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ABSTRACT 

Modelling geotechnical problems involving large deformation is a research field that 

arouses growing interest since it is fundamental for evaluating the risk and quantifying 

the magnitude of consequences. However, it is still challenging and requires to develop 

solution schemes able to reproduce failure initiation as well as post-failure dynamics. 

This thesis focuses on studying large deformations geotechnical problems subjected to 

static and dynamic loadings including static liquefaction in saturated and partially 

saturated soils that induces flow-like landslides. 

Accounting for the difficulties to treat large deformations with the traditional lagrangian 

approaches, due to the excessive distortion of the mesh elements, the Material Point 

Method (MPM) is adopted. MPM discretises the continuum media into a set of material 

points that can move attached to the material and carry all the information. The 

governing equations are solved at the nodes of the computational mesh that remains 

fixed in space. This double discretization provides to MPM the capabilities of handling 

problems involving large displacements and deformations. The numerical 

developments and simulations are carried out in the open-source MPM Anura3D code. 

The method is applied for the simulation of geotechnical cases dealing with soil 

excavation. First, the stability of strutted excavations in clay is studied and MPM results, 

which provides a realistic interpretation of failure, are compared with analytical 

solutions based on simplified assumption. An interesting discussion of the discrepancies 

found between the methods is also included. In the second example, the well-

documented Cortes de Pallás landslide due to toe excavation is simulated. Consistently 

with field observation, the excavation produces significant displacements after which a 

new stable configuration is reached. 
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Later on, the thesis presents the study of a complex real landslide occurred during a dam 

construction project, including its seismic assessment. This is a case of creeping slide 

motion and it is characterized by two superimposed sliding surfaces. Different scenarios 

of geometry and groundwater conditions, representing the landslide history and futures 

stabilizing measures and rainfall regimes, are considered for the stability analysis with 

FEM. MPM is used instead to carry-out a motion back-analysis on an unstable scenario. 

The creeping behaviour observed is also discussed through an analytical calculation in 

which the case is simplified to a planar landslide. Finally, the seismic assessment is 

performed with a focus on the effect of the superimposed slip surfaces. Results of MPM 

are compared with Newmark’s approach in its classical form and by introducing the 

strain-rate dependence on the residual friction angle. 

The last part of the thesis focusses on modelling a liquefaction-induced flow landslide 

from the failure triggering to the subsequent slide-to-flow transition. With this aim, an 

advanced constitutive model able to simulate static and cyclic soil response such as 

accumulation of permanent strains, excess pore pressure and degradation of soil 

stiffness modulus, is implemented in the open-source MPM Anura3D code. For the 

validation and calibration of the code and the constitutive model, laboratory tests 

published in the literature are reproduced. After validation, the model is applied to a 

real case of flow landslide recently occurred in Catalonia (Spain) Its parameters are 

calibrated based on data of undrained triaxial tests that show the liquefaction potential 

of the material involved. MPM simulation is able to reproduce the failure initiation 

caused by a water inflow and the large deformations in the post-failure stage. The final 

run-out calculated is found to be significantly affected by the model parameter 

accounting for liquefaction susceptibility. 
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RESUMEN 

La modelización de problemas geotécnicos que involucran grandes deformaciones es un 

campo de investigación que despierta un interés creciente ya que es fundamental para 

evaluar el riesgo y cuantificar la magnitud de las consecuencias. Sin embargo, sigue 

siendo un desafío y requiere desarrollar soluciones capaces de reproducir el inicio de la 

rotura, así como la propagación del movimiento.  

Esta tesis se centra en el estudio de problemas geotécnicos de grandes deformaciones, 

incluida la licuefacción estática en suelos saturados y parcialmente saturados que 

inducen flujos de tierra.  

Teniendo en cuenta las dificultades en tratar grandes deformaciones con los enfoques 

tradicionales lagrangianos, debido a la excesiva distorsión de los elementos de la malla, 

se ha adoptado el Método del Punto Material (MPM). MPM discretica los medios 

continuos en un conjunto de puntos materiales que pueden moverse unidos al material 

y llevan toda la información. Las ecuaciones de gobierno se resuelven en los nodos de la 

malla computacional que permanece fija en el espacio. Esta doble desratización 

proporciona a MPM la capacidad de manejar problemas que involucran grandes 

desplazamientos y deformaciones. Los desarrollos numéricos y las simulaciones se 

llevan a cabo en el código abierto Anura3D. 

El método se ha aplicado para la simulación de casos geotécnicos relacionados con 

excavación de suelo. Primero, se ha estudiado la estabilidad de excavaciones sostenidas 

en arcilla y se han comparado los resultados del MPM, que proporcionan una 

interpretación realista de la rotura, con soluciones analíticas basadas en hipótesis 

simplificadas. También se ha incluido una discusión interesante de las discrepancias 

encontradas entre los métodos. En el segundo ejemplo, se ha simulado el bien 
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documentado deslizamiento de tierra de Cortes de Pallás debido a la excavación del pie. 

Consistentemente con las observaciones de campo, la excavación produce 

desplazamientos significativos después de los cuales se alcanza una nueva configuración 

estable.  

Luego, la tesis presenta el estudio de un complejo deslizamiento real ocurrido durante 

el proyecto de construcción de una presa, incluyendo su evaluación sísmica. Este es un 

caso de movimiento deslizante lento y se caracteriza por dos superficies de 

deslizamiento superpuestas. Para el análisis de estabilidad con FEM se han considerado 

diferentes escenarios de geometría y condiciones de aguas subterráneas, que representan 

el historial de deslizamientos y futuras medidas de estabilización y regímenes de lluvia. 

En cambio, MPM se ha utilizado para llevar a cabo un análisis inverso de movimiento 

en un escenario inestable. El comportamiento observado de movimiento lento también 

se ha analizado a través de un cálculo analítico en el cual el caso se ha simplificado a un 

deslizamiento de tierra plano. Finalmente, se ha realizado la evaluación sísmica con un 

enfoque en el efecto de las superficies de deslizamiento superpuestas. Los resultados del 

MPM se han comparado con el método de Newmark en su forma clásica e introduciendo 

la dependencia de la velocidad de deformación en el ángulo de fricción residual.  

La última parte de la tesis se centra en la modelización de un flujo de tierra inducido por 

licuefacción, desde el desencadenamiento de la rotura hasta la posterior transición de 

deslizamiento a flujo. Con este objetivo, se ha implementado en el código abierto 

Anura3D un modelo constitutivo avanzado capaz de simular la respuesta estática y 

cíclica del suelo, como la acumulación de deformaciones permanentes, el exceso de 

presión de poros y la degradación del módulo de rigidez del suelo. Para la validación y 

calibración del código y del modelo constitutivo se han reproducidos ensayos de 

laboratorio descritos en la literatura.  Después de la validación, el modelo se ha aplicado 

a un caso real de flujo de tierra ocurrido recientemente en Cataluña (España). Sus 

parámetros se han calibrado basándose en datos de ensayos triaxiales no drenados que 

muestran el potencial de licuefacción del material involucrado. La simulación MPM es 

capaz de reproducir la iniciación de la rotura causada por afluencia de agua y las grandes 

deformaciones en la etapa post-rotura. El alcance final del deslizamiento calculado se ve  

significativamente afectado por el parámetro del modelo que tiene en cuenta la 

susceptibilidad a la licuefacción.
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CHAPTER 1 - INTRODUCTION 

In the first chapter of the thesis, the motivation of the work is briefly described. Then, 

the main objectives and the adopted methodology are highlighted and finally, the 

organisation of the document is outlined. 

1.1 MOTIVATION 

Modelling geotechnical problems involving soil large deformation, such as landslide 

dam failure and ground excavation, is fundamental for evaluating the risk and 

quantifying the magnitude of consequences. Despite the growing interest in this research 

field, the simulation of this kind of phenomena is still challenging since it requires 

numerical tools able to capture the failure triggering and the subsequent post-failure 

behaviour. 

One of the phenomena that may induce large deformations in saturated and partially 

saturated granular soils is the liquefaction. The damage resulting can occur in different 

forms: displacements of buildings; lifting of buried structures; earth dams collapse; flow-

like landslides.  

In the literature, there are many documented cases of liquefaction produced by seismic 

events. One of the most surprising examples due to its severity is the one of Kobe (1995) 

that caused damages to civil structures in the city harbour and in the coastal zone mainly 

due to liquefaction of foundation soil.  

However, liquefaction can also occur in areas not subjected to seismic events. In the field 

of landslides, once the instability is triggered, the movement may induces the effective 

stress to drop due to the increase of pore water pressure and static liquefaction occurs. 
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This is the case of the Oso landslide (March 22nd, 2014, Washington), one of the most 

catastrophic landslides in the US (Wartman et al., 2016) that caused 43 human losses and 

economic losses of 120 million dollars (Department of Natural Resources [DNR], 2015) 

due to 8 million cubic meters of glacial and fluvial deposits that travelled more than 1 

km. One of the causes of the catastrophic consequences is attributed to the liquefaction 

of fluvial deposits (Keaton et al., 2014; Iverson et al., 2015; Iverson and George, 2016). 

The phenomenon is widely known experimentally and theoretically, however, its 

numerical modelling is challenging mainly because it involves large deformations, 

dynamic factors and requires a proper constitutive model. It should be able to capture 

all aspects of static and cyclic soil response like the accumulation of permanent 

deformations and excess pore pressure, and also the soil moduli degradation and the 

concurrent hysteretic damping increase as a function of the imposed cyclic shear strains. 

Furthermore, the most widely used calculation methods based on lagrangian 

approaches such as Finite Element Methods (FEM), or the Finite Differences Methods 

(FDM), in its standard version, do not allow to adequately simulating large deformations 

due to the problems associated with the distortion of mesh elements that deform with 

the material. On the other hand, methods based on Eulerian approaches, in which the 

computational mesh remains fixed, present limitations in the monitoring of dynamic 

boundaries. 

To overcome such difficulties, modern numerical approaches are being developed. This 

is the case of the Material Point Method (MPM). It was developed to represent fluid 

dynamic by Harlow et al. (1964) and extended to soil mechanics problems by Sulsky et 

al. (1994, 1995). This method combines a discrete system of material points representing 

the continuum media, which can move attached to the material and carry all the 

information. The governing equations are solved in the nodes of the computational 

mesh, which remains fixed in space. This double discretization can simulate large 

deformations without the problems associated with mesh elements distortion.  

The lack of proper tools able to simulate the liquefaction together with the outstanding 

potential of the MPM in geotechnical problems involving large deformations stimulated 

the interest of undertaking this line of research. 

1.2 OBJECTIVES AND METHODOLOGY 

This thesis aims to investigate geotechnical problems involving large deformations 

within the framework of the Material Point Method (MPM). A focus is directed on 

modelling static liquefaction phenomena in saturated and partially saturated soils 

inducing flow-like landslides.  
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The following specific objectives are formulated: 

- Development, within MPM, of initial and boundary conditions dealing with 

geotechnical problems treated in the thesis: (1) cyclic loading; (2) initial hydraulic 

boundary conditions in saturated and partially saturated soils; (3) soil excavation; 

- Implementation and validation, in the MPM code used in this thesis, of an advanced 

constitutive model able to reproduce static and cyclic liquefaction in order to simulate 

landslide transition to flow type landslide during itself motion. 

- Numerical developments application on real cases.  

The methodology followed to achieve these objectives can be summarized in: 

- Collect in a state of the art constitutive models and numerical methods used in 

geotechnics, focusing on their performance in simulating liquefaction phenomenon, and 

select a suitable one to be implemented; 

- Acquire the necessary knowledge related to the MPM code used and its programming 

language (FORTRAN). This is the open-source Anura3D software 

(http://www.anura3d.com), developed by the MPM research community  

- Validate the numerical developments, listed above, through benchmarks and 

analytical solutions;  

- As a member of Anura3D developers team, adapt the pre-processor interface to the 

numerical developments carried out and make it available to the community as user-

friendly; 

- Model real cases of landslides: Cortes de Pallás, Yesa, Valarties. 

1.3 THESIS LAYOUT 

The Thesis is organised in 8 chapters. 

After an introduction on liquefaction phenomenon, Chapter 2 includes a state of the art 

of the constitutive models for liquefaction available in the literature and the numerical 

methods used to simulate this phenomenon. MPM is described and the advanced 

constitutive model for liquefaction selected to be implemented (Ta-Ger model, 

Tasiopoulou and Gerolymos 2016a, b) is introduced.  

Chapter 3 presents the MPM Anura3D software and provides a general view of MPM 

formulations for multi-phase materials. Further numerical features are discussed and 

finally, the main contributions of the thesis to the code numerical development are 

outlined. 

In Chapter 4, MPM is applied to simulate geotechnical problems dealing with soil 

excavation. First, the stability of supported vertical excavation in elasto-plastic material 

is analysed. Results are compared and discussed concerning solutions reported in the 

http://www.anura3d.com/
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literature. Then, a well-documented real case of landslide in Cortes de Pallás, reactivated 

by quarry excavations, is simulated (Alonso et al., 1993). 

In Chapter 5, a large landslide located in the Spanish Southern Pyrenees (Yesa) during a 

dam construction project is investigated. In addition to a stability analysis, the seismic 

response of the landslide is analysed with different methods. Results from Newmark’s 

approach and MPM are compared and discussed. 

Chapter 6 is dedicated to describe Ta-Ger model including details on its implementation 

in Anura3D. The model is verified and validated by simulating the results of monotonic 

and cyclic laboratory tests and liquefaction phenomenon is analysed at laboratory scale. 

Chapter 7 focuses on the MPM modelling of a real case of liquefaction-induced flow-like 

landslide. The liquefiable soil is described with the Ta-Ger model after calibrating its 

parameters with data from in situ and laboratory tests. The development of the initial 

failure surface and the dynamics of the motion in the post-failure stage are discussed 

together with the evolution of effective stresses and pore water pressures. An emphasis 

is directed towards identifying the model parameters accountings for liquefaction 

susceptibility. 

A summary of the conclusions and future developments can be found in Chapter 8. 

Finally, the Appendix includes the Ta-Ger constitutive model algorithm implemented in 

the MPM code. 
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CHAPTER 2 - STATE OF THE ART 

The numerical simulation of large deformations in soils, involving liquefaction, is 

challenging from several points of view. It requires a proper numerical method 

combined with a constitutive model able to capture the soil dynamic behaviour. After a 

brief description of the liquefaction phenomenon, the purpose of chapter 2 is to collect 

in a state of the art the available numerical methods and constitutive models for 

liquefaction with the aim of assessing the potential of each one to the objectives of the 

thesis. 

2.1 INTRODUCTION 

The term “liquefaction” is commonly referred to a phenomenon whereby a saturated or 

partially saturated soil loses strength and stiffness, changing from a solid to a nearly 

liquid state (shear strength is almost equal to zero) due to the effective stress drop 

produced by an increase of pore water pressure. Liquefaction by dynamic loads can be 

observed in saturated sands due to earthquakes or wave action and liquefaction by static 

load in slides due to pore water pressure generation during the landslide mass 

movement itself. 

In order to fully understand this phenomenon is necessary to know granular soils 

behaviour for different loading (monotonic or cyclic) and drainage conditions. 
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Figure 2.1. Results from monotonic undrained triaxial tests on loose sand (Verdugo, 1992). 

Castro and Poulos (1977) discussed on the monotonic and cyclic response of loose and 

dense saturated soil. Loose saturated soils subjected to monotonic or cyclic shear loading 

tend to have a contractive behaviour so, under undrained conditions, pore water 

pressure progressively increases and effective stress reduces with the shear load 

straining. Under monotonic shearing, a contractive soil reaches a peak shear strength 

and then softens, eventually achieving a residual shear resistance. If this value becomes 

less than the shear stress required to ensure static equilibrium conditions, the soil can 

undergo large deformations and can occur the so-called “liquefaction” failure (Fig. 2.1, 

see curve corresponding to void index 𝑒 = 0.930). If the same soil is subjected to cyclic 

shear loading, excess pore pressures are generated at each cycle of load with a 

progressive decrease of effective stress. When the shear strength falls below the static 

shear stress, deformations continue after cyclic loading stops and a flow failure results 

(Fig. 2.2). 

 

Figure 2.2. Results from cyclic torsional shear test on loose sand (Ishihara, 1985). 
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Figure 2.3. Results from cyclic torsional shear test on dense sand (Ishihara, 1985). 

Dense sands under monotonic shear loading, initially exhibit contractive response, then 

dilative. In undrained conditions, the dilative behaviour results in a decrease in pore 

water pressure and an increase in effective stress and shear strength (Fig. 2.1, see curve 

corresponding to void index 𝑒 = 0.861). Under small shear strains cycles, pore pressure 

may be generated at each load cycle leading to softening and deformations accumulate. 

At larger shear strains, the tendency to dilate leads to reduce the excess pore pressure 

resulting in an increase of shear resistance. After the cyclic loading stops, deformations 

developed during the shearing stop and the soil exhibits the full strength that would be 

observed in a monotonic shear test. Hence, cyclic shear on dilative soils does not induce 

liquefaction failures because both cyclic and post-cyclic shear strength are greater than 

the static shear stress. This case is commonly known as “cyclic mobility” (Fig. 2.3). 

Robertson and Fear (1995) did a complete classification system for describing 

liquefaction: 

- Flow liquefaction can occur only in strain softening soils with contractive behaviour, 

under monotonic or cyclic shear loading, when the residual strength of the soil becomes 

smaller than the static shear stress. 

- Cyclic softening can occur in soils that tend to dilate in undrained monotonic shear 

and undergo large deformations during cyclic shear due to pore pressure build-up. 

When deformations do not continue after cyclic loading stops, it can be distinguished 

into: 

- Cyclic liquefaction, when cyclic shear stresses exceed the initial static shear stress to 

produce a condition of zero effective stress, during which large deformations can occur. 

- Cyclic mobility, when deformation accumulates in each cycle of shear stress but cyclic 

loads do not induce a condition of zero effective stress. 

Hence, the liquefaction numerical modelling presents some difficulties due mainly to 

the complex behaviour of sands, above described. It renders particularly complicated to 
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develop a constitutive model able to capture all aspects of static and especially cyclic soil 

response like the accumulation of permanent deformations and excess pore pressure, 

and also the soil moduli degradation and the concurrent hysteretic damping increase as 

a function of the imposed cyclic shear strains. 

Furthermore, the computational methods implemented in commercial software, now 

available, cannot model the evolution of liquefaction from the conditions that determine 

its activation to the interpretation of the effects resulting from its propagation. 

2.2 CONSTITUTIVE MODELS FOR LIQUEFACTION 

Constitutive models are mathematical idealisations of the material behaviour, which 

characterise the stress-strain relationship and define the stiffness of the material. In the 

past decades, many constitutive models for sands have been proposed aiming to 

reproduce liquefaction, each with varying degree of accuracy and applicability. They 

include extended hardening concepts, bounding surface or multi-surface plasticity. 

Therefore, it was considered appropriate to direct the efforts in selecting the most 

suitable model to the objective of the thesis rather than to develop a new one. From the 

Generalized Plasticity model (Pastor et al., 1990) and its latest developments, the 

following models have been investigated with a focus on their capabilities in capturing 

sand behaviour under monotonic and cyclic loading: Multi-yield surface plasticity 

(Prevost, 1977, 1978), NorSand (Jefferies, 1993); Hypoplastic models (Bardet, 1990; Bauer, 

1996; Gudehus, 1996); NTUA-SAND (Andrianopoulos et al.,  2010); SANISAND (Taiebat 

and Dafalias, 2008); UBCSAND (Beaty and Byrne, 1998); Ta-Ger (Tasiopoulou and 

Gerolymos, 2016a, b). 

Among the various models, the Ta-Ger has been chosen in this thesis to study 

liquefaction in saturated and partially saturated soils. 

2.2.1 Generalized Plasticity 

The Generalized Plasticity model was developed by Pastor et al. (1990) to model clay and 

sand behaviour, in drained and undrained conditions under monotonic and cyclic 

loading. This theory avoids some complexities associated with classical plasticity since 

it assumes that plastic deformations can be determined without explicitly defining yield 

surface and plastic potential and, furthermore, it does not require consistency laws to 

obtain plastic modulus. 

To take into account more accurately cyclic loading phenomena, the model introduced 

a discrete memory factor multiplying the plastic modulus. This factor is equal to 1 during 

virgin loading; larger than 1 during reloading where higher deformations take place, in 

agreement with experiments results of Castro (1969). 
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Pastor et al. (1999) implemented the model in the Finite Element Program GeHoMadrid 

in order to validate it through the liquefaction simulation of a sand column subjected to 

dynamic acceleration and by recording time history of pore water pressure. 

Furthermore, results of a centrifuge test on San Fernando dam liquefaction failure, 

described by Zienkiewicz et al. (1999), were reproduced in a numerical model. Numerical 

and experimental results of vertical displacement were compared showing a quite good 

agreement. 

However, it is well known that sand behaviour depends on its density and confining 

pressure. For a determinate density, a sand shows its loose behaviour at sufficiently high 

confining pressures and dense behaviour at sufficiently low confining pressures. The 

major limitation of the model was that for samples of given sand characterized by 

different values of density and confining pressures were needed different sets of 

parameters to reproduce the behaviour observed experimentally. Hence, Manzanal et al.  

(2011) introduced in the model the state parameter 𝜓 = 𝑒 − 𝑒𝑐𝑠 (Been and Jefferies, 1985), 

where 𝑒𝑐𝑠 is the void ratio at the critical state. It describes the relative position on the 

plane 𝑒 − 𝑝’ of the current state and the projection of the CSL (critical state line) in order 

to reproduce the sand behaviour for a wide range of confining pressures and densities 

(Fig. 2.4). 

 

Figure 2.4. Definition of state parameter 𝜓 in 𝑒 − 𝑝’ plane (Jefferies and Been, 2006). 

In spite of a relatively simple fitting of experimental data, the fact that yield surfaces are 

not clearly defined in the model can lead to the phenomenon called “Ratcheting”  

(Alonso-Marroquín and Herrmann, 2004; McNamara, Garcia Rojo and Herrmann, 2008; 

O’Sullivan and Cui, 2009; Calvetti and di Prisco, 2010) under small stress cycles: plastic 

deformations grow indefinitely when the material is subjects to many stress-controlled 

loading cycles. 
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2.2.2 NorSand 

The NorSand constitutive model for sand was developed within the generalized critical 

state framework by Jefferies (1993) in order to overcome some limitations of Cam-Clay 

model. It was the first elastoplastic Cambridge-type model based on the state parameter 

𝜓 (Been and Jefferies, 1985) that permits to define a unique set of parameters for a given 

material, regardless of the initial conditions. 

The model assumes a Cam-clay type yield surface (Fig. 2.5), which is a function of the 

“image pressure” 𝑝𝑖, and two material parameters, 𝑁 and 𝑀: 

𝐹 = 𝜂′ −
𝑀

𝑁
[1 + (𝑁 − 1)(

𝑝′

𝑝𝑖
)𝑁/(1−𝑁)] for 𝑁 > 0 (2.1) 

𝐹 = 𝜂′ −
𝑀

𝑁
[1 + (𝑁 − 1)(

𝑝′

𝑝𝑖
)𝑁/(1−𝑁)] for 𝑁 = 0 (2.2) 

𝑁 can be viewed as a volumetric coupling; 𝑀 is the stress ratio at image state. 

The model is based on the hypothesis of isotropy and it neglects the change in sand 

behaviour caused by the so-called change in fabric. 

 

Figure 2.5. NorSand yield surface (Fern et al., 2016). 

NorSand performance at stress point level is presented first by Jefferies and Shuttle 

(2005). They report numerical simulations of static and cyclic liquefaction compared to 

experimental data of undrained triaxial compression tests on Erksak sand and 

undrained cyclic simple shear tests of Nevada sand. Results of NorSand predictions 

show a good match between the model and the sand behaviour. Unlike previous 

plasticity models for soil NorSand includes the effect of principal stress rotation. 

In the book “Soil Liquefaction” (Jefferies and Been, 2006) the authors try to better 

understand the liquefaction phenomenon by analysing laboratory data and full-scale 

case histories. NorSand model is presented as a simple computable model able to capture 

the salient aspect of liquefaction.  
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More recently Sternik (2014) showed NorSand performance in simulating static 

liquefaction on saturated sand under undrained monotonic loading and Li and Leao 

(2018) discussed the results of undrained and drained monotonic triaxial tests simulation 

to study a case of highway fill embankment failure induced by liquefaction of foundation 

soils. 

2.2.3 SANISAND and NTUA-SAND 

The SANISAND (Taiebat and Dafalias, 2008) and NTUA-SAND (Andrianopoulos et al.,  

2010) models were built on the formulation of bounding surface models proposed by 

Manzari and Dafalias (1997) and Papadimitriou and Bouckovalas (2002). They were 

developed within the critical state framework with the aim to reproducing the cyclic 

response of sands under small as well as large cyclic strains, by using a unique set of 

parameters independent from initial conditions, density or loading direction. They 

directly associate the shear behaviour of the sand to the state parameter 𝜓 (Been and 

Jefferies, 1985). 

The NTUA-SAND model uses a narrow open cone-type yield surface in 𝑝 − 𝑞 space with 

the apex at the origin obeying rotational hardening. It implies that only changes in the 

stress ratio 𝜂 =  𝑞/𝑝 can cause plastic deformations, while constant stress-ratio loading 

induces an only elastic response. 

On the contrary, SANISAND model introduces a modified equation representative of a 

narrow but closed cone-type yield surface that obeys rotational and isotropic hardening. 

For constant 𝜂 stress path, the closed shape of the yield surface can capture the elasto-

plastic behaviour. 

For both models, the non-linear soil response under small to medium cyclic strain 

amplitudes is simulated by introducing a Ramberg-Osgood-type hysteretic formulation. 

The accuracy of the NTUA-SAND model has been evaluated against several soil-

foundation centrifuge tests by Andrianopoulos et al. (2010). 

SANISAND model has been validated by Cheng et al. (2013) through the comparison of 

the results of triaxial compression tests and cyclic simple shear tests simulations with 

experimental data on Toyoura sand. With a focus on the sand cyclic behaviour, 

numerical simulations of cyclic triaxial tests at various mean pressures were conducted 

to back-calculate the relation between the damping ratio 𝜉  and the shear modulus 

degradation ratio 𝐺/𝐺𝑚𝑎𝑥, with shear strain. 𝐺 is the current shear modulus and 𝐺𝑚𝑎𝑥 is 

the the maximum value at minimal level of shearing for linear elastic soil behaviour. The 

authors compared the results with the curves based on Seed and Idriss (1970), Idriss 

(1990) and EPRI (1993), showing that the damping ratios are underestimated at low 

strains and overestimated at the high strain levels.  
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2.2.4 UBCSAND 

The UBCSAND model has been developed by Beaty and Byrne (1998) and implemented 

in the finite difference software FLAC mainly for study granular soils liquefaction under 

seismic loading. 

Tsegaye (2010) presents the validation of the 3D version of the model, implemented in 

the software PLAXIS. It is based on the classical plasticity theory, containing a Mohr-

Coulomb yield surface and a non-associated flow rule based on the Drucker-Prager 

plastic potential function. In order to ensure a smooth transition into the liquefied state 

of the soil a secondary yield surface is introduced in the model and the plastic shear 

modulus during the secondary loading is formulated as a function of the number of 

cycles. 

Due to the non-associated flow rule, once the stress path has reached the yield surface 

defined by the peak friction angle, the volumetric strain becomes constant. This issue 

makes not possible to model the stiffness degradation of the soil which is observed in 

the experimental data. The model tries to overcome this limitation by implementing an 

equation, which gradually decreases the plastic shear modulus as a function of the 

plastic deviatoric strain generated during dilation of the soil element. 

In the report of Petalas and Galavi (2013) an improved version of the model together 

with its validation is presented by simulating cyclic simple shear test on loose Fraser 

sand. The numerical predictions were compared with experimental data from 

Sriskandakumar (2004) in terms of the evolution of excess pore pressures for different 

shear stress ratios (𝐶𝑆𝑅 =  𝜏/𝜎’0) by using the same set of parameters. 

The comparison is quite satisfactory, however, the evolution of the excess pore pressures 

obtained by the model during the first cycle is higher than the experimental results. 

Another limitation of the model is related to the use of a linear elastic unloading rule, 

with constant shear modulus equals to 𝐺𝑚𝑎𝑥 , that induces an overestimation of the 

damping in the system. 

2.2.5 Hypoplasticity  

Hypoplastic models for sand have been developed by authors like Bardet (1990), Bauer 

(1996) and Gudehus (1996). It is an alternative model to simulate the nonlinear and 

irreversible behaviour of loose and dense sand. 

In contrast with the classic elasto-plastic concept, the plastic strain rate is defined 

without reference to any plastic potential surface or yield surface. The model does not 

distinguish explicitly the elastic from the plastic deformations and the material 

behaviour is described by a unique constitutive equation able to consider loading and 

unloading. 
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Vanden Berghe (2011) presented results of undrained triaxial tests simulations under 

cyclic strain control by using the hypoplastic constitutive equation. They fit only part of 

experimental results showing some limitation: 

- After a few numbers of cycles, no more strength degradation is observed and the 

hysteresis loops reach an equilibrium. The author attributes this equilibrium, in contrast 

with experimental results, to a kind of compensation between the dilation and 

contraction phases. 

- The model cannot simulate the backbone curve and the behaviour under small 

deformations cyclic tests; furthermore, it overestimates the contractive behaviour of the 

soil because does not consider the grain reorganization consecutive to the transition from 

the consolidation to the shearing phase. 

Although the Hypoplastic model provides a unique set of parameters for a particular 

soil type at a chosen stress range, its parameters are relatively difficult to be obtained 

from real test data.  

2.2.6 Multi-yield surface plasticity 

The Multi-yield surface plasticity model has been first applied by Prevost (1977, 1978) to 

soil mechanics, then modified and implemented in the Finite Element software Open 

Sees by Yang (2000) and Elgamal et al. (2003). 

This model employs the concept of plastic moduli field to achieve a piecewise linear 

elastoplastic behaviour under cyclic loading conditions. This field is defined by a 

collection of nested yield surfaces of constant size in the stress space, which define the 

regions of constant plastic shear moduli (Fig. 2.6). An associative flow rule is used to 

compute the plastic strain increments and a pure deviatoric kinematic hardening rule is 

employed to capture the Masing-type hysteretic cyclic. 

Elgamal et al. (2003) show the performance of the model to simulate the cyclic mobility 

response observed in saturated cohesionless soils. After the calibration conducted on 

monotonic and cyclic laboratory tests data on Nevada sand, the authors report the 

results of a strain-controlled undrained cyclic shear loading simulation showing the 

following aspects:  

- The cyclic shearing process leads to a gradual build-up of pore pressure with a 

corresponding decrease in effective confinement. 

- As the excess pore pressure increases, the soil gradually loses all shear stiffness and 

strength and is unable to resist any appreciable shear loading. 

As observed by the authors, one of the limitations of this model is that it does not take 

into account the Lode angle effect. Thus, it could not reproduce satisfactorily load paths 
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that depend on this effect. This limitation has been overcome in a later version by Yang 

and Elgamal (2008). 

 

Figure 2.6. Conical yield surface in principal stress space and deviatoric plane (after Prevost, 

1985; Parra, 1996 and Yang, 2000). 

2.2.7 Ta-Ger model 

Ta-Ger sand model was developed by Tasiopoulou and Gerolymos (2016a, b) at the 

National Technical University of Athens (Greece) with the aim to capture complex 

aspects of soil behaviour under  monotonic and cyclic loading. It is based on critical state 

theory and it is formulated as a single-surface model with a vanished elastic region. The 

main features of the model are: 

- A new plastic flow rule based on Rowe’s dilatancy theory (Rowe, 1962) that accounts 

for the anisotropic distribution of dilatancy to the normal plastic strain increments, 

depending on the loading direction. It also includes the densification phenomenon due 

to cyclic loading; 

- An elasto-plastic matrix that provides a gradual transition from the elastic to perfectly 

plastic response and an appropriate loading/unloading/reloading mapping rule; 

- A new formulation for the critical state concept that introduces two “state” 

parameters. The first is the cumulative deviatoric strain increment ∑ 𝑑𝜀𝑞, which controls 

the stress ratios evolution from the initial to the critical state value; the second one is the 

relative dilatancy index 𝐼𝑟 (Bolton, 1986). 

- A failure surface described as an open-end cone type surface that works similarly to 

a bounding surface, which cannot be surpassed. 

Ta-Ger showed advantages in the numerical implementation, compared with other 

models, since the formulation of the elasto-plastic matrix that does not require the 

explicit definition of the plastic modulus and the loading index. Furthermore, the 

number of model parameters is reduced to a minimum by incorporating the initial state 

of the soil through the relative dilatancy index 𝐼𝑟  and just three parameters need to be 

calibrated from data of conventional laboratory tests. Its validation was carried out by 

the authors at point level through comparisons with experimental data. 
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Fig. 2.7 and Fig. 2.8 show the comparison between the experimental data of monotonic 

undrained triaxial tests and cyclic undrained torsional shear test on Toyoura sand with 

model predictions. It can be seen that the model is able to capture the soil behaviour 

under static and cyclic loading conditions leading eventually to liquefaction.  

 

Figure 2.7. Comparison between experimental data from monotonic undrained triaxial tests on 

Toyoura sand by (Verdugo and Ishihara, 1996) and model predictions (Tasiopoulou and 

Gerolymos, 2016b). 

 

Figure 2.8. Comparison between experimental data from cyclic undrained torsional shear tests 

on Toyoura sand and model predictions (Tasiopoulou and Gerolymos, 2016a). 

2.3 NUMERICAL METHODS AND SOFTWARE 

Currently, several examples of numerical modelling of large deformation problems 

including liquefaction can be found in literature by using some of the constitutive 

models previously mentioned with different numerical methods (FDM, FEM, ALE, SPH, 



CHAPTER 2 - State of the art 

16 

 

PFEM, MPM) and commercial software (Plaxis, Flac, OpenSees). Some simulations are 

conducted on reduced scale models like centrifuge tests and shaking table tests, others 

on real scale models; in some cases, the effects of liquefaction are analysed, in others the 

causes. The aim of this review of the literature is to evaluate the ability of these methods, 

in the simulation of large deformations with a focus on soil liquefaction under static and 

dynamic loading. These are divided into Mesh-based and Particle-based methods, 

depending on the discretisation approach. Within the framework of the Particle-based 

methods the Discrete Element Method (DEM) is also mentioned despite the numerical 

contribution to the liquefaction modelling is limited to laboratory tests simulations. 

2.3.1 Mesh-based methods 

Mesh-based methods divide the analysis domain into a collection of subdomains, so-

called elements, thus forming a mesh. Each element has several nodes in which 

governing equation are solved, with a fixed number of predefined neighbours, with 

whom they are related by shape functions. The response of each node depends on the 

response of the nodes to which it is related. They can be based on a lagrangian approach, 

in which the computational mesh deforms during the deformation process of the 

continuum. It facilitates the treatment of materials with history-dependent constitutive 

relations. However, they are unable to follow large distortions of the computational 

domain. On the contrary, in the methods that are based on a eulerian approach, the 

computational mesh is fixed and the continuum moves with respect to the grid. Here, 

large distortions can be handled with relative ease but serious limitations can be found 

in following deforming material interfaces and mobile boundaries (Fig. 2.9). Finite 

Difference Method (FDM) and Finite Element Method (FEM) are two classical mesh-

based methods. 

 

Figure 2.9. Spatial discretisation scheme of lagrangian and eulerian mesh-based methods (Yerro, 

2015). 



Numerical methods and software 

17 

 

2.3.1.1 Finite Difference Method (FDM) 

The Finite Difference Method (FDM) is a numerical discretization method for solving 

differential equations by replacing continuous functions, of continuous variables, with 

discrete variables defined only in a discrete number of point of the integration domain. 

These points constitute the computational grid. Derivatives in the differential equations 

are directly approximated with finite difference equations. This method is able to 

simulate large deformation problems by updating the coordinates of the grid. 

An explicit finite difference formulation is used in the software for advanced 

geotechnical analysis FLAC (Fast Lagrangian Analysis of Continua) (Itasca Consulting 

Group, Inc.). 

Qiao et al. (2008) compared data of shaking-table tests on ground slope and pipe buried 

models with numerical results by describing the soil behaviour with the Mohr-Coulomb 

constitutive model. The evolution of excess pore water pressure ratios and soil/pipe 

displacements are analysed in order to investigate ground deformations and pipe 

deflection due to the mechanism of liquefaction underneath the slope. 

Andrianopoulos et al. (2011) reported the comparison between data of centrifuge test 

conducted on Nevada sand and numerical results obtained by using the NTUA-SAND 

model. The authors studied the dynamic response of: (a) a liquefiable horizontal sand 

layer; (b) the same sand layer improved with vertical drains; (b) a laterally spreading 

mildly sloping sand layer; (c) a shallow foundation lying on a liquefiable sand layer. The 

rates of excess pore pressure build-up and dissipation are quite well simulated, with 

some exceptions. The model predicts, during the first two loading cycles, a larger rate of 

build-up than the experimental data, in cases (a) and (c). In case (b) numerical results 

underestimate the excess pore water pressure ratio (𝑟𝑢 = 𝛥𝑢/𝜎𝑣0) at large depths. In this 

case, as observed by authors, the improvement with vertical drains only delays the initial 

liquefaction appearance and enables faster dissipation of excess pore pressures after the 

end of shaking. 

In the paper presented at the GeoCongress in 2012, Giannakou et al. (2012) presented the 

calibration procedure of UBCSAND by focusing on liquefaction triggering and post-

liquefaction deformations. The model is validated by simulating a centrifuge test of an 

earth embankment on liquefiable foundation. The calibrated constitutive model was 

used to evaluate liquefaction-induced slope movement by modelling the assessment of 

an existing immersed tunnel, the Offshore Transbay Tube (TBT) of the Bay Area Rapid 

Transit in San Francisco Bay Area (California). 

In the same study, the authors investigated the slope movement occurred at the 

foundation of a suspension bridge crossing of Izmit Bay, (Turkey). In order to model the 

behaviour of the liquefiable sand layer of the bridge foundation, coupled dynamic-

groundwater flow analyses were performed. 
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In Barrero and Taiebat (2015) a tailings dam numerical analysis is reported, accounting 

for the mechanical response of solid and hydro-mechanical response of pore fluid. 

SANISAND constitutive model is used to describe the behaviour of the potentially 

liquefiable sand layer; the remaining layers of dam soil foundation are modelled with 

the Mohr-Coulomb model. 

In the 1st International Conference on the Material Point Method, organized by the 

Anura3D MPM Research Community, Antoinet et al. (2017) reported the numerical 

modelling of an earth dam in Guadeloupe under earthquake solicitations by using FLAC 

software. The dynamic input was applied at the base of the dam model as a stress 

history. Pore pressure before and after the earthquake and horizontal displacements of 

the dam were recorded. The authors recognize the difficulty to carry on dynamic 

computations due to the huge number of parameters that are involved. 

More recently, Tasiopoulou et al. (2019) simulated with Ta-Ger model the liquefaction-

induced settlements of shallow foundations in centrifuge  experiments (Tasiopoulou et 

al., 2019) using FLAC code (Itasca, 2012, 2016). With the same software, Tasiopoulou et 

al. (2021) analysed with Ta-Ger the lateral response of bucket foundations subjected to 

wave loading by reformulating the model to reproduce the cyclic response of sand for 

undrained, fully drained and partially drained conditions. 

2.3.1.2 Finite Element Method (FEM) 

The Finite Element Method (FEM) is the most used technique in geotechnics for finding 

approximate solutions to boundary value problems. It allows determining the stress and 

strain state of a continuous body, with infinite degrees of freedom, by discretizing it in 

a set of finite dimension elements, interconnected in points called nodes. In this way, the 

space is divided by a lagrangian mesh type and at each time step, variables and 

displacement are calculated in the nodes. Once calculated variables and displacement, 

the mesh remains deformed and the next time step can start. 

If compared with the implicit finite difference schemes, the finite element method has 

the advantage that mesh elements can be chosen with more flexibility and it allows to 

represent complex geometries. However, in large deformation FEM can have problems 

due to excessive grid deformation and distortion. 

The software PLAXIS, created by the research team led by prof. P.A. Vermeer from Delft 

University of Technology (TU Delft), is based on the finite element method. 

Galavi et al. (2013) presented a numerical simulation of the caisson type quay wall 

liquefaction failure occurred in the region of Kobe (Japan) after the Hyogoken-Nambu 

earthquake in 1995. The behaviour of the soil is modelled by using UBC3D-PLM which 

is an extension of the UBCSAND model. Numerical results in terms of horizontal and 

vertical displacements, for a point selected at the upper sea-side corner of the wall, and 

evolution of the excess pore water pressures are compared with field measurements. The 
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results are quite satisfactory but the authors recognize the need to improve the 

implementation of proper boundary conditions. In particular, free field boundaries are 

very sensitive to liquefaction and get liquefied very soon, leading to some difficulties in 

numerical convergence. 

Even the software OPENSEES (Open System for Earthquake Engineering Simulation) is 

based on the finite element method. It was created at the NSF-sponsored Pacific 

Earthquake Engineering (PEER) Centre, for simulating the response of structural and 

geotechnical systems subjected to earthquakes. 

Elgamal et al. (2008) simulated the Humboldt Bay bridge-foundation ground model to 

study the influence of the soil-structure interaction on the seismic response of a bridge 

structure. The soil behaviour is modelled by using the Multi-yield Surface Plasticity 

constitutive model. Numerical results in terms of acceleration time history of ground 

surface and displacement time histories at bridge pier tops and bases are reported. 

Wobbes et al. (2016) presented a numerical simulation of soil column liquefaction in 

order to model the state transition from saturated soil to liquid sand-water mixture and 

the post-liquefaction phenomenon. The simulation is conducted with the velocity-based 

two-phase finite element method and the saturated soil behaviour is described by the 

UBC3D-PLM model. In this study, the dynamic boundary condition at the bottom of the 

column is applied as an inertial force according to d’Alembert principle.  

Recently, a FEM analysis has been performed by Kato and Nagao (2020) to simulate 

shaking table test that aimed to evaluate the effectiveness of soil desaturation procedure 

on liquefaction mitigation. 

2.3.1.3 The Arbitrary Lagrangian-Eulerian Method (ALE) 

In order to prevent the inaccuracy generated by large mesh distortion typical of mesh-

based methods, the Arbitrary Lagrangian-Eulerian Method (ALE) has been developed 

by Donea et al. (1977, 2004). In ALE formulation the nodes of the computational mesh 

can be moved with the continuum (lagrangian approach) or be kept fixed (eulerian 

approach) with an increase of the computational time. 

The method has been recently applied by Liu et al. (2021) to carry out liquefaction 

analyses on saturated sand subjected to seismic excitation. Common geotechnical 

problems caused by liquefaction such as embankment settlement, caisson wharf 

inclination and slope lateral spreading has been simulate to test the capabilities of this 

approach. 

2.3.2 Particle-based methods 

The coupled solid-fluid response of saturated granular soils is commonly modelled 

using continuum formulations; the alternative to continuum methods is to use particle-

based techniques such as the Smoothed Particle Hydrodynamics (SPH) (Gingold and 
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Monaghan, 1977; Lucy, 1977) Discrete Element Method (DEM) (Cundall and Strack, 

1979), the Particle Finite Element Method (PFEM) (Aubry et al., 2005) and the Material 

Point Method (Sulsky et al.,  1994, 1995). 

This section provides a short overview of the most popular particle-based methods 

which have also been applied in geomechanics. These methods are based on the 

generation of free particles, without any relationships, that move attached with the 

domain and store all the physical properties of the material. Within this framework, 

continuum and also discrete domains, such as granular materials, can be modelled (Fig. 

2.10). 

 

Figure 2.10. Spatial discretisation scheme of particle-based methods, representing discrete or 

continuum media (Yerro, 2015). 

Their main advantage is the possibility to deal with large deformations overcoming the 

drawbacks associated with mesh distortion encountered in mesh-based methods. The 

complexity and computational cost are highly dependent on the specific method; in 

general, they are higher than FEM and FDM. 

2.3.2.1 Smoothed Particle Hydrodynamics (SPH) 

The Smoothed Particle Hydrodynamics (SPH) method is the oldest particle-based 

method. It was first developed by Lucy (1977)  and Gingold and Monaghan (1977) and 

it is widely used for modelling in fluid dynamics. The considered domain is divided into 

a set of particles that move attached to the material and contain the information 

corresponding to the portion of material surrounding it. Each particle has a spatial 

distance over which the properties are smoothed by a kernel function. 

The method has been applied in several works to simulate large deformation problems 

(Bui and Nguyen, 2021) including liquefaction phenomenon.  



Numerical methods and software 

21 

 

Huang et al. (2011) analysed with SPH the flow processes of liquefied soils modelled as 

viscous fluids, then (Huang et al.,  2013) the interactions between pore water and the soil 

skeleton has been introduced and applied to a real flowing case of liquefied soils.  

In Hiraoka et al. (2013) the method has been applied to simulate the response of a slope 

subjected to an earthquake loading. An elasto-plastic constitutive model with Drucker-

Prager yield criterion is used to model soil behaviour. Experimental tests on a small-

scale slope model were also conducted to verify numerical results in terms of failure 

surface, horizontal and vertical displacement of the sliding mass. 

The role played by static liquefaction for the evolution of a real case of flow-like 

landslides, occurred in Southern Italy, has been investigated with SPH first by Pastor et 

al. (2009) through a depth-integrated coupled model and then by Cascini et al. (2014) that 

performed a coupled stress-strain analyses with Mohr-Coulomb model extended to 

unsaturated conditions. 

The method has been also used to study the lateral response of pipe in liquefied sand 

after failure (Wang et al., 2019). 

Recently, Mahardim et al. (2021) analysed with SPH the interaction between soil and 

water particles during liquefaction of a soil control volume. Particles movement and 

arrangement were investigated through a sensitivity analysis on initial viscosity, 

particles volume, surface tension, shear strain rate and control volume size. However, 

factors like effective stress reduction and excess pore water pressure development were 

not quantify. 

2.3.2.2 Discrete Element Method (DEM) 

In DEM, a soil sample consists of discrete particles, which only interact at particle 

contacts. During the deformation process, the nonlinear behaviour of soils results from 

particle sliding, rotation and breakage of inter-particle contacts. Thus, DEM is 

particularly suitable for modelling granular material behaviour or structures with 

discontinuous features and can simulate the liquefaction mechanism at the microscopic 

level. The macroscopic response can be obtained by keeping track of particles 

microscopic behaviour and by calculating the average coordination number, as the total 

number of contacts divided by the number of particles. One of the major limitations of 

the application of DEM to soil mechanics is the number of particles that can be used in 

the simulation. 

In the literature, there are several examples of laboratory tests numerical simulations 

with DEM, in order to study the development of liquefaction in loose granular materials. 

In the paper presented at the 4th International Conference on Recent Advances 

Geotechnical Earthquake Engineering and Soil Dynamics, Ravichandran et al. (2001) 

investigated the behaviour of saturated granular soil by simulating the hollow 
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cylindrical torsion test with a three-dimensional DEM. They analysed the time histories 

of pore water pressure and void ratio measured during the packing process and at the 

base of the sample. 

In the next edition of the same conference, Shamy et al. (2010) presented the results of 

shaking table test simulations on a saturated granular deposit subjected to dynamic 

excitations. They were conducted to investigate the liquefaction-induced lateral 

spreading process by using a fully coupled fluid-particle model. Numerical results seem 

to reproduce quite well the mechanisms observed in shaking table experiments such as 

the liquefaction propagation inside the deposit, the associated large strain localization 

and the redistribution of the sand void. 

In Shi et al. (2010), based on undrained cyclic triaxial test data on Fujian sand, a two-

dimensional DEM code PFC2D was used to investigate the liquefaction behaviour of an 

assembly of 4061 discs subjected to undrained cyclic loading. The model could simulate 

quite well the sand cyclic behaviour such as gradual hysteresis loops decrease with 

number of cycles; shear modulus degradation and excess pore water pressure build up. 

Results in terms of average coordination number versus cycles number show that the 

coordination number progressively decreases after liquefaction onset, which means that 

the number of contacts between particles reduces. In a macro scale, this leads to effective 

stresses decrease. 

Later on, further authors simulated liquefaction phenomenon with DEM at laboratory 

scale by performing numerical simulations of monotonic (Gong et al., 2012) and cyclic 

undrained tests (Manne and Satyam, 2015; Martin et al., 2020) to evaluate static and 

seismic-induced liquefaction potential of granular soil. 

2.3.2.3 Particle Finite Element Method (PFEM) 

The PFEM was introduced by Aubry et al. (2005) and extended to solve fluid-structure 

interaction problems by Oñate et al. (2011). This method discretises the media by means 

a cloud of nodes. After recognising the distribution of these points, the boundaries are 

detected and a computational mesh is constructed by connecting the nodes belonging to 

the same material domain. The governing equations are solved at the nodes of the 

computational grid and the nodes transport their momentum together with all their 

physical properties, thus behaving as particles. At the end of each time step, the mesh is 

regenerated based on the Delaunay Tessellation algorithm.  

Among its many applications (Cremonesi et al., 2020), the method has been used to 

simulate large deformation and granular flow problems (Zhang et al., 2013, 2015; Zhang 

et al., 2014; Zhang et al., 2018), landslide-generated impulse waves (Cremonesi et al., 2011; 

Salazar et al., 2015) and submarine landslides (Zhang et al., 2019). 
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Liquefied sands behaviour has been, finally, investigated by Della Vecchia et al. (2019) 

through simulation of dam-breaking tests in which the material is modelled as non-

Newtonian Bingham fluids. 

2.3.2.4 Material Point Method (MPM) 

The Material Point method was developed to represent fluid dynamic by Harlow et al.  

(1964) and extended to soil mechanics problems by Sulsky et al. (1994, 1995). The method 

is intermediate between the particles method and finite element method. The continuum 

media is described by a set of lagrangian materials points that can move with the 

material and a computational mesh that remains fixed through the calculation and 

covers the whole domain. Each point represents a portion of the domain and carry all 

the information of the material like mass, speed, strain and stress. This double 

discretization can simulate large deformations without the problems associated with the 

distortion of the mesh elements, moreover, contact between different bodies is 

automatically solved. 

Fig. 2.11 show the MPM discretization scheme and computational cycle: (1-2) all the 

physical properties of the continuum are transferred from MPs to the mesh nodes where 

governing equations are solved (lagrangian phase); (3-4) solutions are mapped back 

from nodes of the deformed mesh to MPs and their positions are updated (convective 

phase); (5) nodal values are discarded and the computational mesh is reset to the initial 

configuration. 

 

Figure 2.11. MPM discretization scheme and computational cycle. 

MPM was selected in the last decades to simulate progressive slope failures (Zabala and 

Alonso, 2011; Yerro et al., 2016a, b) retrogressive slope failures induced by excavation 

(Wang et al., 2016), landslide propagation (Ceccato and Simonini, 2016; Calvello et al., 

2018; Conte et al., 2019) and granular flows interaction with structures (Mast et al., 2014; 

Ceccato and Simonini, 2016; Ceccato et al., 2018; Ng et al., 2020; Cuomo et al., 2021). The 

method was extended for unsaturated soils by Yerro et al. (2015) with a “3 phases-1 

point” formulation, then Bandara et al. (2016), Wang et al. (2018) and Ceccato et al. (2019, 

2021) proposed simplified approaches. Thermal effects in the landslide mobility were 

introduced by Pinyol et al. (2018) and combined with strain rate effects by Alvarado et 

al. (2019). Recent developments included implementation of boundary conditions to 

simulate hydraulic head, seepage face and infiltration process (Ceccato et al., 2021; 

Martinelli et al., 2021). 
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The method was used by Bhandari et al. (2016), He et al. (2019), Ering and Sivakumar 

Babu (2020) and more recently by Alsardi and Yerro (2021) and Alsardi et al. (2021) to 

reproduce earthquake-induced slope failures and landslides.   

MPM simulations of soil liquefaction are also available in the literature.  

The widely investigated Oso Landslide (Keaton et al., 2014; Iverson et al., 2015; Iverson 

and George, 2016) has been modelled by (Yerro et al., 2019). The static liquefaction of the 

debris deposits at the toe of the slope, after an abnormal period of wet weather, has been 

identified as one of the causes of the long runout distance reached. However, 

liquefaction has been simulated in a simplified way by instantaneously reducing the 

Mohr-Coulomb strength parameters of the material. 

Cuomo et al. (2019) simulated a retrogressive slope failure in reduced scale involving 

static liquefaction. They explored more in detail the phenomenon by using a hypo-

plastic constitutive model (Von Wolffersdorff, 1996) whose parameters were calibrated 

through an inverse analysis procedure. 
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CHAPTER 3 - THE MATERIAL POINT METHOD 

FOR MULTI-PHASE MATERIALS 

In this chapter, an overview of the MPM Anura3D software is presented and the different 

formulations implemented for multi-phase materials are described. Further numerical 

aspects are discussed and finally the main implementations, included in the thesis, which 

contributed to the code numerical development are outlined. 

3.1 ANURA3D SOFTWARE 

The numerical developments and the MPM simulations presented in this thesis have been 

carried out within the Anura3D software.  

This is an open source code programmed using FORTRAN, developed by the MPM 

research community (http://www.anura3D.com), constituted by international universities 

and research centres that collaborate with the common objective to carry on the research 

on numerical modelling of large deformation and soil-water-structure interaction within 

MPM.  

Anura3D includes different computational methods (MPM-MP, MPM-MIXED, UL-FEM, 

and FEM) and integration schemes (Explicit, Implicit) with 2D and 3D implementation.  

Performing a numerical simulation requires the creation of input data (pre-processing) 

with GiD software (https://www.gidhome.com/), the calculation with Anura3D compiled 

executable and the visualization of results (post-processing) with ParaView open source 

software (https://www.paraview.org/ ). 

 

http://www.anura3d.com/
https://www.paraview.org/
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Two input files are generated by GiD:  

 The GOM file stores information about the geometry of the problem, the material data, 

initial and boundary conditions, loading conditions, excavation phases, contact 

properties, number of material points, and computational mesh. 

 The CPS file includes the calculation data such as the computational method, 

calculation time step data, gravity data, load multipliers, damping, output data, etc. CPS 

file is required for each calculations phase. GiD is used to define the initial CPS file, whilst 

the subsequent CPS files are generated at the end of each calculation phase. 

The calculation process is carried out by copying in the same folder the Anura3D 

executable with the input files (GOM and CPS) and the .dll library containing the 

constitutive models. Then, the Anura3D software can be executed from the Windows 

command line. The output information are stored in a set of files with VTK extension that 

can be visualized through ParaView. 

3.2 MULTI-PHASE MATERIAL FORMULATIONS 

Soil is a multi-phase porous material, characterised by a solid skeleton filled with liquids 

or gases.  

The numerical modelling of multi-phase materials with MPM is possible through different 

approaches as shown in Fig 3.1. Focusing on saturated soils, the interaction between solid 

and liquid phases can be studied with the 2-phase 1-point formulation that assumes that 

each MP carries the properties of both phases and the 2-phase 2-point formulation that 

assigns to each phase a set of MPs that can move and interact with each other. The first 

formulation is the one used in this thesis.  

In saturated soil, depending on the soil permeability and the rate of load, drained, 

partially drained and undrained conditions can be considered. In numerical analyses 

dealing with drained conditions and undrained conditions the presence of the water can 

be considered in a simplified way in which only the solid velocity field is considered and 

the 1-phase 1-point formulation can be applied.  

However, the excess pore pressure generation and dissipation are no longer negligible in 

partially drained conditions for which the fully-coupled 2-phase formulation is necessary. 

Finally, partially saturated materials can be modelled with two approaches: the fully 

coupled 3-phase 1-point formulation (Yerro et al., 2015) in which each MP is representative 

of the three phases and a simplified formulation (2-phase 1-point with suction effect), 

recently implemented in Anura3D by Ceccato et al. (2021), which is the one used in this 

thesis. 
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In the following, are listed and briefly described the different ways to model saturated 

materials in Anura3D and the unsaturated materials with the simplified approach, 

distinguishing between 1- and 2-phase 1-point formulations. 

 

Figure 3.1 - Scheme of the different MPM numerical existing approaches depending on the 

number of phases and the number of material point sets (modified from Yerro, 2015). 

3.2.1 1-phase 1-point MPM formulation 

Drained 

When drained conditions are hypothesized in the analysis, the development of excess 

pore water pressures can be neglected because it is assumed that the deformation is slow 

enough that the excess pore water pressures is rapidly dissipated. The soil can be regarded 

as dry with a weight equal to the submerged unit weight 𝛾′ (Eq. 3.1). 

𝛾′ = 𝛾𝑠𝑎𝑡 − 𝛾𝑤 (3.1) 

𝛾𝑠𝑎𝑡 = 𝜌𝑠𝑎𝑡𝑔 (3.2) 

Where 𝛾𝑠𝑎𝑡  and 𝛾𝑤  are the saturated and the water unit weight respectively, 𝜌𝑠𝑎𝑡  is the 

saturated density and 𝑔 is the gravity. 

Undrained effective stresses 

In undrained conditions, the loading rate is considered so fast or the permeability so low 

that there is a significant generation of excess pore pressures inducing an effective stress 

decrease. The relative movement between solid and liquid phase is negligible, thus, pore 

pressure dissipation can be neglected in the analysis. In this case the equilibrium of the 

soil-water mixture can be considered rather than the equilibrium of soil and water as 

separate phases.  
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One way to model a material in undrained conditions is through the effective stress 

analysis, which is based on the assumption of strain compatibility between the soil 

skeleton and the pore water (Veermer, 1993). 

If soil grains are assumed incompressible, strain compatibility imply that the change of 

volume of the soil-water mixture, due to total load, corresponds to the change of volume 

of the soil skeleton, due to effective stress that is equal to the change of volume of the 

water-filled pores, due to pore water pressure. For an elastic soil skeleton: 

𝛥𝜀𝑣 =
𝛥𝑝

𝐾𝑢
=

𝛥𝑝′

𝐾′
=

𝛥𝑝𝑤

𝐾𝑤/𝑛
 (3.3) 

Where 𝑝 and 𝑝′ are the total and effective mean stresses, 𝑝𝑤 is the pore water pressure, 𝑛 

is the porosity,   𝐾𝑢 is the undrained bulk modulus and represent the stiffness of the soil 

mixture in undrained conditions, 𝐾𝑤 and 𝐾′ are the bulk modulus of the water and the 

solid skeleton respectively. Considering the effective stress principle, Eq. 3.3, leads to: 

𝐾𝑢 = 𝐾′ +
𝐾𝑤

𝑛
 (3.4) 

The bulk moduli can be written as a function of the Poisson ratio 𝜈 and the shear modulus 

𝐺. 

𝐾′ =
2𝐺(1 + 𝜈′)

3(1 − 2𝜈′)
 (3.5) 

𝐾𝑢 =
2𝐺(1 + 𝜈𝑢)

3(1 − 2𝜈𝑢)
 (3.6) 

Where 𝜈𝑢 indicates the Poisson's ratio of the mixture in undrained conditions (equal to 0.5 

for incompressible pore water), while the shear modulus 𝐺 is the same for the mixture and 

the soil skeleton. Inserting Eqs. 3.5 and 3.6 in Eq. 3.4 and solving for the bulk modulus of 

water, it leads to: 

𝐾𝑤

𝑛
=

3(𝜈𝑢 − 𝜈′)

(1 − 2𝜈𝑢)(1 + 𝜈′)
𝐾′ (3.7) 

In order to prevent numerical problems due to the assumption of incompressible pore 

water, the undrained Poisson ratio is set to a slightly lower value of 𝜈𝑢 = 0.495. 

The incremental pore water pressure at each calculation step can be obtained by Eq. 3.8. 

𝛥𝑝𝑤 =
𝐾𝑤

𝑛
𝛥𝜀𝑣 (3.8) 

This type of analysis is used in this thesis to simulate the undrained laboratory tests 

necessary to reproduce liquefaction phenomenon. The typical decreasing curve in 

effective stress path can be reproduce together with the development of increasing pore 

water pressures. 
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Undrained total stresses 

Stress state of saturated soils in undrained conditions can be furthermore described in 

terms of total stresses. This type of analysis does not provide a prediction of pore water 

pressures and can be applied to describe geotechnical problems in which the soil 

undrained shear strength 𝑐𝑢 (with 𝜑 = 𝜑𝑢 = 0) is known or to no-porous materials.  

In Ch. 4 the undrained total stress analysis is applied to model strutted-excavation in clay. 

3.2.2 2-phase 1-point MPM formulation 

Fully coupled 

The fully coupled hydro-mechanical formulation is adapt to model saturated soils in 

partially drained conditions. The interaction between solid and liquid phases can be 

reproduced, including the dissipation of excess pore water pressure with time allowing 

transitioning from undrained conditions to drained conditions. 

Fully coupled with suction effect 

Within the 2-phase 1-point formulation framework has been recently implemented in 

Anura3D, by Ceccato et al. (2021), a simplified approach to model unsaturated soils.   

The gas phase is not explicitly included: the mass balance equation of gas is neglected and 

the gas pressure is assumed to remain constant. This formulation is applied in Ch. 7 to 

model a real case of liquefaction induced flow-like landslide. It allows to simulate the 

saturation process during the post-failure stage concurring to the liquefaction 

development. 

3.3 OTHER NUMERICAL ASPECTS 

This section briefly describes some numerical features implemented in Anura3D and used 

in the thesis. More details can be found in  Fern et al. (2019). 

3.3.1 Mixed integration scheme 

The simulation presented in this thesis have been performed with the MPM-MIXED 

integration scheme. It consist on the combination of the classical MPM and the Gauss 

integration schemes as proposed (Beuth et al., 2007) in order to mitigate the cell-crossing 

instability. In fact, in the MPM integration the internal forces are computed by summing 

the values of the MPs belonging to a given element, thus if a MP cross the element 

boundary, the internal forces suffer an unphysical instability. The Gauss integration, used 

in FEM, is based on a fixed number of integration points in an optimal location that can 

move according to the deformation of the element, but never leave the element. Based on 

it, in the mixed integration scheme a constant stress is considered for each element, 𝜎𝑐𝑜𝑛𝑠𝑡. 

Then, using the Gauss integration, the internal forces can be computed considering a 

single point in each element with 𝜎 = 𝜎𝑐𝑜𝑛𝑠𝑡. Notice that the calculation of the internal 
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forces by means of the Gauss integration scheme is only considered for fully filled 

elements (degree of filling ≥ 90%), otherwise the classical MPM is adopted. 

3.3.2 Strain smoothing 

MPM can suffers of kinematic locking that consists in the build-up of fictitious stiffness 

due to the inability of an element to reproduce the correct deformation. This happens 

when an element wants to deform but cannot because it is constrained by neighbouring 

elements, making this element nearly incompressible and leading to a large error in the 

solution. The technique that is implemented in Anura3D to overcome this issue is the 

Nodal Mixed Discretisation (NMD) technique proposed by (Detournay and Dzik, 2006). 

This technique consists of modifying the element volumetric strain component through 

an averaging procedure over the elements sharing its nodes leading to an increase of 

degrees of freedom per element. 

3.3.3 Local damping 

For a dynamic analysis, the damping in the numerical simulation should reproduce the 

energy losses in the natural system when subjected to a dynamic loading. Furthermore, 

some problems in the geotechnical field involve very slow processes for which the steady 

state solution is searched. In order to introduce the system energy dissipation and to 

accelerate convergence in quasi-static problems, an artificial damping should be included 

in the formulation of the dynamic momentum conservation. In Anura3D, a so-called local 

non-viscous damping (Cundall, 1987) is implemented. It assumes that the damping force 

on a node is proportional to the magnitude of the unbalanced force (𝑭𝒆𝒙𝒕 − 𝑭𝒊𝒏𝒕)  and acts 

opposite to the direction of the velocity. The direction of the damping force is taken in 

such a way that energy is always dissipating (opposite to the velocity). 

𝑴 ·  𝒂 = (𝑭𝑒𝑥𝑡 − 𝑭𝑖𝑛𝑡)  + 𝑭𝑑𝑎𝑚𝑝 (3.9) 

Because the damping force can be understood as a frictional force, it is written as follows: 

𝑭𝑑𝑎𝑚𝑝  =  −𝑠𝑖𝑔𝑛(𝐯)|𝑭𝑒𝑥𝑡 − 𝑭𝑖𝑛𝑡|𝛼 (3.10) 

in which 𝑠𝑖𝑔𝑛(𝐯)  =  
𝐯

|𝐯|
 and 𝛼 is a dimensionless parameter that ranges between 0 and 1. 

3.3.4 Absorbing boundaries 

In dynamics calculations, the use of finite boundaries produces wave reflections that do 

not characterise a naturally unbounded domain and lead to incorrect computed results. 

Among the different strategies proposed in the literature, the one used in this thesis and 

implemented in Anura3D is the absorbing boundaries approach. It was originally 

presented by Lysmer and Kuhlemeyer (1969) and consisted in applying viscous damping 

forces (dashpots) along boundaries and then implemented with some modification for 

MPM by Al-Kafaji (2013). The dashpots are replaced by Kelvin-Voigt elements that 
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consider a viscous part (dashpot) and an elastic part (spring), working in parallel (Fig. 

3.2). 

 

Figure 3.2. Absorbing boundary with Kelvin-Voigt element (Fern et al., 2019). 

The normal and the two tangential components of the traction vector corresponding to 

the absorbing boundary are: 

𝜏𝑛
𝑎𝑏 = −𝑎𝜌𝑉𝑝𝑢̇𝑛 − 𝑘𝑝𝑢𝑛 (3.11) 

𝜏𝑡1
𝑎𝑏 = −𝑏𝜌𝑉𝑠𝑢̇𝑡1 − 𝑘𝑠𝑢𝑡1 (3.12) 

𝜏𝑡2
𝑎𝑏 = −𝑏𝜌𝑉𝑠𝑢̇𝑡2 − 𝑘𝑠𝑢𝑡2 (3.13) 

where 𝑎 and 𝑏 are dimensionless parameters, 𝑢̇𝑛 , 𝑢̇𝑡1 and 𝑢̇𝑡2 the velocities, 𝑢𝑛 , 𝑢𝑡1 and 

𝑢𝑡1  the displacements, ρ  is the density, 𝑉𝑝  and 𝑉𝑠  the compression and shear waves 

velocities, respectively. 𝑘𝑝 and 𝑘𝑠 represent the stiffness per unit area associated to the 

elastic component and can be expressed as function of the elastic moduli (𝐸𝑐 and 𝐺) and a 

thickness 𝛿 of a virtual layer which extends outside the boundary (Eqs. 3.14 and 3.15). 

𝑘𝑝 =
𝐸𝑐

𝛿
 (3.14) 

𝑘𝑠 =
𝐺

𝛿
 (3.15) 

The first term in the right side of Eqs. 3.11 to 3.13 represents the traction given by the 

dashpot, which is proportional to the velocity. The second term represents the traction 

given by the spring, which is proportional to the displacement. 

For the two-phase formulation, a further set of Kelvin-Voigt element is defined. For the 

liquid phase, the normal traction of the absorbing is given by Eq. 3.16. 

𝑝𝐿
𝑎𝑏 = −𝑎𝐿𝜌𝐿𝑉𝐿𝑢̇𝐿,𝑛 − 𝑘𝐿𝑢𝐿,𝑛 (3.16) 

where 𝑢̇𝐿,𝑛and 𝑢𝐿,𝑛 are the liquid velocity and displacement, respectively. The velocity of 

the compression wave in the liquid is given by Eq. 3.17. 
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𝑉𝐿 = √
𝐾𝐿

𝜌𝐿
 (3.17) 

The stiffness coefficient 𝑘𝐿 can be expressed as a function of the bulk modulus of the liquid 

𝐾𝐿  and the virtual thickness 𝛿𝐿 as in Eq. 3.18. 

𝑘𝐿 =
𝐾𝐿

𝛿𝐿
 (3.18) 

3.3.5 Stress initialization 

Initial stresses in soil are influenced by the weight of the material and the history of its 

formation. In Anura3D, initial stresses may be generated by using quasi-static gravity 

loading or the 𝐾0 procedure. 

In the first case stresses and pore water pressures can be initialized by applying during 

the first calculation phase the gravity loading until reaching convergence in a quasi-static 

equilibrium condition. Convergence criteria depend on the chosen tolerated error of the 

out-of-balance force, the tolerated error of the kinetic energy or the maximum number of 

time steps.  

The initial stress and pore water pressure distribution can be also obtained with the 𝐾0 

procedure. It assumes that the vertical effective stress at MP increases linearly with depth 

and can be computed with Eqs. 3.19 and 3.20. 

𝜎𝑣,0
′ = 𝜌𝑔𝑧 − 𝜌𝑝𝑔𝑧𝑤 (3.19) 

𝜎ℎ,0
′ = 𝐾0𝜎𝑣,0

′  (3.20) 

where 𝑧 is the depth of the considered MP below the soil surface, 𝜌𝑤 the density of water 

𝑧𝑤  the depth of the considered MP below the groundwater table, and 𝐾0  the earth 

pressure coefficient at rest. 𝐾0 procedure does not ensure an equilibrium condition for the 

stress field, since it does not generate shear stresses. Full equilibrium can be only obtained 

for horizontal soil surfaces and a horizontal phreatic level. 

3.4 NUMERICAL DEVELOPMENTS 

The main contribution of this work to Anura3D can be summarized in the numerical 

developments following described. 

3.4.1 Constitutive model for liquefaction 

The advanced constitutive model Ta-Ger (Tasiopoulou and Gerolymos 2016a, b), able to 

reproduce complex aspects of sand behaviour under static and cyclic loading including 

liquefaction phenomenon, has been implemented. Model description and its numerical 

implementation is presented in detail in Ch. 6. 



Numerical developments 

33 

 

3.4.2 Dynamic boundary conditions 

With the aim to simulate the dynamic behaviour of soils and validate Ta-Ger model 

implementation under dynamic loadings, dynamic boundary conditions were needed. 

Similarly to Alsardi and Yerro (2021) and Alsardi et al. (2021), they consist on apply a 

prescribed velocity variable with time on nodes or MPs during the convective phase of 

the computational cycle. When the condition is applied on MPs, velocity of the MPs are 

overwritten, the momentum balance is recalculated and the nodal velocity is updated 

according to it. When velocity is applied on nodes, the value at the MPs is recalculated 

according to the assigned nodal velocities to properly update their position. 

The velocity-time function has to be defined in a text file with format shown in Fig. 3.3 

The first number coincides with the total number of data rows, in the left column the 

incremental time are listed while in the right one the velocity values.  

This feature has been applied in Ch. 5, for the seismic assessment of a real landslide. 

Furthermore, results of strain controlled cyclic tests with Ta-Ger model are presented in 

Ch. 6. 

 

Figure 3.3. Velocity-time history text file format. 

3.4.3 Initial hydraulic conditions  

One of the latest contributions, carried out in collaboration with Anura3D developers 

team, allow to assign in the numerical model one or more initial water levels with pressure 

equal to zero to different materials. The code is able to read the water levels coordinates 

included in external text files. 

The main motivation behind its implementation can be found in the interest of simulating 

confined aquifers independent from the general groundwater table that affect just specific 

soil layers. The feature has to be used in combination with 𝐾0 procedure. The water levels 

are assigned at the very beginning allowing the calculation of the initial distribution of 

pore water pressures. Based on it, effective stresses can be obtained from total stresses by 

using the 𝐾0 procedure.  
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Since 𝐾0 procedure does not ensure that the stress field is in equilibrium, a quasi-static 

calculation phase should be performed afterwards. However, an advantage of starting 

from a given distribution of stresses and pore water pressures lies in reaching faster an 

equilibrium condition for a desired scenario. Applications of this feature on landslide 

models can be found in Ch. 5 and Ch. 7. 
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CHAPTER 4 - EXCAVATION-INDUCED SOIL 

DEFORMATIONS 

This chapter aims to show the capabilities of MPM to simulate geotechnical problems 

dealing with soil excavation. The stability of supported vertical excavation in elasto-

plastic material is analysed. Results are compared and discussed with respect to solutions 

reported in the literature. Furthermore, a well-documented real case of a large landslide 

reactivated by quarry excavations is simulated. The MPM is able to predict satisfactorily 

the main aspects of soil behaviour when subject to an excavation process. The results of 

these simulations contribute to the validation of the excavation feature implemented in 

the Anura3D software. This chapter is part of the published book “The Material Point 

Method for Geotechnical Engineering: a Practical Guide (2019)” (See list of publication). 

3.1 INTRODUCTION 

A proper numerical analysis of geotechnical problems dealing with soil excavation is a 

useful tool for monitoring and design of civil engineering projects. It allows the prediction 

of the variation of stress and strain fields induced by excavation and its impact on 

surrounding environment. A specific feature to simulate soil excavation is implemented 

in the MPM Anura3D software. In the pre-processing phase, once the geometry and the 

computational mesh are created, it is possible to define the range of calculation steps in 

which the material points (MPs) belonging to a certain volume have to be removed. In 

order to contribute to the validation of this feature, numerical analyses of two excavation 

problems are carried out. In the first example the bottom heave stability of a supported 

excavation in clay is analysed. This stability problem has been widely investigated 

theoretically and numerically by using different approaches. In this chapter a series of 
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undrained total stress analyses with decreasing value of soil strength are performed until 

failure conditions are reached. The aim is to discuss capabilities and limitations of MPM 

in simulating this kind of problem and to compare its results with solutions reported in 

the literature. The second application is a well-documented case of large landslide 

reactivated by quarry excavation (Alonso, Gens and Lloret, 1993). 

3.2 STRUTTED EXCAVATIONS IN CLAY 

There are typically three methods to evaluate the stability conditions for strutted 

excavations: limit equilibrium methods (LEM), limit analysis methods (LAM) and finite-

element methods (FEM). Terzaghi (1943) used the conventional limit equilibrium method 

in order to analyse the stability of the bottom of an excavation, on the basis of bearing 

capacity theory. The clayey soil was supposed to be homogeneous and isotropic under 

undrained conditions. The shearing resistance of soil was equal to its undrained strength 

value 𝑐𝑢 Fig. 4.1 shows the failure mechanism assumed. The weight of the clay located on 

both side of the excavation produce a uniformly distributed load on the horizontal section 

passing through the bottom.  

 

Figure 4.1. Failure mechanism of a 2D excavation in a clayey soil, according to Terzaghi (1943). 

When this load exceeds the bearing capacity of the soil located below the bottom of the 

excavation, the surrounding soil moves downward and induces the heave of the base. 

According to Terzaghi (1943), the critical depth 𝐷𝑐𝑟𝑖𝑡 for an excavation under plain strain 

conditions is given by: 

𝐷𝑐𝑟𝑖𝑡 =
5.7𝑐𝑢

𝛾𝑠𝑎𝑡 −
𝑐𝑢√2

𝐵

 
(4.1) 

Where 𝛾𝑠𝑎𝑡  is the saturated unit weight of soil; 𝐵  is the excavation width; 𝑐𝑢  is the 

undrained shear strength. 
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Bjerrum and Eide (1956), after field studies, showed that, in case of deep excavations or in 

presence of non-homogeneous clay, the bottom heave occurs at smaller depths than 

indicated by Eq. 4.1 without fully mobilizing the shear strength of the upper clay layers. 

They suggested a more localized failure mechanism that is approximated by the bearing 

capacity factor 𝑁𝑐  for deep foundations, proposed by Skempton (1951). This stability 

factor depends on the shape and the depth of the foundation and is expressed as: 

𝑁𝑐 =
𝛾𝑠𝑎𝑡𝐷𝑐𝑟𝑖𝑡

𝑐𝑢
 (4.2) 

These solutions are widely used in the initial phases of the excavation design for its 

relative simplicity but they strongly depend on some assumptions regarding the shape 

and the location of the failure surface or the values of the bearing capacity factor. 

Limit analysis theory provides another method to evaluate this stability problem. It allows 

the calculation of an upper and lower bound for the bearing capacity factor in order to 

restrict the range of solutions for the basal stability calculations. 

Finite element methods, whose results depends on the constitutive model and the input 

parameters chosen, are usually used in advanced stages of the excavation design. In this 

case, the influence of the support system on ground movements is taken into account. 

Strutted excavation stability can be evaluated by using a strength reduction procedure 

consisting in reducing gradually the strength parameters of the soil until lack of 

convergence occurs in non-linear finite element analysis (Brinkgreve and Bakker, 1991; 

Faheem et al., 2003). Alternatively, the finite element method can be combined with the 

upper and lower bound limit analyses (Ukritchon et al., 2003). 

In order to investigate the strutted excavation stability in clay with MPM, a numerical 

analysis in undrained total stresses is conducted with Anura3D software. In the following 

sections, the numerical model will be described and the simulations results will be 

discussed with respect to the data published in the literature. The support system of the 

excavation will not be modelled and the main reference for the comparison of results will 

be the limit equilibrium approaches which remain the fundamental methods for 

evaluating basal heave stability in braced excavations. 

4.2.1 MPM model 

4.2.1.1 Model description  

The geometry of the problem after the excavation process is given in Fig. 4.2. The values 

of the dimensions of the model analysed are indicated in Tab. 4.1. This is a plane strain 

case analysed by a 3D model having a 0.1 m thickness. Plane strain conditions are imposed 

by means of the boundary conditions restricting the horizontal displacement along the 

vertical contours. According to the hypothesis assumed by (Terzaghi, 1943), the thickness 
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of the soil below the excavation base is chosen greater than 𝐵/√2 in order to neglect the 

effect of an underlying stiff layer. 

The defined mesh is generated by using a thin 3D mesh of tetrahedral elements. The 

thickness of the model is considered to be the same as the element size of the 

computational mesh. Fig. 4.3 shows the discretized domain and the boundary conditions 

for the case of 𝐷 𝐵 =⁄ 2. At the left and right boundaries the horizontal displacements are 

prevented, at the top of the model the displacements are constrained in vertical direction, 

while at the bottom no displacements are allowed. The hypothesis of strutted excavation 

is ensured by constraining horizontal displacements at the vertical contours of the 

excavation. 

 

Figure 4.2. Geometry of strutted excavation. 

Table 4.1. Dimensions of strutted excavation for different ratios of depth to width. 

D/B 

ratio 

Box 

height 
Box width Soil height 

Model 

thickness 

Excavation 

width 

Excavation 

depth 

𝐻 [𝑚] 𝑊 [𝑚] 𝑆[𝑚] 𝑇 [𝑚] 𝐵 [𝑚] 𝐷 [𝑚] 

1 3.5 9 3 0.1 1 1 

2 4.5 9 4 0.1 1 2 

4 6.5 9 6 0.1 1 4 

Soil is assumed to be a purely cohesive material (𝜑 = 0º), obeying the elasto-plastic Mohr-

Coulomb failure criterion. The stability against failure of the excavation base is evaluated 

by using a shear strength reduction procedure. Several simulations with decreasing value 

of the undrained shear strength 𝑐𝑢  are performed until a sudden increase of upward 

vertical displacements at the excavation bottom is computed. The 1-phase 1-point MPM 

formulation is used to perform this set of undrained analyses in total stresses (§3.2.1). The 

input parameters for the material are summarized in Tab. 4.2. Soil is assumed to be a 
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purely cohesive material ( 𝜑 = 0º ), obeying the elasto-plastic Mohr-Coulomb failure 

criterion. The stability against failure of the excavation base is evaluated by using a shear 

strength reduction procedure. Several simulations with decreasing value of the undrained 

shear strength 𝑐𝑢 are performed until a sudden increase of upward vertical displacements 

at the excavation bottom is computed. The 1-phase 1-point MPM formulation is used to 

perform this set of undrained analyses in total stresses (§3.2.1). The input parameters for 

the material are summarized in Tab. 4.2.  

 

Figure 4.3. Computational mesh and boundary fixities in y and x direction. 

Table 4.2. Material properties. 

Constitutive model  Mohr-Coulomb 

Initial porosity 𝜙 [−] 0.2 

Density solid  𝜌𝑠 [𝑘𝑔/𝑚3] 2650 

Density liquid 𝜌𝑙 [𝑘𝑔/𝑚3] 1000 

Saturated unit weight 𝛾𝑠𝑎𝑡 [𝑘𝑃𝑎] 22.8 

Undrained Young modulus  𝐸𝑢[𝑘𝑃𝑎] 10000 

Undrained Poisson ratio  𝜈𝑢[−] 0.49 

Undrained friction angle 
𝑢

 [º] 0 
 

4.2.1.2 Stages of analysis  

The simulations are performed in two phases: 1) the initialization of stresses by quasi-

static gravity loading; and 2) the excavation process by consecutively removing soil 

volumes. 

Stresses are initialized by applying a gravity loading at the first calculation step. A local 

damping factor of 0.75 is applied to reach a quasi-static equilibrium state in a faster way 

allowing a considerable reduction in the computational time. 

In the second phase, the excavation process is simulated in more stages by removing the 

material points belonging to volumes of 1 m height. They are removed immediately at the 
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beginning of each excavation stage and then enough time is left in order to reach the 

equilibrium. In this case, the full dynamic behaviour of the soil is analysed. Intermediate 

excavations are performed in five calculation steps of 0.2 seconds while, for the last one, 

additional calculation steps are performed until the maximum upward vertical 

displacement at the excavation bottom is reached for a given value of undrained shear 

strength. Fig. 4.4 shows the calculation stages for the case 𝐷 𝐵⁄ = 2. 

 

Figure 4.4. Calculation stages for 𝐷 𝐵⁄ = 2. 

4.2.2 Numerical results 

Fig. 4.5 shows, for the case 𝐷 𝐵⁄ = 2, the final maximum values of soil heaving movement 

for each simulation in terms of the undrained shear strength 𝑐𝑢. They refer to the material 

point located at the middle of the excavation. Two different ways to simulate the failure 

mechanism are considered. In the first case (Case 1), soil is allowed to accumulate into the 

braced excavation during the failure mechanism development. The second approach 

(Case 2) respects an implicit hypothesis of classical solutions that consists in continuously 

removing soil as it rises inside the excavation. For both cases, when using the undrained 

strength value of 8 kPa, upward vertical displacements are very small and the soil 

behaviour can be considered still elastic. As the cohesion is reduced, at first, a gradual 

increase in vertical displacements is expected. Then a lower bound of 𝑐𝑢  should be 

reached when displacements increase considerably. This trend is not observed in the Case 

1, in which the material is allowed to accumulate into the excavation, and maximum 

vertical displacements are significantly lower compared with Case 2. This behaviour can 

be explained considering that the accumulation of soil leads to a new stable configuration. 

Geometric conditions change and a sudden increase of soil heaving movement cannot be 

observed. In this case it is difficult to detect an undrained strength at which failure occurs. 

On the contrary, by removing the material points as they rise into the excavation, a more 

evident lower bound value of undrained cohesion is reached. This result is very close to 

Terzaghi’s solution obtained by Eq. 4.1 for a critical depth of 2 m. Actually, as commented 

in § 4.2, when 𝐷 𝐵⁄ > 1 the reference solution is the one proposed by (Bjerrum and Eide, 

1956), based on the bearing capacity factors calculated by Skempton (1951). Accepting the 

𝑁𝑐  value for strip foundations and 𝐷 𝐵⁄ = 2 (𝑁𝑐 = 7), Eq. 4.2 gives a critical undrained 

strength of 6.5 𝑘𝑃𝑎, significantly higher than the value obtained by MPM. However, the 
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accumulated deviatoric strains are localized at the excavation base, as expected for deep 

foundations (Fig. 4.6). 

 
Figure 4.5. Maximum soil heaving movement for different values of undrained cohesion when 

𝐷 𝐵 = 2⁄ . 

 

(a) 

 

(b) 

Figure 4.6. Results after about 10 seconds from last excavation for 𝑐𝑢 = 5.2𝑘𝑃𝑎 and 𝐷 𝐵⁄ = 2 (Case 

2). (a) Total displacements [m]; (b) deviatoric strain [-]. 

The results for 𝐷 𝐵⁄ = 1 are shown in Fig.4.7. In this case the theoretical solutions by 

Terzaghi and Skempton are very close and for critical 𝑐𝑢  values slightly lower, the 

displacement computed in MPM increases significantly. Fig. 4.8 shows the failure 

mechanism. 
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Figure 4.7. Maximum soil heaving movement for different values of undrained cohesion when 

𝐷 𝐵 = 1⁄ . 

 

(a) 

 

(b) 

Figure 4.8. Results after about 2 seconds from the excavation for 𝑐𝑢 = 2.5𝑘𝑃𝑎 and 𝐷 𝐵⁄ = 1 (Case 

2). (a) Total displacements [m]; (b) deviatoric strain [-]. 

For a deep excavation (𝐷 𝐵 = 4⁄ ), Terzaghi’s method provides unreliable results. The 

sudden increase of displacements is observed, when using Anura3D, for values of 

strength slightly lower than the critical undrained strength calculated with Eq. 4.2 (Fig. 

4.9). According to Bjerrum and Eide observations in the case of deep excavation, the 

accumulated deviatoric strains are localized at the excavation base (Fig. 4.10). 
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Figure 4.9. Maximum soil heaving movement for different values of undrained cohesion when 

𝐷 𝐵⁄ = 4. 

 

(a) 

 
(b) 

Figure 4.10. Results after about 15 seconds from last excavation for 𝑐𝑢 = 11𝑘𝑃𝑎 and 𝐷 𝐵 = 4⁄  

(Case 2). (a) Total displacements [m]; (b) deviatoric strain [-]. 
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4.3 THE LANDSLIDE OF CORTES DE PALLAS 

4.3.1 Geological context and case description 

A large reactivated landslide was identified in 1985 in the East of Spain (Valencia) 

affecting the left bank of a river upstream of the Cortes arch-gravity dam. The case is 

described in Alonso et al. (1993). The bank, constituted by massive layer and a thin marl 

level, was part of a large isocline into which the river canyon is cut. The instability was 

observed in some silos and retaining walls founded on the upper part of the slope used in 

the construction of the dam. 

The works carried out to identify and characterize the landslide included boreholes, 

inclinometers, and topographic measurements. The geological works described noted the 

existence of an ancient landslide affecting the upper limestone layers, which were severely 

broken at the surface. The failure surface was located in a 2 m thick “marl” stratum 

dominated by illite and dolomite crystal. No indication of water levels was found in any 

of the borings. The topographic marks, installed after the identification of the failure, 

indicated a large area moving downwards in a direction approximately parallel to the 

average dip direction of the strata. The inclinometers readings (Fig. 4.11) indicated clearly 

that the mobilized mass was sliding on the thin marl stratum. The total volume of the 

landslide was estimated as 5·106 m3.  

 

Figure 4.11.  Inclinometer measurements in Cortes landslides (Alonso, Gens and Lloret, 1993). 
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Figure 4.12. Representative cross-section of Cortes landslide (Alonso, Gens and Lloret, 1993). 

Fig. 4.12 shows a representative cross-section of the slide. A quarry, which provided the 

granular aggregate for the concrete used in the dam construction, was excavated in the 

lower part of the old landslide at the position indicated in Fig. 4.13. This excavation of the 

toe was identified as the reason for the reactivation of the ancient landslide.  

Laboratory shear tests were carried out on samples from the marl layer, as well as from 

block samples taken in places where the marl layer outcropped. The marl material was 

characterized as a low plasticity clay (𝑤𝐿 = 20% − 28%, 𝑤𝑃 = 13% − 14%) with high 

consistency ( 𝑤 = 10% − 13.6% ) and low porosity ( 𝜙 = 0.25 ). A peak and residual 

frictional angles of 23° and 22° were obtained from direct shear tests. Similar values 

ranging between 20° and 21° were obtained in consolidated undrained triaxial test with 

pore water pressure measurements under relatively large effective confining stress (0.2, 

0.45 and 0.7 MPa).  

Since it was a reactivation of an ancient landslide, it was considered appropriate to assume 

that the residual strength of the marl layer was mobilized in this case. It turn out that the 

value of the marl residual frictional angle reported in the experimental program (around 

21°)  was significantly higher than the frictional angle (17.7°) obtained by the back-analysis 

reported by (Alonso et al., 1993). This discrepancy was explained later on when the 

stabilization works were carried out and undisturbed samples from the sliding surface 

were analysed. 

To guarantee security conditions during the reservoir operation which will partially 

submerged the unstable slope, it was decided to stabilize the hillside by reducing the 

weight of the upper part and to increase the weight of the lower part by filling in part the 

quarry excavation. This excavation uncovered the failure surface and the clayey soil 

located in the shear band of the landslide could be identified. Mineralogical differences 

were observed between closely located samples taken from the shear band and in the marl 

stratum itself. A block sample including the sliding surface was taken and tested in the 

laboratory in direct shear testing. The actual sliding surface was aligned carefully with the 
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middle plan of the shear box. It was observed that the softening behaviour from a peak 

value to a residual one observed in the previously tested sample was absent. A moderately 

nonlinear strength-strain curve was observed. The average frictional angle for the range 

of stresses considered was 18°. For higher values of normal stress, corresponding to the 

average normal stress on the sliding surface in the central part of the landslide (around 

0.8 MPa), the representative frictional angle was lower (17°). The obtained values in the 

shear box testing agree very well with the value derived from the back-analysis. 

4.3.2 MPM model 

4.3.2.1 Model description and material parameters 

A one-phase analysis MPM mixed calculation is carried out with Anura3D to simulate the 

observed failure of Cortes landslide due to the excavation of part of the bank toe. No 

groundwater is included in the modelling taking into account that, according to (Alonso 

et al., 1993), no water table above the sliding surface is observed.  

 

Figure 4.13. Cross section defined for MPM calculation. 

 
Figure 4.14. Materials and Computational mesh of 8,264 tetrahedral elements and 16,409 nodes. 

The representative section presented by (Alonso et al., 1993) (Fig. 4.12) is indicated in Fig. 

13a distinguishing two materials (Fig. 4.13b) and different volumes to simulate the 

excavation process. The materials (marl layer and limestone below and above the marl 

layer) were characterized by means the Mohr-Coulomb model with the parameters 

indicated in Tab. 4.3. The limestone was defined by a brittle material by means a strain-

softening Mohr-Coulomb model in which the effective cohesion and effective friction 

angle defining the linear relationship between stress and strength drop from a peak to 
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residual values as a function of the deviatoric plastic strain invariant following an 

exponential law controlled by a “shape factor” parameter 𝜂: 

𝑐′ = 𝑐′𝑟 + (𝑐′
𝑝 − 𝑐′

𝑟)𝑒−𝜂𝜀𝑑
𝑝

 (4.3) 

𝜑′ = 𝜑′𝑟 + (𝜑′
𝑝 − 𝜑′

𝑟)𝑒−𝜂𝜀𝑑
𝑝

 (4.4) 

where: 

𝜀𝑑
𝑝

= √
2

3
𝑒𝑖𝑗

𝑝
𝑒𝑖𝑗

𝑝
 

(4.5) 

where 𝑒𝑖𝑗
𝑝

 is the deviatoric component of the plastic strain tensor. Peak and residual values 

are indicated by the subindex 𝑝 and 𝑟, respectively. 

Residual strength conditions were assigned to the marl layer where the sliding surface 

was located. According to the test carried out on block samples taken from the sliding 

surface described above (§ 4.3.1), the residual friction angle introduced in the calculation 

was 17.5°. The rest of parameters (stiffness, Poisson’s coefficient) and the initial porosity 

were estimated. 

Table 4.3. Model parameters and properties of materials involved in Cortes Landslide modelling. 

  Limestone Marl layer 

Constitutive model  Mohr-Coulomb Mohr-Coulomb 

Initial porosity 𝜙 [−] 0.3 0.3 

Young’s Modulus (MPa) 𝐸 [𝑀𝑃𝑎] 1000 200 

Poisson’s coefficient (-) 𝜈 [−] 0.33 0.33 

Peak effective cohesion (kPa) 𝑐’𝑝 [𝑘𝑃𝑎] 100 - 

Residual effective cohesion (kPa) 𝑐’𝑟  [𝑘𝑃𝑎] 20 - 

Peak effective friction angle (º) 𝜑’𝑝  [º] 30 - 

Residual effective friction angle (º) 𝜑’𝑟  [º] 35 17.5 

 

As boundary conditions, displacements were restricted in the three directions along the 

lower boundary surface. The motion in z-direction (Fig. 4.14) was also prevented in x-y 

plane to simulate two dimensional (2D) plane strain conditions. 

The excavation volumes and the time interval for their excavation are indicated as input 

data. The material points included in the specified volumes are instantaneously removed 

at the beginning of the step. The excavation process of a given volume actually carried out 

in the field is significantly different from being an instantaneous unload. In order to 

simulate the excavation process in a more realistic way, the total volume excavated was 

divided into five subvolumes that were excavated subsequently. Since no pore water 
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pressure is included and the constitutive model for the involved materials are not time 

dependent, the duration of the steps is not relevant. However, it is ensured that the slope 

is at rest prior to any excavation. 

4.3.2.2 Stages of analysis 

The calculation is divided into 7 stages. In the first stage, the initial stress distribution was 

calculated by the definition of a quasi-static stage in which the gravity loading is applied 

gradually and a local damping of 0.75 is applied. The initial stress distribution of the slope 

was not easy to estimate and there are no measurements available. It was assumed that 

the stress distribution resulting by imposing the weight of the materials is a good 

approximation. Afterward, five stages of different loading steps of 0.5 seconds each one 

were defined to simulate the excavation of the volumes (1 to 5) indicated in Fig. 4.13. For 

theses stages, the local damping is reduced to a low value of 0.05. Finally, the last stage of 

seventy five load steps, 0.5 seconds each, is defined to evaluate the response of the slope 

without applying any change in the model.  

4.3.3 Numerical results 

The initial distribution of mean effective stresses, caused by the gravity loading prior to 

any excavation, is shown in Fig. 4.15 

Fig. 4.16 shows the accumulated deviatoric strain and accumulated displacement at the 

end of calculation. The excavation process induces displacements of around 20 cm at the 

slope surface and the slope reaches a new equilibrium. Fig. 4.17 shows the displacement 

curve versus the time step calculation for three materials points of the slope (also indicated 

in the figure). Notice that for each stage of excavation, the accumulated displacement 

increases abruptly and the motion is interrupted quickly, after a few centimetres when a 

new equilibrium is reached. The displacement observed is not homogeneous along the 

slope. Maximum accumulated displacement of 24 cm is computed in the upper part of the 

landslides, probably favoured by a local failure of the upper part due to the geometry of 

the slide cross section. The minimum accumulated displacement calculated is located in 

the more stable part of the toe of the slope due to the shape of the marl layer. 

 

Figure 4.15. Initial distribution of mean effective stresses after gravity loading stage. 



Discussion 

49 

 

 

(a) 

 
(b) 

Figure 4.16. (a) Total displacements [m] and (b) accumulated deviatoric strains at the end of 

calculation, after excavation. 

 
Figure 4.17.  Displacement versus time step of the two materials points indicated in the figure. 

4.4 DISCUSSION 

The capabilities of MPM to model large displacement in a natural way provides a more 

realistic interpretation of excavation problems. The analysis of deep excavations protected 
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by lateral walls is a good example. Failure is understood as an increasing soils 

displacement rate. However, the resulting accumulation of soil mass on the excavation 

bottom has the positive effect of retarding the motion. The realistic interpretation of failure 

offered by MPM was compared with classical solutions based on simplified assumptions. 

This cross check of established procedures and a discussion of some discrepancies is also 

an interesting contribution. 

The second example solved refers to a well-documented case history: Cortes Landslide. 

Again, the concept of failure closely related with the accumulation of landslide 

displacements provides an insight no available in Limit Analysis. In the case of Cortes, 

the excavation resulted in significant displacements but it did not result in a catastrophic 

accelerated motion. This information is outside the formulation of Limit Analysis. The 

MPM analysis was consistent with field observation: the landslide displaced downward 

response to the excavation but it reached a new stable configuration at the expense of 

severe straining of the sliding surface and the rock cover. 
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CHAPTER 5 – SEISMIC ASSESSMENT OF A 

COMPLEX LANDSLIDE  

In this chapter, a large landslide located in the Spanish Southern Pyrenees during a dam 

construction project is investigated. It is characterized by two distinct sliding surfaces, 

which threatens a recently heightened dam located at the landslide toe. The stability 

analysis of the slope focuses on the discussion of safety factors and their implication not 

only in terms of static limit equilibrium, but also on creeping velocity. The seismic 

response of the landslide is also analysed with different methods. Results from 

Newmark’s approach and MPM are compared and discussed with emphasis on the 

effect of the superimposed slip surfaces on the dynamic landslide response. 

5.1 INTRODUCTION 

First-time instabilities of river banks and reactivation of ancient landslides are one of the 

most important concerns in the design and construction of dams and complementary 

structures, as well as during reservoir operation. Schuster (2006) presented a compilation 

of case histories of different types of landslides interacting with dams in different 

countries and Yin et al. (2016) described induced landslides in the Three Gorges Project 

(China). Most of dams and reservoir sites are located in fluvial or glacial valleys. 

Geological features commonly found in valleys are synclinal structures involving 

stratified layers parallel or subparallel to the direction of the topographic valley slopes. 

This situation favours translational landslides kinematically compatible with failure 

surfaces which follow sedimentation planes or weak layers. A consequence is that river 
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banks in reservoirs are potentially unstable. In fact, excavations and applied loads 

during dam construction and the subsequent changes in reservoir water level, which 

partially or totally submerge the banks, favour the activation or reactivation of 

landslides. 

This is the case of Yesa landslide, located in the north of Spain (Navarra region). The 

deep seated landslide, located in a syncline of a Flysch formation, applies a thrust against 

the right abutment of the dam(s). Instability problems, manifested since the beginning 

of the dam construction in 1928 (Gómez, 2018), led to interruptions of construction in the 

years to follow. In 1959 the construction of a gravity dam, 78 m high, was completed. 

The slope instability of the right margin became especially relevant when a project of 

heightening the dam, up to 108 m, was carried out to supply drinking water, land 

irrigation and flood control (Fig. 5.1). 

 

Figure 5.1. The old and new Yesa dams and the landslide in the background. 

The heightening project was resolved by building a new rockfill structure partially 

supported by the ancient concrete gravity dam. The new dam required additional 

excavations which triggered a large landslide, called Marmayor (11.9 Mm3). 

Comprehensive geological and geomorphological investigation were carried out at 

various times on Yesa reservoir site (Fig. 5.2). 
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Figure 5.2. Cross section of old and new Yesa dams. 

Gutiérrez et al. (2010) describe the site and analyse five smaller landslides located around 

the reservoir. Corominas (2013) carried out a thorough study, focussing on Marmayor 

landslide, based on previous works, field surveys, interpretation of deep borehole cores, 

inclinometer and topographic data. They provided a comprehensive geological model 

of the Marmayor landslide, and identified the geometry of a translational landslide in 

which shear strains localize in two well-defined superimposed sliding surface(s).  

The aim is to provide a further insight into the Marmayor landslide behaviour, to 

evaluate the stability conditions, and to assess the evolution of landslide motion. The 

known landslide history is a creeping motion with periods of acceleration that can be 

related with rainfall periods. First the main characteristics of the landslide are described. 

The complexity of the material involved in the motion and the uncertainties on 

hydrogeological conditions introduced difficulties. Strength parameters of the sliding 

surfaces were first estimated by a back analysis of the active landslide, which required 

the development of a hydrogeologic model of the valley slope. Understanding the 

landslide goes beyond analysing limiting conditions, in terms of mobilized strength, 

because it requires also the prediction of slide motions. Post failure response may 

involve large displacements in a relatively short time, or else, small accumulated 

displacement in long periods of time. Being able to model landslide motion and how it 

will evolve is not an easy task, even if the geometry of the landslide and the materials 

involved are well characterized. An example in this regard is the case of Canelles 

landslide (Pinyol et al., 2012). 

Current available numerical methods find difficulties to provide reliable predictions of 

the creeping stage. Due to computational cost, the methods are not able to provide 

realistic accumulated displacement of few millimetres or centimetres in realistic long 
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periods of time, especially when landslide modelling includes the solving of the 

governing coupled hydromechanical equations combined with advanced constitutive 

models. Alvarado et al.  (2019) describe the alternative of simplifying the problem to a 

planar landslide, which may be approached analytically.  

Different numerical approaches and models are adopted to analyse Yesa landslide and 

to predict the future response under different actions. In particular, the earthquake 

action, defined by current regulations will be discussed in some detail. 

5.2 CASE DESCRIPTION 

5.2.1 Geology and geomorphology of the landslide 

The geological structure of the right margin of Yesa dam can be described as a folded 

flysch formation of Eocene age overlying a marl stratum (Pamplona Marl), equally 

folded, of low porosity and low permeability. Both strata, Yesa Flysch and Pamplona 

Marl, describe an anticline at high elevations and a syncline at a lower elevation, near 

the Aragón River. The axes of these folds have a westward direction and dip 10º in the 

downstream direction. This configuration, has a relevant effect on the water flow 

direction in the hill, because the direction of maximum dip of flysch strata are not 

perpendicular to the river. Fig. 5.3 shows a plan view of the slope and the heightened 

dam. The profiles indicated in the figure (P8-P11) follow the maximum dip direction of 

the strata. The section following these profiles are plotted in Fig. 5.4. The flysch stratum 

is divided in three levels depending on the relative content of sandstone and claystone 

(Corominas, 2013): 

- Lower level (F1), around 30 m thick, is constituted by layers of a few centimetres or 

decimetres thick of claystone (also called marl in what follows) and sandstone. The 

sandstone levels exhibit a maximum thickness of 2 m and the thickness of claystone 

strata vary between 1 and 2 m. The proportion of sandstone with respect to the total 

thickness of this unit is around 65%. 

- Intermediate level (F2), 15-20 m thick, with a predominance of shale strata with 

intercalation of sandstone’s layers, 30 cm thick. The proportion of claystone with respect 

to sandstone is higher than 80%. 

- Upper level (F3), up to 50 m thick, with a predominance of sandstone strata. The 

proportion of sandstones is variable with depth. It is around 40-60% in the upper part 

and increases with depth to 70%. 
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Figure 5.3. Plane view right margin slope of Yesa dam including contours of landslides and 

profiles. 

 

Figure 5.4. Cross-section P9 (see Fig. 5.3) of Marmayor landslide. The geometry corresponds to 

Scenario 3. 

Following the procedure described in Pinyol et al. (2018) and Corominas (2013), the 

sliding inclinometers measurements and a careful interpretation of borehole cores, led 

to describe Marmayor landslide as two overlapping landslides favoured by the 

geological structure and limited by two sliding surfaces located in weak layers or 

contacts between flysch strata. Fig. 5.3 indicates the limits of the identified continuous 

sliding surfaces and Fig. 5.4 their position in vertical profiles. The shallow sliding 

P8
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surface, where the largest displacements are registered, develops along the contact 

between the upper (F3) and intermediate (F2) level of flysch. The deeper sliding surface 

is located at the contact of the lower level of flysch (F1) and the marl strata. Additional 

signs of motion of this deeper sliding surface were identified by the lifting of concrete 

blocks, on the right abutment of the old concrete dam. 

The so-called “Inglés Landslide” was detected during the construction of the original 

dam. It affects part of the Marmayor landslide toe.  

5.2.2 Mechanical properties 

Mechanical properties derive from tests carried out at the time of dam design and 

construction. The apparent density of clayey layers in Flysch varies between 2.24 and 

2.66 g/cm3 and it is higher in Pamplona marl substratum (2.5-2.7 g/cm3). Sandstone 

density ranges from 2.41 g/cm3 to 2.68 g/cm3. These values remain almost constant with 

depth except in the first meters where the rock is weathered. The mineralogy of marls, 

similar in all of units, is characterized by 20-51% of phyllosilicates, illite being the most 

dominant clayey mineral. The rest of the minerals are carbonates (31-65%), quartz (2-

22%), and gypsum (6-10%). The fine fraction is of low plasticity (CL) and tested samples 

exhibit a liquid limit, 𝒘𝑳 = 30-35%, plastic limit, 𝒘𝑷 = 8-19% and plasticity index, IP = 

14.5%. According to these properties, a relatively high residual effective friction angle, 

larger than 15º is expected (Lupini et al. , 1981; Mesri and Cepeda-Diaz, 1986). 

The sandstone mineralogy is dominated by quartz (55%) and carbonates (45%). 

Compression tests on rock samples indicate a representative value of unconfined 

compression strength of Yesa marls of 9 MPa - 15 MPa and 65MPa for the sandstone. 

The Young’s modulus measured in these tests ranges from 6.8 GPa to 8.6 GPa in Yesa 

Flysch marl samples, it is larger in samples of Pamplona Marl substratum (16.5 GPa) and 

it reaches 32.2 GPa - 69.9 GPa in sandstones. Poisson’s ratio of marls and sandstones are 

0.16 and 0.23, respectively. 

The residual strength of marls taken from the opposite margin of the river, belonging to 

the same formation, was evaluated in residual shear tests. They exhibited a high 

dispersion with an average value of residual friction angle of 16º. Corominas (2013) 

reported values of friction angles varying between 16º and 18º in drained direct shear 

tests carried out on samples from the upper sliding surface. 

Field geophysical tests indicated that a characteristic value of P-wave velocity of flysch 

marls is around 2000 m/s. The p-wave velocity measured in Pamplona marls range 

between 998 and 3060 m/s. In sandstone strata the P-wave velocity increases to about 

4000 m/s. 
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Table 5.1. Material properties. 

Lithology 

Specific 

weight 

Young’s 

modulus 

p-wave 

velocity 

Poisson’s 

coefficient 

Effective 

cohesion 

Effective 

friction angle 

𝜸 𝑬 𝑽𝒑  𝒄’ ′ 

[𝑘𝑁/𝑚3] [𝑘𝑁/𝑚2] [𝑚/𝑠] [−] [𝑘𝑁/𝑚2] [º] 

Flysch 

Sandstone 

(F3) 

26.4 

[24.1-26.8] 

3.2·107 

[3.2-69.9·107] 
4000 0.23 2200.0 23 

Flysch 

Marl 

(F1-F2) 

25.4 

[22.4-26.6] 

6.8·107 

[6.8-8.6·107] 
2000 0.16 250.0 

17 

[>15; 16-18] 

Pamplona 

Marl 

26.2 

[25-27] 
16.5·107 998-3060 0.20 400.0 20 

Shallow 

sliding 

surface 

25.4 
6.8·106 

 
- 0.20 0.1 Calibration 

Deep 

sliding 

surface 

26.2 
6.8·106 

 
- 0.20 0.1 Calibration 

According to the available information described above, the parameters selected to 

characterize the materials involved in the landslide are collected in Tab. 5.1. These 

parameters are selected for modelling purposes. Brackets indicate the range of values of 

parameters estimated from available data. The two identified sliding surfaces (shallow 

and deep sliding surface) are at residual conditions and exhibit weaker stiffness and 

strength properties than the values given for the Flysch units. 

5.2.3 History of Marmayor landslide motion 

The excavations carried out during old Yesa dam construction (1928-1959) led to the first 

signals of instabilities of the right margin and the triggering of Inglés Landslide whose 

motion, which is controlled by Yesa reservoir level changes, persists nowadays. The 

Marmayor landslide was first identified in 2011 during excavation works for the 

foundation of the new and higher rockfill dam. In September/October 2012, the landslide 

registered displacement rates of 10 mm/month that could be correlated with an intense 

rainfall period. In January-February of 2013, the landslide, already characterized by the 

two main continuous sliding surfaces described above, accelerated, coinciding again 

with an intense rainfall period. Displacement rates of up 40 mm/week were registered. 

Fig. 5.5 shows the inclinometer measurements located in the upper part of the landslide 

along Profile 8 (Fig. 5.3).  
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Figure 5.5. Inclinometer measurements located in Profile 8 (see Fig. 5.3) at a distance of 25 m 

from the crack of the upper sliding surface. 

 

Figure 5.6. Displacement rate (a) and accumulated displacement (b) from topographic 

landmarks located around Profile 9 and accumulated daily rainfall (c). 
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5.2.4 Hydrogeology 

Several deep open standpipe piezometers were installed in the landslide area (Fig. 5.7). 

All of them were longer than the depth of the lower sliding surface. Slug and pumping 

tests were carried out. The individual response observed in the piezometers indicated a 

complex hydrogeological system driven by geological heterogeneities and the influence 

of discontinuities. The groundwater regime of the slope is defined by a deep aquifer that 

mainly reacts to the reservoir levels, the discharge to the river, and the recharge from the 

hill (Fig. 5.7). Fig. 5.4 includes the range of water level variation during 2014-2018 in 

some piezometers installed along Profile 9. It was concluded that, near the reservoir, the 

piezometer head is controlled by the reservoir level and it decreases from the front toe 

of the slope, partially submerged, towards the inner part of the hill due to the natural 

discharge drainage path that follows the direction of the axis of the syncline axis, 

subparallel to the river. The piezometer head increases uphill due to the flow coming 

from the upper heights of the valley. Piezometers located in the middle and upper 

elevations respond to rainfall with a certain delay. 

 

Figure 5.7. Plant map of Marmayor Yesa landslide indicating the hydrogeological model 

domain limits, position of piezometers and piezometer head measured in January 2017. 
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There is no precise data to estimate the pore water pressure distribution at shallow depth 

and in particular along the upper sliding surface. There are no indications of a persistent 

shallow aquifer. However, the correlation between periods of rainfall and snow thaw 

and displacement rates observed in the upper landslide, indicates that transient positive 

pore pressures may build up. Under high infiltrations from rainfalls an ephemeral 

perched water table, bounded by the contact between the upper level of pervious 

sandstone-dominated Flysch and the lower clay-rich level, probably develops. To 

estimate the hydrogeological conditions of the landslide and to provide a consistent and 

comprehensive hypothesis in terms of pore water pressure distribution for the stability 

analysis, a depth-averaged 3D hydrogeological numerical analysis was developed. 

Based on field available data, the model aims at characterizing the anisotropic 

permeability of the domain, simulating the flow and determining the response of the 

system to rainfall periods.  

The numerical analysis was carried out by means of Modflow, a software developed by 

the Geological Service of United States, and the graphic interface ModelMuse. Modflow 

solves the water mass balance and Darcy flow equations assuming rigid porous media 

(Harbaugh, 2005) by means of finite difference and finite element methods. The model 

assumes that two overlying hydrogeological units exist at the slope scale in order to 

provide the estimated perched phreatic level. The contact between the two modelled 

layers follows the contact between the upper (F3) and intermediate (F2) level of Yesa 

Flysch. 

The model was first calibrated for stationary regime based on the piezometer levels 

measured in January 2017, when the accumulated precipitation in a month was of 82 

mm. Concerning the identification of permeability, because of the layered structure of 

the Flysch, two horizontal principal directions are adopted: the maximum one (𝑲𝒙) in 

the direction towards the river (N212N) and the minimum one (𝑲𝒚 in direction N97E); 

𝑲𝒙/𝑲𝒚  =  𝟑. The low permeability in vertical direction, 𝑲𝒛, was taken as 𝑲𝒙 𝑲𝒚⁄ = 𝟏𝟎𝟎𝟎. 

The domain was also divided in different domains in order to reproduce the measured 

piezometric head levels. 

Once the stationary model was calibrated, transitory scenarios were simulated in order 

to reproduce the response of the system affected by different intensity of rainfall periods. 

In particular, the situation from mid-January to mid-February 2013, which coincides 

with a significant increase of the landslide displacement rate (Fig. 5.6), was analysed. 

The rainfall registered in that period was 350 mm. No rainfall short event of significant 

high intensity was registered during that period, but the 30-days accumulated rainfall 

corresponds to a return period of 50 yr. With the aim of assessing the future landslide 

response, an extreme rainfall period of 500 yr return period was also modelled. It 
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corresponds to a 446 mm of 30-days accumulated rainfall. 

The obtained results in terms of permeability were consistent with the results estimated 

from slug and pumping tests from wells. The hydrogeological model also provided the 

pore water distribution inside the hill. The water level of the deep aquifer does not show 

significant variations due to rainfall and the position of the deep phreatic level is 

consistent with range of the maximum and minimum values registered (Fig. 5.4). The 

level varies significantly near to the toe following the reservoir level. 

The results of pore water pressure distribution corresponding to the perched water table 

can be interpreted in terms of 𝒓𝒖 : 

𝑟𝑢 =
𝛾𝑤ℎ𝑤

𝛾𝑠𝐷
 (5.1) 

where 𝜸𝒔  and 𝜸𝒘  are the unit weight of soil (20 kN/m3) and water (10 kN/m3) 

respectively, 𝒉𝒘 is the water column above the sliding surface and 𝑫 the depth of the 

sliding surface. For the stationary case, which corresponds to a scenario of 

average/moderate intensity, the value of 𝒓𝒖 is equal to 0.12 and it increases to 0.15 for 

high intensity rainfall. 

Table 5.2. Combinations of intensity rainfall periods and deep phreatic levels. 

 
Accumulated rainfall 

per month 

Value of 𝑟𝑢 

for shallow sliding 

surface 

Deep phreatic level 

Low intensity < 80 mm/month 0 

Interpolation with 

lowest measured 

values 

Moderate (average) 

intensity 
≈ 80 mm/month 0.12 

Interpolation with 

mean measured 

values 

High intensity ≈ 350 mm/month 0.15 

Interpolation with 

maximum 

measured values 

Extremely high 

intensity 
≈ 446 mm/month 0.20 

Interpolation with 

maximum 

measured values 

Based on this hydrogeological analysis, correlations between situations for different 

intensity rainfall periods and pore water pressure distribution, shown in Tab. 5.2, are 

used in the landslide model. Parameter 𝑟𝑢  refers to the shallow sliding surface and 

defines the position of the perched phreatic level. The deep phreatic level is defined in 
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terms of the pore pressure values measured in piezometers in 2014-2018 period and an 

average for a reservoir elevation of 490 m.a.s.l., indicated in Fig. 5.4.  

5.3 CONCEPTUAL MODEL BASED ON STABILITY ANALYSIS BY FEM 

A 2D stability analysis of the Marmayor landslide is carried out by using the FEM 

software Plaxis 2D (Version 2021, Plaxis bv) in a representative section based on Profile 

9. The interaction between landslide toe and dam is out of the scope of this work and the 

dam blocks is not included in the representative section in order to consider a critical 

section. 

5.3.1 Model description 

The geometry is discretized by quadratic triangle elements with an average side length 

of 20 m. Since the analysis focuses on the landslide stability instead of the stress-strain 

response, the materials are characterized by a linear elastic perfectly plastic Mohr-

Coulomb model. The required parameters, specific weight, Young modulus, Poisson’s 

ratio, effective cohesion ( 𝑐’ ) and effective frictional angle (′ ) of the materials are 

estimated from the available data (Tab. 5.3). The representative section for stability 

analysis only distinguishes between two layers for the flysch formation: an upper layer 

corresponding to flysch unit F3 and a deeper level that includes unit F1 and F2 (Fig. 5.8). 

The continuous sliding surfaces defined according to the geological and 

geomorphological analysis of the landslide are included explicitly in the model (Fig. 5.8) 

with their own properties, different from the rest of the materials involved in the model. 

They are defined as a preferential sliding surface by means “joint elements” available in 

Plaxis. The proper values of elastic stiffness of the joint elements are assigned in such a 

way that the program is numerically stable and elastic deformations are negligible. 

Five scenarios are defined to evaluate the model by back-analysis and to assess the future 

response. The corresponding geometries are described in Tab. 5.3 in accordance with the 

landslide history and the defined correlations between different intensity rainfall 

periods and pore water pressure distribution (Tab. 5.2).  

The water levels are imposed fixed at each stage and the pressure calculated at each 

point corresponds to the stationary situation defined by the water levels. The position of 

the deep phreatic level is defined by considering the range of values measured in 

piezometers. Water levels affecting only the Upper Flysch Level and the shallow sliding 

surface are defined to simulate the pore water pressure distribution induced by the 

different intensity of rainfall periods (Tab. 5.2). In all scenarios, the reservoir level is 

assumed to be at 490 m.a.s.l, as indicated in Fig. 5.9 that shows the particular case of the 

water levels assigned for Scenario 1. 
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Figure 5.8. Representative section in Plaxis of Scenario 1. 

 

 

Figure 5.9. Water levels defined in Plaxis for Scenario 1. The deep level corresponds to the 

maximum values measured in the field during 2014-2018, the upper level is calculated for a 

value of 𝑟𝑢 = 0.15. 

5.3.2 Stages of analysis 

In the first calculation stage, the initial stress distribution is calculated by applying the 

gravity loading. Then, the stability analysis is carried out in terms of safety factor (SF) 

defined as a ratio of the mobilized strength and the available strength at failure: 

𝑐′𝑚𝑜𝑏 = 𝑐′/𝑆𝐹 (5.2) 

𝜑′𝑚𝑜𝑏 = 𝑡𝑎𝑛−1(𝑡𝑎𝑛𝜑′ 𝑆𝐹⁄ ) (5.3) 
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The “c-phi reduction method” (Griffiths and Lane, 1999) is used to calculate the SF. In 

this procedure, the position of the critical surfaces is automatically determined and it is 

not necessary to define their position ad-hoc. However, in Marmayor landslide model, 

the position of the sliding surfaces is favoured by the definition of the joint elements and 

no new rupture surfaces are developed. 

5.3.3 Numerical results 

In a back analysis of landslides, it is common to calibrate the strength parameters 

knowing the scenario in which the landslide became unstable. In case of Yesa landslide, 

the definition of the scenario corresponding to a safety factor equal to 1 is not straight 

forward. Prior to the accelerated motion observed in January-February 2013, signals of 

instability, induced by an intense period of rainfall, were observed. According to this, 

the critical scenario (Scenario 1) is defined for the existing geometry from 2007 until 2013 

and for water pressure distribution corresponding to an intense rainfall period (Tab. 5.3). 

Under this assumption, calculations for SF = 1 indicate residual friction angles of 18º and 

15º for the deep and shallow sliding surface, respectively.  These angles are consistent 

with the friction measured in direct shear tests on samples of the sliding surface (upper 

landslide) recovered in boreholes. Fig. 5.10 shows the calculated final displacement, in a 

coloured scale, at the end of the c-phi reduction calculation. It provides information on 

the limits of the mobilized mass which define the critical, kinematically admissible 

mechanism. The precise magnitude of displacements (not indicated in Fig. 5.10 to 5.13) 

have a numerical bias because of the proximity of instability. The critical failure affects 

the upper landslide while the lower one has a limited activity.  

 

Figure 5.10. Failure surface obtained by c-phi reduction procedure for Scenario 1 and SF = 1. 

The next scenario (Scenario 2, Tab. 5.3) corresponds to the acceleration of the landslide 

after the toe excavation carried out to build a road around the reservoir (geometry for 

year 2013 in Fig. 5.4) and after an intense rainfall period (Tab. 5.2). Although limit 

equilibrium is not an appropriate analysis to provide an estimation of landslide velocity, 

we can expect that higher sliding velocities are associated with lower safety factors 

(Leroueil, 2001). A safety factor, lower than one, is then calculated for the new geometry 

after excavation assuming the same pore water distribution defined in Scenario 1. A 
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safety factor lower than one cannot be obtained by means of the c-phi reduction method 

since the calculations should start from an equilibrium condition. To overcome such 

limitation and to calculate the SF associated to Scenario 2, the input strength parameters 

of all the materials involved in the model are increased in the same ratio in order to reach 

an equilibrium condition (𝑆𝐹𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜2  >  1). Therefore, the “real” safety factor (lower 

than 1) corresponding to Scenario 2 can be calculated from the increment of the strength 

parameters imposed to reach 𝑆𝐹𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜2 =  1. In particular, in the calculation carried out, 

the safety factor equal to one for Scenario 2 is obtained for an increment ratio of strength 

parameters of 20% (Fig. 5.11). Therefore, the estimated safety factor of Scenario 2 is equal 

to 0.82. In case of instability, the upper landslide is the critical one while the lower one 

remains non-active. 

 

Figure 5.11. Failure surface obtained by c-phi reduction procedure for Scenario 2 and SF = 0.82. 

The next scenario, Scenario 3, corresponds to a more stable geometry after the excavation 

in the upper part of the landslide. During a period of time in which no intense rainfall 

period occurred the measured average velocity of the landslide is 1 mm/month. This 

scenario is modelled assuming a water phreatic level for the upper sliding surface 

corresponding to moderate rainfall period (𝑟𝑢 = 0.12). The lower phreatic level for this 

scenario is defined following the minimum level of piezometer head measured in the 

field during 2014-2018 (Tab. 5.2). Under these hypotheses, the safety factor is equal to 

1.18 (Fig. 5.12). Again, in this case the upper slide is the critical one. 

 

Figure 5.12. Failure surface obtained by c-phi reduction procedure for Scenario 3. 
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(a)  

 

(b) 

 

(c) 

Figure 5.13. Failure surface obtained by c-phi reduction procedure for Scenario 4: (a) 𝑟𝑢 = 0.12; 

(b) 𝑟𝑢 = 0.15; (c) 𝑟𝑢 = 0.2. 

A future scenario including the foreseen total excavation to increase the slope stability is 

analysed under the assumption of moderate (𝑟𝑢 = 0.12), intense (𝑟𝑢 = 0.15) and extreme 

rainfall period (𝑟𝑢 = 0.20). Tab. 5.3 collects the obtained safety factors and Fig. 5.13 shows 

the failure surfaces obtained by c-phi reduction procedure. The safety factor reduces 

from 1.13 to 1.08 for the case of moderate and intense rainfall period (Fig. 5.13a, b), due 

to the increase in phreatic level.  

This is the most interesting case to examine the interaction between the external actions 

and the expected mobilization of the two sliding surfaces. Under a moderate rainfall the 

upper landslide is the critical one but the deeper slide, especially the toe, is also 

mobilized. For an intense rainfall the two landslides are jointly mobilized. An extreme 

rainfall ( 𝑟𝑢 = 0.2 ) reduces significantly the stability of the upper landslide, which 

becomes critical.  
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The calculated safety factors for each Scenario are indicated in Tab. 5.3. 

Table 5.3. Overview of each scenario and Safety Factor calculated by c-phi reduction method. 

Scenario Date 
Geometry 

(see Fig. 5.4) 
Comments Safety Factor 

Scenario 1 
Before 

2013 

Geometry of 

2007 

- First signs of movements 

- Heavy rainfall period:  

Upper piezometric level 

induced by high intensity 

rains  

(𝑟𝑢  =  0.15). 

Deep piezometric level 

corresponding to maximum 

values measured. 

- Calculation by back analysis 

to obtain the friction angles 

(
𝑠ℎ𝑎𝑙𝑙𝑜𝑤_𝑠𝑢𝑟𝑓𝑎𝑐𝑒

=  15º, 


𝑑𝑒𝑒𝑝_𝑠𝑢𝑟𝑓𝑎𝑐𝑒

= 18º) 

𝑆𝐹 =  1 

Scenario 2 
February 

2013 

Geometry 

after 

excavation 

under road 

berms 

- Heavy rainfall period: 

Upper piezometric level 

induced by high intensity 

rains  

(𝑟𝑢  =  0.15). 

Deep piezometric level 

corresponding to maximum 

values measured. 

- Velocities (in module) of 

almost 40 mm/month 

- Safety factor assessment  

𝑆𝐹 =  0.82 

Scenario 3 
November 

2013 

Geometry 

after 2nd 

stage of 

excavation 

(current) 

- Upper piezometric level 

induced by moderate rains 

(𝑟𝑢  =  0.12). 

- Deep piezometric level 

corresponding to minimum 

values measured. 

- Velocities (in module) of 

almost 1 mm/month. 

- Safety assessment  

𝑆𝐹 =  1.18 

Scenario 4 Future 

New 

stabilizing 

excavation 

designed 

- Safety assessment under 

different hypothesis of rainfall 

periods 

𝑆𝐹𝑙𝑜𝑤  =  1.3 

𝑆𝐹𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒   = 1.13 

𝑆𝐹ℎ𝑖𝑔ℎ= 1.08 

𝑆𝐹𝑒𝑥𝑡𝑟𝑒𝑚𝑒= 1.01 
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5.4 MOTION BACK-ANALYSIS  

5.4.1 MPM analysis 

For a more complete understanding of the case, an MPM analysis is performed on 

Scenarios 1 and 2. The aim is to ascertain the stability conditions of Scenario 1, assuming 

the friction angles for the deep and shallow sliding surface obtained by back-analysis 

(
𝑠ℎ𝑎𝑙𝑙𝑜𝑤_𝑠𝑢𝑟𝑓𝑎𝑐𝑒

= 15º  and 
𝑑𝑒𝑒𝑝_𝑠𝑢𝑟𝑓𝑎𝑐𝑒

= 18º ), and to calculate displacements and 

deformations occurred after toe excavation at Scenario 2 that cannot be estimated by 

FEM. 

5.4.1.1 Model description 

The MPM model consists of a plane-strain analysis. Fig. 5.14 shows the geometry of the 

problem, the materials and the computational mesh. The computational mesh is made 

of triangular elements with a minimum size of 10 m in the flysch materials.  Initially, 

three material points are distributed within each element in the position of Gauss points. 

Boundary conditions for solid and liquid phases are applied on the left and right sides 

of the model, to constrain the horizontal displacement, at the top of the mesh to constrain 

the vertical displacement and at the bottom where both vertical and horizontal 

displacements are prevented. The materials are modelled with 2-phase fully coupled 

formulation and Mohr-Coulomb constitutive model, whom parameters are the same 

used in FEM analysis and indicated in Tab. 5.1. The intrinsic permeability of soil is 

assumed constant and equal to 10−10m2, corresponding to a hydraulic conductivity of 

10−3 m/s. 

 

Figure 5.14. Geometry, materials, computational mesh and water surfaces with pressure equal 

to 0 assigned in MPM model. 

Two water surfaces with pressure equal to zero are assigned to the model (Fig. 5.15) by 

using the numerical feature explained in §3.4.3. Accounting for the pore water pressure 

distribution of Scenario 1 and 2, as indicated in Tab. 5.3, the first surface is general and 

corresponds to the deep piezometric level obtained from the maximum values 
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measured, the second is assigned to the material located above the shallow sliding 

surface and reproduce the piezometric level induced by high intensity rains (𝑟𝑢  =  0.15). 

5.4.1.2 Stages of analysis 

The initial distribution of pore water pressure is set as hydrostatic, below the water levels 

assigned to the model, and equal to 0 above. These pressure values are maintained 

constants along the calculation (Fig. 5.15). 

Based on this distribution, the effective stresses are obtained by a 𝐾0 procedure followed 

by a quasi-static calculation phase (see §3.4.3). A local damping factor of 0.75 is imposed 

in this stage and a value of 0.5 is assumed for the coefficient of earth pressure at rest. 

In the next stage the slope toe is excavated, according to geometry of Scenario 2. The 

dynamic calculation is performed reducing the local damping factor to 0.05 and applying 

the strains smoothing technique (see §3.3.2) 

 

Figure 5.15. Hydrostatic distribution of pore water pressures in MPM model for high intensity 

rainfall period (𝑟𝑢  =  0.15). 

5.4.1.3 Numerical results 

Fig. 5.16 shows the results in terms of accumulated displacements at the end of the quasi-

static calculation phase for Scenario 1. The displacement obtained, due to gravity, albeit 

low confirms that the slope is at critical condition (𝑆𝐹𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜1 = 1 ) as it emerged from 

FEM back-analysis. 

 

Figure 5.16. Accumulated displacements at Scenario 1 at the end of quasi-static calculation 

phase. 
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The computed accumulated displacements and deviatoric strains after toe excavation 

(Scenario 2) are shown in Fig. 5.17. The safety factor calculated by c-phi reduction 

method for this geometry is < 1 (𝑆𝐹𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜2 = 0.82) showing an instability condition. 

Consistently with FEM analysis, MPM results show that the shallow landslide is the 

critical one, however, the deep sliding surface is not fully stable. 

 

(a) 

 

(b) 

Figure 5.17. Accumulated displacements (a) and deviatoric strains (b) after toe excavation at 

Scenario 2 with 𝑟𝑢 = 0.15. 

 

Figure 5.18. Accumulated displacements profile after toe excavation at Scenario 2. 
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For a better understanding of the slope motion, Fig. 5.18 shows the accumulated 

displacements profile along a vertical passing through the involved soil formations. At 

a depth of about 50 m from the ground surface is evident the displacement discontinuity 

between the shallow sliding surface that moves about 6 - 7 m and the underlying Flysch 

Marl formation whose displacements are lower than 1m. 

Furthermore, control MPs in the positions indicated in Fig. 5.19 are selected to estimate 

the evolution with time of their displacement and velocity. 

 

Figure 5.19. Position of material points selected to examine in detail their velocity and 

displacement. 

  

(a) (b) 

  
(c) (d) 

Figure 5.20. Histories of displacement (a-b) and velocity (c-d) of selected points. 

As expected, Fig. 5.20 shows that displacement and velocity reached by the MPs located 

along the deep sliding surface are much lower than the ones exhibited by the MPs at the 

ground surface. However, the values resulted from the MPM analysis are larger than the 

observed ones. It can be explained considering that strain-rate effects on sliding surfaces 
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shear strength are not included in the analysis despite Yesa is a case of creeping slide 

motion. This aspect is discussed in the following section §5.4.2 through an analytical 

calculation in which Yesa is simplified to a planar landslide as presented in Pinyol et al. 

(2021). 

5.4.2 Creeping motion 

Since the safety factor is a measure of the unbalance between driving and resisting forces, 

it can be correlated with the acceleration of the landslide, even if the SF is calculated 

statically. It could be expected that the smaller (and lower than one) the safety factor, the 

greater the acceleration. Field data in Tab. 5.3 supports this relationship: The lowest 

safety factor calculated is associated with the maximum registered velocity (100 

mm/month).  

In order to evaluate the landslide velocity and to correlate it with the safety factor, Yesa 

upper landslide was simplified to a planar slide defined by a sliding surface at a depth 

𝐷 =  30 𝑚, a slope inclination equal to 𝛽 = 14º, and a level of water parallel to the 

sliding surface at a distance ℎ𝑤 . Although the parameters are inspired by the profile 

analysed previously, the results are not expected to be accurate because of the simplified 

geometry. However, the model may provide a good understanding of the creeping 

phase.  

Applying Newton’s second law and assuming a constant friction angle of 15º, ℎ𝑤 = 4.2𝑚 

(𝑟𝑢 = 0.07 leads a slope in strict equilibrium (𝑆𝐹 =  1): 

𝑆𝐹 = (1 − 𝑟𝑢)
𝑡𝑎𝑛𝜑′

𝑡𝑎𝑛𝛽
 (5.4) 

Assuming a constant frictional strength and 𝑟𝑢 = 0.15 (Scenario 2), which corresponds 

to SF = 0.91, it is simple to calculate from the motion equation (Eq. 5.5), an acceleration 

of the landslide equal to 0.2 m/s2 (the slide will reach 1 m in 5 seconds). 

𝑎 = 𝑔𝑐𝑜𝑠𝛽[𝑡𝑎𝑛𝛽 − (1 − 𝑟𝑢)𝑡𝑎𝑛𝜑′] (5.5) 

where 𝑔 is the gravity acceleration. Even considering the simplification assumed in the 

landslide geometry, this acceleration is completely unrealistic.  This inconsistency can 

be resolved when a positive effect of the strain rate on the frictional strength is invoked 

(following the approach discussed in Alvarado et al., 2019).  

Fig. 5.21 shows the strain-rate-dependent strength defined for the discussion presented 

here. The following equation defines this curve: 

𝑡𝑎𝑛𝜑′𝑣 = 𝑡𝑎𝑛𝜑′𝑚𝑖𝑛 + (𝑡𝑎𝑛𝜑′
𝑚𝑎𝑥 − 𝑡𝑎𝑛𝜑′

𝑚𝑖𝑛)(1 − 𝑒−𝜒𝜈) (5.6) 
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where the friction angle 𝜑′𝑣 is expressed in terms of the sliding velocity, 𝑣, and varies 

from a minimum value  𝜑′𝑚𝑖𝑛 (15º) to maximum one, 𝜑′𝑚𝑎𝑥 (18º) at a rate controlled by 

parameter 𝜒.  

Under this assumption, the increment of strength with sliding velocity is able to 

compensate the driving forces and to prevent the landslide acceleration when the water 

level remains lower than ℎ𝑤_𝑚𝑎𝑥 = 14𝑚  ( 𝑟𝑢 = 0.23 ). For this range of water levels 

(ℎ𝑤_𝑚𝑖𝑛 < ℎ𝑤 < ℎ𝑤_𝑚𝑎𝑥) the landslide remains in motion at constant velocity:  

𝜈𝑐𝑜𝑛𝑠𝑡 = −
1

𝜒
ln [

𝑡𝑎𝑛𝜑′
𝑚𝑎𝑥 − 𝑡𝑎𝑛𝜑′

𝜈𝑐𝑜𝑛𝑠𝑡

𝑡𝑎𝑛𝜑′
𝑚𝑎𝑥 − 𝑡𝑎𝑛𝜑′

𝑚𝑖𝑛

] (5.7) 

where 

𝑡𝑎𝑛𝜑′
𝜈𝑐𝑜𝑛𝑠𝑡

= 𝑡𝑎𝑛𝛽/(1 − 𝑟𝑢) (5.8) 

Parameter 𝜒  should be calibrated. Notice that according to Eq. (5.7), this parameter 

controls the constant velocity reached in the field. For the case of Yesa, in which, 

maximum velocities around 40 mm/week were reached, the parameter 𝜒 is found to be 

close to 0.1 month/mm. The resulting frictional law is plotted in Fig. 5.21. The velocity-

induced increment of the frictional strength (3º) is in accordance with available 

experimental studies (Tika et al. 1996; Kenney 1967; Wang et al. 2010; Schulz and Wang 

2014; Scaringi et al. 2018 for references). However, the experimental data available 

indicates that the effect of the displacement rate on the strength in shear tests is relevant 

when displacement rate is larger than 0.01 mm/min (432 mm/month) which is much 

larger than the landslide velocity observed in Yesa landslide. This discrepancy may be 

attributed to the curved, self-stabilizing geometry of the sliding surface. Nevertheless, 

the analysis made remains useful to explain the relationship between SF and creeping 

rates. Parameter 𝜒 is accepted in this case as a model parameter to be estimated by a 

validation against field monitoring data. 

 

Figure 5.21. Strain-rate-dependent friction law. 
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Maintaining the definition of the SF (Eq. 5.4) associated with the friction angle at rest 

(′𝑚𝑖𝑛), the constant velocity reached can be expressed in terms of SF (Fig. 5.22). This 

result indicates that, for the values assumed, the safety factor can reduce to 0.83 without 

involving an accelerated motion of the landslide.   

 

Figure 5.22. Relationship between creeping constant velocity and safety factor for of planar 

landslide representing the upper Yesa landslide. 

Accounting for the geometry of Yesa sliding surface(s) requires more general calculation 

procedures capable of representing large displacement and dynamic effects. Alvarado et 

al. (2019) describe the analysis of Canelles landslide under the combined effect of strain 

rate effects on friction (to account for creeping behaviour) and thermal interaction. The 

shape of Canelles sliding surface can also be described as a self-stabilizing geometry 

which is a consequence of the folded geological structure of the involved strata. With the 

purpose of extending the capabilities of MPM modelling, a strain rate dependent Mohr-

Coulomb model was formulated and included in the GEOPART code (Zabala and 

Alonso, 2011; Pinyol et al., 2018). The constitutive model follows the procedure described 

in Wedage et al. (1998). The expected reaction of Yesa upper landslide against a large 

increase of pore pressure quantified by a change in 𝒓𝒖 from 0.15 to 0.20 was analysed in 

Alonso et al. (2021). This increase corresponds to a 500 yr return period extremely, which 

corresponds to high rainfall intensity (446 mm/month) (see §5.2.4). A moderate strain 

rate effect on residual friction, similar to Eq. (5.6), was included in the calculation. The 

geometry analysed reproduced the current geometry of the landslide after a more recent 

excavation stage (Scenario 3). The calculated maximum displacement (20 cm of the toe 

of the upper landslide) was an indication of the positive effect of the syncline geometry. 

In view of this result and the reduced effect of safety factor on creeping velocities (Fig. 

5.22) for the simplified planar geometry, it is concluded that extreme rainfall events in 

Yesa are unlikely to result in a catastrophic event. 
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5.5 MOTION ANALYSIS UNDER EXPECTED SEISMIC ACTION 

5.5.1 Definition of seismic actions 

The response of the slope under the dynamic action of future earthquakes concerned the 

authorities and owners of the dam because of the recent substantial increase of the basic 

acceleration assigned to Yesa dam site in the new regulatory seismic hazard maps of 

Spain. The Instruction defines the hazard spectrum to consider in designing reservoir 

slopes on the basis of basic acceleration, return period, amplification and risk 

coefficients.  A deterministic risk analysis was carried out to provide an estimation of 

the accumulated displacement of Yesa landslide under imposed seismic action. The 

accelerograms, required for the analysis as input data, are obtained following the 

procedure described in Vargas et al. (2013). This methodology provides hybrid 

accelerograms obtained from the manipulation of real accelerograms with the aim of 

fitting them to the design uniform hazard spectrum specified by the Instruction. The real 

accelerograms were taken from the extensive European data base of strong seismic 

movements (Ambraseys et al., 2002, 2004) and 1000 additional events registered in Spain. 

Fig. 5.23 shows four of the accelerograms (horizontal acceleration) considered in the 

seismic analysis of Yesa landslide for a horizontal peak acceleration (PGA) of 0.38g m/s2, 

which corresponds to a return period of 5000 yr.  

 

Figure 5.23. Four of the ten earthquake accelerograms used in the seismic analysis. Horizontal 

acceleration. 
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5.5.2 Dynamic stress-strain analysis by MPM 

The MPM dynamic calculations are performed for the seismic event characterized by 

horizontal accelerogram No. 7 with a return period of 5000 yr. Scenario 4 is analysed 

under the hypothesis of low and extremely high intensity rainfall period (Tab. 5.3). 

This is a simplified analysis to assess the slope stability under seismic loading since it 

does not account for dynamic aspects like damping increase and stiffness degradation 

with shear strains. 

For a better understanding of the effect of the two preferential sliding surfaces, the safety 

factor at the moment of earthquake application associated with each sliding surface is 

evaluated. To do that the safety factor is re-calculated with Plaxis c-phi reduction 

method considering separately the shallow and the deep sliding surfaces. When only 

one preferential sliding surface is considered, the other one is deactivated which means 

that the corresponding “joint elements” are not assigned in the Plaxis model. Tab. 5.4 

summarizes the results of the computed safety factors. The joint “global” SF coincides in 

this case with the calculated minimum of the sliding surfaces, when considered 

independently from the companion one. 

Table 5.4. Safety factor for the two sliding surfaces under two rainfall intensities. 

Rainfall period 

Safety factor at the moment of earthquake application 

Only shallow sliding 

surface activated 

Only deep sliding 

surface activated 

Both sliding surfaces 

activated 

Low intensity  1.30 1.22 1.22 

Extreme intensity 1.01 1.09 1.01 

5.5.2.1 Model description 

The geometry of the problem, the materials and the computational mesh are shown in 

Fig. 5.24. 

Using the numerical feature explained in §3.4.2, the seismic action is introduced in the 

MPM analysis by defining at the model base an elastic material (“Shaking base”) on 

whose MPs a velocity-time function is applied. Fig. 5.25 shows the prescribed velocity-

time function obtained by integrating with the trapezium rule the horizontal 

accelerogram No. 7 with a return period of 5000 yr. Unlike others materials, one MP per 

element is considered sufficient to discretize the shaking base.  

In order to reduce waves reflection at the lateral sides of the slope model, which may 

lead to distortions in the computed results, absorbing boundary conditions are defined 

(see §3.3.4). Since, in the current implementation, the absorbing boundaries do not 

prevent MPs from leaving the mesh and are not effective if displacement constrains are 

applied, very stiff elastic walls are defined at the lateral sides of the model and absorbing 
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boundaries for solid phase is applied at the position indicated in Fig. 5.24. Moreover, 

since one reference material can be assigned for the calculation of the traction vectors 

corresponding to the absorbing boundaries, the same material properties (“Pamplona 

marl”) are assigned to the soil volumes located below the deep sliding surface. The 

dashpot coefficients and the virtual thickness (Eqs. 3.12-3.17 and 3.19 of §3.3.4) have the 

same values for the solid and the liquid phase. The dashpot coefficients 𝑎 and 𝑏  are 

assumed equal to 1.0. As showed by Lysmer and Kuhlemeyer (1969) these values can 

give the maximum absorption for both compression and shear waves for a wide range 

of incidence angles. The virtual thickness 𝛿 is assumed equal to 500𝑚 that is about half 

model width. 

 

Figure 5.24. MPM geometry, materials and computational mesh. 

 

Figure 5.25. Horizontal prescribed velocity applied at the shaking base material. 

The horizontal displacement are constrained at the lateral boundaries of the mesh, while 

the bottom is initially assumed fully fixed.  The slope materials are modelled with 2-

phase fully coupled formulation and the Mohr-Coulomb parameters are the ones used 

in the motion back-analysis. When the effect of just one of the imposed sliding surfaces 

is considered in the calculation, the properties of the overlying material are assigned to 

the deactivated one. The intrinsic permeability of soil is assumed constant and equal to 

10−10m2, corresponding to a hydraulic conductivity of 10−3 m/s. 
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Finally, the water surfaces corresponding to the deep piezometric level and the two 

hypothesis of low and extremely high intensity rainfall period (Tab. 5.2) are assigned to 

the model as explained in §3.4.3. 

5.5.2.2 Stages of analysis 

Starting from the two assigned pore water pressure distributions (Fig. 5.26) 

corresponding to the two hypothesis of rainfall intensity considered, stresses are 

initialized in the first calculation phase with the procedure described in §5.4.1.1 for the 

motion back-analysis. Pore water pressures are maintained constants along the 

calculation 

In the next stage, the horizontal fixities are removed at the mesh bottom and the 

prescribed velocity-time function (Fig. 5.25) is assigned to the MPs of the shaking base 

material. A homogeneous local damping factor of 0.05 is applied to the system and the 

strains smoothing technique (see §3.3.2) is also activated. The dynamic calculation is 

carried out beyond the velocity-time function duration until the accumulated 

displacements remain constants. 

 

(a) 

 

(b) 

Figure 5.26. Initial distribution of pore water pressures in MPM model for two hypotheses of 

rainfall intensities: (a) Low intensity; (b) Extremely high intensity. 



Motion analysis under expected seismic action 

79 

 

5.5.2.3 Numerical results 

Tab. 5.5 indicates the maximum accumulated displacements for accelerogram 7 for 0.38 

m/s2 of PGA, corresponding to a return period of 5000 yr, and the two hypothesis of 

rainfall period intensity (Tab. 5.4). Three cases are solved for each of the two rainfall 

intensities regarding the selected sliding surface activated: shallow, deep or both of 

them. Obviously, in the field the two landslide surfaces are activated. 

Consider first the situation of extremely high rainfall intensity. For this situation, a 

similar safety factor is associated to both sliding surfaces. The calculation provides a 

smaller displacement of the deeper landslide than the shallow if they are considered 

separately (Tab. 5.5 and Fig. 5.28a, b). The geometry of the sliding surface provides an 

explanation for this result because the shallow sliding surface is more planar than the 

deeper surface. This geometry facilitates the downward motion of the upper landslide. 

In the situation of low intensity rainfall period, the deeper sliding surface exhibit a lower 

safety factor. However, the seismic-induced accumulate displacements are slightly 

larger in the shallow landslide due to the sliding surface geometry (Tab. 5.5 and Fig. 

5.27a, b).  

Table 5.5. Maximum displacements reached for Scenario 4 and Accelerogram No. 7 with T = 

5000 yr. 

Rainfall 

period 

Activated sliding 

surface 

Maximum 

displacement 

(m) 

Comments 

Low 

intensity 

Shallow 0.34 

The shallow sliding surfaces is mobilized. 

The maximum displacement is calculated 

at the toe of the shallow sliding surface. 

Deep 0.30 

The deep sliding surfaces is mobilized. 

The maximum displacement is calculated 

at the deep sliding surface toe. 

Shallow and 

Deep 
0.37 

The two sliding surfaces are mobilized. 

The maximum displacement is calculated 

at the toe of the shallow sliding surface. 

Extreme 

intensity 

Shallow 0.55 

The shallow sliding surfaces is mobilized. 

The maximum displacement is calculated 

at the toe of the shallow sliding surface. 

Deep 0.45 

The deep sliding surfaces is mobilized. 

The maximum displacement is calculated 

at the toe of the deep sliding surface. 

Shallow and 

Deep 
0.68 

The two sliding surfaces are mobilized. 

The maximum displacement is calculated 

at the toe of the shallow sliding surface. 
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In both cases, when both sliding surface are activated, the maximum displacement 

occurs at the toe of the shallow landslide which accumulates the relative displacements 

between the deep and shallow sliding surfaces.   

  

(a) 

  

(b) 

  

(c) 

Figure 5.27. Computed accumulated displacement and deviatoric strain induced by 

accelerogram 7 (𝑇 = 5000𝑦𝑟) for low intensity rainfall. (a) Shallow sliding surface activated; (b) 

Deep sliding surface activated; (c) Both sliding surfaces activated. 

 

  

(a) 

  
(b) 



Motion analysis under expected seismic action 

81 

 

  
(c) 

Figure 5.28. Computed accumulated displacement and deviatoric strain induced by 

accelerogram 7 (𝑇 = 5000𝑦𝑟) for extreme intensity rainfall. (a) Shallow sliding surface activated; 

(b) Deep sliding surface activated; (c) Both sliding surfaces activated. 

5.5.3 Seism-induced permanent displacements: Newmark-type analysis 

In this section the seismic permanent displacements are computed by means of 

Newmark’s method (Newmark, 1965; Jibson, 1993). The effect of two preferential sliding 

surfaces on the results in terms of seismic-induced accumulated displacements is not 

discussed in the following analysis in which a unique well-defined slip surface is 

considered. Newmark’s method simplifies the landslide as a rigid block that can move 

over a previously defined sliding surface. It is subjected to the earthquake ground 

motion defined by a force expressed in terms of 𝑘 · 𝑚 · 𝑔, where 𝑚 is the unstable mass, 

𝑔 the gravity acceleration and 𝑘 the coefficient defined by the earthquake accelerogram. 

Assuming a frictional strength (nil cohesion), the motion equation which provides the 

landslide acceleration (𝑎) simplifies to: 

𝑡𝑎𝑛𝛽 + (𝑟𝑢 − 1)𝑡𝑎𝑛𝜑′ + 𝑘
𝑠𝑖𝑛𝛼

𝑐𝑜𝑠𝛽
𝑡𝑎𝑛𝜑′ + 𝑘

𝑐𝑜𝑠𝛼

𝑐𝑜𝑠𝛽
=

𝛼

𝑔 𝑐𝑜𝑠𝛽
 (5.9) 

Angle 𝛼 indicates the direction of the earthquake acceleration with respect to the slope 

of the sliding surface computed from the horizontal and vertical earthquake acceleration. 

For a proper discussion with MPM results, only the horizontal component of 

acceleration is considered. 

The downslope sliding occurs when the seismic acceleration exceeds the yield 

acceleration. This is defined as the critical earthquake acceleration below which the slope 

remains stable. Obviously, this value depends on the stability condition of the slope at 

the moment of earthquake application: 

𝑘𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 =
(𝑆𝐹 − 1)𝑠𝑖𝑛𝛽

(𝑠𝑖𝑛𝛼 𝑡𝑎𝑛𝜑′ + 𝑐𝑜𝑠𝛼)
 (5.10) 

Considering Eq. (5.10) in Eq. (5.9), the landslide acceleration becomes: 

𝑎(𝑡) = 𝑔(𝑠𝑖𝑛𝛼 𝑡𝑎𝑛𝜑′(𝑡) + 𝑐𝑜𝑠𝛼)[𝑘(𝑡) − 𝑘𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙(𝑡)] (5.11) 
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which allows the calculation of the accumulated displacement following Newmark’s 

procedure. A constant value of friction angle 𝜑′ = 15º and a slope inclination 𝛽 = 12º, 

are assumed in the analysis. 

After calculating the 10 accelerograms, the maximum displacements are computed for 

the No. 7. Fig. 5.29 shows the results for accelerogram No. 7 with a return period of 5000 

yr under three different slope stability safety factors. The order of magnitude of the 

displacements obtained are consistent with the results of the MPM analysis. 

 

Figure 5.29. Newmark’s accumulated displacement of Marmayor (planar) landslide for different 

safety factor of slope when earthquake is applied (Accelerogram 7, T = 5000 yr). 

The strain-rate effect on the residual friction angle can be evaluated by including Eq. 5.6 

in the calculation of the critical acceleration (Eq. 5.10).  Similarly to the analysis presented 

in §5.4.2, the friction angle varies from a minimum value 𝜑′𝑚𝑖𝑛 = 15º to a maximum one 

𝜑′𝑚𝑎𝑥 = 18º at a rate controlled by the parameter 𝜒 assumed equal to 0.1 month/mm. As 

expected, the accumulated displacements computed are significantly lower (Fig. 5.30).  

 

Figure 5.30. Newmark’s accumulated displacement of Marmayor (planar) landslide for different 

initial safety factor of slope when earthquake is applied (Accelerogram 7, T = 5000 yr) 

accounting for strain-rate-dependent strength. 
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5.5.4 Results comparison 

Fig. 5.31 shows a comparison of maximum displacements, in terms of safety factor, 

calculated by Newmark’s method and MPM. The methods are widely different, not only 

because of the geometry of the landslide but also because of the constitutive model of 

the materials involved.  

When the SF is very small (SF = 1.01) the larger maximum displacement is computed by 

Newmark’s approach while for larger values of SF, the trend is reversed. When close to 

a critical situation (SF = 1) the Newmark’s analysis predicts larger displacements after 

the end of the earthquake because there is no available additional strength to stop the 

motion induced by the earthquake. This behaviour is significantly mitigated when the 

strain-rate dependence on the residual friction angle is introduced. In this case, as 

indicated in Fig. 5.31, the lowest values of displacements are obtained. However, this 

simplified analysis it is not realistic when the actual geometry of the landslide is a very 

determinant feature.  

 

Figure 5.31. Maximum displacements calculated by the Newmark’s method and the MPM 

analysis with the corresponding safety factor. 

5.6 DISCUSSION 

The large Yesa landslide (11.9 Mm3), located in a flysch faces of Eocene-Oligocene age, 

is an interesting case because of the double sliding surface, the anticline-syncline 

structure folding of claystone-sandstone thin layers and the threat it poses to two 

existing dams at the landslide toe.  

The landslide is in a situation of slow creeping motion except for the periods of intense 

rainfall which result in transient accelerations. Two aspects require definite answers: a) 

the general question of safety and b) the definition of acceptable creeping threshold 

limits for the landslide mobility. In fact, both aspects are directly related. It is not clear if 
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the landslide is a reactivation of an ancient slide or a “first time” motion triggered by the 

excavations associated with dam construction. However, the synclinal folding the flysch 

strata probably led to a significant reduction of the original shear strength of the 

sandstone-claystone interfaces. Therefore, in any case, the residual shear strength of the 

interfaces is a reference value for the two sliding surfaces. Direct shear tests on sheared 

surfaces recovered in cores and the back analysis of unstable mass lead to residual 

friction angles in the range 16º-18º which is compatible with the low plasticity of 

claystone layers. 

The estimation of excess pore pressures, operating on the more active and smaller upper 

landslide (4.35 Mm3), required the development of a hydrogeological model, which 

accounted for the anisotropic permeability of flysch and the natural drainage of the 

flysch in a sub-parallel direction to the river valley. Transient pore water pressure 

increments acting on the upper sliding surface were characterized by 𝑟𝑢 values directly 

related with return periods for rainfall intensity. In contrast, the lower sliding surface 

was controlled by reservoir level in lower elevations, by (slow) infiltration from rainfall 

and by seepage from distant areas uphill. 

The chapter discussed first the relevance of safety factors determined by a FE-based c-

phi reduction method applied to a number of “scenarios” which synthesized the known 

history of landslide behaviour and its relationship with dam construction and rainfall 

intensity. Future scenarios, aimed at stabilizing the landslide, are also defined. 

Calculated safety factors remain uncertain because the failure condition (SF = 1) is 

indeterminate. In fact, Yesa landslide has been always in a creeping state of varying 

velocity. Strictly speaking, all the known scenarios are at the limit of stability (SF = 1). 

Selecting (arbitrarily) a given scenario for the condition SF =1 allows the computation of 

safety factors, in the classical sense, for other scenarios. This exercise resulted in safety 

factors below or above 1 for the known history and future actions to improve stability. 

In addition, it was possible to investigate which one of the two sliding surfaces would 

reactivate in a critical (unstable) situation of defined scenarios.  

A slope motion back analysis has been then performed by MPM to estimate 

displacements and deformations associated with an unstable scenario that FEM 

calculation could not provide. A further step in the analysis performed is to explore, by 

means of a planar landslide, the relationship between SF and creeping velocity. By 

considering a strain rate dependence of residual friction in the motion equation of the 

landslide, a closed-form equation relating SF and creeping velocity could be derived. For 

a planar slide inspired by the geometry, residual friction and expected range of 𝑟𝑢 values 

of the upper Yesa landslide, the calculated creeping velocities for SF in the range 0.85-1, 

varies between 15 mm/month and 0. 
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The last part of the chapter analysed the response of the double sliding Yesa landslide 

under earthquake accelerograms defined by the recent regulation of seismic hazard in 

the Pyrenees regions. There was an interest in comparing two calculation methods: MPM 

and Newmark’s approach. A common scenario, which includes a future stabilizing 

excavation and rainfall regimes, varying from low to extreme intensity, was calculated 

in both procedures for the worst accelerogram out of ten generated earthquakes for a 

return period of 5000 yr. The comparison was made in terms of the maximum landslide 

displacement, which was made dependent of the safety factor through varying values 

of 𝑟𝑢. 

It was found that, for a critical situation (SF close to 1), Newmark’s method, which relies 

on a single frictional contact, predicts substantially larger displacement when compared 

with the more accurate dynamic MPM analysis. However, this behaviour cannot be 

observed if the strain-rate dependence on the residual friction angle is introduced. The 

MPM analysis provided also information for the interaction between the two sliding 

surfaces. The more “planar” surface of the upper landslide, if compared with the curved 

syncline geometry of the deep surface, explains that the critical landslide in terms of 

earthquake-induced permanent displacements is the upper one.  

The results obtained provide a deeper understanding of Yesa complex landslide. The 

results obtained may help to adopt stabilizing measures and to provide rational 

explanations. The discussion made concerns mainly the Yesa landslide but some results, 

especially those concerning the creeping and seismic response of planar slides and its 

relationship with the practical concept of safety factor are of general applicability. 
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CHAPTER 6 - CONSTITUTIVE MODELLING 

FOR LIQUEFACTION: TA-GER MODEL.  

IMPLEMENTATION AND VALIDATION 

This chapter describes the main features of the constitutive model selected to be 

implemented in Anura3D to model sand behaviour under monotonic and cyclic loading. 

Once explained the procedure adopted for its numerical implementation, the model is 

verified and validated against data of drained and undrained triaxial tests under 

monotonic loading. The effects of model parameters on the results are highlighted 

through simulating further stress paths of conventional tests. Afterwards, the model is 

adapted for unsaturated conditions with the aim of simulating static liquefaction 

occurrence in partially saturated soils. Finally, the model implementation is verified for 

cyclic loading conditions through simulation of strain- and stress-controlled 

conventional tests with an emphasis on the model parameters affecting the cyclic 

behaviour. 

6.1 INTRODUCTION 

Elasto-plastic models based on critical state theory managed to describe the main aspects 

of the mechanical behaviour of soils (Gens and Potts, 1988). Critical state theory states 

that granular materials if continuously sheared will reach a state called the critical state. 

It will deform without any changes in volume and sustain a constant stress state, 

although there is a dependency to the mean effective stress.  Among the constitutive 
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models available in literature within the critical state framework, the Ta-Ger model was 

selected to be implemented in the MPM code Anura3D (www.anura3d.com) because of 

its flexibility in predict the mechanical behaviour of saturated soils under both static and 

cyclic loading. It is characterized by the formulation of an explicit elasto-plastic matrix 

that not requires the definition of the plastic modulus and the loading index. This fact 

renders the numerical implementation simpler and more efficient, compared with other 

constitutive model. Furthermore, the number of model parameters is reduced to a 

minimum by incorporating the initial state of the soil and just three need to be calibrated 

from data of conventional laboratory tests.  

6.2 MODEL DESCRIPTION  

The Ta-Ger constitutive model was developed by Tasiopoulou and Gerolymos (2016a, 

b) with the aim of reproducing the behaviour of soil under different types of loading 

(monotonous, cyclical), drainage conditions and initial stresses, without the need to 

recalibrate its parameters. It is an elastoplastic model that combines the perfect plasticity 

with the smooth hysteretic model of Bouc-Wen type (Bouc, 1971; Wen, 1976; Gerolymos 

and Gazetas, 2005).  

 

Figure 6.1. Bounding, phase transformation and critical state lines in 𝑝’ − 𝑞 space. 

The model does not include a yield surface to define the elastic region, which is 

trivialized to a single point at the beginning of loading, unloading and reloading, where 

elastic behaviour is expected. Ta-Ger model is defined by an open-end cone type failure 

surface that works similarly to a bounding surface that cannot be surpassed. In the 

triaxial space it is expressed by Eq. 6.1. 

  𝑞 − 𝑝′𝑀𝑠 = 0 (6.1) 
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The ratio between deviatoric stress and mean effective stress is limited by the bounding 

stress ratio 𝑀𝑠 that represents the ultimate strength (plotted in Fig 6.1).  

This is ensured by controlling a dimensionless parameter 𝜁 that ranges between [0, 1] 

and tracks the distance of the current state from the ultimate state. When the stress point 

reaches the ultimate failure state, 𝜁 is equal to unity while all its values from zero to unity 

correspond to intermediate stress states. In this sense, there is always an “image” stress 

state lying on the failure surface that acts as a boundary surface and so that the ratio, ζ, 

between the actual and “image” stress states can be computed. 

In the multiaxial stress-strain space, it is defined as in Eq. 6.2. 

 
𝑓 = [(𝒔 − 𝒓𝒑𝑝): (𝒔 − 𝒓𝒑𝑝)]

1/2
− (√

2

3
𝑀𝑠,𝜃 − 𝑛𝑝) 𝑝 = 0 (6.2) 

𝒔 = 𝝈 − 𝑝𝑰 𝒓𝒑 =
𝝈𝒑 − 𝑝𝑝𝑰

𝑝𝑝
 𝑛𝑝 = 𝒏: 𝒓𝒑 (6.3) 

This is a function of the current stress state (𝒔, 𝑝) as well as the stress state at the last 

reversal of loading (𝒓𝒑, 𝑛𝑝). 𝒏 is a normalized stress ratio tensor, normal to 𝑓. In case of 

cyclic loading the stress ratio tensor at pivot points, 𝒓𝒑, need to be updated when the 

first order work changes sign (Eq. 6.4). The first order work is equal to the inner product 

of the strain rate tensor and the difference of the current stress ratio tensor from the stress 

ratio tensor obtained by the last pivot point: 

 𝑑𝑊 = (𝒓 − 𝒓𝒑): 𝜺 (6.4) 

The term 𝑀𝑠,𝜃 is the bounding stress ratio depending on the lode angle 𝜃 (Eq. 6.5). 

 
𝑀𝑠,𝜃 = (

𝑀𝑐 + 𝑀𝑒

2
− 𝑀𝑠𝑠) 𝑐𝑜𝑠2(3𝜃) + (

𝑀𝑐 − 𝑀𝑒

2
) 𝑐𝑜𝑠(3𝜃) + 𝑀𝑠𝑠 (6.5) 

where 𝑀𝑐 =
6𝑠𝑖𝑛𝜙

3−𝑠𝑖𝑛𝜙
, 𝑀𝑒 =

6𝑠𝑖𝑛𝜙

3+𝑠𝑖𝑛𝜙
 and 𝑀𝑠𝑠 = 2𝑠𝑖𝑛𝜙 are the bounding stress ratio in triaxial 

compression, extension and in simple shear. 

The plastic flow rule is based on Rowe’s dilatancy theory (Rowe, 1962) and takes into 

account the anisotropic distribution of dilatancy respect to the three normal plastic strain 

increments, depending on the loading direction. In the conventional 𝑝′ − 𝑞 space, the 

dilatancy, d, can be expressed as the difference between the current stress ratio 
𝑞

𝑝′
 and 

the phase transformation line 𝑀𝑝𝑡 (Eq. 6.6). This line corresponds to the stress state at 



CHAPTER 6 - Constitutive modelling for liquefaction: Ta-Ger model.  Implementation 

and validation 

89 

 

which the soil response passes from  contractive to dilative behaviour (Fig. 6.1) (Ishihara 

et al., 1975). 

 𝑑 =  𝑀𝑝𝑡 −
𝑞

𝑝′
 (6.6) 

In loose materials generally occurs that 
𝑞

𝑝
< 𝑀𝑝𝑡  and 𝑑 > 0  which correspond to 

contraction, whereas dense materials have a contractive behaviour for stress ratio states 

below the phase transformation (
𝑞

𝑝′
< 𝑀𝑝𝑡 and 𝑑 > 0) and dilative for stress ratio states 

above (
𝑞

𝑝′
> 𝑀𝑝𝑡 and 𝑑 < 0). At very low confining stress, loose materials may behave as 

dense materials and may be dilative at large strains. 

In the multiaxial stress-strain space the dilatancy is defined as in Eq. 6.7, where 𝑅𝑑 is a 

parameter that accounts for densification effects due to cyclic drained loading and 𝑀𝑝𝑡,𝜃 

is the phase transformation stress ratio depending on the lode angle 𝜃. The current stress 

state and the loading direction are included through the inner product of tensors 𝐫: 𝐧. 

 
𝑑 =  𝑅𝑑(√

2

3
𝑀𝑝𝑡,𝜃 − 𝒓: 𝒏) (6.7) 

Both the bounding stress ratio (𝑀𝑠) and the phase transformation (𝑀𝑝𝑡) stress ratio tend 

to converge to the critical state stress ratio, 𝑀𝑐𝑠, which is function of the critical friction 

angle, when the current stress state reaches the critical state and no change in volume 

occurs despite the continuous increase of shear strain. In Ta-Ger formulation, the 

bounding and the phase transformation stress ratios are expressed as a function of the 

cumulative deviatoric strain increments ∑ 𝑑𝜀𝑞 (Eq. 6.8 and 6.9). 

 𝑀𝑠 = 𝑀𝑐𝑠 + [𝑀𝑠𝑝 + (𝑀𝑠0 − 𝑀𝑠𝑝)𝑒−𝑐 ∑ 𝑑𝜀𝑞 − 𝑀𝑐𝑠]𝑒−𝑐 ∑ 𝑑𝜀𝑞 (6.8) 

 𝑀𝑝𝑡 = 𝑀𝑐𝑠 + (𝑀𝑝𝑡0 − 𝑀𝑐𝑠)𝑒−0.5𝑐 ∑ 𝑑𝜀𝑞 (6.9) 

 
𝑀𝑠𝑝 = 2𝑀𝑠𝑝𝑒𝑎𝑘 − 𝑀𝑐𝑠 + 0.5√(2𝑀𝑐𝑠 − 4𝑀𝑠𝑝𝑒𝑎𝑘)

2
− 16𝑀𝑠0(𝑀𝑠𝑝𝑒𝑎𝑘 − 𝑀𝑐𝑠)

− 4𝑀𝑐𝑠
2 

(6.10) 

In previous equations 𝑀𝑠0  and 𝑀𝑝𝑡0  are the initial values of 𝑀𝑠  and 𝑀𝑝𝑡 , 𝑀𝑠𝑝  is the 

maximum values that can be potentially reached depending on parameter 𝑐 (Eq. 6.10). 

For typical values of 𝑐 in the range of 3 – 10, the bounding stress ratio reaches a lower 

value called 𝑀𝑠𝑝𝑒𝑎𝑘. 
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The model includes a reformulation of perfect elastoplasticity with the aim of attributing 

hardening/softening characteristics to its capabilities. The elasto-plastic matrix is given 

by Eq. 6.11. 

 
{𝐸ℎ

𝑒𝑝
} = {𝐸𝑒} [{𝐼} −

{𝛷𝑔}{𝛷𝑓}
𝑇

{𝐸𝑒}{𝐻}

{𝛷𝑓}
𝑇

{𝐸𝑒}{𝛷𝑔}
] {𝜂} (6.11) 

{𝐸𝑒} is the elastic matrix, {𝛷𝑓} and {𝛷𝑔} are the gradients of failure surface and plastic 

potential. An appropriate plastic matrix {𝐻} = 𝜁𝑛{𝐼} controls the rate of transition from 

elastic state to the perfectly plastic response through the hardening exponent parameter 

𝑛; and provides an appropriate loading/unloading/reloading mapping rule through the 

dimensionless parameter 𝜁. 

The hysteretic behaviour is then introduces trough matrix {𝜂} = 𝜂{𝐼} (Gerolymos and 

Gazetas, 2005) that accounts for stiffness degradation by modifying the shape and size 

of the hysteretic loops depending on deviatoric strain. 

The shear modulus 𝐺 is defined as a function of the mean effective stress 𝑝′ (Eq. 6.12). 

 𝐺 = 𝐺0 ∙ 𝑝′𝑚 (6.12) 

Where 𝐺0  and 𝑚  are dimensionless material parameter. 𝐺0  can be expressed as 

1000𝑘2𝑚𝑎𝑥 where 𝑘2𝑚𝑎𝑥 = 0.13𝐷𝑟0 + 3.6 is a coefficient adapted from Seed and Idriss 

(1970), dependent on initial relative density. The bulk modulus 𝐾 is derived from it by 

assuming a constant value of the Poisson ratio 𝜈. 

As a summary, the implemented version of the Ta-Ger model has nine model parameters 

included in Tab. 6.1. 

Table 6.1. Ta-Ger model parameters. 

Parameter  Symbol Unit 

Shear modulus parameter  𝐺0 - 

Shear modulus exponent  𝑚 - 

Poisson’s ratio  𝜈 - 

Critical state stress ratio  𝑀𝑐𝑠 - 

Initial value of phase transformation stress ratio  𝑀𝑝𝑡0 - 

Initial value of bounding stress ratio  𝑀𝑠0 - 

Maximum value of bounding stress ratio  𝑀𝑠𝑝𝑒𝑎𝑘  - 

Hardening exponent  𝑛 - 

Bounding and Phase transformation coefficient  𝑐 - 
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In order to provide physical meaning of the model parameters, critical stress ratio and 

maximum and initial values for the phase transformation and bounding stress ratio are 

defined in terms of  critical (𝜑𝑐𝑠), peak (𝜑𝑝𝑒𝑎𝑘) and initial (𝜑𝑠0) frictional angle. 

For triaxial compression, the critical stress ratio (𝑀𝑐𝑠), as well as the initial (𝑀𝑠0) and 

maximum (𝑀𝑠𝑝𝑒𝑎𝑘) value of the bounding stress ratio can be calculated from: 

𝑀𝑐𝑠 =
6𝑠𝑖𝑛𝜑𝑐𝑠

3 − 𝑠𝑖𝑛𝜑𝑐𝑠
 

(6.13) 

𝑀𝑠0 =
6𝑠𝑖𝑛𝜑𝑠0

3 − 𝑠𝑖𝑛𝜑𝑠0
 

(6.14) 

𝑀𝑠𝑝𝑒𝑎𝑘 =
6𝑠𝑖𝑛𝜑𝑝𝑒𝑎𝑘

3 − 𝑠𝑖𝑛𝜑𝑝𝑒𝑎𝑘
 

(6.15) 

Peak and initial friction angles can be correlated with the called relative dilatancy index 

𝐼𝑟presented by Bolton (1986) and defined as: 

𝐼𝑟 = 𝐷𝑟(𝑄 − ln(𝑝′)) − 𝑅 (6.16) 

where 𝐷𝑟 is the relative density, 

𝐷𝑟 =
𝑒𝑚𝑎𝑥 − 𝑒

𝑒𝑚𝑎𝑥 − 𝑒𝑚𝑖𝑛
 (6.17) 

that defines the density of the packing by comparing the current void ratio state with the 

loosest and densest states possible, which are characterised by the maximum void ratio 

𝑒𝑚𝑎𝑥 and the minimum void ratio 𝑒𝑚𝑖𝑛, respectively. 𝑄 is an empirical parameter which 

is influenced by grain characteristics, such as mineralogy, grain shape and grain size 

distribution and 𝑅 is a fitting parameter. These constants assume values close to 10 and 

1 respectively. When the relative dilatancy index is positive (𝐼𝑟 > 0), the sand is dense 

and it will dilate in order to reach the critical state. When the index is negative (𝐼𝑟 < 0), 

the sand is loose and it will contract to reach the critical state. Thus, when the index is 

nil (𝐼𝑟 = 0), the sand is at critical state and the critical state line (CSL) in terms of critical 

void index 𝑒𝑐 versus 𝑙𝑛(𝑝’) can be derived from it (Eq. .6.18). 
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𝑒𝑐 = 𝑒𝑚𝑎𝑥 −
𝑅

𝑄 − ln(𝑝′)
(𝑒𝑚𝑎𝑥 − 𝑒𝑚𝑖𝑛) (6.18) 

According to Bolton (1986), maximum and initial friction angles are expressed as:  

𝜑𝑝𝑒𝑎𝑘 = 𝜑𝑐𝑠 + 𝛼𝐼𝑟 ≥ 𝜑𝑐𝑠                     for 0 < 𝐼𝑟 < 4 (6.19) 

𝜑𝑠0 = 𝜅𝜑𝑐𝑠 + 5𝐼𝑟0 ≤ 𝜑𝑐𝑠 (6.20) 

where α has values in the range of 3 to 5 for triaxial and plane strain conditions (Bolton 

1986; Tasiopoulou and Gerolymos 2016b) and coefficient 𝜅 can be determined through a 

calibration procedure to fit experimental data resulting from drained and undrained 

triaxial compression tests. The limitation 𝜑𝑠0 ≤ 𝜑𝑐𝑠  is imposed to avoid numerical 

instability issues from Eq. 6.10. 

The initial phase transformation stress ratio is also expressed in terms of relative 

dilatancy index, 𝐼𝑟 , maximum friction angle 𝜑𝑝𝑒𝑎𝑘 , (taking into account Eq.6.8), 

hardening parameter 𝑛, and dimensionless parameter 𝜁: 

𝑀𝑝𝑡0 = 𝑀𝑠𝑝𝑒𝑎𝑘𝜁𝑛 −
3(0.3𝐼𝑟)

3+3(0.3𝐼𝑟)

1

𝜒
  𝐼𝑟0 > 0 (6.21) 

𝑀𝑝𝑡0 = 𝑀𝑠𝑝𝑒𝑎𝑘𝜁𝑛  𝐼𝑟0 < 0 (6.22) 

Finally, parameter 𝑐 that controls the evolution of bounding and phase transformation 

stress ratios is expressed as a function of the relative dilatancy index through a coefficient 

δ that needs a calibration procedure to be obtained, 𝑐 = 6 + 𝛿𝐼𝑟0 , and the hardening 

exponent 𝑛 is expressed as a function of the initial relative density, 𝑛 = 0.4𝐷𝑟0 + 0.14. 

6.3 NUMERICAL IMPLEMENTATION 

6.3.1 Implementation in Anura3D 

The Ta-Ger constitutive model has been included in Anura3D code as an external soil 

model (ESM). This feature enables users to implement a constitutive models in the 

software without having access to its source code.  

Two main subroutines, written in FORTRAN programming language, are needed to let 

the code reading the model. One is the external soil model (ESM) interface that allows 
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Anura3D to provide information about the previous stress and state variables to the 

constitutive model in which the current ones are calculated.   

Table 6.2. Parameters defined as “PROPS”. 

Parameter Symbol Unit 

Shear modulus parameter 𝐺0 - 

Shear modulus exponent 𝑚 - 

Poisson’s ratio 𝜈 - 

First parameter determining 𝐼𝑟  𝑄 - 

First parameter determining 𝐼𝑟  𝑅 - 

Initial void ratio 𝑒0 - 

Minimum void ratio 𝑒𝑚𝑖𝑛 - 

Maximum void ratio 𝑒𝑚𝑎𝑥 - 

Critical friction angle 𝜑𝑐𝑠 ◦ 

Parameter determining 𝑐  𝜅 - 

Coefficient determining 𝜑𝑠0 𝛿 - 

Table 6.3. State variables defined as “STATEV”. 

Variable Symbol Unit 

Void ratio 𝑒 - 

First order work 𝑑𝑊 - 

Stress tensor at pivot point 𝒓𝒑 - 

Accumulated deviatoric strain ∑ 𝜀𝑑 - 

Bulk modulus of water 𝐾𝑤 𝑘𝑃𝑎 

The other is the ABAQUS user material subroutine (UMAT) (Bienen et al., 2014) in which 

the constitutive model is implemented. It is characterized by a standardized format. In 

fact, material parameters and state variables have to be included in specific arrays called 

“PROPS” and “STATEV” respectively. Ta-Ger model parameters and state variables as 

defined in UMAT subroutine are summarized in Tab. 6.2 and 6.3. Finally, the FORTRAN 

project including both subroutines have to be compiled as Dynamic Link Library (DLL) 

in order to run a simulation with Anura3D.  

6.3.2 Stress point algorithm 

The methods for integrating constitutive relations, in order to obtain the unknown stress 

increment for a given current stress and a given strain increment, are known as stress-
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point algorithms and can be classified into explicit and implicit. In the both algorithms, 

the objective is to integrate the constitutive equations along an incremental strain path. 

Implicit integration schemes use a step-by-step calculation method in which an 

appropriate convergence criterion allows to continue or not the analysis, eventually 

reducing the increment of time, depending on the accuracy of the results at the end of 

each step. Into the implicit algorithms the solution at the time step 𝑛 +  1 is obtained by 

the knowledge of the solution at time step 𝑛 and the conditions imposed at step 𝑛 +  1. 

They can provide an unconditionally stable integration solution. Implicit methods are 

usually used for simple constitutive laws. For complex highly non-linear constitutive 

laws the iterative process may not converge and hence the efficiency of these codes may 

deteriorate. 

Explicit integration schemes are not conditioned by a convergence criterion, the time 

increment is defined at the beginning of the analysis and remains constant during the 

calculation. The method is called "explicit" because each new variable increment requires 

only the knowledge of the parameters related to the previous increment without the 

need of iterative procedure. This fact is particularly beneficial when highly non-linear 

models are considered.  This method is conditionally stable, namely its stability depends 

on the time increment of integration. The advantage of the explicit methods is due to the 

fact that, despite smaller time increments, computational time analysis is much less if 

compared with implicit methods. 

In this thesis, an explicit sub-stepping algorithm with automatic error control (Sloan et 

al., 2001) is adopted. It allows to better track the strong non-linearity of the constitutive 

model and get a more accurate solution. 

This algorithm automatically divides the applied strain increment into sub-increments 

(sub-steps) small enough to ensure that the desired integration accuracy is enforced. The 

integration error is controlled by automatically modifying the number of sub-steps. 

Using an estimate of the local error, the size and the number of sub-steps is function of 

the specified error tolerance, the magnitude of the imposed strain increment, and the 

non-linearity of the constitutive relations. 

More in detail, the scheme involves splitting the elasto-plastic strain step 𝛥𝜺 into a series 

of smaller sub steps, 𝛥𝜺𝑠 = 𝛥𝑇𝑛𝛥𝜺  (where 0 < 𝛥𝑇𝑛 ≤ 1), and using a modified Euler 

approximation for each sub step. The size of each sub step is determined by estimating 

the error in the stress changes and comparing this with a user-defined tolerance, 𝑆𝑇𝑂𝐿. 

At the beginning it is assumed that only one sub step is necessary. Consequently 𝛥𝑇𝑛 is 

set to unity and the pseudo time 𝑇𝑛 is set to zero. 
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A first estimative of the changes in stresses and hardening parameters at the end of the 

pseudo time step 𝛥𝑇𝑛 are evaluated using a first order Euler approximation (Eq. 6.23). 

 𝛥𝝈′1 = 𝑫𝑒𝑝(𝝈′, 𝜒)𝛥𝜺𝑠 (6.23) 

Where 𝑫𝑒𝑝 is the elastoplastic matrix. Then, a second estimative for the changes in stress 

over the sub step can be calculated as function of the stress 𝝈′ + 𝛥𝝈′ (Eq. 6.24). 

 𝛥𝝈′2 = 𝑫𝑒𝑝(𝝈′ + 𝛥𝝈′
1)𝛥𝜺𝑠 (6.24) 

A more accurate estimate at the end of interval 𝛥𝑇𝑛  is computed using the modified 

Euler procedure (Eq. 6.25). 

 
𝛥𝝈′ =

1

2
(𝛥𝝈′

1 + 𝛥𝝈′
2) (6.25) 

The accumulated stresses are now updated (Eq. 6.26). 

 𝝈′ = 𝝈′ +  𝛥𝝈′ (6.26) 

The local error in the Euler and modified Euler solutions is 𝑂(𝛥𝑇2)  and 𝑂(𝛥𝑇3) 

respectively. For each sub increment, the local error measure is found by taking the 

difference between a second order accurate modified Euler solution and a first order 

accurate Euler solution. A relative error measure is computed from Eq. 6.27. 

 
𝑅𝑛 =

1

2
𝑚𝑎𝑥 {

‖𝛥𝝈′
2 − 𝛥𝝈′

1‖

‖𝝈′‖
} (6.27) 

The current strain sub increment is accepted if 𝑅𝑛  is not greater than the prescribed 

tolerance, 𝑆𝑇𝑂𝐿. If  𝑅𝑛 > 𝑆𝑇𝑂𝐿 then the solution is rejected and a smaller step size is 

computed.  

A drift correction scheme (Boulanger and Ziotopoulou, 2015) is applied at this point as 

well as at the beginning of the algorithm to ensure that stress state lies inside the 

bounding surface. In Ta-Ger model the dimensionless variable 𝜁 tracks the distance of 

the current state from that surface. Then, if 𝜁 > 1, stresses are projected back to the 

bounding surface by scaling the stress tensor by 𝜁 at constant 𝑝′. 

After accepting or rejecting the current sub step, the size of the next sub step is calculated 

based on the estimated error and the set tolerance. The next pseudo-time step is found 
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from the relation, 𝛥𝑇𝑛+1 = 𝛽𝛥𝑇𝑛 where 𝛽 is chosen so that, 𝑅𝑛 ≤ 𝑆𝑇𝑂𝐿. Since the local 

truncation error in the Euler method is 𝑂(𝛥𝑇2), then, 𝑅𝑛+1 ≈ 𝛽2𝑅𝑛 and, 𝛽 ≤  √𝑆𝑇𝑂𝐿/𝑅𝑛. 

A conservative choice for 𝛽 is, 𝛽 = 0.9 √𝑆𝑇𝑂𝐿/𝑅𝑛 and also constrain it to lie within the 

limits, 0.1 ≤  𝛽 ≤  1.1, so that, 0.1 𝛥𝑇𝑛−1 ≤ 𝛥𝑇𝑛 ≤  1.1𝛥𝑇𝑛−1 . The end of the integration 

procedure is reached when the entire increment of strain is applied so that 

∑ 𝛥𝑇𝑛 = 𝑇𝑛 = 1. This type of error control permits the size of each sub increment to vary 

throughout the integration process, depending on the non-linearity of the constitutive 

relations. A flowchart of the sub stepping algorithm for Ta-Ger implementation is 

following presented (Fig. 6.2) and the meaning of the used symbols are listed in Tab. 6.4. 

 

Elastoplastic Stress integration scheme with Sub stepping 
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(a) 
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Bounding surface drift correction scheme (Boulanger and Ziotopoulou, 2015) 

 

(b) 

Figure 6.2. Flowchart for the implementation of Ta-Ger model. Elasto-plastic stress integration 

scheme with sub-stepping (a); Bounding surface drift correction scheme (b). 

Table 6.4. List of symbols used in the flowchart 

𝛥𝜺 Strain  increment vector 

𝝈𝟎 Historic stress vector 

𝑃𝑟𝑜𝑝𝑠 Model parameters 

𝑆𝑡𝑎𝑡𝑒𝑣 State variables 

𝐷𝑟0 Initial relative density 

𝐼𝑟0 Initial relative dilatancy index 

𝑇 Pseudo time in the range between 0-1 used in the stress integration 

𝛥𝑇𝑛 Pseudo time sub increment 

𝛥𝜺𝑠 Strain sub increment vector 

𝛥𝜀𝑠
𝑞  Deviatoric strain sub increment 

𝛥𝜀𝑠
𝑣 Volumetric strain sub increment 

𝑝′ Mean effective stress 

𝑞 Deviatoric stress 

𝐷𝑟  Current relative density 

𝐼𝑟  Current relative dilatancy index 

𝑀𝑠 Bounding phase ratio 
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∑ 𝜀𝑞
𝑠 Accumulated deviatoric strains 

𝒔 Second order deviatoric stress tensor 

𝒓 Stress ratio tensor 

𝒓𝒑 Stress ratio tensor at pivot point 

𝒏 Normalized stress ratio tensor normal to the bounding surface 

𝑛𝑝 Scalar valued stress ratio 

𝜁 Hardening parameter 

𝑀𝑝𝑡 Phase transformation stress ratio 

𝑫𝑒𝑝 Elasto-plastic matrix 

𝛥𝜎′𝑖1 First order stress increment 

𝛥𝜎′𝑖2 Second order stress increment 

𝝈′𝒊 Trial stress vector 

𝝈′𝒏 Computed stress vector 

𝑅𝑛 Relative error of the stresses for the current time sub increment 

𝑆𝑇𝑂𝐿 Relative tolerance  

𝛽 Scalar to calculate the size of the next pseudo time sub increment  

𝛥𝑇𝑚𝑖𝑛 Minimum pseudo time sub increment 

𝝈′𝑖
𝑐𝑜𝑟𝑟  Corrected trial stress vector 

𝝈′𝑛
𝑐𝑜𝑟𝑟  Computed corrected stress vector 

𝒓𝑐𝑜𝑟𝑟  Corrected stress ratio tensor 

6.4 VALIDATION AND PARAMETRIC ANALYSIS 

The verification and validation of Ta-Ger model implementation is carried out by 

simulating laboratory tests stress-strain paths. The aim is to check the performance of 

the model algorithm to predict the measured sand behaviour under different loading 

and drainage conditions. Experimental data of monotonic triaxial compression tests 

obtained by (Verdugo and Ishihara, 1996) on Toyoura sand are reproduced. The results 

are compared with the ones from Ta-Ger authors (Tasiopoulou and Gerolymos, 2016b) 

by assuming the same values for the model parameters. Furthermore, a parametric 

analysis is performed to show the effect of model parameters on the results. The model 

is, then, adapted for unsaturated conditions with the aim to simulate static liquefaction 

occurrence in partially saturated soils. Finally, the cyclic response is studied by 

reproducing strain- and stress controlled cyclic loading paths. 

6.4.1 Monotonic triaxial compression tests 

The validation of the algorithm has been carried out by simulating triaxial compression 

stress–strain path with the finite element (FE) package implemented in Anura3D code. 
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The triaxial compression test is carried out as strain-driven, for which the top face of a 

soil cube is compressed with a constant velocity of 0.001 m/s. The gravity is neglected as 

its contribution towards the effective stress state is very small and, therefore, the 

dimensions of the cube do not influence the results; a 1 m wide cube is used. Fig. 6.3 

describes the geometry of the problem. The boundary conditions are such that the 

bottom surface is constrained in normal direction while the lateral surfaces have a 

compressive load in the normal direction equal to the considered confining stress value. 

The specimen is assumed to be isotropically consolidated and the initial stress can be 

initialised using the 𝐾0-procedure with 𝐾0  =  1.0. 

 

Figure 6.3. Schematic description of triaxial compression test simulation. 

The model parameters are listed in Tab. 6.5. They result from a calibration procedure 

carried out by Tasiopoulou and Gerolymos (2016b) on Toyoura sand.  

Fig. 6.4 and. 6.5 show results of drained and undrained simulations, respectively, at 

various density and initial consolidation stress levels and their comparison with the ones 

obtained by Tasiopoulou and Gerolymos (2016b) and the experimental data of Verdugo 

and Ishihara (1996). 

Table 6.5. Ta-Ger model parameters calibrated for Toyoura sand. 

Symbol Unit Value 

𝐺0 - 1000𝑘2𝑚𝑎𝑥 

𝑚 - 0.4 

𝜈 - 0.15 

𝜙𝑐𝑠 ◦ 33 

𝑛 - 0.4𝐷𝑟0 + 0.14 

𝜅 ◦ 0.8 

𝛿 - 1 

𝑄 - 9.1 

𝑅 - 0.77 
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Figure 6.4. Comparison between simulated results and experimental data of drained triaxial 

tests at various density and initial consolidation stress. (a) Deviatoric stress-axial strain 

relationship; (b) Deviatoric stress-void ratio relationship. 
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Figure 6.5. Comparison between simulated results and experimental data of undrained triaxial 

tests at various density and initial consolidation stress. (a) Deviatoric stress-axial strain 

relationship; (b) stress path in the triaxial plane. 

6.4.1.1 Parametric analysis  

The aim of this section is not to model a particular set of results but to demonstrate the 

capability of the formulation to reproduce characteristic features of loose and dense sand 

behaviour. For a given value of confining stress, the influence of the model parameters 

n, 
𝑠0

 and 𝑐 are investigated since they are the ones that need to be calibrated.  

Consider a sandy soil characterized by 𝑒𝑚𝑎𝑥 = 0.977  and 𝑒𝑚𝑖𝑛 = 0.597at two initial 

relative density, 𝐷𝑟0 = 73%  and 15% . Constants 𝑄  and 𝑅  have values of 9 and 1 

respectively. Parameters 𝑛, 𝜑𝑠0 and 𝑐 are obtained from correlations previous described 

in § 6.2, assuming 𝜅 = 0.95 and 𝛿 = 3. The model parameters are indicated in Tab. 6.6. 

The saturated drained and undrained triaxial paths are simulated assuming a confining 

pressure of 300 𝑘𝑃𝑎 which correspond to different values of initial relative dilatancy 

index 𝐼𝑟0 of 1.4 and −0.51. 
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(a) 

 

 
(b) 

Figure 6.6. Simulation results of drained triaxial tests at two initial relative density. (a) 𝐷𝑟0 =

73%; (b) 𝐷𝑟0 = 15%. 
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Table 6.6. Ta-Ger model parameters for dense and loose sand used in monotonic triaxial tests 

simulations. 

 Symbol Unit Value 

 𝐺0 - 2000 

 𝑚 - 0.4 

 𝜈 - 0.15 

 𝜑𝑐𝑠 ◦ 32 

 𝜑𝑠0 ◦ 37 − 28 

 𝑛 - 0.43 − 0.2 

 𝑐 - 10 − 4.5 

  
(a) (b) 

  

(c) (d) 

Figure 6.7. Simulation results of undrained triaxial tests for 𝐷𝑟0 = 73%. 

Fig. 6.6 shows the results of the simulation in drained conditions for dense and loose 

sand. The dense sample initially contracts from point P1 until the stress ratio reaches the 

critical state stress state. However, the sample is not at critical state. The behaviour 

becomes dilative and the shear resistance increases until reaching the peak state at point 

P2. At this point the sample starts softening from point P2 to point P3 where the stress 
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ratio and the void ratio are at critical state and no more changes in volume occur. The 

loose sample hardens in a non-linear way from point P1 to P2 and contracts. Once at 

point P2, the stress ratio is equal to the ultimate strength one (𝑞/𝑝′ = 𝑀𝑐𝑠), and hence the 

sample is at the critical state. The bounding stress ratio evolves gradually from the initial 

value 𝑀𝑠0 =
6𝑠𝑖𝑛𝜙𝑠0

3−𝑠𝑖𝑛𝜙𝑠0
= 1.11 to the critical state one 𝑀𝑐𝑠 =

6𝑠𝑖𝑛𝜙𝑐𝑠

3−𝑠𝑖𝑛𝜙𝑐𝑠
= 1.29. 

  
(a) (b) 

  
(c) (d) 

Figure 6.8. Simulation results of undrained triaxial tests for 𝐷𝑟0 = 15%. 

Fig. 6.7a show the deviatoric stress-strain relationship and the saturated undrained 

triaxial path for the case of 𝐷𝑟0 = 73%. The stress state is initially on the contractive side 

(
𝑞

𝑝′
< 𝑀𝑝𝑡) and hence positive excess pore pressure develops from point P1 to P2. At point 

P2 the stress path crosses the phase transformation line an after that it passes on the 

dilative (
𝑞

𝑝′
> 𝑀𝑝𝑡) side and hence negative excess pore pressure are generated. The 

excess pore pressure decreases and the mean effective stress increases together with the 

deviatoric stress. The stress path continue to rise and lies on the ultimate strength line 

until reaching the critical state at P3. The evolution of phase transformation 𝑀𝑝𝑡  and 

bounding stress 𝑀𝑠 ratios are illustrated in Fig. 6.7d as a function of deviatoric strain. As 
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shown in Fig. 6.7b, if the density is hug, a slight drop in mean effective stress can be seen 

and the behaviour is considerably stiff. When the sand is looser, a point of minimum 

mean effective stress appear where the dilatancy behaviour changes from contractive to 

dilative which corresponds to the phase transformation stress ratio. 

For the case of 𝐷𝑟0 = 15% (Fig. 6.8b) the stress ratio is always smaller than the phase 

transformation line exhibiting a contractive behaviour. From point P1 to P2 the mean 

effective stress decreases because of growing of positive excess pore water pressure. The 

reduction in mean effective stress is accompanied by the reduction in deviatoric stress 

and hence the path softens from point P2 to point P3 until reaching the critical state. The 

evolution of phase transformation 𝑀𝑝𝑡 and bounding stress 𝑀𝑠 ratios for the looser sand 

case are illustrated in Fig. 6.8d as a function of deviatoric strain. 

Drained triaxial tests 

𝐷𝑟0 = 73% 

 

(a) 

𝑫𝒓𝟎 = 𝟏𝟓% 

 

(b) 

Figure 6.9. Effect on drained behaviour of dense (𝐷𝑟0 = 73%) (a) and loose soil (𝐷𝑟0 = 15%) (b) 

of different values of hardening parameter 𝑛. 
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In the following, a sensitivity analysis is finally presented to examine the effect of 

parameters 𝑛 , 𝜑𝑠0 and 𝑐  on drained and undrained soil response. The hardening 

exponent 𝑛 controls the degree of coupling between the elastic and the perfectly plastic 

behaviour. As shown in Fig. 6.9 and 6.10 when the value of 𝑛 increases the response 

tends to be elastic/perfectly-plastic while, when it decreases, the coupling between the 

elastic and plastic components of total strain increment increases until ultimate failure 

is reached, resulting in a smoother transition to failure. Moreover, by decreasing the 

value of exponent 𝑛, the failure state is faster reached. 

Undrained triaxial tests 

𝑫𝒓𝟎 = 𝟕𝟑% 

 

(a) 

𝑫𝒓𝟎 = 𝟏𝟓% 

 

(b) 

Figure 6.10. Effect on undrained behaviour of dense (𝐷𝑟0 = 73%) (a) and loose soil (𝐷𝑟0 = 15%) 

(b) of different values of hardening parameter 𝑛. 
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Drained triaxial tests 

𝑫𝒓𝟎 = 𝟕𝟑% 

 

 
(a) 

𝑫𝒓𝟎 = 𝟏𝟓% 

 

(b) 

Figure 6.11. Effect on drained behaviour of dense (𝐷𝑟0 = 73%) (a) and loose soil (𝐷𝑟0 = 15%) (b) 

of different values of hardening parameter 𝑐. 
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Undrained triaxial tests 

𝐷𝑟0 = 73% 

 

 
(a) 

𝐷𝑟0 = 15% 

 

(b) 

Figure 6.12. Effect on undrained behaviour of dense (𝐷𝑟0 = 73%) (a) and loose soil (𝐷𝑟0 = 15%) 

(b) of different values of hardening parameter 𝑐. 
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Drained triaxial tests 

𝑫𝒓𝟎 = 𝟏𝟓% 

 

 

Figure 6.13. Effect on drained behaviour of loose soil (𝐷𝑟0 = 15%) different values of initial 

friction angle 𝜑𝑠0. 

The coefficient 𝑐  controls the rate of evolution of the bounding, 𝑀𝑠,  and the phase 

transformation, 𝑀𝑝𝑡 , stress ratio. For large values of 𝑐, the critical state (𝑀𝑐𝑠 = 1.29) is 

reached fast as shown in the evolution of the bounding stress ratio with accumulated 

deviatoric strains (Fig. 6.11 and 6.12). This tendency results in a less contractive 

behaviour of the loose soil and a less dilative behaviour for the dense soil in the 

deviatoric stress-strain plane (𝑞 − 𝜀𝑞). Fig. 6.13 and 6.14 show that decreasing values of 

𝜑𝑠0 leads to an enhanced contractive behaviour of the soil. 
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Undrained triaxial tests 

𝑫𝒓𝟎 = 𝟕𝟑% 

 

Figure 6.14. Effect on undrained behaviour of loose soil (𝐷𝑟0 = 15%) of different values of initial 

friction angle 𝜑𝑠0. 

6.4.2 Unsaturated monotonic triaxial compression tests 

Ta-Ger model implementation was generalized for unsaturated conditions in Anura3D 

code. To do that, the model has been formulated in terms of Bishop’s stress σ′′ (Bishop, 

1959):  

σ′′ = 𝜎̅ + χ · 𝑠 (6.28) 

where, 𝜎̅  is the net stress defined as the difference between the total stress and gas 

pressure and s is the suction defined as the difference between gas and water pressure. 

Parameter χ is assumed to be equal to the degree of saturation. The Terzaghi’s effective 

stress is recovered when pore water pressure becomes positive. The degree of saturation 

is correlated with the suction in a simple way by means of a constant water retention 

curve. With the definition of the constitutive equations in terms of Bishop’s stress, 

suction induces increments of the elastic stiffness and strength. The generalization of the 

equation to unsaturated states does not intend to reproduce the whole behaviour of the 

unsaturated soils. The model is not able to reproduce, for instance, the swelling and 

collapse response during wetting. 

The previous examples of undrained triaxial stress paths of a loose sand is repeated for 

different initial values of saturation degree. The Van Genuchten model (Van Genuchten, 

1980) has been selected for the water retention curve whose parameters are listed in Tab. 

6.7. The predicted response of the loose sand in terms of stress-strain relationship, stress 

path, volumetric strains, suction and degree of saturation is plotted in Fig. 6.15.  
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(a) (b) 

  

(c) (d) 

 

(e) 

Figure 6.15. Results of simulation of monotonic triaxial loading on unsaturated loose sand 

(𝐷𝑟0 =  15%): (a) deviatoric stress-strain relationship; (b) stress path in the triaxial plane; (c) 

Volumetric strain-deviatoric strain relationship; (d) suction-deviatoric strain relationship; (e) 

degree of saturation-deviatoric strain relationship. 
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In the first stage, as a result of progressive volumetric contraction during shearing, the 

sample becomes saturated and suction reduces until zero (from P1 to P2). The 

subsequent compressive volumetric strains result in an increasing of pore water pressure 

that leads to reduce effective stress and strength (from P2 to P3). 

Table 6.7. Van Genuchten water retention curve parameters. 

Symbol Unit Value 

𝑆𝑟𝑚𝑖𝑛 - 0 

𝑆𝑟𝑚𝑎𝑥  - 1 

𝑝0 kPa 10 

λ - 0.1 

6.4.3 Cyclic triaxial tests 

Aiming to assess the capabilities of Ta-Ger model in reproducing the dynamic behaviour 

of soils and to verify the model implementation under cyclic loading conditions, 

numerical simulations of strain- and stress- controlled conventional tests have been 

carried out.  

6.4.3.1 Strain-controlled undrained tests  

Strain controlled cyclic triaxial tests have been performed with Anura3D code following 

a similar procedure indicated in § 6.4.1. Unlike the simulation of a monotonic test, a 

sinusoidal velocity is applied on the top face nodes of the soil cube (Fig. 6.16).  

 

Figure 6.16. Schematic description of cyclic triaxial compression test simulation. 

The velocity-time function shown in Fig. 6.17 is assigned to the code based on the 

numerical implementation explained in § 3.4.3. The same Ta-Ger model parameters used 

to simulate the monotonic tests in § 6.4.2 (Tab. 6.6) are assigned. Sandy soil samples at 

two initial relative density, 𝐷𝑟0 = 73% and 15% are considered in the simulations. 
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Figure 6.17. Input prescribed velocity (𝑁𝑐𝑦𝑐𝑙𝑒𝑠 = 20; 𝐴 = 0.03𝑚/𝑠, 𝑇 = 1𝑠) 

As shown in Figs 6.18 and 6.19, cyclic paths are characterized by an excessive pore 

pressure build up, followed by a decrease of both the mean effective stress and the shear 

stiffness until reaching a complete loss of shear resistance. The number of axial strain 

cycles necessary to liquefaction is equal to 3 for the loose sample while it increases to 8 

for the denser. 

  

(a) (b) 

  

(c) (d) 
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(e) 

Figure 6.18. Simulation results of strain-controlled cyclic undrained triaxial test for 𝐷𝑟0 = 15% 

in terms of: (a) applied axial strain; (b) deviatoric stress with time; (c) 𝑝’ − 𝑞 curve; (d) 𝑞 − 𝜀𝑎 

curve; (e) pore pressure evolution with time. 

  
(a) (b) 

  
(c) (d) 
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(e) 

Figure 6.19. Simulation results of strain-controlled cyclic undrained triaxial test for 𝐷𝑟0 = 73% 

in terms of: (a) applied axial strain; (b) deviatoric stress with time; (c) 𝑝’ − 𝑞 curve; (d) 𝑞 − 𝜀𝑎 

curve; (e) pore pressure evolution with time. 

Effect of parameter 𝜂 

As mentioned in § 6.2 matrix {𝜂} = 𝜂{𝐼} (Gerolymos and Gazetas, 2005) accounts for 

stiffness degradation affecting the shape and size of the hysteretic loops. With the aim 

of observe the effect of this parameters, further simulation are performed for the case of 

𝐷𝑟0 = 73%  and three different values of 𝜂. Results shown in Fig. 6.20 indicate that greater 

is 𝜂, greater is the shear stiffness and the area of the loop, thus the hysteretic damping.  

 

Figure 6.20. Effect on cyclic undrained behaviour of parameter 𝜂. 
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6.4.3.2 Stress-controlled undrained tests 

Since the current version of Anura3D code does not allow to simulate cyclic loading 

conditions, the algorithm has been verified externally in order to simulate stress-

controlled cyclic tests.  

The model parameters are indicated in Tab. 6.8. A sandy soil characterized by 𝑒𝑚𝑎𝑥 =

0.977  and 𝑒𝑚𝑖𝑛 = 0.597 at an initial relative density of 𝐷𝑟0 = 73% , is considered. 

Constants 𝑄  and 𝑅  have values of 9 and 1 respectively. Parameters 𝑛 , 𝜑𝑠0 and 𝑐  are 

obtained from correlations described in § 6.2, assuming 𝜅 = 0.95 and 𝛿 = 3. The cyclic 

undrained triaxial paths are simulated assuming an initial confining pressure of 

150 𝑘𝑃𝑎, which correspond to an initial relative dilatancy index of 𝐼𝑟0 = 1.91. A value of 

20 kPa for the cyclic deviatoric stress applied is considered.   

  

(a) (b) 

  

(c) (d) 

Figure 6.21. Simulation results of stress-controlled cyclic undrained triaxial test for 𝐷𝑟0 = 73% 

in terms of: (a) 𝑞 − 𝜀𝑞 curve; (b) 𝑝’ − 𝑞 curve; (c) 𝑝′ − 𝜀𝑞 curve; (d) Shear modulus curve. 
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Table 6.8. Ta-Ger model parameters for dense sand used in cyclic stress-controlled simulations. 

 Symbol Unit Value 

 𝐺0 - 8000 

 𝑚 - 0.4 

 𝜈 - 0.15 

 𝜑𝑐𝑠 ◦ 31 

 𝜑𝑠0 ◦ 39 

 𝑛 - 0.43 

 𝑐 - 11.7 

Fig. 6.21 shows the typical undrained behaviour of dense sand under cyclic loading with 

the charactistic “butterfly” shape.  

Effect of hardening parameter 𝒏 

As presented in Tasiopoulou and Gerolymos (2016b), the response under cyclic 

undrained loading is greatly affected by the hardening parameter 𝑛 in terms of number 

of cycles required to cause liquefaction (𝑝′ = 0).  

The previous simulation is repeated for two extreme values of 𝑛 = 0.2 and 0.8. As shown 

in Fig. 6.22, in case of 𝑛 =  0.2 , 14 cycles of loading are required for liquefaction 

occurrence. On the contrary, the higher value of hardening parameter of 𝑛 = 0.8 leds to 

reproduce cyclic mobility phenomenon for which liquefaction cannot be achieved. 

It worth to mention that, since exponent n is crucial in the determination of the number 

of cycles necessary to cause liquefaction, Ta-Ger authors propose to express it as function 

of the  cumulative deviatoric strain increment, for more realistic results: 

𝑛 = 𝑛𝑓 + [𝑛𝑝𝑒𝑎𝑘 + (𝑛0 − 𝑛𝑝𝑒𝑎𝑘)𝑒−𝛽 ∑ 𝑑𝜀𝑞 − 𝑛𝑓]𝑒−𝛾(1−𝑠𝑖𝑔𝑛(∑ 𝑑𝜀𝑝)) ∑ 𝑑𝜀𝑞 (6.29) 

where, 𝑛𝑓  is the final value when p tends to zero, 𝑛0  is the initial value, 𝑛𝑝𝑒𝑎𝑘  is the 

potentially reached maximum value dependent on constants 𝛽 and 𝛾. 
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(a) (b) 

  

(c) (d) 

Figure 6.22. Effect on cyclic undrained behaviour of parameter 𝑛: (a) 𝑛 =  0.2; (b) 𝑛 =  0.8. 
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CHAPTER 7 - LIQUEFACTION-INDUCED 

FLOW-LIKE LANDSLIDE 

A real case of flow-like landslide induced by static liquefaction, occurred in Val d’Arán 

(Catalonia, Spain), is investigated in this chapter. In situ and laboratory tests are carried 

out to characterize the material involved in the failure. Data from undrained triaxial tests 

showed the liquefaction susceptibility of the mobilized soil and allowed to calibrate the 

Ta-Ger model parameters. In the last part, plane strain analyses on a representative 

cross-section are performed with MPM in order to simulate triggering and post-failure 

stage. As expected, it was found that liquefaction susceptibility, accounted for in the 

model through the relative dilatancy index 𝐼𝑟  plays a key role for the slide-to-flow 

transition to occur. 

7.1 INTRODUCTION 

Valarties flow-like landslide occurred on 11 May 2018 in Val d’Arán (Catalonia, Spain) 

after a period of significant rainfall. Fig. 1a shows a front view of the landslide 10 days 

after the event. The upper scarp is located 1380m.a.s.l, 150m high from the riverbed. The 

landslide involved an estimated volume of 50.000 m3 of glacial and colluvial material, 

travelled 280m down to the valley floor and climbed about 100m on the opposite hillside 

up to 1249m.a.s.l. (Fig. 7.1b). Although being difficult to guarantee, it is accepted that the 

most probable triggering reason was an increase in pore water pressure induced by an 

inflow from karstic spring in the upper part of the slope. After failure, a significant 

amount of water flowed out from the head scarp. Field surveys and laboratory tests in 

combination with information gathered by the “Cartographic and Geological Institute 
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of Catalonia” provided a basic geological understanding and offered details of the main 

characteristics of the landslide and materials involved in the failure. 

  
(a) (b) 

Figure 7.1. View of the landslide 10 days after the event (courtesy of Conselh Generau d'Aran) 

(a) Landslide scar; (b) Mobilized material accumulated on the opposite slope. 

Flow-like landslides can begin with a mechanism of general shear failure but are 

characterized by a subsequent spreading, outside the failure area, of the slide material 

that adapts itself to any morphological slope change. Johnson and Rodine (1984) and 

Ellen and Fleming (1987) described the potential for a transformation from sliding into 

flowing and a first general approach of the mechanisms involved. Both contributions 

resulted in a mobility index based on geotechnical material properties and, in particular, 

the liquid limit and the water content.  

Iverson (1997), in a comprehensive review, provided a detailed analysis of theoretical 

aspects and described data gathered by the U.S. Geological Survey in large-scale flume 

experiments. The authors proposed three main mechanisms responsible for the 

mobilization of debris flows. The development of positive excess pore pressures in the 

post-failure stage, due to static or dynamic effects, and the associated decrease of 

effective stresses are considered to be fundamental in the triggering of flow-like 

landslides. This hypothesis is also supported by more recent studies that includes 

geotechnical laboratory tests and some field observations (Gabet and Mudd, 2006) and 

centrifuge tests (Milne et al., 2012). The role played by static liquefaction in the evolution 

of slope instabilities in flow-like landslides has been extensively investigated in the 

literature (Cascini et al., 2010). (Buscarnera and Prisco, 2013) identified, in the saturation 

process caused by volumetric instability, a relevant explanation of this phenomenon in 

unsaturated slopes. 

The lack of data in real cases of flow-like landslides led several authors to carry out flume 

laboratory tests. The aim was to capture the fundamental aspects of rainfall-induced 

landslides and to assess the role played by single factors such as geometry, soil 

properties and stress conditions on the development of the failure mechanism including 
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static liquefaction (Wang and Sassa, 2001; Okura et al., 2002; Olivares et al., 2009; De 

Groot et al., 2018).  

In this section, the site of the landslide is investigated and the soils involved in the failure 

is characterized. Undrained triaxial tests demonstrated the liquefaction potential of the 

mobilized soil and allowed the calibration of the Ta-Ger model parameters. The case was 

first analysed without accounting for the potential liquefaction of the involved materials. 

Under such assumption, it was not possible to reproduce the observed run-out even in 

the case of including a realistic material strain softening. The MPM-modelling of the 

landslide including a sensitivity analysis with respect to the initial porosity, a relevant 

parameter controlling the liquefaction susceptibility. Calculated stress paths, velocity 

and displacements in different locations along the landslide help to understand the 

phenomena taking place in a flowslide. 

7.2 Geological context and case description 

The Valarties landslide is located in the Val d’Aran, a region in the Spanish side of the 

Central Pyrenees. It took place just before midnight of May 11th, 2018 at the lower part 

of a west-facing slope in a tributary valley that drains the Valarties River (Fig. 7.2a). The 

original slope was covered with dense forest and had an average slope angle of about 33 

degrees. 

The mass movement involved an estimated volume of about 50,000 m3, which makes 

the event the largest reported slope failure in the southern Pyrenees of the last decades. 

The landslide did not cause important damage, but covered a secondary road with 

sediments and affected the water supply of downstream villages. Fortunately, the 

landslide sediment was not able to create an uncontrolled dam, which might have 

provoked a catastrophic dam-breach flooding of the downstream area. 

The climate of the Val d’Aran region is influenced by the westerly winds from the 

Atlantic Ocean and the orographic effects of the Pyrenees. It can be defined as alpine 

Atlantic climate. In the valley floor, the annual precipitation is about 1000 mm and the 

mean temperature is 9° (CAC, 2004). 

From a geological point of view, the region is located in the axial zone of the Pyrenees, 

where the bedrock mainly consists of metamorphic Paleozoic rocks and intrusions of 

late hercinian plutonic rocks (Fontboté, 1911). In addition, quaternary superficial 

formations comprising colluvium and glacial deposits cover the bedrock with variable 

thicknesses. In particular, the glaciations have strongly shaped the present morphology 

of the region creating steep-sided and U-shaped valleys (Pallàs et al., 2006).  

The lithological description of the failed slope can be divided into two main units: 1) the 

karstic bedrock made of massive marbles of Carboniferous-Permian age, and 2) 

superficial formations including a glacial deposit at the bottom and a colluvium at the 
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top. The soil-rock contact is highly irregular since the marbles were strongly reshaped 

by the glacier erosion. Therefore, the thickness of the superficial formations varies 

between less than 1 m and more than 15-20 m. The glacial deposit can be described as a 

matrix-supported sandy soil with a thickness varying between 1 and 10 meters, while 

the colluvium has generally a smaller thickness of 0.5 to 5 meters. The head scarp of the 

failure was located at the bedrock-soil contact, which outcropped with a slope angle of 

about 56 degrees at an altitude of 1375 m.a.s.l (Fig 7.2b). Field observations showed that 

the initial failure was affected by the bedrock-soil contact, which finally formed an 

approximate circular sliding surface.  

 
(a) 

 
(b) 

Figure 7.2. a) Overview map of the Valarties flow-slide illustrating the failure and the transport 

and accumulation zones. Inset shows the general situation. b) Longitudinal profile including 

topographic (pre- and post-failure morphology). The profile is drawn along the line indicated in 

a). 
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The hydrogeological conditions in the area of the landslide were not investigated in 

detail, but field observations showed that the slope probably had a high degree of 

saturation at the moment of failure. In fact, an important water flow out of the marbles 

located in the head scarp was observed just after the slope failure. This injected water 

into the superficial deposits from the karstified rock mass probably played a decisive 

role in triggering the landslide. Many water springs have been observed around the 

Valarties landslide, which supports the hypothesis of a generalised high saturation of 

the slopes. 

Regarding the dynamics of the landslide, the field observations showed that, initially, 

the failed material rapidly transformed into a flow-like movement and incorporated 

some additional sediment during the runout until reaching the Valarties river (herein 

called transition zone). The accumulation zone mainly covers the valley floor and the 

opposite slope. The maximum run-up of the flow was about 30m. It covered the road 

with sediments 10m thick. Following the updated Varnes classification (Hungr et al., 

2014), the Valarties landslide can be classified as an earth-flow. 

 
Figure 7.3. Rainfall (top) and flow depth of the Valarties River (bottom) during April and May 

2018. The triggering instant of the flow-slide is clearly visible by the sharp reduction of river 

water depth because of the partial damming of the river (black arrow). 
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The precipitation previous to the failure was analysed using the data recorded at the rain 

gage located in the Valarties River valley about 700m downstream of the landslide (Fig. 

7.3). The flow depth of the river was measured at the same location. Both time-series had 

as scan-rate of 15 minutes. The instant of the failure could be determined because of a 

sharp decrease of the flow depth was observed at 23:45 on May 11th. This observation is 

related to the partial damming of the Valarties River by the sediment accumulated by 

the landslide. 

Interestingly, no rainfall was measured during the 48 hours previous to the failure. 

However, winter and spring of 2018 were very humid and precipitation exceeded twice 

or even three times the average values of Val d’Aran. The accumulated rainfall measured 

at the Valarties River rain gage during 2018 until the day of the slope failure was 678 

mm, while 162 mm were recorded in April and 91 mm between the 1st and 11th of May. 

All these data confirm that the months previous to the flow-like movement were 

extraordinarily humid. Our hypothesis is that the superficial formations in the failed 

slope were highly saturated at the beginning of May 2018 and that the important 

additional inflow from karstic springs continuously increased pore water pressure in the 

superficial formations, until eventually provoking the triggering of the landslide. 

7.3 MATERIAL PROPERTIES 

In situ and laboratory tests were carried out on samples of glacial and colluvial material 

with the aim of determining the mechanical properties of soil. Field observations 

indicated that the two soils showed similar properties and it was accepted that the 

colluvium is representative of the entire superficial formation. Laboratory tests on this 

material helped to calibrate the Ta-Ger model parameters. 

Grain size distribution  

Fig. 7.4 shows the grain size distribution of the colluvial material and the different 

fractions obtained from sieving. Washing the soil did not change much the curve. Based 

on these results and according to the Unified Soil Classification System (USCS), it can be 

classified as well graded sand, SW (Tab. 7.1). Atterberg’s limits of the fine fraction are 

summarized in Tab. 7.2. 

Table 7.1. Grain size characteristics. 

 
Coefficient of uniformity 

Cu 

Fines 

[%] 

Soil classification 

(USCS) 

Without washing 22 5.52 SW 

With washing 14.6 3.60 SW 
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Table 7.2. Atterberg’s limits of the fine fraction (Perdices, 2019). 

Material 
Plastic Limit Liquid Limit 

Plasticity 

Index 

𝑤𝑃 𝑤𝐿  PI 

Glacial 13.43% 19.80% 6.37% 

Colluvial 20.15% 28.25% 8.10% 

 

 

(a) 

  

(b) (c) 

Figure 7.4. (a) Grain size distribution of colluvial material; fractions of colluvial material 

obtained from sieving: (b) without washing: (c) washing. 

In–situ density by sand cone method 

Two field tests were carried out to determine the natural density by means of the sand 

cone method. The tests were performed by adhering a standard plate with a circular 

opening to the ground under investigation (Fig. 7.5a) in order to dig a hole and collect 

the material (Fig. 7.5b).  Then, through a bottle filled with calibrated sand of known 

density, the dug hole was filled (Fig. 7.5c, d). From the successive weightings of the 
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residual sand and the extracted material (wet and dry), we obtained both the volume 

weight of the soil in natural humidity conditions and the dry volume weight.  

Tab. 7.3 shows the average values of dry density, natural density and water content. 

Once the particle density of the soil ρ𝑠 = 2.69
𝑔

𝑐𝑚3 is determined by pycnometer method, 

two values of porosity 𝜙 = 0.38 − 0.45 and void ratios 𝑒 = 0.62 − 0.83 were determined 

(Eq. 7.1-7.3). 

ρ𝑛𝑎𝑡 = ρ𝑠(1 − 𝑛)(1 + 𝑤) (7.1) 

𝑛 = 1 −
ρ𝑛𝑎𝑡

ρ𝑠(1 + 𝑤)
 (7.2) 

𝑒 =
𝑛

1 − 𝑛
 (7.3) 

    
(a) (b) (c) (d) 

 

Figure 7.5. Sequence of in situ sand cone method test. 

Finally, the maximum and minimum dry unit weight are measured with the standard 

laboratory tests allowing to obtain the maximum and minimum void index (Tab. 7.3). 

The estimated average relative density of the soil is: 

𝐷𝑟 =
𝑒𝑚𝑎𝑥 − 𝑒

𝑒𝑚𝑎𝑥 − 𝑒𝑚𝑖𝑛
= 19.4% (7.4) 

Table 7.3. In situ colluvium parameters derived from the sand cone tests (average values) Also 

given are the maximum and minimum void ratios. 

Dry density 
Moist 

density 

Water 

content 
Porosity Void ratio 

Maximum 

void ratio 

Minimum 

void ratio 

𝜌𝑑𝑟𝑦[
𝑔

𝑐𝑚3
] 𝜌𝑛𝑎𝑡[

𝑔

𝑐𝑚3
] 𝑤[%] 𝜙[-] 𝑒[-] 𝑒𝑚𝑎𝑥[-] 𝑒𝑚𝑖𝑛[-] 

1.56 1.7 8.6 0.42 0.72 0.833 0.250 
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Ring shear test 

Ring shear tests on reconstituted samples indicated a value of residual friction angle 

around 33-34º for the glacial and colluvial materials (Fig. 7.6). A friction angle of 34º was 

accepted as a critical state friction for the calibration of consolidated undrained triaxial 

tests described below.  

 
Figure 7.6. Mohr-Coulomb failure envelope from ring shear tests (adapted from Perdices, 2019). 

Undrained triaxial tests and constitutive model calibration 

Two undrained triaxial compression tests (CIU), carried out on reconstituted samples of 

colluvial material consolidated at different effective confining pressures and initial void 

ratios 𝑒0, allowed the calibration of Ta-Ger model parameters. 

Due to the difficulty of placing samples of cohesionless material at a desired relative 

density in the triaxial apparatus, a freezing procedure was used. The material was first 

placed in the cylindrical mould (length 𝑙 = 7.5𝑐𝑚 and diameter 𝑑 = 3.8𝑐𝑚) shown in 

Fig. 7.7, at a given relative density and water content and then it was frozen.  

 

Figure 7.7.  Mould used for sample preparation. 

At this point the sample can be packed in a cylindrical latex and placed in the triaxial 

cell. In Fig. 7.8 the setup of a sample in the triaxial apparatus is shown. Once filled the 

cell with water, a very low confining pressure was applied to the sample, which was 

allowed to thaw before starting the test. Once saturated and consolidated the sample at 
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a given confining stress a constant axial deformation of 0.1mm/min is applied under 

undrained conditions. The tests were conducted to around 20% axial strain to ensure 

that critical-state conditions were reached. The experimental results are shown in Fig. 

7.9. 

 

Figure 7.8. Triaxial apparatus. 

  

(a) (b) 

Figure 7.9. Experimental results of undrained triaxial tests: (a) Deviatoric stress-axial strain 

relationship; (b) stress path in the triaxial plane. 

7.4 CONSTITUTIVE PARAMETERS 

Soil Water Retention curve 

The soil-water retention curve was predicted from the soil particle-size distribution by 

using two different physically-based models. In the model proposed by (Arya and Paris, 

1981) the particle-size distribution is transformed into a pore-size distribution by 

estimating an equivalent pore radius for each particle size fraction.  The authors assumed 



Constitutive parameters 

130 

 

that for a given particle size fraction of an ideal soil, the pore volume can be represented 

by a cylindrical capillary tube, whose length is the sum of the spherical particle 

diameters presented in the fraction. Based on this assumption, the pore radius is 

calculated as function of the pore length of the ideal soil which is scaled to that of a 

natural soil through the scaling factor 𝛼𝐴𝑃 with an average value of 1.38. The equivalent 

water pressures are then determined from the pore radii by using the equation of 

capillarity (Jurin’s law).  

The pores volume of each size fraction is computed in terms of the corresponding solid 

mass, the bulk density (𝜌𝑏 = 𝜌𝑑𝑟𝑦 = 1.56
𝑔

𝑐𝑚3) and the particle density (𝜌𝑠 = 2.69
𝑔

𝑐𝑚3). 

The calculated pore volumes, assumed to be filled with water, are added and divided by 

the bulk volume (𝑉𝑏 = 1/𝜌𝑏) to get the volumetric water contents 𝜃  and, finally, the 

degree of saturation 𝑆𝑟 = 𝜃
𝜙⁄ , where 𝜙 is the porosity. The second model is the modified 

Kovács method, described by Aubertin et al. (1998, 2003), which extended the original 

model by Kovács (1981) to generalize its application to a variety of porous media.  

The degree of saturation is expressed as function of two components acting 

simultaneously to induce suction. The first component is due to capillary forces (𝑆𝑐) that 

mainly contribute to low values of suction. The second component is associated with 

adhesive forces ( 𝑆𝑎 ) that are dominant at higher values. Both components can be 

obtained from basic geotechnical properties, including the diameter corresponding to 

10% passing on the cumulative grain-size distribution (𝐷10 = 0.009 cm), the uniformity 

coefficient (𝐶𝑈 = 22) and the void ratio (𝑒 = 0.724). These properties are used to define 

model parameters such as the residual suction, the pore size distribution parameter and 

the equivalent capillary rise, which is the reference parameter to define the relationship 

between the degree of saturation 𝑆𝑟 and matric suction. Fig. 7.10 shows the predicted 

water retention curves.  

Table 7.4. Van Genuchten water retention curve parameters. 

Symbol Unit Value 

𝑆𝑟𝑚𝑖𝑛 - 0 

𝑆𝑟𝑚𝑎𝑥  - 1 

𝑝0 𝑘𝑃𝑎 1 

𝜆 - 0.5 

A Van Genuchten water retention curve (Van Genuchten, 1980) whose parameters are 

listed in Tab. 7.4, is adopted in the calculation. Fig. 7.10 shows the shape of the curve 

compared with the predictions by (Arya and Paris, 1981) and modified Kovács (Aubertin 

et al., 1998, 2003) interpretations of the grain size distribution determined in samples. 
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Figure 7.10. Water retention curve predicted by (Arya and Paris, 1981) and modified Kovács 

models (Aubertin et al., 1998, 2003). Also indicated is the Van Genuchten empirical equation 

adopted in calculations. 

Soil permeability 

The intrinsic permeability of soil is assumed constant and equal to 10−10m2 , 

corresponding to a hydraulic conductivity of 10−3 m/s. 

Ta-Ger model calibration 

The calibrated Ta-Ger model parameters are summarized in Tab. 7.5. 

Fig. 7.11 shows the comparison between the experimental data and the prediction of the 

Ta-Ger model in terms of stress – axial strain (𝑞 − 𝜀𝑎) relationship and the stress path in 

triaxial plane (𝑞 − 𝑝′). The tests were performed for two values of initial void ratio (𝑒0 =

0.78 and 0.7) slightly higher and lower respectively than the average value measured in-

situ (𝑒0 = 0.724). For isotropic confining stresses of 100kPa and 250kPa, results show a 

contractive behaviour of the soil and a susceptibility to static liquefaction, which 

supports the idea that this phenomenon may be responsible for the large run-out 

observed in Valarties landslide. A third numerical simulation is conducted assuming a 

lower initial void ratio (𝑒0 = 0.55) in order to check the capability of the model and 

adopted parameters to interpret the dilative behaviour of a dense sand (Fig. 7.11).  

Table 7.5. Ta-Ger model parameters. 

 Symbol Unit Value 

 𝐺0 - 1500 

 𝑚 - 0.33 

 𝜈 - 0.15 

 𝜑𝑐𝑠 ◦ 34 

 𝜑𝑠0 ◦ 1.1𝜙𝑐𝑠 + 5𝐼𝑟0 

 𝑛 - 0.4𝐷𝑟0 + 0.14 

 𝑐 - 6 + 𝐼𝑟0 
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(a) (b) 

Figure 7.11. Experimental data versus simulation results of undrained triaxial tests: (a) 

Deviatoric stress-axial strain relationship; (b) stress path in the triaxial plane. 

 
Figure 7.12. Triaxial tests (two carried out and one simulated) and critical state curve in 𝑒 −

𝑙𝑛 (𝑝’) plane. 

The critical state curve derived from the model (Eq. 7.5) is plotted in Fig. 7.12, in a 𝑒 −

ln (𝑝′) plane, together with the position of the void ratios of the triaxial tests mentioned 

before. The critical void ratio, 𝑒𝑐, is obtained from Eq. 6.16 and Eq. 6.17 by imposing a 

zero value of relative dilatancy index ( 𝐼𝑟 = 0 ) and adopting the following fitting 

parameters 𝑄 = 0.85 and 𝑅 = 1: 

𝑒𝑐 = 𝑒𝑚𝑎𝑥 −
𝑅

𝑄 − ln(𝑝′)
(𝑒𝑚𝑎𝑥 − 𝑒𝑚𝑖𝑛) (7.5) 

Fig. 7.12 shows that the critical state curve, predicted by the calibrated model, explains 

the transition from contractive to dilative behaviour of soil, and the conditions leading 

to liquefaction in terms of effective mean stress and void ratio.  
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7.5 MPM MODEL 

7.5.1 Model description  

Fig. 7.13 presents the geometry of the problem and the computational mesh (triangular 

elements with a minimum size of 2.5 m in the colluvial material region). Initially, three 

material points are distributed within each element in the position of Gauss points. 

Boundary conditions for solid and liquid phases are applied on the left and right sides 

of the model to constrain the horizontal displacement, at the top of the mesh to constrain 

the vertical displacement and at the bottom where both vertical and horizontal 

displacements are prevented. The bedrock substratum is located at a depth of about 15 

m. It is modelled as a linear elastic solid, not involved in the failure.  

 

Figure 7.13. Computational mesh, initial distribution of material points and hydraulic boundary 

condition applied to simulate the inflow from karstic springs (𝑝𝑤). 

7.5.2 Stages of analysis  

It is assumed that the slide was at strict equilibrium (safety factor equal to 1) when the 

karstic spring triggered the failure. The position of the phreatic level imposed is then 

defined according to the limit equilibrium analysis performed with the commercial code 

SLIDE (Rocscience, 2018) (Fig. 7.14) for a friction angle of 34º, nil cohesion (the value 

used in the simulation of the triaxial CU tests performed). The depth of the phreatic level 

resulting from this calculation is 11.5m. The initial distribution of pore water pressure is 

set as hydrostatic, below the groundwater level. Suction above the phreatic surface also 

varies linearly following the same hydrostatic gradient (Fig. 7.15).  

In terms of hydraulic boundary conditions, the pore water pressure is imposed on the 

lower boundary according to the initial phreatic level. On the ground surface, the 

corresponding suction is also applied (115kPa). Since the default value of pore pressure 

on boundaries is zero, this condition prevents water infiltration. 
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Figure 7.14. Results of limit equilibrium analysis. Critical surface calculated for phreatic level at 

11.5m of depth. 

 

Figure 7.15. Initial distribution of pore water pressure. 

The initial stress distribution results from a quasi-static calculation (Fig. 7.16). This 

calculation starts from a trial stress distribution calculated by 𝐾0 procedure, assuming a 

value for the coefficient of earth pressure at rest of 0.5. A local damping factor 𝛼 = 0.75 

is imposed in this stage. 

In the second stage calculation to simulate the triggering, an excess pore water pressure 

of 100kPa is applied in the upper part of the slope (Fig. 7.13) to simulate the inflow from 

karstic springs. The local damping factor is reduced to 𝛼 = 0.05 in this dynamic stage to 

simulate the natural energy dissipation of the material. Also the strain smoothing 

technique (see §3.3.2) is applied. 
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Figure 7.16. Initial distribution of vertical effective stresses. 

7.6 NUMERICAL RESULTS 

Consider first the results of simulations for three values of initial relative density 

corresponding to the two measurements by the sand cone method and their average 

value. Fig. 7.17 shows the initial distribution of the relative dilatancy index and the 

results in terms of total displacements once stability is achieved. A large run-out 

explained by the liquefaction of the soil can only occur if the initial void ratio is smaller 

than the critical value (𝐼𝑟0 < 0). Results may be explained considering that the larger is 

the contractive tendency of the soil under shearing, the larger is the transient localized 

pore water pressure which can be developed during the failure mechanism motion of 

the earth flow-slide. The maximum run-out is obtained for the case of 𝑒0 = 0.83. The 

black continuous line in the figure represents the observed final configuration of the 

slope. 

Fig. 7.18a shows the evolution of the movement with time for the case of 𝑒0 = 0.83. First, 

the inflow from karstic springs induces a local increment of pore water pressure that 

triggers the failure in the upper part of the slope at the bedrock-soil contact. A “slab” of 

unstable soil is visible at t=4s. This slab rides over the central - lower part of the slope as 

shearing strains increase in intensity and extends throughout the moving mass (t=8–12s). 

Shearing the contractive soil increases pore pressures and the soil liquefies. The fast 

reduction of resisting shear strength leads to an accelerated motion. The kinetic energy 

of the initial slide increases rapidly and drags the soil layer, which covers the lower part 

of the valley (t=12–16s). Shear straining generalizes in the moving mass, which 

eventually comes to rest when the flow slide impacts against the valley slope on the 

opposite margin of the river.  
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This mechanism can be followed in more detail if the position of material points is 

tracked during the failure. This is shown in Fig. 7.18b. The initial position of the involved 

soil mass is divided in a collection of vertical slices of different colours. The position of 

the initial set of particles can easily be followed in time by observing the distribution of 

colours as the flow slide develops. The unstable soil mantle covering the bedrock in the 

middle-upper part of the slope covers the lower part at t=12–14s, entrains the soil closer 

to the valley bottom and pushes the, by now, thicker deposit which covers the river and 

climbs upward the left margin of the river. 

 

 

(a)                                                                                            (b)  

Figure 7.17. (a) Initial distribution of the relative dilatancy index; (b) total displacement at the 

end of the simulation for three values of the initial porosity. 
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(a)                                                                                           (b)  

Figure 7.18. Evolution of the movement with time (𝑒0 = 0.83). (a) Deviatoric strain increments; 

(b) Illustration of the evolving position of material points located, before the failure, in vertical 

slices covering the entire soil mass affected by the flowslide. 
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A further insight into the physical phenomena developing in the flowing mass is 

obtained by examining the development of pore water pressures, mean effective stress 

and the dynamics (run-out, velocity) of particular “points” within the moving soil mass 

(Fig. 7.19). P1 is initially under unsaturated conditions while P2 is below the phreatic 

level. P3 and P4, located in the valley floor, will receive the impact of the unstable soil 

mass coming from higher elevations.  

 

Figure 7.19. Position of material points selected to examine in detail their stress paths, velocity 

and displacement. 

Fig. 7.20 to Fig. 7.23 illustrate the calculated rapid variations of stresses and velocity and 

a more continuous time averaged values for a “window” interval of 50s. P1, Fig. 7.20, 

located initially at a higher elevation, experiences first a saturation when pore water 

pressures increase. The transient water pressure oscillation is shorter for this point, 

which reaches a high peak velocity (8.5m/s) at t=6.5s. This point belongs to the soil “slab” 

mentioned before which slid above a slower mass of soil, close to the substratum. This 

is indicated also by the large run-out (60m) computed for P1. 

A similar description, in qualitative terms, may be made for the remaining points 

selected to interpret the phenomenon. Results for P2 (Fig. 7.21) indicate that, once the 

instability is triggered, pore-water pressure increases until it reaches maximum values 

10s after the initiation of failure. At this time the point reaches its maximum velocity 

(2m/s) and it has travelled 10m down the slope. The mean effective stress reaches very 

small values for times in the time interval 7–12s. As pore water pressures dissipate 

beyond t = 10s, effective mean stress increases and the P2 stops (v = 0) at time t=16s. At 

this time this material point reached a displacement of 15.2m. Note that changes in 

average mean stress are a consequence of changes in total stress and pore water pressure. 

The stress path in (𝑞, 𝑝’’) space indicates the initial reduction of shear stress to very low 

values and the subsequent recover when excess water pressures reduce and total mean 

stress experiences changes due to the evolving slope geometry. 
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(a) (b) 

  

(c) (d) 

 

 

(e) (f) 

Figure. 7.20. Histories of (a) effective stress; (b) water pressure; (c) stress path; (d) velocity and 

displacement; and (e) void ratios of Point 1. 
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(a) (b) 

 

 

(c) (d) 

  

(e) (f) 

Figure 7.21. Histories of (a) effective stress; (b) water pressure; (c) stress path; (d) velocity and 

displacement; and (e) void ratios of Point 2. 
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(a) (b) 

 

 

(c) (d) 

  

(e) (f) 

Figure 7.22. Histories of (a) effective stress; (b) water pressure; (c) stress path; (d) velocity and 

displacement; and (e) void ratios of Point 3. 

P3 (Fig. 7.22), located initially in the vicinity of the river remained undisturbed for 7–8s 

after the failure triggering. Then, it received the dynamic load of the unstable soil mass 

coming from a higher elevation.  The pore pressure increased fast, it reached high values 

(700–800kPa) and decreased afterwards until t=32s. The effective mean stress reduced to 

very small values for more than 15s. However, P3 is in a constrained position because of 

the proximity of the opposite slope of the Valarties valley. Therefore, the calculated 

maximum displacement is small as well as the maximum velocity (v= 1m/s). 
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(a) (b) 

 

 

(c) (d) 

  

(e) (f) 

Figure 7.23. Histories of (a) effective stress; (b) water pressure; (c) stress path; (d) velocity and 

displacement; and (e) void ratios of Point 4. 

P4 (Fig 7.23), located on the opposite side of the valley, unlike P3, receives the impact of 

the moving mass. Its mean stress increases significantly before shear strains accumulate 

and the collapse of the soil micro-structure leads to a rapid generation of positive pore 

pressure and the liquefaction of this point in the period t=23 to 35s. Further loading from 

the landslide leads to a small increase in velocity and P4 only moves 1.35m upslope. 



CHAPTER 7 - Liquefaction-induced flow-like landslide 

143 

 

There was an interest to confirm the significance of liquefaction to explain the run-out 

of the flowslide. The idea was to check the effect of a strain softening soil behaviour 

leading to a progressive failure and the acceleration of a critical mass of the slope.  

In order to evaluate this behaviour, a strain softening Mohr-Coulomb, MPM simulation 

was performed. Since an average residual friction of 34º was measured in ring shear tests 

of the colluvium, a peak friction angle of 37º, which could be accepted as a maximum 

peak friction for the undisturbed colluvium, was selected to perform this exercise. The 

softening is simulated by reducing the effective strength parameters with the 

accumulated equivalent plastic strain. Yerro et al. (2015) provide details of the procedure.  

Following the same hypothesis assumed previously, the position of the phreatic level 

was imposed in order to simulate a limit equilibrium state before the triggering stage. 

For the peak angle of 37º, the critical phreatic level was found at a depth of 10m.  

 
Figure 7.24. Total displacement results at the end of the simulation by using the strain-softening 

Mohr-Coulomb model. 

The results (Fig. 7.24) show that introducing the softening behaviour of the soil the large 

run-out observed and the flow-like mechanism cannot be reproduced with a Mohr-

Coulomb model. The unstable mass remains in the steep slope after a moderate run-out. 

7.7 DISCUSSION 

The Valarties flowslide provided an opportunity to investigate the role of liquefaction to 

explain the mobility of a landslide in a glacial deposit of low plasticity. The work started 

by gathering field information after the failure. The observed karstic flow at the head of 

the scar left by the slide was a key information to identify the triggering of the slide. 

Field and laboratory experiments, including undrained triaxial tests, exhibit the 

liquefaction potential of the soil involved in the failure, a glacial origin low-dense silty 

sand. The tests also provided basic data to calibrate Ta-Ger model parameters. Realizing 

that a shallow thickness of the glacial colluvium could be initially unsaturated the Ta-
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Ger model was extended in a straightforward manner to deal with unsaturated 

conditions because collapse or expansion upon saturation of the glacial deposit was not 

expected in this case.  

The available information to validate the computational procedure was the stabilized 

geometry of the flowslide and its comparison with the initial topography. It was also 

investigated if a strain-softening (Mohr-coulomb) behaviour of the glacial colluvium 

could explain the observed mobility of the slide. When this model was subjected to the 

assumed triggering section (a local injection of water) the calculated run-out was limited 

(around 40 m) and the unstable mass remained on the mid slope, far from the river.  

The model offers the opportunity to follow in some particular locations the deformation 

of the unstable mass during the short time (45s according to the model) that elapsed from 

the triggering of the slide to its arrest.  

Unlike tests in laboratory (flume tests), the bedrock profile in Valarties is quite irregular. 

This feature, the present of varying suction and the inertia forces, leads to a complex 

development of the flowslide. In Valarties, according to the model, an initially unstable 

shallow surface slab overruns and erodes the underlying soil deposit. This phenomenon 

is attributed to a protuberance of the rock substrate in the middle part of the slope.  

It was also interesting to analyse the stress paths, velocities and displacements of a few 

distributed point along the initial position of the unstable soil mass. The analysis reveals 

again the variability of situations. Velocities and run-outs vary widely in the slope. It is 

observed that, after imposing the triggering failure, a water inflow, the soil located in 

the upper part of the slope became unstable, fails and liquefy. This involve the 

mobilization of a relatively small volume. The landslide evolves larger because the 

impact of the mobilized soil mass coming from higher elevations lead to liquefy the 

lower and stable soil mass located in the lower part of the slope (near to the river). 

The model could not reproduce the relatively long run-out (around 50m) of the flowslide 

on the opposite slope of the valley. This discrepancy could be attributed to the lateral 

influx of unstable soil but also to the rapid dissipation of excess pore pressures after 

liquefaction, which results in a parallel increase in mean effective stress and the gain in 

strength along the critical state line. This is shown in the stress paths calculated for a few 

points. This calculated behaviour may be a consequence of the greater than real soil 

permeability or other formulation details of the constitutive model. 
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CHAPTER 8 - CONCLUSIONS AND FUTURE 

WORK 

This final chapter aims to summarize the presented research and outline some 

conclusions. Finally, the on-going work status and the future research lines are defined. 

8.1 FINAL CONCLUSIONS 

This thesis deals with the numerical modelling of large deformations in geomechanics 

also accounting for liquefaction phenomenon in saturated and partially saturated soils. 

The main motivation of this study, the objectives and the followed methodology were 

described in the introductory chapter (Ch. 1). 

The first challenge lied in choosing a proper constitutive model able to reproduce 

complex aspects of soil behaviour under different initial states, loading and drainage 

conditions and a computational method to simulate large deformations. A description 

of the existing constitutive models and computational methods used to simulate 

liquefaction phenomenon at different levels of accuracy and applicability was 

introduced in Ch. 2. Ta-Ger model showed promising performance and was selected to 

be implemented. Among the various numerical techniques used in geomechanics, the 

Material Point Method (MPM) was considered suitable for the objective of the thesis 

since it is a powerful tool to model large deformations and multiphase materials. 

The MPM code used was presented in Ch. 3 with an overview of the available 

formulations for multi-phases materials. The 1-phase 1-point formulation can be applied 

for soil in drained and undrained conditions, when the pore pressure generation and 

dissipation are negligible, while the 2-phase formulation should be used when the soil 
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is in in partially drained conditions. Unsaturated materials can be modelled with the 

fully coupled 3-phase 1-point formulation or with a simplified formulation (2-phase 1-

point with suction effect). Some numerical features used in the calculations were 

introduced and the main contributions of this thesis to the code development were 

highlighted. 

MPM was first applied to simulate geotechnical instabilities induced by soil excavation 

(Ch. 4). A set of undrained total stresses analyses were performed to study the stability 

of strutted excavations in clay. The aim was to compare with analytical solutions the 

results in terms of bearing capacity as well as shape and location of failure surface. It 

was concluded that a proper comparison is possible if an implicit hypothesis of classical 

solutions, which consists in continuously removing soil as it rises inside the excavation, 

is accounted for. For a given initial geometry and decreasing values of strength, failure 

could be detected when an increasing soils displacement rate was observed. In the 

second example, the well-documented Corte de Pallás landslide due to the toe 

excavation was simulated. The accumulated displacements and the subsequent new 

stable configuration are well reproduced. These results contributed to the validation of 

the excavation feature implemented in Anura3D. 

A first attempt to study under seismic loading the complex landslide of Yesa was 

included in Ch. 5. First, a slope stability analysis with FEM was performed for different 

scenarios representing the landslide history and futures stabilizations measures. MPM 

was then used to carry out a motion back analysis to estimate displacements and 

deformations associated with an unstable scenario that FEM calculation could not 

provide. The implemented improvement of initial hydraulic conditions were included 

in the simulation allowing to assign specific water surfaces to the materials for the 

calculation of the initial stress distribution. Knowing that Yesa is a case of creeping slide 

motion, an analytical calculation in which it is simplified to a planar landslide was 

presented to explore the relationship between safety factor and creeping velocity and 

justify the displacements observed. Finally, the landslide response under earthquake 

excitation was performed with MPM with a focus on the interaction between the two 

superimposed sliding surfaces. The seismic action is assigned by prescribing to the MPs 

of an elastic material located at the model base a velocity-time function. Lateral 

absorbing boundaries that virtually extend the numerical model were also applied. 

Results were compared with the well-known Newmark’s method in its classical form 

and by introducing the strain-rate dependence on the residual friction angle. The results 

obtained provided a deeper understanding of Yesa landslide. 

 

A significant part of the thesis was dedicated to study the liquefaction phenomenon. The 

advanced constitutive model Ta-Ger, able to simulate liquefaction under monotonic and 

cyclic loading, was implemented in Anura3D. The algorithm validation and verification 
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was carried out in the MPM code, when possible, or externally through the simulation 

of conventional monotonic and cyclic laboratory tests (Ch. 6). 

The constitutive model could be finally applied for the simulation of a flow-like 

landslide induced by static liquefaction (Ch. 7). The aim was to provide a methodology, 

in the MPM framework, to reproduce the failure triggering and the subsequent slide-to-

flow transition. The material involved in Valarties landslide was characterized by in situ 

and laboratory tests. In particular, data from undrained triaxial tests confirmed its 

liquefaction potential and allowed to calibrate Ta-Ger model parameters. Due to the lack 

of information about the groundwater level and stress distribution, hypothetical initial 

conditions of the slope were assumed in the calculation. The model could reproduce the 

failure initiation caused by a water inflow and the large displacements, in the post-

failure stage, due to liquefaction of the unstable mass. Stress paths, velocities and 

displacements of selected MPs were also analysed to deeper understand the slope 

motion.  The final run-out was found to be affected by the relative dilatancy index 𝐼𝑟 

that, in Ta-Ger model, accounts for liquefaction susceptibility. However, the maximum 

run-out obtained was lower than the observed one. This discrepancy was attributed to 

the lateral influx of unstable soil, not accounted in the plane strain simulations, but also 

to the rapid dissipation of excess pore pressures after liquefaction. This calculated 

behaviour may be a consequence of the greater than real soil permeability. To the 

author's knowledge, this is the first application of Ta-Ger constitutive model in the study 

of a real case of landslide. 

8.2 ON-GOING WORK AND FUTURE RESEARCH 

The seismic assessment of Yesa landslide with MPM was performed with a simplified 

analysis that should be improved to account for important aspects of dynamic 

calculations. A proper constitutive model to reproduce damping increase and shear 

modulus reduction with shear strains needs to be included in the MPM model. More 

adequate boundary conditions should be also implemented to prevent waves reflection. 

Absorbing boundaries were not developed to deal with problems in which the dynamic 

source is applied as a boundary condition (e.g. earthquake motions) but, on the contrary, 

if the dynamic source is inside the mesh. 

Regarding the methodology proposed in the thesis to simulate flow-like landslides, it is 

developed in the framework of the 2-phase 1-point MPM formulation, thus, the slide-to-

flow transition is treated at constitutive level by modelling the strength loss due to the 

excess of pore water pressure development. Future research could be directed to explore 

different approaches to model this kind of landslide like the 2-phase 2-point formulation 

that enables the simulation of liquid flow through porous media. 

More general numerical issues of the used MPM code are finally highlighted. First, in 

the explicit integration scheme too low value of soil permeability results in very 
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restrictive time steps and large computational time. This issue leads to use permeability 

values greater than real ones although it may significantly affect the results. This is the 

case of Valarties where rapid dissipation of excess pore pressures did not allow to 

calculate the observed final run-out. To solve such limitation it could be interesting to 

develop a numerical procedure to pass from the fully coupled to the undrained 

formulation. Lastly, additional stabilization techniques to avoid oscillations of stresses 

and pore water pressures in the dynamic MPM formulation should be investigated. 
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ACRONYMS 

AGAUR Agency for Management of University and Research Grants 

ALE Arbitrary Lagrangian Eulerian 

CIMNE International Centre for Numerical Methods in Engineering 

DEM Discrete Element Method 

FDM Finite Difference Method 

FEM Finite Element Method 

LEM Limit Equilibrium Method 

MPM Material Point Method 

MPM-MIXED Mixed integration 

MPM-MP Standard Material Point integration 

NMD Nodal Mixed Discretization 

SPH Smoothed Particle Hydrodynamics 

UL-FEM Updated Lagrangian Finite Element Methods 
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APPENDIX 

A.1 EXTERNAL SOIL MODEL (ESM) ANURA3D INTERFACE 

      SUBROUTINE ESM(NPT,NOEL,IDSET,STRESS,EUNLOADING, 

     .PLASTICMULTIPLIER,DSTRAN,NSTATEV,STATEV,NADDVAR,ADDITIONALVAR, 

     .CMNAME,NPROPS,PROPS,NUMBEROFPHASES,NTENS) 

 

      !DEC$ ATTRIBUTES DLLEXPORT, ALIAS:"ESM" :: ESM 

      implicit double precision (a-h, o-z)        

      CHARACTER*80 CMNAME,MATTYPE     

      DIMENSION NPT(1),NOEL(1),IDSET(1),STRESS(NTENS),EUNLOADING(1), 

     .PLASTICMULTIPLIER(1),DSTRAN(NTENS),STATEV(NSTATEV), 

     .ADDITIONALVAR(NADDVAR),PROPS(NPROPS),NUMBEROFPHASES(1) 

                  

!---Local variables required in standard UMAT 

        integer :: IStep, TimeStep 

        double precision, dimension(:), allocatable :: ddsddt ! only for fully  

        !coupled thermal analysis: variation of stress increment due to  

        !temperature 

        double precision, dimension(:), allocatable :: drplde ! only for fully  

        !coupled thermal analysis: variation of volumetric heat generation due to  

        !strain increment 

        double precision, dimension(:), allocatable :: stran 

        double precision, dimension(:), allocatable :: time 

        double precision, dimension(:), allocatable :: predef 

        double precision, dimension(:), allocatable :: dpred 

     

        double precision, dimension(:), allocatable :: coords 

        double precision, dimension(:,:), allocatable :: ddsdde ! Jacobian matrix  

        !of the constitutive model (tangent stiffness matrix in case of MC) 

        double precision, dimension(:,:), allocatable :: drot 

        double precision, dimension(:,:), allocatable :: dfgrd0 

        double precision, dimension(:,:), allocatable :: dfgrd1 
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        double precision :: sse, spd, scd ! specific elastic strain energy,  

        !plastic dissipation, creep dissipation 

        double precision :: rpl ! only for fully coupled thermal analysis:  

        !volumetric heat generation 

        double precision :: drpldt ! only for fully coupled thermal analysis:  

        !variation of volumetric heat generation due to temperature 

        double precision :: pnewdt, dtime, temp, dtemp, celent 

        double precision :: Value ! auxiliary variable holding any real valued  

        !number 

        double precision :: Porosity 

        double precision :: WaterPressure, WaterPressure0 

        double precision :: GasPressure, GasPressure0, DegreeSaturation  

               

     

        integer :: ndi, nshr, layer, kspt, kstep, kinc      

 

        allocate( ddsddt(ntens), drplde(ntens), stran(ntens), time(2),  

     &          predef(6), dpred(6), coords(3), ddsdde(ntens,ntens),  

     &          drot(3,3), dfgrd0(3,3), dfgrd1(3,3) ) 

     

        ! initialization 

        Eunloading = 0.0 

        PlasticMultiplier = 0.0 

           

        ! rename additional variables 

        Predef(1) = AdditionalVar(1)      !Porosity 

        Predef(2) = AdditionalVar(2)      !WaterPressure 

        Predef(3) = AdditionalVar(3)      !WaterPressure0 

        Predef(4) = AdditionalVar(4)      !GasPressure 

        Predef(5) = AdditionalVar(5)      !GasPressure0 

        Predef(6) = AdditionalVar(6)      !DegreeSaturation 

        time(1) = AdditionalVar(7)        !TotalRealTime 

        time(2) = AdditionalVar(8)        !OverallTotalTime 

        dtime = AdditionalVar(9)          !TimeIncrement 

        IStep = AdditionalVar(10)          

        Timestep = AdditionalVar(11)      !Note: Very first time and load step:  

                                          !Istep=1 and TimeStep=1 

         

        if ((IStep == 1) .and. (TimeStep == 1))then !Initial mean effective stress       

          p  = (stress(1) + stress(2) + stress(3))/3. 

          statev(1) = -p 

        end if 

         

          call umat(stress, statev, ddsdde, sse, spd, scd, rpl, ddsddt,  

     &      drplde, drpldt, stran, dstran, time, dtime, temp, dtemp, 

     &      predef, dpred, cmname, ndi, nshr, ntens, nstatv, props,  

     &      nprops, coords, drot, pnewdt, celent, dfgrd0, dfgrd1, noel, 

     &      npt, layer, kspt, kstep, kinc) 

 

!---Definition of Eunloading -> required to define the max time step 

        Eunloading = max(ddsdde(1,1),ddsdde(2,2),ddsdde(3,3))            

 

        return 

      end subroutine ESM 
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A.2 UMAT SUBROUTINE FOR TA-GER MODEL 

*USER SUBROUTINES 

      SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD, 

     1 RPL,DDSDDT,DRPLDE,DRPLDT, 

     2 STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME, 

     3 NDI,NSHR,NTENS,NSTATEV,PROPS,NPROPS,COORDS,DROT,PNEWDT, 

     4 CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,KSTEP,KINC) 

! 

      !DEC$ ATTRIBUTES DLLEXPORT, ALIAS:"UMAT" :: UMAT 

      INCLUDE 'ABA_PARAM.INC' 

! 

      CHARACTER*80 CMNAME 

      DIMENSION STRESS(NTENS),STATEV(NSTATEV), 

     1 DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS), 

     2 STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(6),DPRED(6), 

     3 PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3) 

 

       

!*********************************************************************** 

!*            TA-GER model (Tasiopoulou & Gerolymos, 2016)             * 

!*********************************************************************** 

       

      call TaGer(STRESS,DSTRAN,NTENS,PROPS,STATEV,DDSDDE) 

       

* 

* ... end UMAT routine 

* 

      Return 

      End  

       

!*********************************************************************** 

!*                            SUBROUTINES                              *    

!***********************************************************************      

      subroutine TaGer(Sig0,dEps,ntens,Props,Statev,Ddsdde) 

      implicit none 

 

      integer :: ICOUNT 

      integer :: i,j 

      real :: rad, PI  

 

      ! Input variables 

      integer, intent(in) :: ntens 

      double precision, dimension(16),intent(in) :: Props       

      double precision, dimension(ntens), intent(in) :: dEps 

       

      ! Inout variables 

      double precision, dimension(ntens), intent(inout) :: Sig0 

      double precision, dimension(50), intent(inout) :: Statev      

 double precision, intent(inout), dimension(ntens,ntens) :: Ddsdde 

       

      ! Properties 

      double precision :: G0,m,ni ! Elasticity 

      double precision :: Q_bolton,R_bolton ! Bounding surface and dilatancy       
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      double precision :: e0,emin,emax ! Void ratios 

      double precision :: phics ! Critical friction angle 

      double precision :: delta,kappa ! Calibration coefficients 

       

      ! State variables 

      double precision :: p0,e,dW_old,rp(ntens),EpsD 

       

      ! Constants 

      double precision :: Dr0,Ir0 ! Initial value of relative density and  

      ! relative dilatancy index  

      double precision :: n,c,phi0 ! Parameters depending on initial state       

      double precision :: Ms0 ! Initial value of bounding stress ratio 

      double precision :: Mcs ! Critical state 

      double precision :: phimax,gab ! Peak friction angle 

       

      ! Substepping variables 

      double precisión :: Rn ! Relative error 

      double precisión :: STOL ! Tolerance relative error 

      double precisión :: T,T1,DT,beta,DTmin ! Pseudo times       

      double precision, dimension(ntens) :: Sig2,dSig1,dSig2,SigP,SigC 

      double precision, dimension(ntens) :: Stress 

      double precision, dimension(ntens) :: SUBdEps ! Trial strain increment 

      double precisión :: SUBdEpsV,SUBdEpsD ! Volumetric and deviatoric 

      ! component of trial strain increment 

      double precision, dimension(ntens) :: SUMEps ! Trial accumulated strains 

      double precisión :: SUMEpsD ! Deviatoric component of trial accumulated 

      ! strains 

      double precisión :: p2,q2 ! Mean and deviatoric component of second order 

      ! estimate of stress    

       

      ! Local variables   

      double precision, dimension(ntens)  :: Sig ! Stress      

      double precisión :: p,q ! Mean and deviatoric stress 

      double precision, dimension(ntens)  :: n_,s,r,rc ! Stress tensors 

      double precisión :: np,qp,dW,nr  

      double precisión :: I1,I2,I3,J2,J3 ! Stress invariants 

      double precisión :: Lode,Msteta,chi ! Lode angle dependency 

      double precision, dimension(ntens)  :: GRADf,GRADg ! Bounding surface and  

      ! plastic potential gradient       

      double precision, dimension(ntens,ntens):: De,Dp,Dep ! Stiffness matrix           

       

      double precision :: G,K ! Elastic moduli      

      double precision :: Dr,Ir ! Current value relative density and relative  

      ! dilatancy index 

      double precision :: Ms,Mspeak,Msp ! Bounding surface parameters 

      double precision :: d ! Dilatancy 

      double precision :: zeta ! Hardening parameter 

      double precision :: Mpt0,Mpt ! Phase transformation parameters 

      double precision :: Porosity,BulkW 

 

      G0          = Props(1) 

      m           = Props(2) 

      ni          = Props(3) 

      Q_bolton    = Props(4) 
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      R_bolton    = Props(5) 

      e0          = Props(6) 

      emin        = Props(7) 

      emax        = Props(8) 

      phics       = Props(9) 

      delta       = Props(10) 

      kappa       = Props(11) 

       

      PI = 3.141592653589793238462643383279502884197169399d0 

      rad = 180.0d0/PI 

       

!************************************************************************** 

!                              Initialization                             * 

!************************************************************************** 

 

      Sig = Sig0 

       

      ! State variables 

      p0 = statev(1) ! This value is not updated in the subroutine despite  

                     ! it is defined as state variable 

      e  = statev(2) 

      dW_old = statev(3) 

      do i = 1,ntens 

          rp(i) = statev(3+i) 

      end do 

      EpsD = statev(10) 

      BulkW = statev(11) 

       

      ! Parameters depending on initial state 

      Dr0 = (emax - e)/(emax - emin) 

      Ir0 = Dr0 * (Q_bolton - log(p0)) - R_bolton  

       

      n = 0.4*Dr0 +0.14   

      phi0 = kappa * phics + 5 * Ir0 

      c = 6 + delta * Ir0     

 

      if (phi0 < phics) then ! Initial value of bounding stress ratio  

          Ms0 = 6.*sin(phi0/rad) / (3.-sin(phi0/rad)) 

      else 

          Ms0 = 6.*sin(0.99*phics/rad) / (3.-sin(0.99*phics/rad)) 

      end if       

 

      ! Critical value of bounding stress ratio 

      Mcs = 6.*sin(phics/rad) / (3.-sin(phics/rad)) 

       

      ! Peak friction angle coefficient 

      gab = 5.    ! 5 for plain strain, 3 for triaxial 

          

!************************************************************************** 

!                              Substepping                                * 

!************************************************************************** 

 

      ! Tolerances 

      STOL  = 0.001d0 
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      DTmin = 0.0001d0 

       

      T  = 0.0d0 

      DT = 1.0d0             

 

      do while (T < 1) 

      Rn = 100 

      ICOUNT = 0         

 

          do while (Rn > STOL .and. ICOUNT < 1000)        

               

            SUBdEps = DT * dEps 

 

            call getDevVolStrain (SUBdEps,SUBdEpsV,SUBdEpsD,ntens) 

            SUMEpsD = EpsD + SUBdEpsD 

 

            call getPQ(Sig,p,q,ntens) 

 

            Dr = (emax - e)/(emax - emin) 

            Ir = Dr * (Q_bolton - log(p)) - R_bolton 

 

            call getStressInvariants(Sig,I1,I2,I3,J2,J3,Lode,ntens) 

 

            call getMs(SUMEpsD,phics,Mcs,Ms0,c,Mspeak,Msp,Ir,Ms,gab)    

            call getMsteta(Ms,Lode,chi,Msteta) 

            call getStressTensor(p,zeta,Sig,SUBdEps,rp,n_,r,np,qp,nr, 

     *                           dW_old,dW,ntens)  

            call getHardeningParameter(Ms,qp,p,np,chi,zeta) 

            call getMpt(SUMEpsD,zeta,chi,Mcs, 

     *                  Mspeak,c,Ir,Mpt0,n,Mpt) 

            d = sqrt(2./3.)*Mpt*chi - nr 

 

            call getGRAD (d,n_,nr,GRADg,GRADf,ntens)       

 

            call getElasticMatrix (p,G0,m,ni,G,K,De,ntens) 

            call getPlasticMatrix (zeta,n,GRADg,GRADf,De,Dp,ntens) 

           

            Dep = De - Dp 

    

   select case(ntens) 

                case(4) 

     do i = 1,4 

                  dSig1(i) = Dep(i,1) * SUBdEps(1) + Dep(i,2) *  

     *                SUBdEps(2) + Dep(i,3) * SUBdEps(3) + Dep(i,4) * 

     *                SUBdEps(4)  

              end do 

    case(6) 

              do i = 1,6 

                  dSig1(i) = Dep(i,1) * SUBdEps(1) + Dep(i,2) *  

     *                SUBdEps(2) + Dep(i,3) * SUBdEps(3) + Dep(i,4) *  

     *                SUBdEps(4) + Dep(i,5) * SUBdEps(5) + Dep(i,6) * 

     *                SUBdEps(6)  

              end do 

   end select 
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            ! Calculate a second order estimate of stress 

            Sig2 = Sig + dSig1 

      

            call getPQ(Sig2,p2,q2,ntens) 

 

            Dr = (emax - e)/(emax - emin) 

            Ir = Dr * (Q_bolton - log(p2)) - R_bolton 

 

            call getStressInvariants(Sig2,I1,I2,I3,J2,J3,Lode,ntens)   

             

            call getMs(SUMEpsD,phics,Mcs,Ms0, c,Mspeak,Msp,Ir,Ms,gab)  

            call getMsteta(Ms,Lode,chi,Msteta)  

            call getStressTensor(p2,zeta,Sig2,SUBdEps,rp,n_,r,np,qp,nr, 

     *                           dW_old,dW,ntens)                     

            call getHardeningParameter(Ms,qp,p2,np,chi,zeta) 

            call getMpt(SUMEpsD,zeta,chi,Mcs, 

     *                  Mspeak,c,Ir,Mpt0,n,Mpt) 

       

            d = sqrt(2./3.)*Mpt*chi - nr 

 

            call getGRAD (d,n_,nr,GRADg,GRADf,ntens) 

       

            call getElasticMatrix (p2,G0,m,n,G,K,De,ntens)    

            call getPlasticMatrix (zeta,n,GRADg,GRADf,De,Dp,ntens) 

 

            Dep = De - Dp 

           

            select case(ntens) 

                case(4) 

                    do i = 1,4 

                        dSig2(i) = Dep(i,1) * SUBdEps(1) + Dep(i,2) *  

     *                  SUBdEps(2) + Dep(i,3) * SUBdEps(3) + Dep(i,4) *  

     *                  SUBdEps(4)                              

                    end do 

                case(6) 

                    do i = 1,6 

                        dSig2(i) = Dep(i,1) * SUBdEps(1) + Dep(i,2) *  

     *                  SUBdEps(2) + Dep(i,3) * SUBdEps(3) + Dep(i,4) *  

     *                  SUBdEps(4) + Dep(i,5) * SUBdEps(5) + Dep(i,6) *  

     *                  SUBdEps(6)  

                    end do 

            end select 

 

            SigP = Sig + (dSig1 + dSig2)/2. 

             

            ! Estimating error 

   select case(ntens) 

    case(4) 

    Rn = 0.5 * sqrt(((dSig2(1) - dSig1(1))**2. + (dSig2(2) 

-    

     *           dSig1(2))**2. + (dSig2(3) - dSig1(3))**2. + (dSig2(4) - 

     *            dSig1(4))**2.)/(SigP(1)**2. + SigP(2)**2. +  

     *              SigP(3)**2. * SigP(4)**2.)) 



APPENDIX 

174 

 

    case(6) 

    Rn = 0.5 * sqrt(((dSig2(1) - dSig1(1))**2. + (dSig2(2) 

-    

     *            dSig1(2))**2. + (dSig2(3) - dSig1(3))**2. +  

     *            (dSig2(4) - dSig1(4))**2. + (dSig2(5) - dSig1(5))**2.  

     *            + (dSig2(6) - dSig1(6))**2.)/(SigP(1)**2. +  

     *              SigP(2)**2. + SigP(3)**2. + SigP(4)**2. + SigP(5)**2. 

     *              + SigP(6)**2.)) 

   end select 

 

            if (DT == DTmin) then  

            exit 

            end if 

 

            ! If Rn>STOL, the loop is not finished and the substep is  

            !recalculated smaller 

            if (Rn > STOL) then 

                beta = max (0.9d0*(sqrt(STOL/Rn)), 0.1d0) 

                DT = max (DT*beta, DTmin) 

                ICOUNT = ICOUNT + 1   ! Update counter      

            end if 

 

! ************* Check that stresses are inside the bounding surface ************* 

 

          call getPQ(SigP,p,q,ntens) 

 

          Dr = (emax - e)/(emax - emin)            

          Ir = Dr * (Q_bolton - log(p)) - R_bolton           

             

          call getStressInvariants(SigP,I1,I2,I3,J2,J3,Lode,ntens)      

 

          call getMs(SUMEpsD,phics,Mcs,Ms0,c,Mspeak,Msp,Ir,Ms,gab)      

          call getMsteta(Ms,Lode,chi,Msteta)  

          call getStressTensor(p,zeta,SigP,SUBdEps,rp,n_,r,np,qp,nr, 

     *                         dW_old,dW,ntens)                     

          call getHardeningParameter(Ms,qp,p,np,chi,zeta) 

           

          do while (zeta > 1.001) 

          Stress = SigP 

          call getPQ(Stress,p,q,ntens)      

          call getStressTensor(p,zeta,Stress,SUBdEps,rp,n_,r,np,qp,nr, 

     *                         dW_old,dW,ntens)           

          call getHardeningParameter(Ms,qp,p,np,chi,zeta) 

          rc = r/zeta 

           

          SigC(1) = - rc(1)*p - p 

          SigC(2) = - rc(2)*p - p 

          SigC(3) = - rc(3)*p - p 

          SigC(4) = - rc(4)*p 

           

          call getPQ(SigC,p,q,ntens)      

          call getStressTensor(p,zeta,SigC,SUBdEps,rp,n_,r,np,qp,nr, 

     *                         dW_old,dW,ntens)           

          call getHardeningParameter(Ms,qp,p,np,chi,zeta) 
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          SigP = SigC 

          end do 

           

          ! ********************************************************************* 

           

          SigC = SigP             

           

          end do 

 

      ! Update stress and strain 

      Sig = SigC 

      EpsD = SUMEpsD 

 

      call getPQ(Sig,p,q,ntens) 

       

      Dr = (emax - e)/(emax - emin) 

      Ir = Dr * (Q_bolton - log(p)) - R_bolton 

       

      call getStressInvariants(Sig,I1,I2,I3,J2,J3,Lode,ntens)         

 

      call getMs(EpsD,phics,Mcs,Ms0, c,Mspeak,Msp,Ir,Ms,gab) 

      call getMsteta(Ms,Lode,chi,Msteta) 

      call getStressTensor(p,zeta,Sig,SUBdEps,rp,n_,r,np,qp,nr,dW_old, 

     *                  dW,ntens) ! Update stress ratio tensor at reversal point   

      call getHardeningParameter(Ms,qp,p,np,chi,zeta) 

      call getMpt(EpsD,zeta,chi,Mcs,Mspeak,c,Ir, 

     *            Mpt0,n,Mpt)   

 

      d = sqrt(2./3.)*Mpt*chi - nr 

       

      call getElasticMatrix (p,G0,m,ni,G,K,De,ntens) 

       

      ! Tangent stiffness matrix to be returned (done by elastic stiffness) 

      Ddsdde(1,1) = De(1,1) 

      Ddsdde(2,2) = De(2,2) 

      Ddsdde(3,3) = De(3,3) 

      Ddsdde(4,4) = De(4,4)/2 

      if (ntens == 6)then 

      Ddsdde(5,5) = De(5,5)/2 

      Ddsdde(6,6) = De(6,6)/2 

      end if 

 

      e = SUBdEpsV * (1+e) + e    

      Porosity = e /(1 + e) 

       

      ! To be defined for undrained calculations 

      BulkW = Porosity * (2.*G/3. * (((1.+0.49)/(1.-2.*0.49)) -  

     *        (1.+ni)/(1.-2.*ni))) 

       

      T1 = T + DT 

      if (T1 >= 1d0) then 

           

        do i = 1,ntens 
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          Sig0(i) = Sig(i)        

        end do 

         

        ! Update state variables   

        statev(1) = p0   

        statev(2) = e  

        statev(3) = dW_old  

        do i = 1,ntens 

            statev(3+i) = rp(i) 

        end do 

        statev(10) = EpsD 

        statev(11) = BulkW  

         

      return 

      end if 

       

      beta = min(0.9d0*sqrt(STOL/Rn), 1.1d0)  ! If T1<1, calculation of  

                                              ! the next substep DT 

       

      if (ICOUNT > 1) then    ! The previous step failed             

         beta = min (beta, 1.0d0)       

      end if 

       

      DT = beta * DT     

      DT = max (beta * DT, DTmin) 

      DT = min (DT, 1.0d0-T1)  

      T = T1 

 

      end do 

 

      end subroutine TaGer 

 

!************************************************************************** 

       

      subroutine getDevVolStrain(Eps,EpsV,EpsD,ntens) 

      implicit none 

      integer, intent(in)  :: ntens 

      double precision, intent(in)   :: Eps(ntens) 

      double precision, intent(out)  :: EpsV, EpsD 

       

      EpsV = Eps(1) + Eps(2) + Eps(3)  

       

      select case(ntens) 

      case(4) 

          EpsD = sqrt(2./3.) * sqrt( (Eps(1)-EpsV/2.)**2. +          

     *           (Eps(2)-EpsV/2.)**2. + (Eps(3)-EpsV/2.)**2. +        

     *           (Eps(4)**2.)/2.)   

      case(6) 

          EpsD = sqrt(2./3.) * sqrt( (Eps(1)-EpsV/3.)**2. +           

     *           (Eps(2)-EpsV/3.)**2. + (Eps(3)-EpsV/3.)**2. +         

     *           (Eps(4)**2.)/2. + (Eps(5)**2.)/2. + (Eps(6)**2.)/2.) 

      end select 

  

      end subroutine getDevVolStrain 
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!******************************************** 

       

      subroutine getStressInvariants(Sig,I1,I2,I3,J2,J3,Lode,ntens) 

      implicit none 

      integer, intent(in)  :: ntens 

      double precision, dimension(ntens), intent (in) :: Sig 

      double precision, intent (inout)            :: I1,I2,I3,J2,J3 

      double precision, intent (out)              :: Lode 

      double precision, dimension(6)              :: Stress 

 

      Stress = - Sig 

       

      select case(ntens) 

        case(4) 

            I1 = Stress(1) + Stress(2) + Stress(3) 

            I2 = Stress(1)*Stress(2) + Stress(2)*Stress(3) +  

     *           Stress(3)*Stress(1) - Stress(4)**2. 

            I3 = Stress(1)*Stress(2)*Stress(3) -  

     *           Stress(3)*(Stress(4))**2.                              

            J2 = (1./6.) * ((Stress(1)-Stress(2))**2. +                 

     *           (Stress(2)-Stress(3))**2. + (Stress(3)-Stress(1))**2. + 

     *           6*Stress(4)**2.)              

        case(6) 

            I1 = Stress(1) + Stress(2) + Stress(3) 

            I2 = Stress(1)*Stress(2) + Stress(2)*Stress(3) +  

     *           Stress(3)*Stress(1) - Stress(4)**2. - Stress(5)**2. -  

     *           Stress(6)**2. 

            I3 = Stress(1)*Stress(2)*Stress(3) +  

     *           2.*Stress(4)*Stress(5)*Stress(6) -  

     *           Stress(1)*(Stress(5))**2. -   

     *           Stress(1)*(Stress(5))**2. -  

     *           Stress(2)*(Stress(6))**2. -               

     *           Stress(3)*(Stress(4))**2.                              

            J2 = (1./6.) * ((Stress(1)-Stress(2))**2. +              

     *           (Stress(2)-Stress(3))**2. + (Stress(3)-Stress(1))**2. + 

     *           6.*Stress(4)**2. + 6.*Stress(5)**2. + 6*Stress(6)**2.)  

      end select       

       

      J3 = (2./27.) * I1**3. - (1./3.)*I1*I2 + I3 

       

      if (J2 /= 0.0)then 

          Lode = 3.*sqrt(3.)*J3/(2. * (J2)**(3./2.)) 

      else  

          Lode = 1.0 ! Isotropic compression 

      end if 

       

      end subroutine getStressInvariants 

       

!************************************************************************** 

       

      subroutine getPQ(Sig,p,q,ntens) 

      implicit none 

      integer, intent(in) :: ntens 
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      double precision, dimension(ntens), intent (inout) :: Sig 

      double precision, intent (out) :: p,q 

      double precision :: tiny,Stress(6) 

 

      Stress = - Sig 

      tiny = 0.005 

       

      q = 0. 

      do while (q < tiny) 

      if (Stress(1) < tiny)  Stress(1) = tiny ! tension cut-off in x-direction 

      if (Stress(2) < tiny)  Stress(2) = tiny ! tension cut-off in y-direction 

      if (Stress(3) < tiny)  Stress(3) = tiny ! tension cut-off in z-direction 

       

      p  = (stress(1) + stress(2) + stress(3))/3. ! mean effective stress  

       

      ! deviatoric stress 

      select case(ntens) 

      case(4) 

          q  = sqrt(0.5*  ( (stress(1)-stress(2))**2. +  

     *         (stress(2)-stress(3))**2. + (stress(3)-stress(1))**2. +  

     *         6.*( stress(4)**2.)))   

      case(6) 

          q  = sqrt(0.5*  ( (stress(1)-stress(2))**2. +  

     *         (stress(2)-stress(3))**2. + (stress(3)-stress(1))**2. +  

     *         6.*( stress(4)**2. + stress(5)**2. + stress(6)**2.)))    

      end select 

       

      if (q < tiny) stress(1) = stress(1) + tiny/3. 

      end do 

       

      Sig = - Stress 

 

      end subroutine getPQ 

       

!******************************************** 

       

      subroutine getMs (EpsD,phics,Mcs,Ms0,c,Mspeak,Msp,Ir,Ms,gab)  

      implicit none 

 

      double precision                :: rad,PI 

      double precision                :: Dd,Dd1 

      double precision, intent(in)    :: EpsD 

      double precision, intent(in)    :: phics,Mcs                    

      double precision, intent(in)    :: Ms0,c                       

      double precision, intent(out)   :: Mspeak,Msp 

      double precision, intent(in)    :: Ir 

      double precision, intent(in)    :: gab  

      double precision, intent(out)   :: Ms 

       

      PI = 3.141592653589793238462643383279502884197169399d0             

      rad = 180.0d0/PI 

       

      if ((phics + gab*Ir) >= phics) then 

          Mspeak = 6*sin((phics + gab*Ir)/rad)/(3-sin((phics + gab*Ir) 
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     *             /rad)) 

      else  

          Mspeak = 6.*sin((phics)/rad)/(3.-sin((phics)/rad)) 

      end if 

       

      Dd1 = (2.*Mcs-4.*Mspeak)**2. - 16.*Ms0*(Mspeak-Mcs) - 4.*Mcs**2.  

       

      if (Dd1 > 0.0)then 

          Dd = Dd1 

      else 

          Dd = 0.0 

      end if 

 

      Msp = 2.*Mspeak - Mcs + 0.5*sqrt(Dd)      

      Ms = Mcs + (Msp + ( Ms0-Msp ) * exp(-c*EpsD) - Mcs) * exp(-c*EpsD) 

 

      end subroutine getMs 

 

!******************************************** 

       

      subroutine getMpt (EpsD,zeta,chi, 

     *                   Mcs,Mspeak,c,Ir,Mpt0,n,Mpt) 

      implicit none 

      double precision, intent(in)    :: EpsD,zeta,chi 

      double precision, intent(in)    :: Mcs ! Critical state ratio 

      double precision, intent(in)    :: Mspeak,c ! Ultimate strength line  

                                                  ! parameters 

      double precision, intent(in)    :: Ir ! Relative dilatancy index 

      double precision, intent(inout) :: Mpt0,n ! Phase transformation line  

                                                ! parameters 

      double precision, intent(out)   :: Mpt  

 

      if (Ir > 0.0d0)then 

      Mpt0 = Mspeak * zeta**n - (3.*0.3*Ir)/((3.+0.3*Ir)*chi) 

      else 

      Mpt0 = Mspeak * zeta**n 

      end if 

 

      Mpt = Mcs + (Mpt0 - Mcs) * exp(-0.5*c * EpsD) 

       

      end subroutine getMpt 

 

!******************************************** 

       

      subroutine getMsteta(Ms,Lode,chi,Msteta)      

      implicit none 

      double precision, intent(in)    :: Ms,Lode 

      double precision                :: Mc,Me,Mss 

      double precision                :: rad,PI,phi 

      double precision, intent(out)   :: chi,Msteta    

 

      PI = 3.141592653589793238462643383279502884197169399d0          

      rad = 180.0d0/PI 
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      phi = asin(3.*Ms/(6.+Ms)) 

      Me = 6.*sin(phi)/(3.+sin(phi)) 

      Mss = 2.*sin(phi) 

 

      Msteta = ((Ms + Me)/2. - Mss) * (Lode)**2. + (Ms-Me)/2. * Lode +  

     *         Mss 

       

      chi = Msteta/Ms  

 

      end subroutine getMsteta 

 

!******************************************** 

       

      subroutine getStressTensor(p,zeta,Sig,Eps,rp,n_,r,np,            

     *                           qp,nr,dW_old,dW,ntens) 

      implicit none 

      integer :: i 

      integer, intent(in) :: ntens 

      double precision, intent(in) :: p,zeta 

      double precision, dimension(ntens), intent(in) :: Sig,Eps 

      double precision, dimension(ntens), intent(inout) :: rp,n_,r 

      double precision, intent(inout) :: dW_old,dW,np,qp,nr 

      double precision :: Stress(ntens),s(ntens),np1 

       

      Stress = - Sig 

           

      s(1) = Stress(1)-p 

      s(2) = Stress(2)-p 

      s(3) = Stress(3)-p 

      s(4) = Stress(4) 

       

      if (ntens == 6) then 

      s(5) = Stress(5) 

      s(6) = Stress(6) 

      end if 

 

      if (p <= 0.0)then 

          r = 0 

      else 

          r = s/p 

      end if 

       

      select case(ntens) 

        case(4) 

            dW = (r(1) - rp(1))*Eps(1) + (r(2) - rp(2))*Eps(2) +        

     *           (r(3) - rp(3))*Eps(3) + 2.*(r(4) - rp(4))*Eps(4) 

        case(6) 

            dW = (r(1) - rp(1))*Eps(1) + (r(2) - rp(2))*Eps(2) +        

     *           (r(3) - rp(3))*Eps(3) + 2.*(r(4) - rp(4))*Eps(4) +     

     *           2.*(r(5) - rp(5))*Eps(5) + 2.*(r(6) - rp(6))*Eps(6) 

      end select 

 

      if ((dW * dW_old <= 0.0d0) .and. (dW_old .ne. 0.0d0)           

     *   .and. (zeta /= 0.0d0)) then 
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         rp = r 

      end if 

      dW_old = dW 

 

      select case(ntens) 

          case(4) 

              qp = sqrt((r(1)*p - rp(1)*p)**2. + (r(2)*p - rp(2)*p)**2. 

     *             + (r(3)*p - rp(3)*p)**2. + 2.*(r(4)*p - rp(4)*p)**2.) 

          case(6) 

              qp = sqrt((r(1)*p - rp(1)*p)**2. + (r(2)*p - rp(2)*p)**2.  

     *             + (r(3)*p - rp(3)*p)**2. + 2.*(r(4)*p - rp(4)*p)**2.  

     *             + 2.*(r(5)*p - rp(5)*p)**2 + 2.*(r(6)*p -  

     *             rp(6)*p)**2.) 

      end select  

       

      if (qp /= 0)then 

            n_ = (s - rp*p)/qp 

      else 

            n_ = 0.0 

      end if 

      

      select case(ntens) 

        case(4) 

            np1 = n_(1) * rp(1) + n_(2) * rp(2) + n_(3) * rp(3) +  

     *            2.*(n_(4) * rp(4)) 

        case(6) 

            np1 = n_(1) * rp(1) + n_(2) * rp(2) + n_(3) * rp(3) +  

     *            2.*(n_(4) * rp(4)) + 2.*(n_(5) * rp(5)) + 2.*(n_(6)  

     *            * rp(6)) 

      end select 

       

      if (np1 > 0.0d0)then 

           np = 0.0 

      else  

           np = np1 

      end if 

 

      select case(ntens) 

        case(4) 

            nr = n_(1)*r(1) + n_(2)*r(2) + n_(3)*r(3) + 2.*n_(4)*r(4) 

        case(6) 

            nr = n_(1)*r(1) + n_(2)*r(2) + n_(3)*r(3) + 2.*n_(4)*r(4)    

     *           + 2.*n_(5)*r(5) + 2.*n_(6)*r(6) 

      end select 

 

      end subroutine getStressTensor 

 

!******************************************** 

       

      subroutine getHardeningParameter(Ms,q,p,np,chi,zeta) 

      implicit none 

      double precision, intent(in)    :: q,p 

      double precision, intent(in)    :: np,chi 

      double precision, intent(in)    :: Ms 
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      double precision, intent(out)   :: zeta 

      double precision                :: zeta1 

  

      if (p <= 0.0)then 

          zeta1 = 0.0 

      else 

          zeta1 = (q/p) / (sqrt(2./3.) * Ms * chi - np) 

      end if 

 

      zeta = zeta1 

 

      end subroutine getHardeningParameter 

       

!******************************************** 

       

      subroutine getGRAD (d,n_,nr,GRADg,GRADf,ntens) 

      implicit none 

      integer, intent(in)  :: ntens 

      double precision, intent(in) :: d,nr 

      double precision, dimension(ntens), intent(inout) :: n_ 

      double precision, dimension(ntens), intent(out)   :: GRADf,GRADg 

       

      select case(ntens) 

        case(4) 

            GRADg(1) = n_(1) + (n_(1)**2. + n_(4)**2) * d 

            GRADg(2) = n_(2) + (n_(2)**2. + n_(4)**2) * d 

            GRADg(3) = n_(3) + (n_(3)**2.) * d     

            GRADg(4) = 2.*n_(4) + (n_(1)*n_(4) + n_(2)*n_(4))*d 

       

            GRADf(1) = n_(1) - (1./3.)*nr 

            GRADf(2) = n_(2) - (1./3.)*nr 

            GRADf(3) = n_(3) - (1./3.)*nr 

            GRADf(4) = 2.*n_(4) 

        case(6) 

            GRADg(1) = n_(1) + (n_(1)**2. + n_(4)**2. + n_(6)**2) * d 

            GRADg(2) = n_(2) + (n_(2)**2. + n_(4)**2. + n_(5)**2) * d 

            GRADg(3) = n_(3) + (n_(3)**2. + n_(6)**2. + n_(5)**2) * d   

            GRADg(4) = 2.*n_(4) + (n_(1)*n_(4) + n_(2)*n_(4) +  

     *                 n_(6)*n_(5))*d 

            GRADg(5) = 2.*n_(5) + (n_(4)*n_(6) + n_(2)*n_(5) +  

     *                 n_(5)*n_(3))*d 

            GRADg(6) = 2.*n_(6) + (n_(1)*n_(6) + n_(4)*n_(5) +  

     *                 n_(6)*n_(3))*d 

       

            GRADf(1) = n_(1) - (1./3.)*nr 

            GRADf(2) = n_(2) - (1./3.)*nr 

            GRADf(3) = n_(3) - (1./3.)*nr 

            GRADf(4) = 2.*n_(4) 

            GRADf(5) = 2.*n_(5) 

            GRADf(6) = 2.*n_(6) 

      end select 

                

      end subroutine getGRAD 
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!******************************************** 

       

      subroutine getElasticMatrix (p,G0,m,ni,G,K,De,ntens) 

 

      implicit none 

      double precision :: G1 

      double precision :: E1,E2 

       

      integer, intent(in) :: ntens            

      double precision, intent(in) :: p,G0,m,ni 

      double precision, intent(inout) :: G,K 

      double precision, dimension(ntens,ntens), intent(out) :: De 

 

      G1 = G0 * (p)** m  

 

      if (G1 < G0/10.)then 

          G = G0/10.     

      else if (G1 > 10.*G0)then 

          G = 10.*G0 

      else 

          G = G1 

      end if 

 

      K = 2.*G*(1.+ni)/(3.*(1.-2.*ni)) 

      E1 = K + 4.*G/3. 

      E2 = K - 2.*G/3. 

       

      select case(ntens) 

        case(4) 

            De(1,1) = E1 

            De(1,2) = E2 

            De(1,3) = E2 

            De(1,4) = 0.0 

 

            De(2,1) = E2 

            De(2,2) = E1 

            De(2,3) = E2 

            De(2,4) = 0.0 

       

            De(3,1) = E2 

            De(3,2) = E2 

            De(3,3) = E1 

            De(3,4) = 0.0 

       

            De(4,1) = 0.0 

            De(4,2) = 0.0 

            De(4,3) = 0.0 

            De(4,4) = 2.*G 

        case(6) 

            De(1,1) = E1 

            De(1,2) = E2 

            De(1,3) = E2 

            De(1,4) = 0.0 

            De(1,5) = 0.0 
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            De(1,6) = 0.0 

 

            De(2,1) = E2 

            De(2,2) = E1 

            De(2,3) = E2 

            De(2,4) = 0.0 

            De(2,5) = 0.0 

            De(2,6) = 0.0 

       

            De(3,1) = E2 

            De(3,2) = E2 

            De(3,3) = E1 

            De(3,4) = 0.0 

            De(3,5) = 0.0 

            De(3,6) = 0.0 

       

            De(4,1) = 0.0 

            De(4,2) = 0.0 

            De(4,3) = 0.0 

            De(4,4) = 2.*G 

            De(4,5) = 0.0 

            De(4,6) = 0.0 

       

            De(5,1) = 0.0 

            De(5,2) = 0.0 

            De(5,3) = 0.0 

            De(5,4) = 0.0 

            De(5,5) = 2.*G 

            De(5,6) = 0.0 

       

            De(6,1) = 0.0 

            De(6,2) = 0.0 

            De(6,3) = 0.0 

            De(6,4) = 0.0 

            De(6,5) = 0.0 

            De(6,6) = 2.*G 

      end select      

       

      end subroutine getElasticMatrix     

       

!******************************************** 

 

      subroutine getPlasticMatrix (zeta,n,GRADg,GRADf,De,Dp,ntens) 

      implicit none 

      integer :: i 

      double precision :: S 

      integer, intent(in) :: ntens 

      double precision,dimension(ntens) :: F,G     

      double precision, intent(in) :: zeta,n  

      double precision, dimension(ntens), intent(in) :: GRADg,GRADf 

      double precision, dimension(ntens,ntens), intent(in) :: De 

      double precision, dimension(ntens,ntens), intent(out) :: Dp 

 

      select case(ntens) 
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        case(4) 

            do i = 1,4 

            F(i) = GRADf(1)*De(i,1) + GRADf(2)*De(i,2) +  

     *             GRADf(3)*De(i,3) + GRADf(4)*De(i,4) 

            G(i) = GRADg(1)*De(i,1) + GRADg(2)*De(i,2) +  

     *             GRADg(3)*De(i,3) + GRADg(4)*De(i,4) 

            end do 

       

            S = GRADg(1) * F(1) + GRADg(2) * F(2) +  GRADg(3) * F(3) +   

     *          GRADg(4) * F(4) 

    

        if (S /= 0.0)then           

            do i = 1,4 

            Dp(1,i) = zeta**n/S * F(i) * G(1) 

            Dp(2,i) = zeta**n/S * F(i) * G(2) 

            Dp(3,i) = zeta**n/S * F(i) * G(3) 

            Dp(4,i) = zeta**n/S * F(i) * G(4) 

          end do            

        else          

          Dp = 0.0           

        end if 

        case(6) 

            do i = 1,6 

            F(i) = GRADf(1)*De(i,1) + GRADf(2)*De(i,2) +  

     *             GRADf(3)*De(i,3) + GRADf(4)*De(i,4) +  

     *             GRADf(5)*De(i,5) + GRADf(6)*De(i,6) 

            G(i) = GRADg(1)*De(i,1) + GRADg(2)*De(i,2) +  

     *             GRADg(3)*De(i,3) + GRADg(4)*De(i,4) +  

     *             GRADg(5)*De(i,5) + GRADg(6)*De(i,6) 

            end do 

       

        S = GRADg(1) * F(1) + GRADg(2) * F(2) +  GRADg(3) * F(3) +     

     *      GRADg(4) * F(4) + GRADg(5) * F(5) +  GRADg(6) * F(6) 

    

        if (S /= 0.0)then           

          do i = 1,6 

              Dp(1,i) = zeta**n/S * F(i) * G(1) 

              Dp(2,i) = zeta**n/S * F(i) * G(2) 

              Dp(3,i) = zeta**n/S * F(i) * G(3) 

              Dp(4,i) = zeta**n/S * F(i) * G(4) 

              Dp(5,i) = zeta**n/S * F(i) * G(5) 

              Dp(6,i) = zeta**n/S * F(i) * G(6) 

          end do            

        else          

          Dp = 0.0           

        end if       

      end select 

       

      end subroutine getPlasticMatrix 

       

!******************************************** 


