire simulation runs correctly.
The first and most essential one is the emulation of and optical encoder, whose inputs are
used to start performing and reading the values from the SRAM. The second one is in
charge of sending the A and B transition changes and control the memory access to the
FPGA. The next module simulates a memory RAM where the data is stored and read
subsequently. The last one interacts with the user, it is so when data is read, it is send to
a text file to be analysed at a later stage.

4.1 Frequency divisor

The FPGA contains a cristal clock of 100MHz that must be adapted to approach the
frequency demanded in the previous calculations. In this section, the frequency from the
Cmod A7 is converted into a 1.47 MHz for the encoder emulation calculation that is
sligthly similar to the one needed, 1.5 MHz. A second frequency of 10 MHz is used for
the RAM in order to be accurarate in data’s transitions.

Figure 9: FPGA’s Cristal clock.

4.2 Encoder emulation

In order to achieve a powerful encoder emulation, it is necessary to create different blocks
where each one has a specific function.

4.2.1 Encoder operator

This module allows the user to iterate with the test and choose whether to run two types of
behaviors. We present the first case, in which we want to simulate a positive and negative
acceleration ramp since, at a certain point, a negative value will be indicated.

If you want a behavior that replicates a round trip MRU movement, the second button
must be pressed. For this last event, velocity and initial position outputs will be fixed

24

for the rest of the test as one and zero correspondingly; since the speed is constant, that
constant output is the only one to have value one. In addition, the feedback of the current
position of the encoder unit serves to change direction and thus be able to cover as many
situations as possible.

Finally, the ”enable” output informs if any of the available buttons have been pressed.
This variable allows to start with the generation of errors.

Figure 10: [Module] Encoder operator.

4.2.2 Encoder units position

The functionality of this section is to increase or decrease the variable counter taking into
account the speed, acceleration and position.

The three input registers are the integral calculations of the one before.

Figure 11: Integral to obtain posOut.

The euPos module modifies the output depending on the ”error” input value. Once this is
’1’ the ”e block minus” bits indicates if the encoder position register must stay the same
or decrease its value.

25

Figure 12: [Module] Encoder position.

4.2.3 Encoder units to AB signals

This code is one of the simplest within the project, it transforms positions 7 and 6 of the
encoder unit vector to signals A and B.

Table 4: AB’s conversion table.

pos[7,6] AB
00 10
01 11
10 01
11 10

The fact of extracting those indexes from the encoder position is beacuase the calculations
declare that the number of iterations inside a physical encoder is 27, 128. That means
that each state or encoder transitions takes place 26, 64 units. So the positions 7 and 6
accomplish this demand.

Figure 13: States in a single peu.

26

The fault occurs when the AB signal transfer from AB = B”11” to AB = B”10”. Each
poseu stays the same during T state time, so when due to an error the value poseu[7, 6]
remains 2 times T state, the error market is considered to be the highest value possible
of poseu[7, 6] = ”01”, which is poseu[7 : 0] = B”01111111” = X”7F”.

Figure 14: Error in a X”7F” euPos[7,6].

On the other hand, when going backwards, the pattern where the first anomaly is found
is in the transition from AB = B”10” to AB = B”00”. As mentioned before, the error is
target as the maximum value of poseu[7, 6] = ”00”, in which case leads to poseu[7 : 0] =
B”00111111” = X”3F”.

Figure 15: Error in a X”3F” euPos[7,6].

27

4.2.4 Error generator

The main functions are two: the generation of random errors and the management control
when detecting one.

Figure 16: [Module] Error generator.

Regarding the first case, when a change is detected in the ”enable” input of active low
pass, an array of errors of length ”qErrores” is generated. This last number is set by
pressing the reset button, and its value ranges from 16 to 19 thanks to the following
command executed by the randslv(2) function with a uniform probability. In addition, at
the same time, the appearance of the first error along the path is calculated randomly,
having as maximum ”maxPosError”.

This maxPosError corresponds to the 16 bits with the highest weight of the error position,
since the remaining 8 bits belong to the suffix that can be X”7F” if the displacement is
positive or X”3F” if it is negative.

Calculations determined that FPGA capacity is able to support readings 4 meters round
trip, but when simulating it with Vivado, execution time extended much more than ex-
pected. Therefore, in order to simulate efficiently, it is decided to change the length to 40
inches, making 2 displacements of 20 inches (1536000 eu) with a change of direction.

At the same time, taking into account that an error can be concentrated in 1 centimeter
and a half (45354 eu = X”B12A”), the last error that can be found must be in the account
1490646 eu (X”16BED6”), being less than X ”16BE7F” we set the value of maxPosError
to the 16 bits of greater weight X”16BE” (5822 eu), so the first error is computed in the
range [”0000”, ”16BE”] with uniform probability, with the help of randint.

firstError16−bits = randint(0,maxPosError)

Once the reset status has been exceeded, on each clock edge the enable value is verified
and when it meets the conditions, the first value found (the one above) is indexed in the
created register array and the following registers are created randomly inside a for loop
of range 1 to qErrores-1, the data had these 16-bit limits [minval, maxval].

errorsReg(i) = randint(minval,maxval)

28

These thresholds depend on the first random error calculated, since the minimum takes
that value. As mentioned before, hypothetically we will find a visual fault of a length of
one and a half centimeters, so its maximum value in encoder units will be the minimum
plus that length. The records stored in the error array, errorsReg, only save the 16 bits
with the highest weight, since they are after concatenated by a suffix depending on their
orientation.

If all 24 bits of the encoder unit position error were taken into account, the following
formula would apply:

maxval24−bits
= error24−bits + distanceError24−bits = error24−bits +X”B12A”

If only taking into account the lowest 8 bits weight, then there will be a loss of 42
decimal units, which considering the resolution is insignificant. That is the reason why
the maximum value is the sum between the minimum and X”B1” which in decimal is 177
units.

maxval16−bits
= error16−bits + distanceError16−bits = error16−bits +X”B1”

[minval,maxval] = [firstError, firstError + 177]

To detect if the current position coincides with any value within the error vector, one by
one is inspected within a for loop. When the displacement is positive (bit of the speed
with the greatest weight equal to ’0’) the concatenated register is compared with the suffix
and the position increased to 2. On the other hand, when the movement is backwards,
the concatenated register is compared with the suffix and current value; that is why
distinctions are made within the for loop.

On the error control side, when they detect that the auxError edge has been activated,
two behaviors differ depending on the address.

If a positive speed is applied, then to reproduce the loss of a count, the encoder counts
must be decreased through 2 state periods (Tstate) so that A and B are the desired ones,
then the result stays the same for the time of 2 Tstate and it decreases again Tstate to then
continue with normal operation.

29

Figure 17: Analysis error in a positive direction.

In the opposite case, it is much simpler because it is only necessary to block the value for
5 periods.

Figure 18: Analysis error in a negative direction.

A counter is used to calculate the periods, and reset to zero once it reaches the desired
target. In section 2.2.2 you can see a correlation with what was explained above.

30

4.3 Cmod A7

The code of the following modules is the reference to be implemented in the FPGA when
binary data is received from channels A and B of the optical encoder in real life.

4.3.1 AB’s transition change

This module is in charge of detecting a transition change and activating the write by
sending the previous data. In addition, it calculates the time difference between one
transition and another and sends it as information on a 7-bit bus.

Figure 19: [Module] AB’s transition change.

4.3.2 Address control

The function of this section is to control the flow of read and write commands. To do
this, a 3-state machine is used: S0Idle, S1Write, S2Read. The first symbolizes the inactivity
of the ”write data” and ”read data” signals. On the other hand, as soon as one of them
is activated, for example the first one, the state that follows is the S1Write that sends the
data and ”addrW aux” the address. The output data is the concatenation between the
bits of the physical encoder with which they mark the time difference. As the data that
is sent to the FPGA can only have a length of 8 bits, it is decided to add the greater 6
bits weight of the time stamp.

The writing address is a counter that increases each time the data is requested to be
written and indicates in which memory position it is desired to be stored. When the
workflow finishes, it returns to the initial state in which it waits for a stimulus. In the
case of wanting to read the RAM registers, it is done by imitating the behavior of a FIFO.
Which means that the first in, first out. Therefore, the RamOEn output, goes low and
sends the address it wants to read. This is incremented every time you want to read.

31

Figure 20: [Module] Address control.

4.3.3 Read data’s RAM

One of the FPGA buttons is used by the user to read all dara from RAM. This brings
about a pulse train signal to trigger the RamOEn and get the data.

Figure 21: [Module] Read data from RAM.

4.4 RAM Memory

To verify the correct functioning of the system, the behavior of a RAM memory has been
emulated; with its respective CE, OE and WE inputs that indicate reading and writing,
as well as setting its capacity of 512 kB to store the 8 bits of data in the indicated address.

Figure 22: [Module] RAM Memory.

32

4.5 Store data to a file

In order to be able to analyze the samples using Python code, it is necessary to store
them in a text file in an orderly manner. Regarding the code, it uses a text library that
allows writing in files. First, the information is split in two: the time stamp with the 6
bits of greater weight and the corresponding AB data of the 2 bits of lesser weight. With
the activation of inverse logic of the OE, the following 3 parameters are written in a single
line: address, time stamp and AB data.

The data is attached without overwriting the file and in this way the base data are
generated.

Figure 23: [Module] Data to file.

4.6 Constraints

Design constraints define the requirements that must be met by the compilation flow in
order for the design to be functional on the board. Not all constraints are used by all
steps in the compilation flow. For example, physical constraints are used only during the
implementation steps (that is, by the placer and the router) [4].

Digilent gives the option of downloading the constraints associated with the Cmod A7
board so that only the input and output ports have to be renamed. Next, the code that
orders this association will be shown along with the schematic so that it can be seen that
the pins coincide.

4.6.1 CmodA7 constraints xdc file

The memory-related ports match those shown on the Vivado modules.

Clock s i g n a l 100 MHz
s e t p r ope r t y −d i c t { PACKAGE PIN L17 IOSTANDARD LVCMOS33 } [g e t p o r t s { CLK }] ;
Buttons
s e t p r ope r t y −d i c t { PACKAGE PIN A18 IOSTANDARD LVCMOS33 } [g e t p o r t s { BTN EncOp }] ;
s e t p r ope r t y −d i c t { PACKAGE PIN B18 IOSTANDARD LVCMOS33 } [g e t p o r t s { BTN[1] }] ;
Ce l l u l a r RAM
se t p r ope r t y −d i c t { PACKAGE PIN M18 IOSTANDARD LVCMOS33 } [g e t p o r t s { MemAdr [0] }] ;
s e t p r ope r t y −d i c t { PACKAGE PIN M19 IOSTANDARD LVCMOS33 } [g e t p o r t s { MemAdr [1] }] ;
s e t p r ope r t y −d i c t { PACKAGE PIN K17 IOSTANDARD LVCMOS33 } [g e t p o r t s { MemAdr [2] }] ;
s e t p r ope r t y −d i c t { PACKAGE PIN N17 IOSTANDARD LVCMOS33 } [g e t p o r t s { MemAdr [3] }] ;
s e t p r ope r t y −d i c t { PACKAGE PIN P17 IOSTANDARD LVCMOS33 } [g e t p o r t s { MemAdr [4] }] ;
s e t p r ope r t y −d i c t { PACKAGE PIN P18 IOSTANDARD LVCMOS33 } [g e t p o r t s { MemAdr [5] }] ;
s e t p r ope r t y −d i c t { PACKAGE PIN R18 IOSTANDARD LVCMOS33 } [g e t p o r t s { MemAdr [6] }] ;

33

s e t p r ope r t y −d i c t { PACKAGE PIN W19 IOSTANDARD LVCMOS33 } [g e t p o r t s { MemAdr [7] }] ;
s e t p r ope r t y −d i c t { PACKAGE PIN U19 IOSTANDARD LVCMOS33 } [g e t p o r t s { MemAdr [8] }] ;
s e t p r ope r t y −d i c t { PACKAGE PIN V19 IOSTANDARD LVCMOS33 } [g e t p o r t s { MemAdr [9] }] ;
s e t p r ope r t y −d i c t { PACKAGE PIN W18 IOSTANDARD LVCMOS33 } [g e t p o r t s { MemAdr [1 0] }] ;
s e t p r ope r t y −d i c t { PACKAGE PIN T17 IOSTANDARD LVCMOS33 } [g e t p o r t s { MemAdr [1 1] }] ;
s e t p r ope r t y −d i c t { PACKAGE PIN T18 IOSTANDARD LVCMOS33 } [g e t p o r t s { MemAdr [1 2] }] ;
s e t p r ope r t y −d i c t { PACKAGE PIN U17 IOSTANDARD LVCMOS33 } [g e t p o r t s { MemAdr [1 3] }] ;
s e t p r ope r t y −d i c t { PACKAGE PIN U18 IOSTANDARD LVCMOS33 } [g e t p o r t s { MemAdr [1 4] }] ;
s e t p r ope r t y −d i c t { PACKAGE PIN V16 IOSTANDARD LVCMOS33 } [g e t p o r t s { MemAdr [1 5] }] ;
s e t p r ope r t y −d i c t { PACKAGE PIN W16 IOSTANDARD LVCMOS33 } [g e t p o r t s { MemAdr [1 6] }] ;
s e t p r ope r t y −d i c t { PACKAGE PIN W17 IOSTANDARD LVCMOS33 } [g e t p o r t s { MemAdr [1 7] }] ;
s e t p r ope r t y −d i c t { PACKAGE PIN V15 IOSTANDARD LVCMOS33 } [g e t p o r t s { MemAdr [1 8] }] ;
s e t p r ope r t y −d i c t { PACKAGE PIN W15 IOSTANDARD LVCMOS33 } [g e t p o r t s { MemDB[0] }] ;
s e t p r ope r t y −d i c t { PACKAGE PIN W13 IOSTANDARD LVCMOS33 } [g e t p o r t s { MemDB[1] }] ;
s e t p r ope r t y −d i c t { PACKAGE PIN W14 IOSTANDARD LVCMOS33 } [g e t p o r t s { MemDB[2] }] ;
s e t p r ope r t y −d i c t { PACKAGE PIN U15 IOSTANDARD LVCMOS33 } [g e t p o r t s { MemDB[3] }] ;
s e t p r ope r t y −d i c t { PACKAGE PIN U16 IOSTANDARD LVCMOS33 } [g e t p o r t s { MemDB[4] }] ;
s e t p r ope r t y −d i c t { PACKAGE PIN V13 IOSTANDARD LVCMOS33 } [g e t p o r t s { MemDB[5] }] ;
s e t p r ope r t y −d i c t { PACKAGE PIN V14 IOSTANDARD LVCMOS33 } [g e t p o r t s { MemDB[6] }] ;
s e t p r ope r t y −d i c t { PACKAGE PIN U14 IOSTANDARD LVCMOS33 } [g e t p o r t s { MemDB[7] }] ;
s e t p r ope r t y −d i c t { PACKAGE PIN P19 IOSTANDARD LVCMOS33 } [g e t p o r t s { RamOEn }] ;
s e t p r ope r t y −d i c t { PACKAGE PIN R19 IOSTANDARD LVCMOS33 } [g e t p o r t s { RamWEn }] ;
s e t p r ope r t y −d i c t { PACKAGE PIN N19 IOSTANDARD LVCMOS33 } [g e t p o r t s { RamCEn }] ;

At the same time, the PACKAGE PIN comply with the electrical diagram of the module.

The BANK 4 collects the parameters referring to the RAM memory while the BANK 16
is in charge of its 2 physical buttons.

Figure 24: Cmod A7 conexions.

34

5 Vivado waveform results

In this section the modules from Vivado are presented along with their simulation. The
interaction among modules clarify the purpose of each of them.

5.1 Encoder emulation

One of the most fundamental parts of the project is the creation of an optical encoder
emulation. Because of that, a study of signal behaviour in the presence of an anomaly is
needed.

In the first instance the ”encoderOperator” triggers to generate an encoder position. The
BTN EnOp input which determines the following outputs: acceleration, velocity and ini-
tial position. At the same time, the enable is activated, which is an OR of the options
to simulate a path with constant speed (speed cte) or a path with constant acceleration
(accel cte). Since we want to simulate a back and forth, we check the current position (po-
sition eu input) to go back with negative outputs. Something that has not been mentioned
is that the accel cte option could not be implemented, which is why it has a constant value
of 0.

This is because when doing the calculations it has been seen that the output’s acceler-
ation is of the order of -6, so it is considered tiny. An attempt was made to transform
the desired number to a fixed-point, but that implied euPos module to use the pack-
age fixed pkg.VHDL decodes the input accel. Unfortunately, when trying to simulate the
wave, it reported that the library used did not allow that execution. With all this, it was
decided not to implement this functionality since if it was not possible to visualize if the
code worked, it was not worth spending more time on it.

A point and aside, the feedback between errorGenerator and euPos reflects that as eu-
Pos can modify its output value depending on ”error” and ”e block minus”. The error
generator defines the first error based on the activation of the reset, and initializes the
parameter qErrores when the ”enable” input is activated.

If the position of the encoder (pos eu) coincides with an error created within the array,
then the outputs are activated in one way or another depending on the bit with the highest
weight of ”direction”, which is the speed. It is important to remember that 22.5 bits were
needed, that in practice are 23 bits to reach 2 meters, but for the sake of working with
negative numbers, one more bit has been introduced, this indicates the direction of the
path. If it is ’0’ then it is considered a positive displacement and otherwise if it is ’1’.

Finally, euConvAB converts the encoder positions into AB signals and activates the empty
output when ”position eu” reaches the value 0, that is when reaches the end of its run
and returns to 0. Moreover, the time stamp information at the moment is sent as well.

35

Figure 25: Encoder emulation.

When simulating this module, the inputs have been initialized with the following tcl code.
The clock already takes into account that it passes through a frequency divider, so its
value is not exactly 1.5 MHz, but 1.47 MHz, which is the output bounded to the desired
value.

r e s t a r t
add fo r c e {/ encoderEmulation wrapper /CLK} −rad ix bin {0 0ns} {1 340 ns} −r epea t eve ry 680

ns
add fo r c e {/ encoderEmulation wrapper / r e s e t } −rad ix bin {1 0ns} {0 2 .2 us}
add fo r c e {/ encoderEmulation wrapper /BTN EncOp} −rad ix bin {0 0ns} {1 11 .6 us} {0 12 .5 us}
run 2 s

In the next figure the reset and BTN EncOp signals are activated at the beginning of the
wave to trigger the emulate constant course option.The AB output shows that once it
finishes traveling 20 inches out and 20 back it remains at 0. Empty is set to 0 when the
”encoder operation” order ends, what implies that all the samples have been stored and
the reading can proceed.

It is important to highlight that errors are replicated, because the errors found in the
positive direction must appear on the return, although it has already been explained
before that a loss of count manifests itself in a different way depending on the direction.

Figure 26: Encoder emulation wave 1.

The figure below is a zoom of the first section where random errors are generated and
a fairly uniform distribution can be seen. The affected piece occupies 33 ms, which at a
speed of 20 IPS is equivalent to having traveled the expected distance, 1.67 cm.

36

Figure 27: Encoder emulation wave 2.

In order to verify that it really behaves like an encoder when losing an account, it has
been zoomed in both positive and negative.

Figure 28: Encoder emulation wave 3.

With respect to a forward direction, it is seen that activation predominates when A is 1,
instead it is the other way around in the opposite direction.

Figure 29: Encoder emulation wave 4.

37

5.2 Cmod A7

This set includes the code that would be implemented in the FPGA if it had 2 buttons
and signals A and B of the encoder as inputs.

To begin with, signals A and B transitions are stored into the RAM memory along with
the time stamp difference, at the same time data valid is activated in each changeover.

This parameter is passed as write data to the next module, addressControl, and activates
the write command by generating control signals from RAM. Add that the writing reset
activates when the button BTN EncOp is pressed.

On the other hand, you have the option of reading the RAM memory with the BTN Read
button, which does not allow reading if empty is 0 since it considers it empty if it has not
finished writing yet.

The MemDB input is the output of RAM when the RamOEn command is set low. It is
from the set of read data, MemAdr and MemDB that the data is written to a text file,
all implemented in dataToFile.

Figure 30: [Module] Cmod A7.

The clock that executes the read order is 10 MHz and that is why it is specified that
way in the tcl code. In addition, since we only want to teach the operation of capturing
transitions and how this affects the RAM signals, the program is run for 300 µs.
r e s t a r t
add fo r c e {/CmodA7 wrapper/CLK 10MHz} −rad ix bin {0 0ns} {1 50ns} −r epea t eve ry 100 ns
add fo r c e {/CmodA7 wrapper/ r e s e t } −rad ix bin {1 0ns} {0 50ns}
add fo r c e {/CmodA7 wrapper/BTN EncOp} −rad ix bin {1 0ns} {0 70ns}
add fo r c e {/CmodA7 wrapper/AB} −rad ix bin {01 0ns} {11 150us} {10 195us} {01 240us}
add fo r c e {/CmodA7 wrapper/BTN Read} −rad ix bin {0 0ns}
run 300 us

In this image you can see two entries that are not defined, this is intentional since this
part of the block does not want to check that subsystem.

The RAM control ports work with reverse logic and also when this happens the MemAddr
counter is increased in the reading process.

38

Clarify that the data inserted in AB has been random, we only wanted to simulate that
the operation was as expected.

Figure 31: Cmod A7 wave 1.

The figure above has been zoomed in order to focus on the marker placed. At that time, the
RAM detects a writing command and does as so in the address zero the data ”00101101”.

Figure 32: Cmod A7 wave 2.

5.3 Final block diagram

It is in the final project where the frequency divider is implemented, the one calculated
in Matlab is the one that should serve as input in the encoder emulation, 1.5 MHz, and
the other that has been created is 10 MHz in order to be used in the RAM and as a point
of execution in the Cmod A7 module.

It’s outstanding, but there is no need of outputs so the data has to be written to a text
file. The information that is transferred from the emulation to the Cmod are the AB
data and the empty that indicates that the operation has already been completed. The
input BTN EncOp of Cmod A7 works as a write reset since when the operations button
is pressed the counter is reset to 0 to do not overflow the RAM memory.

39

Finally, although the memory data bus is bidirectional, it has been preferred to fix it by
MemDB in and MemDB out for simplicity of interpretation.

Figure 33: Project.

40

6 Python code

The data stored in the text file must be analyzed and specified if any indication of error
has been found in the sample.

In order to achieve this, two Python documents have been created. The first one collects all
data from Vivado’s simulation, the other one relies on analysing through neural networks
the prediction of an anomaly in the sample.

6.1 Data process code

In the first executable, each Vivado text file is processed inside a while loop, within
operates four functions:

• obtain data(i)

This function locates the path of the file that you want to read from index ”i” and
copies it to the newArrayData variable that splits the data to be able to separate
them by rows.

Once done, it goes through a for loop to obtain the information for each of the
columns and create 3 new vectors: direction, time and AB.

While doing that, must rememeber that the time information was a 7-bit array that
had to lose the lower order bit information since the ram data bus only allowed 8
bits(data8−bits = time6−bits & ab2−bits). That is why 1 bit is added (Python code
below).

time7−bits = time6−bits +
′ 1′

• peu performance()

Regarding to performance, units of PEU are increased or decreased depending on
the calculated direction that is determined taking into account the current and next
AB position.

In addition, an array of ones and zeros is made that is activated when the time
between samples exceeds the established limits, indicating an anomaly (probTime).
At the same time, calculates a time trace that can be useful to graph the position
through time.

This funtion returns the PEU and time vectors, and two more vectors:

– PEU vector: cumulative vector of peu values.

– time vector: cumulative vector of time values.

– direction vector: binary vector that indicates 1 when forward and 0 otherwise.

– probTime vector: binary vector that indicates when time exceeds the thresholds
appending value 1.

41

• data NN(peu, probTime)

In this section, the maximum value of PEU vector determines the orientation change.
The index asociated to that top is store in a new variable named ”maxPosPeu”.

The time vector ”probTime” splits in two, from 0 to maxPosPeu (probTimeFord-
ward) and the rest(probTimeBackward). It is necessary to remember that when an
anomaly is found in the delay, an append of value 1 is added to probTime, so if we
add the items of proTimeFordward and return the sum, the result is the number
of times that anomalies have been found, the next step would be to relativized.
Exactly the same is done with respect to the lap time. The ”norm” parameter is
the division of the maxPospeu and 0.508, which is the length this test is taking into
account, but in case the length pretends to be extended, this normalization would
be needed.

percentT imeFordward =
sum(probT imeFordward)

len(probT imeFordward)
∗ 100 ∗ norm

percentT imeBackward =
sum(probT imeBackward)

len(probT imeBackward)
∗ 100 ∗ norm

The direction vector ”dir” splits in two as well, from 0 to maxPosPeu (dirForw)
and the rest(dirBack). Another useful data for the neural network is the amount
of negative direction there is in a fordward stretch, and the number of positive
direction contains a backward propagation. Both datas are coherent to be asked. To
achieve this, it must be specified that a positive direction is indicated with a 1 and
a negative with 0. Then, if we apply the following lines, we obtain the percentage.

percentDirNegFordward = (1− sum(dirForw)

len(dirForw)
) ∗ 100 ∗ norm

percentDirPosBackward = (1− len(dirBack)− sum(dirBack)

len(dirBack)
) ∗ 100 ∗ norm

• write NN Info(dataToFile)

A file called dataBase.txt is opened in writing mode to store the following data
by columns: percentTimeFordward, percentTimeBackward, percenDirNegFordward,
percentDirPosBackward, long meters.

– percentTimeFordward: Relative number of times a time interval is detected
that exceeds the bounds in the positive direction.

– percentTimeBackward: Relative number of times a time interval is detected
that goes out of bounds in the negative direction.

– percentDirNegFordward: Relative number of times a negative forward direction
is detected.

– percentDirPosBackward: Relative number of times a positive direction is de-
tected on the lap.

42

6.2 Neural Network code

The first thing to do is extract the data mentioned in the previous section and copy them
into a data matrix. It is necessary to indicate if the samples to be analyzed have errors
and for this reason the ”targets” array of 1s is created with a concatenation of 0 since the
last sample does not contain errors.

Once the information matrix has been copied, the neural network is trained with an
iteration of 80,000 units. This value has been increased until finding a stabilized error
plot.

In the following lines, each created function will be explained in detail.

• NeuralNetworkTraining(total iterations)

This is a main function that takes care of optimizing biases and weights within a
total iterations loop. In each repetition a random index of matrixDataBase is chosen
to choose a row and result (target) of this matrix.

Once these data are obtained, the prediction begins, which the ”prediction layer2”
function returns, a value between 0 and 1.

• prediction layer2(vectorDataBase)

In this section the signals of the first and second layers are generated. In the first
case, the dot product of the weights and a vector of the data matrix added with
the bias is made. We want to create a linear function from the input values and the
generation of some weights and bias.

layer1 = v0 ∗ w0 + v1 ∗ w1 + v2 ∗ w2 + v3 ∗ w3 + b

For the second layer, various functions can be applied, such as the identity, the step,
the piecewise linear, the Gaussian, and others. In this case, in order to simplify, the
sigmoid has been applied.

layer2 =
1

1 + e−x

• deriv prediction(vectorDataBase, target, prediction)

In this section, some derivatives must be done. The first derivative that is taken
into account is that of the MSE which, being a square root, multiplies its set by 2,
replacing its interior with the indicated value.

MSE =
√

predict− target −→ ∂MSE = 2 ∗ (predict− target)

On the other hand, layer2 is derived, which is the sigmoid, and is replaced by the
value of layer1.

sigmoid =
1

1 + e−x
−→ ∂sigmoid =

1

1 + e−x
∗ (1− 1

1 + e−x
)

43

Next, we have layer 1, and 2 derivatives are made, one with respect to the bias that
gives 1 and the other with respect to the weights, whose result is the same database
vectors.

∂wlayer1 = v0 + v1 + v2 + v3

∂blayer1 = 1

Finally, the first two derivatives are multiplied by bias and weights to obtain the
total derivatives of bias and weights.

∂w = ∂MSE ∗ ∂sigmoid ∗ ∂wlayer1

∂b = ∂MSE ∗ ∂sigmoid ∗ ∂blayer1

• update bias weights(derivError bias, derivError weights)

Once the errors of the bias derivatives and the weights have been calculated, the val-
ues are updated by subtracting their derivatives multiplied by alpha, learning rate.

bias = bias− (∂b ∗ α)

weights = weights− (∂w ∗ α)

The parameter learning rate defines de updating weights, so if the value is decreased,
then the steps are smoller, and if increasing otherwise.

After executing the aforementioned, all this returns the accumulation of MSE errors and
the weight and bias parameters are defined.

At this time, any Vivado sample can be passed through this prediction through this
network and, once the parameters that had to be set are known, it is predicted if the data
from an optical encoder contains errors.

6.2.1 Neural Network training process

In this section, screenshots and relevant code are attached to an example that generates
the appropriate weights and bias. To begin with, an alpha has to be defined that, through
several tests, has been decided to set at 0.1 and then the training begins with 80 million
iterations.

l e a r n i n g r a t e = 0 .1
neura l network = NeuralNetworkTraining (80000)

The pertinent piece has not been added to the extraction of the data from a file, but at
this point we already have the values in matrixDataBase as well as their targets. Once
finished, the values to be used are displayed on the screen, as well as the learning curve.

########## BIAS & WEIGHTS ##########
The b ia s i s : 3 .395994781505414
The weights are : [2 . 17210496 1.2164467 1.73133092 1 .03850637]

44

In this graph it is seen that around 80 thousand iterations the error stabilizes at 0

Figure 34: Cumulative error.

To verify that the calculations are correct, a test array is put. Finally, it is conditioned if
the prediction value is better than 0.5, then there is no error, but if the opposite happens,
unfortunately the strip encoder may be damaged.

###
EXAMPLE
###
vector example = [0 .24090380461870742 ,0 .13899870989221358 , 0 .15783352716397303 ,

40 .011319561200544]
p r ed i c t i o n = p r e d i c t i o n l a y e r 2 (vector example)
p r i n t (f ”\n######## PREDICTION EXAMPLE ########”)
i f p r ed i c t i o n < 0 . 5 :

phrase = ”There i s any e r r o r detec ted . ”
else :

phrase = ”There i s an e r r o r detec ted ! ! ! ”
p r i n t (f ” Pred i c t i on from the neura l network : { p r ed i c t i o n }\n”+phrase)

By viewing the terminal output, you have successfully detected an error.

######## PREDICTION EXAMPLE ########
Pred i c t i on from the neura l network : 1 . 0
There i s an e r r o r detec ted ! ! !

45

7 Budget

The budget consumed in this project covers the purchase of a single component since it
has been worked with simulations using Vivado and analyzed using Python.

The FPGA used is the Cmod A7 module which costs $75.

46

8 Conclusions

In this thesis, I addressed the problem of discrimination in the reading of an optical
encoder using tools as Vivado, Matlab and Python. One of the main contributions of this
work is to use neural networks analysis to accomplish detection of an error.

An encoder emulation representation has been provided, but a previous evaluation had
to be done such as how the signals A and B manage to determine the orientations of the
displacement and its behaviour on a loss of several physical encoders readings.

A tipping point in the project was the errors generation so the Vivado’s libraries that
implements random values were not considered flexible enougth due to the fact of centering
in each running simulation in the same section. It is a good job that this fact did not
affect on the neural network process because of its inputs. The parameters calculated
in the section 6.1 do not depend on the first appearance error, but on the amount of
contradicted orientation for an specific course and the number of trasitions surpass the
limits.

The encoder emulations turned out to be one of the most fundamental elements in this
project, even though at the beginning the task was underestimated but the process and
study of the signals A and B became essential to the case.

Thanks to this thesis I had the opportunity to deepen into the Vivado tool, which was
not completly familiar. On another note, Python language has been introduced for the
first time, along with neural network topic, both were entirely uncharted.

From an experimental point of view, the signals A and B from the encoder emulation
behave exactly like a real sample. Even so, the system works with a concrete error length
of 1.5 cm, this condition does not affect to Python code study. If the error had a different
prolongation, the 4 inputs inside NN (Neural Network) were changed its values increasing
or decreasing each of them the same way, so at the end this would bring modifications on
the bias and weigths but without affecting the neural network detection result.

The results confirm that the detection of an encoder strip failure can be detected with
the help of a test of 20 IPS that stores all values from the optical encoder and is analysed
further more by Python’s neural network code that has been previously trained to obtain
the suitable bias and weights.

9 Future Work

Many different test and experiments have been left for the future, due to lack of time
and unexpected disadvantages. Future work could include topics such as implementations
with differents methods of analysis, insert more than one error on a simple sample or
carry out the detection within the Vivado’s code.

The following lines mention some of the possible ideas that could be used in the future
to extend the investigation. The purpose of this thesis is to detect possible faults in the
encoder strip, and in order to do it the emulation on the encoder had to come across.
These are some improvements that can apply to this thesis.

47

1. The generation of error could have been more flexible, so the insertion of more than
a single error may have given the project.

2. The neural network used the sigmoid as a transfer function, but it would be inter-
ested to have a list of test to try with several other activation functions.

3. By having two independent programs that manage the emulation together with the
storage of the data, and another one for the analysis of these, the task is doubled.
However, if all the code would have been in VHDL, the result could be different. It
is pending to do.

The simulation of the project have not been complicated, even though the time required
on them exceeded the Vivado’s capacity and in some occasions the app shuted down
without warning. That is one of the reasons why the length was decreased.

The fact of not considering the MRUA situacion set aside that study. In case I had to
redo the algorithm, I would raise the question of perform the emulation with 2 different
clocks depending on the option: constant acceleration or constant speed simulation.

Last but not least, the change on the width of A and B pulses could differ and lead
to a bad reading.That circumstance would have provided diversity of opportunities for
analysis.

48

References

[1] What Is an Optical Encoder?
https://www.encoder.com/article-what-is-an-optical-encoder

[2] Optical Encoders.
https://www.sciencedirect.com/topics/engineering/optical-encoders,
Fieldbus Systems and Their Applications 2005, 2006

[3] The Driving Force: Magnetic versus Optical Encoder Engines.
https://www.dynapar.com/technology/optical-encoders/

[4] Vivado Design Suite User Guide, Using Constraints.
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_1/

ug903-vivado-using-constraints.pdf, Xilinx April 4, 2018.

[5] Cmod A7 Reference Manual.
https://digilent.com/reference/programmable-logic/cmod-a7/

reference-manual

[6] Bonifacio Martin del Bŕıo y Alfredo Sanz Molina.Redes Neuronales y Sistemas Bor-
rosos , tercera edición revisada y amplificada, Ra-Ma 2006.

[7] About tcl/tk
https://www.tcl.tk/about/language.html

[8] What are neural networks?
https://www.ibm.com/cloud/learn/neural-networks

49

Appendices

A Encoder parameters

clear a l l ;
%%%%%% SPECIFICATIONS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sp e ed i p s = 20 ;
l ong meter s = 2 ;
l p i s y s t em = 150 ;

%%%%%% CAPACITY %%
bits memory = 24 ; % minimum 17 b i t s
b i t s eu peu = 7 ;
eu capac i ty = 2ˆbits memory ; % t o t a l eu

%%%%%% CONSTANTS %%%
k s ignalsAB = 4 ;
k meter inch = 0 . 0254 ; % 1 in = 0.0254 m
k eu peu = 2ˆ b i t s eu peu ;
k peu eu = 1/ k eu peu ;
k peu inch = lp i s y s t em ∗ k s ignalsAB ;
k eu inch = round(k peu inch / k peu eu) ;

%%%%%% LONGITUDE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

l o ng i n ch e s = 2 / k meter inch ;
l ong eu = round(l ong i n ch e s ∗ k eu inch) ; % 6047244 eu , 78.74 in , 2 m
l o n g e u b i t s = round(log2 (l ong eu) ,2) ; % 22.53 b i t s

l ong max inches = 2 . ˆ (l o n g e u b i t s) / k eu inch ;
long max eu = 2 . ˆ (l o n g e u b i t s) ;
maxVal meters = long max inches ∗ k meter inch ;
max bitVal meters = 2 . ˆ (23) / k eu inch ∗ k meter inch ;

%%%%%% TIME + SPEED %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
t l ong = long max inches / sp e ed ip s ;
f c l k = 2ˆ l o n g e u b i t s / t l ong ;
T clk = 1/ f c l k ; % s
speed eu s = spe ed ip s ∗ k eu inch ;% 1536000 eu/ seconds 23 b i t s min
speed peu s = speed eu s / k eu peu ;
l o n g eu c l k = T clk ∗ speed eu s ; %1 eu

t p eu s = 1/ (k peu inch ∗ sp e ed i p s) ;
t peu us = t peu s ∗ 1e6 ; % 83.33 us SI CUADRA (vivado 85 ,42 us) ! ! ! ! !

%%%%%% VIVADO SPECS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
T clk ns = round(T clk ∗ 1e9 , 4) ; %ns
T clk ps Vivado = round(T c lk ns ∗ 1e3) ;

%%%%%% MARGIN SPECS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
t t o t a l c a p a c i t y = 2ˆ l o n g e u b i t s / speed eu s ; % seconds to f i l l memory

g = 9 . 8 1 ;
a c c e l m s = 0.12∗ g ;
a c c e l e u s 2 = round(a c c e l m s ∗ 1/ k meter inch ∗ k eu inch) ;
a c c e l eu T 2 = round(a c c e l m s ∗ 1/ k meter inch ∗ k eu inch) ∗T clk ˆ2 ;

50

B Frequency divisor

l ibrary IEEE ;
use IEEE . STD LOGIC 1164 .ALL;

entity f requencyDiv i s
Port (CLK, r e s e t : in STD LOGIC;

CLK 10MHZ : out STD LOGIC;
CLK 1 5MHz : out STD LOGIC) ;

end f requencyDiv ;

architecture divArch of f requencyDiv i s
signal new clk 1 5MHz : s t d l o g i c ;
signal new clk 10MHz : s t d l o g i c ;
signal cont 1 5MHz : i n t e g e r range 0 to 34 := 0 ;
signal cont 10MHz : i n t e g e r range 0 to 5 := 0 ;

begin
f r equency d iv : process (r e s e t , CLK) begin

i f (r e s e t = ’1 ’) then
new clk 1 5MHz <= ’0 ’ ;
new clk 10MHz <= ’0 ’ ;
cont 1 5MHz <= 0 ;
cont 10MHz <= 0 ;

e l s i f r i s i n g e d g e (CLK) then
i f (cont 1 5MHz = 33) then

new clk 1 5MHz <= not (new clk 1 5MHz) ;
cont 1 5MHz <= 0 ;

else
cont 1 5MHz<= cont 1 5MHz +1;

end i f ;

i f (cont 10MHz = 5) then
new clk 10MHz <= not (new clk 10MHz) ;
cont 10MHz <= 0 ;

else
cont 10MHz<= cont 10MHz +1;

end i f ;
end i f ;
end process ;
CLK 1 5MHz <= new clk 1 5MHz ;
CLK 10MHZ <= new clk 10MHz ;

end divArch ;

51

C Encoder Operator

l ibrary IEEE ;
use IEEE . STD LOGIC 1164 .ALL;
USE i e e e . s t d l o g i c a r i t h .ALL;

entity encoderOperator i s
PORT (

c lk , r e s e t : in STD LOGIC;
po s i t i o n eu : IN s t d l o g i c v e c t o r (23 DOWNTO 0) ;
sp e ed c t e : IN s t d l o g i c ;
−−a c c e l c t e : IN s t d l o g i c ;
enable : out STD LOGIC;
acce l ou t , speed out , pos out : OUT s t d l o g i c v e c t o r (23 DOWNTO 0)
) ;

end encoderOperator ;

architecture encOpArch of encoderOperator i s
signal pos , a c c e l : s t d l o g i c v e c t o r (23 downto 0) ;
signal speed : i n t e g e r range −8388608 to 8388608;
signal opt ion : i n t e g e r range 0 to 3 ;
signal back , a c c e l c t e : s t d l o g i c := ’ 0 ’ ;
signal cont : i n t e g e r range 0 to 1325668;
CONSTANT maxPos : INTEGER := 1536000;−−5931642;

begin
pSeq : PROCESS (c lk , r e s e t) IS
BEGIN

IF r e s e t = ’1 ’ THEN
a c c e l <= (OTHERS => ’ 0 ’) ;
speed <= 0 ;
pos <= (OTHERS => ’ 0 ’) ;
opt ion <= 0 ;

ELSIF c lk ’ event AND c l k = ’1 ’ THEN
enable <= speed c t e OR a c c e l c t e ;
i f spe ed c t e = ’1 ’ then

opt ion <= 1 ;
e l s i f a c c e l c t e = ’1 ’ then

opt ion <= 2 ;
speed <= −2;

end i f ;

i f opt ion = 0 then
a c c e l <= (OTHERS => ’ 0 ’) ;
speed <= 0 ;
pos <= (OTHERS => ’ 0 ’) ;

end i f ;

i f opt ion = 1 then
a c c e l <= (OTHERS => ’ 0 ’) ;
pos <= (OTHERS => ’ 0 ’) ;
i f po s i t i o n eu = c onv s t d l o g i c v e c t o r (maxPos , 2 4) then

back <= ’1 ’ ;
end i f ;

i f back = ’1 ’ then
speed <= −1;

else
speed <= 1 ;

end i f ;

i f po s i t i o n eu = c onv s t d l o g i c v e c t o r (0 , 24) and back = ’1 ’ then
opt ion <= 0 ;
back <= ’0 ’ ;

end i f ;
end i f ;

52

i f opt ion = 2 then
speed <= 0 ;
a c c e l <= ”000000000000000000000011” ;
pos <= (OTHERS => ’ 0 ’) ;

end i f ;

END IF ;
END PROCESS;

a c c e l o u t <= acc e l ;
pos out <= pos ;
speed out <= conv s t d l o g i c v e c t o r (speed , 2 4) ;

end encOpArch ;

53

D Encoder position

LIBRARY IEEE ;
USE IEEE . STD LOGIC arith .ALL;
USE i e e e . s t d l o g i c 1 1 6 4 .ALL;
USE IEEE .MATHREAL.ALL;
USE i e e e . f i x e d f l o a t t y p e s .ALL;

ENTITY euPos IS
PORT (

c lk , r e s e t , e r ro r , e b lock minus : IN STD LOGIC;
acce l , speed , posIn : IN STD LOGIC VECTOR (23 DOWNTO 0) ;
posOut : OUT STD LOGIC VECTOR (23 DOWNTO 0)) ;

END euPos ;

ARCHITECTURE euPosArch OF euPos IS
SIGNAL accelReg , speedReg : r e a l := 0 . 0 ;
SIGNAL posReg : s igned (23 DOWNTO 0) ;

BEGIN
pSeq : PROCESS (c lk , r e s e t) IS
BEGIN

IF r e s e t = ’1 ’ THEN
acce lReg <= 0 . 0 ;
speedReg <= 0 . 0 ;
posReg <= (OTHERS => ’ 0 ’) ;

ELSIF c lk ’ event AND c l k = ’1 ’ THEN
IF e r r o r = ’0 ’ THEN −−p o s i t i v e

acce lReg <= r e a l (c onv in t eg e r (s igned (a c c e l))) + acce lReg ;
speedReg <= r e a l (c onv in t eg e r (s igned (speed))) + speedReg + acce lReg ;
posReg <= conv s igned (INTEGER(speedReg) , 24) + s igned (posIn) ;

ELSIF e r r o r = ’1 ’ THEN −−ERROR
IF e b lock minus = ’0 ’ THEN

acce lReg <= r e a l (c onv in t eg e r (s igned (a c c e l))) + acce lReg ;
speedReg <= − r e a l (c onv in t eg e r (s igned (speed))) + speedReg + acce lReg

;
posReg <= conv s igned (INTEGER(speedReg) , 24) + s igned (posIn) ;

END IF ;
END IF ;

END IF ;
END PROCESS;
posOut <= conv s t d l o g i c v e c t o r (posReg , 24) ;

END euPosArch ;

54

E Error generator and control

LIBRARY IEEE ;
USE IEEE . STD LOGIC 1164 .ALL;
USE i e e e . s t d l o g i c a r i t h .ALL;
USE i e e e . math rea l .ALL;

ENTITY e r rorGenerator IS
PORT (

c lk , r e s e t , enable : IN STD LOGIC;
pos eu in , d i r e c t i o n : IN STD LOGIC VECTOR (23 DOWNTO 0) ;
e r ro r , e b lock minus : OUT STD LOGIC−−;
−−errorPosOut : OUT STD LOGIC VECTOR (23 DOWNTO 0)

) ;
END e r rorGenerator ;

ARCHITECTURE errorArch OF e r rorGenerator IS
CONSTANT l en : INTEGER := 16 ;
CONSTANT posLen : INTEGER := 24 ;
CONSTANT maxPosError : INTEGER := 5822 ;−−22992;
SIGNAL cont : INTEGER RANGE 0 TO 320 ;
SIGNAL min val , max val : INTEGER RANGE 0 TO 23169 ;
SIGNAL pos eu p lu s : unsigned (posLen − 1 DOWNTO 0) ;
SIGNAL auxError , auxDir , enable aux : STD LOGIC;
SIGNAL qErrors , posError : STD LOGIC VECTOR(4 DOWNTO 0) ;
SIGNAL valError , f i r s t E r r o r : STD LOGIC VECTOR(l en − 1 DOWNTO 0) ;
SIGNAL er rorPos : STD LOGIC VECTOR(posLen − 1 DOWNTO 0) ;
SIGNAL s u f i x : STD LOGIC VECTOR(7 DOWNTO 0) ;
TYPE e r r o r t yp e IS ARRAY (0 TO 25) OF STD LOGIC VECTOR(l en − 1 DOWNTO 0) ;
SIGNAL er rorsReg : e r r o r t yp e ;

BEGIN
pSeq : PROCESS (c lk , r e s e t) IS

VARIABLE seed1 , seed2 : INTEGER := 999 ;
IMPURE FUNCTION r and s l v (l en : INTEGER) RETURN STD LOGIC VECTOR IS

VARIABLE r : r e a l ;
VARIABLE s l v : STD LOGIC VECTOR(l en − 1 DOWNTO 0) ;

BEGIN
FOR i IN s lv ’RANGELOOP

uniform (seed1 , seed2 , r) ;
IF r > 0 .5 THEN

s l v (i) := ’ 1 ’ ;
ELSE

s l v (i) := ’ 0 ’ ;
END IF ;

END LOOP;
RETURN s l v ;

END FUNCTION;
IMPURE FUNCTION r and in t (min val , max val : INTEGER) RETURN INTEGER IS

VARIABLE r : r e a l ;
BEGIN

uniform (seed1 , seed2 , r) ;
RETURN INTEGER(
round (r ∗ r e a l (max val − min val + 1) + r e a l (min val) − 0 . 5)) ;

END FUNCTION;

BEGIN
IF r e s e t = ’1 ’ THEN

auxError <= ’0 ’ ;
e b lock minus <= ’0 ’ ;
auxDir <= ’1 ’ ;
qErrors <= CONV STD LOGIC VECTOR (rand in t (10 ,25) ,5) ;
va lError <= CONV STD LOGIC VECTOR (rand in t (0 , maxPosError) , l en) ;
e r rorPos <= (others => ’ 0 ’) ;

ELSIF c lk ’ event AND c l k = ’1 ’ THEN
enable aux <= enable ;
IF enable aux = ’1 ’ AND enable = ’0 ’ THEN

posError <= (OTHERS => ’ 0 ’) ;

55

er rorsReg (0) <= valError ;
f i r s t E r r o r <= valError ;
FOR i IN 1 TO conv in t eg e r (unsigned (qErrors)) − 1 LOOP

er rorsReg (i) <= conv s t d l o g i c v e c t o r (r and in t (min val , max val) , l en
) ;

END LOOP;
END IF ;

FOR i IN 0 TO conv in t eg e r (unsigned (qErrors)) − 1 LOOP
IF errorsReg (i) & s u f i x = CONV STD LOGIC VECTOR(pos eu p lus , posLen) AND

NOT(d i r e c t i o n (posLen − 1)) = ’1 ’ THEN
auxError <= ’1 ’ ;
auxDir <= NOT(d i r e c t i o n (posLen − 1)) ;
e r rorPos <= errorsReg (i) & s u f i x ;
e r rorsReg (conv in t eg e r (unsigned (posError))) <= valError ;
va lError <= errorsReg (i) ;
posError <= conv s t d l o g i c v e c t o r (i , 5) ;
e r rorsReg (i) <= (OTHERS => ’ 0 ’) ;

ELSIF er rorsReg (i) & s u f i x = pos eu in ANDNOT(d i r e c t i o n (posLen − 1)) =
’0 ’ THEN
auxError <= ’1 ’ ;
auxDir <= NOT(d i r e c t i o n (posLen − 1)) ;
e r rorPos <= errorsReg (i) & s u f i x ;
e r rorsReg (conv in t eg e r (unsigned (posError))) <= valError ;
va lError <= errorsReg (i) ;
posError <= conv s t d l o g i c v e c t o r (i , 5) ;
e r rorsReg (i) <= (OTHERS => ’ 0 ’) ;

END IF ;
END LOOP;

IF auxError = ’1 ’ AND auxDir = ’1 ’ THEN
IF cont < 127 THEN

e b lock minus <= ’0 ’ ; −− MINUS 128
ELSIF cont >= 127 AND cont < 256 THEN

e b lock minus <= ’1 ’ ; −− BLOCKED 128
ELSIF cont >= 256 AND cont < 319 THEN

e b lock minus <= ’0 ’ ; −− MINUS 64
END IF ;

IF cont = 319 THEN
cont <= 0 ;
auxError <= ’0 ’ ;

ELSE
cont <= cont + 1 ;

END IF ;

ELSIF auxError = ’1 ’ AND auxDir = ’0 ’ THEN
IF cont < 319 THEN

e b lock minus <= ’1 ’ ; −− BLOCKED 319
END IF ;

IF cont = 319 THEN
cont <= 0 ;
auxError <= ’0 ’ ;

ELSE
cont <= cont + 1 ;

END IF ;

END IF ;
END IF ;

END PROCESS;

e r r o r <= auxError ;
min val <= conv in t eg e r (unsigned (va lError)) ;
max val <= conv in t eg e r (unsigned (va lError)) + 177 ;
po s eu p lu s <= UNSIGNED(po s eu in) + 2 ;
−−errorPosOut <= errorPos ;

56

s u f i x <= X”7F” WHEN d i r e c t i o n (posLen − 1) = ’0 ’ ELSE
X”3F” WHEN d i r e c t i o n (posLen − 1) = ’ 1 ’ ;

END errorArch ;

57

F Encoder position to AB signal

LIBRARY IEEE ;
USE IEEE . STD LOGIC 1164 .ALL;
USE i e e e . numer ic std .ALL;

ENTITY euConvAB IS
PORT (

p o s i t i o n eu : IN STD LOGIC VECTOR(23 DOWNTO 0) ;
c lk , r e s e t : IN STD LOGIC;
empty : OUT STD LOGIC;
channelAB : OUT STD LOGIC VECTOR(1 DOWNTO 0)) ;

END euConvAB ;

ARCHITECTURE channelsArch OF euConvAB IS
SIGNAL pos eu : STD LOGIC VECTOR(1 DOWNTO 0) ;

BEGIN
pSeq : PROCESS (c lk , r e s e t) IS
BEGIN

IF r e s e t = ’1 ’ THEN
pos eu <= ”00” ;

ELSE
pos eu <= po s i t i o n eu (7) & po s i t i o n eu (6) ;

END IF ;
END PROCESS;

WITH pos eu SELECT
channelAB <= ”10” WHEN ”00” ,
”11” WHEN ”01” ,
”01” WHEN ”10” ,
”00” WHENOTHERS;

WITH po s i t i o n eu SELECT
empty <= ’1 ’ WHEN (OTHERS => ’ 0 ’) ,
’ 0 ’ WHENOTHERS;

END channelsArch ;

58

G Transition’s AB capture

LIBRARY IEEE ;
USE IEEE . STD LOGIC 1164 .ALL;
USE i e e e . s t d l o g i c a r i t h .ALL;

ENTITY transChangeAB IS
PORT (

c lk ram : IN STD LOGIC;
r e s e t : IN STD LOGIC;
AB channel : IN STD LOGIC VECTOR (1 DOWNTO 0) ;
AB out : OUT STD LOGIC VECTOR (1 DOWNTO 0) ;
timeStampDiff : OUT STD LOGIC VECTOR (6 DOWNTO 0) ;
da t a va l i d : OUT STD LOGIC) ;

END transChangeAB ;

ARCHITECTURE tranArch OF transChangeAB IS
SIGNAL AB aux1 : unsigned (1 DOWNTO 0) ;
SIGNAL cont : INTEGER RANGE 0 TO 1 ;
SIGNAL data v aux : STD LOGIC;
SIGNAL intTime : INTEGER RANGE 0 TO 2147483640 := 0 ;
SIGNAL d i f fTS : INTEGER RANGE 0 TO 2147483640 := 0 ;

BEGIN
qSeq : PROCESS (clk ram , r e s e t) IS

VARIABLE t ime v : TIME := 0 us ;
BEGIN

IF r e s e t = ’1 ’ THEN
data v aux <= ’0 ’ ;
cont <= 0 ;

ELSIF clk ram ’ event AND clk ram = ’1 ’ THEN
t ime v := now ;
IF cont = 0 THEN

AB aux1 <= unsigned (AB channel) ;
data v aux <= ’0 ’ ;
cont <= cont + 1 ;

ELSE
IF AB aux1 /= unsigned (AB channel) THEN

data v aux <= ’1 ’ ;
d i f fTS <= time v / 1 us − intTime ;
intTime <= time v / 1 us ;
cont <= 0 ;

END IF ;
END IF ;

END IF ;
END PROCESS;

d a t a va l i d <= data v aux ;
AB out <= CONV STD LOGIC VECTOR(AB aux1 , 2) ;
t imeStampDiff <= conv s t d l o g i c v e c t o r (di f fTS , 7) ;

END tranArch ;

59

H Memory controller

LIBRARY IEEE ;
USE IEEE . STD LOGIC 1164 .ALL;
USE i e e e . s t d l o g i c a r i t h .ALL;
−−use i e e e . numeric s td . a l l ;
ENTITY addressContro l IS

PORT (
clk ram , r e s e t : IN STD LOGIC;
r s t wr : IN STD LOGIC;
data AB : IN STD LOGIC VECTOR (1 DOWNTO 0) ;
data timeStamp : IN STD LOGIC VECTOR (6 DOWNTO 0) ;
wr i t e da ta : IN STD LOGIC;
read data : IN STD LOGIC;
RamCEn : OUT STD LOGIC;
RamOEn : OUT STD LOGIC;
RamWEn : OUT STD LOGIC;
MemDB : out STD LOGIC VECTOR (7 DOWNTO 0) ;
MemAdr : OUT STD LOGIC VECTOR (18 DOWNTO 0)
) ;

END addressContro l ;

ARCHITECTURE addrArch OF addressContro l IS
SIGNAL addrW aux , addrR aux : unsigned (18 DOWNTO 0) := (others => ’ 0 ’) ;
TYPE stateMachine IS (s 0 I d l e , s1 Write , s2 Read) ;
SIGNAL stateM : stateMachine ;
signal CE aux , WE aux , OE aux , oneOption : s t d l o g i c := ’ 1 ’ ; −−ac t i v o a n i v e l ba jo
signal data : s t d l o g i c v e c t o r (7 downto 0) := (others => ’ 0 ’) ;

BEGIN
qSeq : PROCESS (clk ram , r e s e t) IS
BEGIN

IF (r e s e t = ’1 ’ OR r s t wr = ’1 ’) THEN
stateM <= s0 I d l e ;
addrW aux <= (others => ’ 0 ’) ;
addrR aux <= (others => ’ 0 ’) ;
MemAdr <= (others => ’ 0 ’) ;

ELSIF clk ram ’ event AND clk ram = ’1 ’ THEN

CASE stateM IS
WHEN s 0 I d l e =>

i f wr i t e da ta = ’1 ’ and oneOption = ’1 ’ then
CE aux <= ’0 ’ ;
WE aux <= ’0 ’ ;
data <= data timeStamp (6) & data timeStamp (5) & data timeStamp (4)

& data timeStamp (3) & data timeStamp (2) & data timeStamp (1)
& data AB ;

MemAdr <= s t d l o g i c v e c t o r (addrW aux) ;
stateM <= s1 Write ;

e l s i f read data = ’1 ’ and oneOption = ’1 ’ then
CE aux <= ’0 ’ ;
OE aux <= ’0 ’ ;
MemAdr <= s t d l o g i c v e c t o r (addrR aux) ;
addrR aux <= addrR aux + 1 ;
stateM <= s2 Read ;

else
CE aux <= ’1 ’ ;
OE aux <= ’1 ’ ;
WE aux <= ’1 ’ ;
stateM <= s0 I d l e ;

END IF ;
WHEN s1 Write =>

addrW aux <= addrW aux + 1 ;
MemAdr <= addrW aux + 1 ;
IF wr i t e da ta = ’1 ’ and oneOption = ’1 ’ THEN

CE aux <= ’0 ’ ;
WE aux <= ’0 ’ ;

60

data <= data timeStamp (6) & data timeStamp (5) & data timeStamp (4)
& data timeStamp (3) & data timeStamp (2) & data timeStamp (1)

& data AB ;
stateM <= s1 Write ;

e l s i f read data = ’1 ’ and oneOption = ’1 ’ then
CE aux <= ’0 ’ ;
OE aux <= ’0 ’ ;
MemAdr <= s t d l o g i c v e c t o r (addrR aux) ;
addrR aux <= addrR aux + 1 ;
stateM <= s2 Read ;

else
CE aux <= ’1 ’ ;
OE aux <= ’1 ’ ;
WE aux <= ’1 ’ ;
stateM <= s0 I d l e ;

END IF ;
WHEN s2 Read =>

IF wr i t e da ta = ’1 ’ and oneOption = ’1 ’ THEN
CE aux <= ’0 ’ ;
WE aux <= ’0 ’ ;
data <= data timeStamp (6) & data timeStamp (5) & data timeStamp (4)

& data timeStamp (3) & data timeStamp (2) & data timeStamp (1)
& data AB ;

stateM <= s1 Write ;
e l s i f read data = ’1 ’ and oneOption = ’1 ’ then

CE aux <= ’0 ’ ;
OE aux <= ’0 ’ ;
MemAdr <= s t d l o g i c v e c t o r (addrR aux) ;
addrR aux <= addrR aux + 1 ;
stateM <= s2 Read ;

else
CE aux <= ’1 ’ ;
OE aux <= ’1 ’ ;
WE aux <= ’1 ’ ;
stateM <= s0 I d l e ;

END IF ;
END CASE;

END IF ;
END PROCESS;

MemDB <= data ;
RamCEn <= CE aux ;
RamOEn <= OE aux ;
RamWEn <= WE aux ;
oneOption <= wr i t e da ta XOR read data ;

END addrArch ;

61

I RAM Emulation

l ibrary IEEE ;
use IEEE . STD LOGIC 1164 .ALL;
use IEEE . Numeric Std . a l l ;

entity memoryRAM i s
Port (CLK 10MHz : in STD LOGIC;

RamCEn : in STD LOGIC;
RamOEn : in STD LOGIC;
RamWEn : in STD LOGIC;
MemDB in : in STD LOGIC VECTOR (7 downto 0) ;
MemDB out : out STD LOGIC VECTOR (7 downto 0) ;
MemAdr : in STD LOGIC VECTOR (18 downto 0)
) ;

end memoryRAM;

architecture ramArch of memoryRAM i s
type ram type i s array (0 to 5242287) of s t d l o g i c v e c t o r (7 downto 0) ;
signal ram : ram type ;
signal addr : s t d l o g i c v e c t o r (18 downto 0) := (others => ’ 0 ’) ;

begin

qSeq : PROCESS (CLK 10MHz) i s
begin

i f CLK 10MHz’ event AND CLK 10MHz= ’1 ’ then
i f RamCEn = ’0 ’ then

i f RamWEn = ’0 ’ then
ram(t o i n t e g e r (unsigned (MemAdr))) <= MemDB in ;

end i f ;

i f RamOEn = ’0 ’ then
MemDB out <= ram(t o i n t e g e r (unsigned (MemAdr))) ;
addr <= MemAdr ;

end i f ;

end i f ;

end i f ;
end process ;

end ramArch ;

62

J Pulse train to read RAM

l ibrary IEEE ;
use IEEE . STD LOGIC 1164 .ALL;
USE i e e e . numer ic std .ALL;

entity readRAM i s
Port (clk ram , r e s e t : in STD LOGIC;

button read : in STD LOGIC;
empty : in STD LOGIC;
read data : out STD LOGIC) ;

end readRAM;

architecture readRamArch of readRAM i s
TYPE stateMachine IS (s 0 I d l e , s1 ContPlus , s2 Read) ;
SIGNAL stateM : stateMachine ;
signal cont : unsigned (7 downto 0) ;

begin
pSeq : PROCESS (clk ram , r e s e t) IS

begin
IF r e s e t = ’1 ’ then

cont <= (others => ’ 0 ’) ;
r ead data <= ’0 ’ ;

ELSIF clk ram ’ event AND clk ram = ’1 ’ then
CASE stateM IS

WHEN s 0 I d l e =>
read data <= ’0 ’ ;
cont <= (others => ’ 0 ’) ;
i f empty = ’1 ’ then

stateM <= s0 I d l e ;
e l s i f button read = ’1 ’ then

stateM <= s1 ContPlus ;
end i f ;

WHEN s1 ContPlus =>
cont <= cont + 1 ;
read data <= ’0 ’ ;
i f empty = ’1 ’ then

stateM <= s0 I d l e ;
e l s i f cont < 200 then

stateM <= s1 ContPlus ;
e l s i f cont = 200 then

read data <= ’1 ’ ;
stateM <= s2 Read ;

end i f ;
WHEN s2 Read =>

i f empty = ’1 ’ then
stateM <= s0 I d l e ;

else
read data <= ’0 ’ ;
cont <= (others => ’ 0 ’) ;
stateM <= s1 ContPlus ;

end i f ;
END CASE;

end i f ;
END PROCESS;

end readRamArch ;

63

K Store data to text file

l ibrary IEEE ;
use IEEE . STD LOGIC 1164 .ALL;
USE STD. t e x t i o .ALL;
USE i e e e . s t d l o g i c t e x t i o .ALL;
use i e e e . numer ic std . a l l ;

entity dataToFile i s
Port (

c lk ram : IN STD LOGIC;
r e s e t : IN STD LOGIC;
OE : in STD LOGIC;
data : in STD LOGIC VECTOR (7 downto 0) ;
address : in STD LOGIC VECTOR (18 downto 0)
−−LED : out STD LOGIC
) ;

end dataToFile ;

architecture f i l eA r ch of dataToFi le i s
FILE file RESULTS : t ex t OPEN write mode IS ”C:\ Users \brend\OneDrive\ Es c r i t o r i o \TFG\

outputWriteAB . txt ” ;
signal data aux : s t d l o g i c v e c t o r (7 downto 0) ;
signal timeStamp : s t d l o g i c v e c t o r (5 downto 0) ;
signal data AB : s t d l o g i c v e c t o r (1 downto 0) ;

begin

s y n c s t u f f : PROCESS (c lk ram)
VARIABLE o u t l i n e : l i n e ;
VARIABLE v TIME : TIME := 0 us ;

BEGIN
i f r e s e t = ’1 ’ then

data aux <= (others => ’ 0 ’) ;
ELSIF r i s i n g e d g e (c lk ram) THEN

IF data AB (0) = ’0 ’ OR data AB (0) = ’1 ’ then
IF OE = ’0 ’ THEN

data aux <= data ;
wr i t e (ou t l i n e , t o i n t e g e r (unsigned (address))) ;
wr i t e (ou t l i n e , timeStamp , r i ght , 15) ;
wr i t e (ou t l i n e , data AB , r ight , 15) ;
w r i t e l i n e (file RESULTS , o u t l i n e) ;

END IF ;
END IF ;

END IF ;
END PROCESS;
data AB <= data (1) & data (0) ;
timeStamp <= data (7) & data (6) & data (5) & data (4) & data (3) & data (2) ;

end f i l eA r ch ;

64

L Python data process

import numpy as np
import csv

add r e s sL i s t = []
timeStampList = []
abLi s t = []

###
ORIENTATION CALCULATIONS
###
def c a l c d i r e c t i o n (posNow , posAft) :

c ond i t i on = (posNow == ’ 00 ’ and posAft == ’ 10 ’) or (posNow == ’ 10 ’ and posAft == ’ 11 ’
) or (
posNow == ’ 11 ’ and posAft == ’ 01 ’) or (posNow == ’ 01 ’ and posAft == ’ 00 ’)

return cond i t i on

def obta in data (i) :
Open f i l e and s t o r e data to newArrayData
path = ”C:/ Users /brend/OneDrive/ E s c r i t o r i o /TFG/Python/outputWriteAB” + str (i)+” . txt ”
f = open(path , ” r ”)
data = f . read ()
l i s tDa t a = data . s p l i t ()
#newArrayData = []
newArrayData = np . a r r a y s p l i t (l i s tData , len (l i s tDa t a) /3)

Sp l i t data in address , time stamp and AB in fo
for array in newArrayData :

address = l i s t (array) [0]
timeStampBin = l i s t (array) [1] + ’ 1 ’
timeStampInt = int (timeStampBin , 2)
ab = l i s t (array) [2]
add r e s sL i s t . append (address)
timeStampList . append (timeStampInt)
abLis t . append (ab)

return addre s sL i s t , timeStampList , abLi s t

def peu performance () :
peu = []
time = []
peu . append (0)
peuCont = 0
time . append (0)
timeCont = 0
us = 1000000
limMaxTime = 46
limMinTime = 30
probTime = []
dir = []
dir . append (1)
for i in range (0 , len (abLi s t)−1) :

posNow = abLis t [i]
posAft = abLis t [i +1]
d i r e c t i o n = c a l c d i r e c t i o n (posNow , posAft)

i f d i r e c t i o n :
peuCont = peuCont + 1
dir . append (1)

else :
peuCont = peuCont − 1
dir . append (0)

peu . append (peuCont)
timeAft = timeStampList [i +1]
timeCont = timeCont + timeAft
time . append (timeCont/us)

65

i f t imeAft > limMaxTime or t imeAft < limMinTime :
probTime . append (1)

else :
probTime . append (0)

return peu , probTime , time , dir

def data NN(peu , probTime , dir) :
maxPeu = max(peu)
maxPosPeu = peu . index (max(peu))
k meter inch = 0 . 0254 ; # 1 in = 0.0254 m
k s ignalsAB = 4
lp i s y s t em = 150
k peu inch = lp i s y s t em ∗ k s ignalsAB
long meter s = maxPeu / k peu inch ∗ k meter inch / 2
norm = long meter s / 0 .508

dirForw = dir [0 : maxPosPeu]
dirBack = dir [maxPosPeu+1: len (dir)]
probTimeFordward = probTime [0 : maxPosPeu]
probTimeBackward = probTime [maxPosPeu+1: len (dir)]

percentTimeFordward = sum(probTimeFordward) / len (probTimeFordward) ∗ 100 ∗ norm
percentTimeBackward = sum(probTimeBackward) / len (probTimeBackward) ∗ 100 ∗ norm

percentDirNegFordward = (1 − sum(dirForw) / len (dirForw)) ∗ 100 ∗ norm
percentDirPosBackward = (1 − (len (dirBack) − sum(dirBack)) / len (dirBack)) ∗ 100 ∗

norm

return [percentTimeFordward , percentTimeBackward , percentDirNegFordward ,
percentDirPosBackward , l ong meter s]

def write NN Info (dataToFile) :
f = open(”C: / Users /brend/OneDrive/ E s c r i t o r i o /TFG/Python/dataBase . txt ” , ”a”)
wr i t e r = csv . wr i t e r (f , d e l im i t e r=’ \ t ’)
w r i t e r . writerow ([dataToFile [0] , dataToFile [1] , dataToFile [2] , dataToFi le [3]])
print (”DONE! ” + str ([dataToFile [0] , dataToFile [1] , dataToFile [2] , dataToFile [3] ,

dataToFi le [4]]))

i = 0
while (i < 6) :

addre s sL i s t , timeStampList , abLi s t = obta in data (i)
peu , probTime , time , dir = peu performance ()
dataToFile = data NN(peu , probTime , dir)
wr i te NN Info (dataToFile)
i = i + 1

66

M Python Neural Network Analysis

from re import I
import matp lo t l i b . pyplot as p l t
import numpy as np

###
PARAMETERS DEFINITION
###
weights = np . array ([np . random . randn () , np . random . randn () , np . random . randn () , np . random .

randn ()])
b i a s = np . random . randn ()
l aye r1 = 0
laye r2 = 0

###
NEURAL NETWORK
###
def s igmoid (x) :

return 1 / (1 + np . exp(−x))

def de r i v s i gmo id (x) :
return s igmoid (x) ∗ (1 − s igmoid (x))

def update b i a s we igh t s (d e r i vEr ro r b i a s , d e r i vEr ro r we i gh t s) :
global bias , weights
b i a s = b ia s − (d e r i vE r r o r b i a s ∗ l e a r n i n g r a t e)
weights = weights − (de r i vEr ro r we i gh t s ∗ l e a r n i n g r a t e)

def p r e d i c t i o n l a y e r 2 (vectorDataBase) :
global l ayer1 , l ay e r2
l aye r1 = np . dot (vectorDataBase , weights) + b ia s
l aye r2 = sigmoid (l aye r1)
return l ay e r2

def d e r i v p r e d i c t i o n (vectorDataBase , target , p r ed i c t i o n) :
d e r i vE r r o r P r ed i c t i on = 2 ∗ (p r ed i c t i o n − t a r g e t)
de r iv Layer1 = der i v s i gmo id (l aye r1)
d e r i v l a y e r 1 b i a s = 1
d e r i v l a y e r 1 we i gh t s = vectorDataBase

d e r i vE r r o r b i a s = de r i vE r r o r P r ed i c t i on ∗ der iv Layer1 ∗ d e r i v l a y e r 1 b i a s
de r i vEr ro r we i gh t s = de r i vE r r o r P r ed i c t i on ∗ der iv Layer1 ∗ d e r i v l a y e r 1 we i gh t s
return de r i vEr ro r b i a s , d e r i vEr ro r we i gh t s

def NeuralNetworkTraining (t o t a l i t e r a t i o n s) :
global matrixDataBase , t a r g e t s
cumulErrors = []
for iter in range (t o t a l i t e r a t i o n s) :

matr ix rand index = np . random . rand int (len (matrixDataBase))

vectorDataBase = matrixDataBase [matr ix rand index]
t a r g e t = t a r g e t s [matr ix rand index]
p r ed i c t i on = p r e d i c t i o n l a y e r 2 (vectorDataBase)
de r i vEr ro r b i a s , d e r i vEr ro r we i gh t s = d e r i v p r e d i c t i o n (vectorDataBase , target ,

p r ed i c t i o n)
update b i a s we igh t s (d e r i vEr ro r b i a s , d e r i vEr ro r we i gh t s)

cumu la t i v e e r r o r = 0
for index data in range (len (matrixDataBase)) :

da t a i n s t an t = matrixDataBase [index data]
t a r g e t = ta r g e t s [index data]

p r ed i c t = p r e d i c t i o n l a y e r 2 (da ta i n s t an t)
mse = np . square (p r ed i c t − t a r g e t)

cumu la t i v e e r r o r = cumu la t i v e e r r o r + mse

67

cumulErrors . append (cumulErrors)
return cumulErrors

###
DATA PROCESS FROM FILE
###
path = ”C:/ Users /brend/OneDrive/ E s c r i t o r i o /TFG/Python/dataBase . txt ”
f = open(path , ” r ”)
dataBase = f . read ()
l i s tDataBase = dataBase . s p l i t ()
newArrayDataBase = np . a r r a y s p l i t (l i s tDataBase , len (l i s tDataBase) /4)
matrixDataBase = []
row = 0
for array in newArrayDataBase :

x = np . array ([l i s t (array) [0] , l i s t (array) [1] ,
l i s t (array) [2] , l i s t (array) [3]])

x = x . astype (np . f loat)
matrixDataBase . append (x)
row = row + 1

ta r g e t s = np . append (np . ones (len (matrixDataBase)−1) ,0)

###
NN PROCESS TRAINING
###
l e a r n i n g r a t e = 0 .1
neura l network = NeuralNetworkTraining (80000)
print (f ”\n########## BIAS & WEIGHTS ##########”)
print (f ”The b ia s i s : { b ia s }”)
print (f ”The weights are : {weights }”)

###
EXAMPLE
###
vector example = [0 .2300380461870742 ,0 .35899870989221358 , 0 .7083352716397303 ,

48 .011319561200544]
p r ed i c t i o n = p r e d i c t i o n l a y e r 2 (vector example)
print (f ”\n######## PREDICTION EXAMPLE ########”)
i f p r ed i c t i o n < 0 . 5 :

phrase = ”There i s any e r r o r detec ted . ”
else :

phrase = ”There i s an e r r o r detec ted ! ! ! ”
print (f ” Pred i c t i on from the neura l network : { p r ed i c t i o n }\n”+phrase)

p l t . p l o t (neura l network)
p l t . x l ab e l (” I t e r a t i o n s ”)
p l t . y l ab e l (”Error f o r a l l t r a i n i n g i n s t an c e s ”)
p l t . s a v e f i g (” Cumulat ive count e r ro r s . png”)
p l t . show ()

68

	List of Figures
	List of Tables
	Introduction
	Requirements and specifications
	Work's continuation
	Work plan, Tasks and Milestones
	Define specifications
	Encoder emulation and data processing
	Neural Network
	Milestones

	Gantt Diagram
	Deviations and incidences

	State of the art of the technology used or applied in this thesis:
	The use of encoders
	Optical encoder
	Fordward and backward
	Performance with errors

	Neural Networks
	Structure of an artificial neuron
	Model of an artificial neuron
	Back-propagation
	Application list

	Digilent Cmod A7 35T FPGA
	Characteristics
	Useful data

	TCL language
	Applications

	Encoder parameters
	Vivado modules
	Frequency divisor
	Encoder emulation
	Encoder operator
	Encoder units position
	Encoder units to AB signals
	Error generator

	Cmod A7
	AB's transition change
	Address control
	Read data's RAM

	RAM Memory
	Store data to a file
	Constraints
	CmodA7 constraints xdc file

	Vivado waveform results
	Encoder emulation
	Cmod A7
	Final block diagram

	Python code
	Data process code
	Neural Network code
	Neural Network training process

	Budget
	Conclusions
	Future Work
	References
	Appendices
	Encoder parameters
	Frequency divisor
	Encoder Operator
	Encoder position
	Error generator and control
	Encoder position to AB signal
	Transition's AB capture
	Memory controller
	RAM Emulation
	Pulse train to read RAM
	Store data to text file
	Python data process
	Python Neural Network Analysis

