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A B S T R A C T

In this paper, a numerical methodology based on a two-and-a-half-dimensional (2.5D) singular boundary
method (SBM) to deal with acoustic radiation and scattering problems in the context of longitudinally invariant
structures is proposed and studied. In the proposed 2.5D SBM, the desingularisation provided by the subtracting
and adding-back technique is used to determine the origin intensity factors (OIFs). These OIFs are derived by
means of the OIFs of the Laplace equation. The feasibility, validity and accuracy of the proposed method are
demonstrated for three acoustic benchmark problems, in which detailed comparisons with analytical solutions,
the 2.5D boundary element method (BEM) and the 2.5D method of fundamental solutions (MFS) are performed.
As a novelty of the present study, it is found that the 2.5D SBM provides a higher numerical accuracy than
the 2.5D linear-element BEM and lower than the 2.5D quadratic-element BEM. Although the results obtained
depict that a nodal approximation of the boundary geometry leads to a significant reduction in the accuracy
of the 2.5D SBM, the delivered errors are still acceptable. For complex geometries, the 2.5D SBM is found to
be simpler and more robust than the 2.5D MFS, since no optimization procedure is required.
1. Introduction

Problems related to acoustic waves propagation in unbounded do-
mains are frequently encountered in many engineering applications.
The domain-type discretization methods, such as the finite element
method (FEM), are not efficient when dealing with this kind of prob-
lems, since they require a massive domain meshing, especially at high
frequencies, which is often computationally costly [1]. As an alterna-
tive approach, the boundary element method (BEM) is found to be
more efficient for unbounded domain problems, since its boundary-
oriented modelling inherently allows for an efficient treatment of such
domains [2]. However, despite the fact that the BEM only requires a
mesh of the boundary instead of the full domain, it involves an intricate
mathematical formulation together with some numerical issues, such
as regularization procedures to deal with the singularities arisen from
the fundamental solutions, fully populated system matrices and trou-
blesome surface meshing in 3D complex domains. Leaving the complex
formulae aside, these circumstances result in an increase on compu-
tational time and memory requirements, which is probably the main
drawback of the BEM. Due to these disadvantages, a new generation
of boundary-type meshless numerical methods that require neither do-
main nor boundary meshing have been developed in last two decades.
Among meshless methods, the method of fundamental solutions (MFS)
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has been extensively applied to solve a variety of acoustic problems
thanks to its merits on being mathematically simple, easy-to-program,
and automatically satisfying the Sommerfeld radiation condition at
infinity. Two of the earliest works regarding the application of the MFS
to acoustic problems were presented by Shippy and Kondapalli [3,4].
Later, Karageorghis [5] used the MFS with fixed sources for the solution
of Helmholtz eigenvalue problems. Fairweather et al. [6] reviewed
the previous developments of the MFS for scattering and radiation
problems in fluids and solids, establishing a general benchmark for its
application. Marin [7] investigated the combination of the MFS and the
singularity subtraction technique (SST) for problems associated with
the modified Helmholtz equations in two-dimensional (2D) domains
containing edge cracks and V-notches. Karageorghis et al. [8] employed
the MFS for detecting a sound-soft scatterer surrounding a host acous-
tic homogeneous medium due to a given point source inside it. Qu
et al. [9] applied the localized MFS (LMFS) to solve the 2D interior
Helmholtz equation at high frequencies. The presented numerical ex-
amples showed that the LMFS has a lower computational complexity
than the traditional MFS and it can be used for simulating large-scale
acoustic problems with complicated geometries. The application of the
MFS to predict the acoustic insulation performance of a T-shaped thin
barrier in the presence of a point source was reported in [10]. However,
vailable online 4 July 2022
955-7997/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.enganabound.2022.06.017
Received 17 September 2021; Received in revised form 7 May 2022; Accepted 22 J
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

une 2022

http://www.elsevier.com/locate/enganabound
http://www.elsevier.com/locate/enganabound
mailto:javad.fakhraei@upc.edu
mailto:robert.arcos@upc.edu
https://doi.org/10.1016/j.enganabound.2022.06.017
https://doi.org/10.1016/j.enganabound.2022.06.017
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enganabound.2022.06.017&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Engineering Analysis with Boundary Elements 143 (2022) 293–304J. Fakhraei et al.
although significant amount of research has been carried out to en-
hance the MFS capabilities, the method still has a serious disadvantage:
the determination of the optimal fictitious boundary, especially for
complicated boundary geometries, restrains the MFS applications to
real engineering problems. Several modification schemes have been
devised to solve this drawback by investigating approaches where the
virtual sources can be placed directly on the physical boundary. Some
of these methods include the boundary collocation method (BCM) [11],
the boundary knot method (BKM) [12], the localized boundary knot
method (LBKM) [13,14], the singular meshless method (SMM) [15], the
regularized meshless method (RMM) [16] and the singular boundary
method (SBM) [17], to name just a few.

The SBM was firstly presented by Chen and Wang [17]. Recently,
this method has appeared to be an effective alternative to overcome
some drawbacks of the other techniques, like the limited applicability,
low accuracy and ill-conditioning problems. In the following, some
studies of the method applicability for acoustics analysis are listed. Lin
et al. [18] investigated the SBM when dealing with acoustic problems
including singular boundary conditions by combining the SBM with the
SST. Fu et al. [19] proposed the improved singular boundary method
(ISBM) for acoustic radiation and scattering, which is a combination
of the classical SBM with the Burton and Miller’s formulation. Nu-
merical results demonstrate that this modification scheme enhances
the quality of the solution in the vicinity of the corresponding in-
terior eigenfrequencies. Fu et al. [20] applied the SBM for solving
water wave-structure interaction and SH wave scattering problems.
Qu et al. [21] applied a fast multipole accelerated SBM for the 3D
Helmholtz equation in low-frequency regimes. In another study, Qu
et al. [22] introduced a diagonal form of the fast multipole SBM to over-
come the high computational requirements of the SBM interpolation
matrix for high-frequency acoustic radiation and scattering problems.
To reduce the high computational requirements of the SBM in 3D prob-
lems, Li [23] presented a fast SBM to solve 3D Helmholtz equations that
employs the pre-corrected fast Fourier transform (PFFT) to accelerate
the SBM numerical process. The results showed that the PFFT-SBM has
an advantage over the standard SBM in terms of memory and CPU time.
Fu et al. [24] developed the SBM in conjunction with the fast Toeplitz-
type matrix solvers (FTMS) for acoustic wave propagation analysis at
low and moderate frequencies in periodic structures. The numerical
results demonstrated that by employing this method, the computational
time and storage requirements are significantly reduced with respect
to traditional SBM routines. Recently, Wang et al. [25] proposed the
localized singular boundary method (LSBM) to solve the Laplace and
Helmholtz equations in 2D arbitrary domains. Compared with the
traditional SBM, the proposed LSBM can effectively avoid the boundary
layer effect (appearing for field points located close to the boundary)
and requires less memory storage and computational effort because
the produced interpolation system matrices are sparse and banded.
Typically, the SBM utilizes the single-layer fundamental solutions as
kernel functions and introduces the so-called origin intensity factors
(OIFs) to circumvent the singularities of the fundamental solutions
where the collocation and source points coincide. It approximates the
solution of the problem with a linear combination of fundamental
solutions of the governing equation of interest. The vital issue in the
SBM is the determination of the OIFs, which can be calculated through
empirical, analytical or numerical techniques. In the original SBM, the
inverse interpolation technique (IIT) [17] was proposed to evaluate
the OIFs by using sample solutions of the governing equation of the
problem. Chen and Gu [26] introduced the desingularisation provided
by the subtracting and adding-back technique to obtain a numerical-
analytical formula so that the OIFs are determined directly without
any sample solutions. Fu et al. [27] compared three methodologies
for the OIFs determination on Neumann and Dirichlet boundaries in
exterior wave propagation problems: the IIT; a semi-analytical tech-
nique that combines the subtracting and adding-back technique and
294

the IIT; and a semi-analytical technique based on the integral mean
value of the Laplace fundamental solution. Results show that semi-
analytical solutions provided a higher numerical stability, being the
second methodology the one showing the best accuracy. Li et al. [28]
presented new explicit empirical formulas to determine the OIFs on
Neumann and Dirichlet boundary conditions for 2D and 3D Laplace and
Helmholtz equations. With these empirical formulas, the OIFs can be
obtained using neither the subtracting and adding-back technique nor
numerical integration. A strictly mathematical regularized approach
for the evaluation of the OIFs for the 3D Helmholtz equation at high
frequencies was provided in [29]. The novelty of the work is to pro-
pose two artificially constructed general solutions that can be used to
directly evaluate the OIFs by using the subtracting and adding-back
technique, which yields on a fully integration- and mesh-free technique.
The numerical demonstrations show that the proposed OIF formulas
can be successfully used to avoid the singularity and hyper singularity
problems encountered in the application of the SBM or the BEM.

In some acoustic wave propagation analyses required in engineering
applications, such as noise emission assessments for road and railway
transportation systems, the computational domain can be assumed to
be longitudinally invariant, meaning that the geometry of the system
is considered to have a constant cross section along its longitudinal
direction. The methodologies to solve these problems can be con-
structed in the framework of the two-and-a-half-dimensional (2.5D)
domain. The 2.5D domain is reached by the application of the Fourier
transform to the governing equations along the coordinate associated
with the invariant direction. Then, the system can be solved in a
2D framework and the 3D solutions can be obtained by using the
corresponding Fourier inverse transform. Thus, the advantage of this
approach is the reduction of the problem dimensionality by one, which
results in strong reduction of the computational costs and memory
requirements in the context of mesh-based approaches [30]. Regarding
this benefit, the computational efficiency can be further enhanced if
meshless methods are employed when dealing with unbounded domain
problems. Methodologies based on the 2.5D formulation are being
used nowadays to model engineering acoustic problems. Sheng and
Zhong [31] proposed a 2.5D acoustic BEM to simulate the sound radia-
tion of high-speed railway slab tracks subjected to a moving harmonic
load. A similar model has been used recently by Li et al. [32] to
simulate the noise transmission from the wheels, rails and sleepers to
the external surfaces of a train, and by Deng et al. [33] to study the
noise insulation capabilities of poro-elastic panels. Ghangale et al. [34]
presented a combined methodology based on the 2.5D structural FEM-
BEM and the 2.5D acoustic BEM for the prediction of re-radiated noise
in underground simple tunnels. Also, some studies have employed
2.5D meshless methodologies to analyse engineering acoustic problems.
In this regard, the potential applications of the 2.5D MFS for the
prediction of re-radiated noise in railway traffic systems were dis-
cussed in [34,35]. Recently, the 2.5D SBM [36] has been preliminarily
proposed and tested for acoustic problems excited by harmonic point
sources. The numerical results verified the effectiveness and accuracy of
the proposed approach and reported a significant reduction of memory
storage in comparison with the 3D acoustic SBM.

The objective of this paper is to propose and study, in a compu-
tational context, a 2.5D SBM approach to deal with acoustic wave
propagation problems in where the geometry of the system is longi-
tudinally constant. In the proposed 2.5D SBM, the desingularisation
provided by the subtracting and adding-back technique is used to
determine the OIFs. These OIFs are derived by means of the OIFs of
the Laplace equation due to the same order of the singularities in
the fundamental solutions of Laplace and Helmholtz equations. The
feasibility, validity and accuracy of the proposed 2.5D SBM are inves-
tigated in the framework of three benchmark examples: the acoustic
radiation and wave scattering problems for an infinite cylinder and the
acoustic radiation of an infinite beam with a star-like cross section. In
order to make a detailed assessment of the proposed approach, other

methodologies are applied and then compared in terms of numerical
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accuracy and computational efficiency. These alternative approaches
are the 2.5D MFS and the 2.5D BEM considering linear and quadratic
boundary elements (referred as 2.5D LE-BEM and 2.5D QE-BEM from
now on). For the example associated to the infinite cylinder, the
available analytical solution is used as a reference for the accuracy com-
parisons. Furthermore, the effect on the 2.5D SBM accuracy induced by
considering the exact geometry of the boundary instead of the node-
based approximation is also investigated in this study. After the present
introduction, the rest of this paper is arranged as follows: Section 2
states the formulation of the proposed 2.5D acoustic SBM approach.
Section 3 presents the verification and comparison of the different 2.5D
acoustic numerical methods and discusses the discrepancies between
them for the benchmark examples. Finally, some concluding remarks
are presented in Section 4.

2. Mathematical formulation

In this section, the formulation of the proposed 2.5D SBM is pre-
sented. In a first instance, the acoustic problem is written in the 2.5D
domain. Secondly, the proposed SBM is described in detail in the 2.5D
context.

2.1. 2.5D formulation for acoustic problems

The problem under consideration is the propagation of acoustic
waves in a 3D homogeneous isotropic medium 𝛺. In this problem
the pressure field can be modeled in the frequency domain by the
well-known Helmholtz equation
(

𝛥 + 𝑘2
)

𝑝(𝐱) = 0, 𝐱 ∈ 𝛺, (1)

here 𝛥 is the Laplacian operator, 𝑝(𝐱) represents the acoustic pressure
t a generic point 𝐱 = {𝑥, 𝑦, 𝑧}T inside the domain, 𝑘 is the acoustic
avenumber in a 3D context and it is equal to 𝜔∕𝑐, 𝜔 is the angular

requency and 𝑐 is the sound wave speed in the medium. Two kinds
f boundary conditions are usually considered: the Dirichlet boundary
ondition

(𝐱) = 𝑝𝑏(𝐱), 𝐱 ∈ 𝛤 , (2)

r the Neumann boundary condition

(𝐱) = 1
i𝜌𝜔

𝜕𝑝(𝐱)
𝜕𝐧𝑏

= 𝑣𝑏(𝐱), 𝐱 ∈ 𝛤 , (3)

here 𝐧𝑏 is the unit outward normal to the physical boundary at the
oint 𝐱, 𝑝𝑏 and 𝑣𝑏 are the prescribed pressure and normal velocity at
he boundary, respectively, 𝜌 is the medium density and i =

√

−1. If the
geometry of the problem can be considered invariant in the 𝑥 direction,
Eq. (1) can be transformed to the wavenumber domain using a Fourier
transform of the form

𝑓
(

𝑘𝑥, 𝑦, 𝑧, 𝜔
)

= ∫

+∞

−∞
𝑓 (𝑥, 𝑦, 𝑧, 𝜔) ei𝑘𝑥𝑥d𝑥, (4)

here 𝑘𝑥 is the wavenumber associated to the longitudinal direction 𝑥
nd 𝑓 can be the pressure 𝑝 or the normal velocity 𝑣. The bar notation
s used to denote that the variable is expressed in the wavenumber
omain. This transformation results in the 2.5D version of the system
quations, represented by the 2D modified Helmholtz equation
(

𝛥 − 𝑘2𝑎
)

𝑝̄(𝐱) = 0, 𝐱 = (𝑦, 𝑧) ∈ 𝛺, (5)

here 𝛥 is here the 2D Laplacian operator and 𝑘𝑎 =
√

𝑘2𝑥 − 𝑘2 is the
acoustic wavenumber for the 2.5D domain. The Dirichlet and Neumann
boundary conditions can be also transformed to the 2.5D domain,
resulting in

𝑝̄(𝐱) = 𝑝̄𝑏(𝐱), 𝐱 = (𝑦, 𝑧) ∈ 𝛤 , (6)

𝑣̄(𝐱) = 1 𝜕𝑝̄(𝐱)
= 𝑣̄𝑏(𝐱), 𝐱 = (𝑦, 𝑧) ∈ 𝛤 . (7)
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i𝜌𝜔 𝜕𝐧
.2. The SBM for 2.5D acoustic problems

The SBM approximates the solution of the problem in a given
omain with a linear combination of fundamental solutions of the gov-
rning differential equation. To achieve this, the SBM firstly determines
set of virtual sources that complies with the prescribed boundary

onditions evaluated in a set of collocation points placed along the
oundary 𝛤 . In contrast to the MFS, the collocation and source points
f the SBM are placed on the physical boundary, avoiding the need of
uxiliary one. In this work, it is also assumed that the set of collocation
oints is geometrically coincident with the set of virtual sources. This
cheme is illustrated in Fig. 1. Virtual sources can be then subsequently
sed to evaluate the response in the domain. The method employs
he OIFs to evaluate the interpolation matrix terms associated to the
oincident source–collocation points.

Thus, the SBM approximates the acoustic pressure 𝑝̄ and particle ve-
ocity 𝑣̄ at a generic point 𝐱 considering the effect of 𝑁 sources located
t positions 𝐬𝑗 , being (𝑗 = 1, 2,… , 𝑁), resulting in the expressions

𝑝̄(𝐱) =
𝑁
∑

𝑗=1
𝛼𝑗 𝐺̄(𝐱, 𝐬𝑗 , 𝑘𝑎), 𝐱 ∈ 𝛺, (8)

𝜌𝜔𝑣̄(𝐱) =
𝑁
∑

𝑗=1
𝛼𝑗 𝐻̄(𝐱, 𝐬𝑗 , 𝑘𝑎,𝐧𝑥), 𝐱 ∈ 𝛺, (9)

here 𝛼𝑗 (𝑗 = 1, 2,… , 𝑁) are the unknown source strengths and

𝐺̄(𝐱, 𝐬, 𝑘𝑎) =
⎧

⎪

⎨

⎪

⎩

1
2𝜋

𝐾0(𝑘𝑎𝑟), for 𝑘𝑎 ≠ 0,

𝐺𝐿(𝐱, 𝐬), for 𝑘𝑎 = 0,
(10)

𝐻̄(𝐱, 𝐬, 𝑘𝑎,𝐧𝑥) =
𝜕𝐺̄(𝐱, 𝐬, 𝑘𝑎)

𝜕𝐧𝑥
=

⎧

⎪

⎨

⎪

⎩

−
𝑘𝑎
2𝜋

𝐾1(𝑘𝑎𝑟)
𝜕𝑟
𝜕𝐧𝑥

, for 𝑘𝑎 ≠ 0,

𝐻𝐿(𝐱, 𝐬,𝐧𝑥), for 𝑘𝑎 = 0,
(11)

are the 2.5D fundamental solutions of the sound pressure and particle
velocity, respectively, for the modified Helmholtz equation. 𝐾0 and
𝐾1 are the modified Bessel functions of the second kind of order zero
and one, respectively, 𝑟 is the distance between the source point 𝐬 and
the arbitrary field point 𝐱, 𝐧𝑥 arbritary unit vector that represents the
direction along which the particle velocity is calculated, while 𝐺𝐿(𝐱, 𝐬)
and 𝐻𝐿(𝐱, 𝐬,𝐧𝑥) are the fundamental solutions of potential and flux of
the 2D Laplace equation, respectively, which take the form

𝐺𝐿(𝐱, 𝐬) = − 1
2𝜋

ln(𝑟), (12)

𝐻𝐿(𝐱, 𝐬,𝐧𝑥) =
𝜕𝐺𝐿(𝐱, 𝐬)

𝜕𝐧𝑥
= − 1

2𝜋𝑟
𝜕𝑟
𝜕𝐧𝑥

. (13)

Eqs. (8) and (9) can be transformed to evaluate the response at the 𝑚th
collocation point 𝐬𝑚 as

𝑝̄(𝐬𝑚) = 𝛼𝑚𝐺̄𝑚𝑚 +
𝑁
∑

𝑗=1,𝑗≠𝑚
𝛼𝑗 𝐺̄(𝐬𝑚, 𝐬𝑗 , 𝑘𝑎), 𝐬𝑚 ∈ 𝛤 , (14)

i𝜌𝜔𝑣̄(𝐬𝑚) = 𝛼𝑚𝐻̄𝑚𝑚 +
𝑁
∑

𝑗=1,𝑗≠𝑚
𝛼𝑗 𝐻̄(𝐬𝑚, 𝐬𝑗 , 𝑘𝑎,𝐧𝑏) , 𝐬𝑚 ∈ 𝛤 . (15)

where 𝐺̄𝑚𝑚 and 𝐻̄𝑚𝑚 are defined as the OIFs of the 2.5D fundamental
solutions of Helmholtz equation. Thus, the source strengths for the
Dirichlet boundary condition can be obtained by

𝜶 = 𝐆̄−1𝐩̄𝑏, (16)

while for the Neumann boundary condition they can be computed as

𝜶 = 𝐇̄−1𝐯̄𝑏, (17)

where 𝐆̄ and 𝐇̄ are the SBM interpolation matrices, being their diagonal
terms the previously mentioned OIFs, and where 𝜶 is a vector that
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Fig. 1. Schematic sketch of the SBM approach with the adopted sources and collocation points distributions. Red circles denote virtual sources and brown dots represent collocation
points. For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.
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collects all source strengths while 𝐩̄𝑏 and 𝐯̄𝑏 are vectors that collect the
imposed boundary conditions evaluated at all collocation points.

Due to the same order of the singularities arising for small source-
receiver distances in both fundamental solutions of Laplace and Helm-
holtz equations, 𝐺̄𝑚𝑚 and 𝐻̄𝑚𝑚 can be derived via the asymptotic form
f the fundamental solutions of the 2D Laplace equation when the
ource-receiver distance is small, as

̄𝑚𝑚 =

⎧

⎪

⎨

⎪

⎩

𝐺𝐿
𝑚𝑚 + 1

2𝜋
(

− ln(𝑘𝑎) + ln 2 − 𝛾
)

, for 𝑘𝑎 ≠ 0,

𝐺𝐿
𝑚𝑚, for 𝑘𝑎 = 0,

(18)

𝐻̄𝑚𝑚 = 𝐻𝐿
𝑚𝑚, (19)

where 𝐺𝐿
𝑚𝑚 and 𝐻𝐿

𝑚𝑚 are respectively the OIFs of the fundamental
solutions of 2D Laplace equation and 𝛾 is the Euler constant. The
detailed derivations of Eqs. (18) and (19) are given in Appendix. By
using the desingularisation provided by the subtracting and adding-
back technique, the OIFs for the fundamental solutions of 2D Laplace
equation can be derived as [24,26,27]

𝐺𝐿
𝑚𝑚 = 1

𝐿𝑚 ∫𝛤𝑠
𝐺𝐿(𝐱𝑚, 𝐬𝑗 )d𝛤𝑠(𝐬) = − 1

2𝜋
ln
(

𝐿𝑚
2𝜋

)

, (20)

𝐿
𝑚𝑚 = 1

𝐿𝑚

(

1 −
𝑁
∑

𝑗=1,𝑗≠𝑚
𝐿𝑗𝐻

𝐿(𝐱𝑚, 𝐬𝑗 ,𝐧𝑏)
)

, (21)

where 𝐿𝑗 is the half length of the curve between the (𝑗−1)th collocation
or source point and the (𝑗+1)th ones, as shown in Fig. 2. Note that, for
the special case when 𝑘𝑎 = 0, the modified Helmholtz equation reduces
to the Laplace equation. Accordingly, the chosen fundamental solutions
and OIFs for this particular case should be the ones associated to the
Laplace equation.

3. Numerical results and discussions

In this section, a study of the validity and accuracy of the proposed
2.5D SBM is presented. Three benchmark examples are used in this
regard: the acoustic radiation and wave scattering problems for an
infinite cylinder and the acoustic radiation of an infinite beam with
a star-like cross section. In the case of the infinite cylinder, the new
method is compared with the available analytical solution as well as
three numerical methods: the 2.5D linear-element BEM (2.5D LE-BEM),
the 2.5D quadratic-element BEM (2.5D QE-BEM) and the 2.5D MFS
296
Fig. 2. Schematic configuration of the source points and the corresponding 𝐿𝑗 to the
th source. The same configuration applies for the collocation points and the distance
𝑚.

pproaches. In the case of the beam with star-like cross section, only the
bove-mentioned numerical approaches are considered in the detailed
omparison due to the lack of an available analytical solution. Both
.5D LE-BEM and 2.5D QE-BEM approaches have been constructed
ased on OpenBEM software presented in [37]. For all three examples,
he sound wave speed has been considered to be as 𝑐 = 340 m∕s, while
he density of the medium adopted is 𝜌 = 1.225 kg/m3.

Along this study, the pressure and velocity at 𝑥 = 0 due to unitary
armonic boundary conditions of the general form 𝛿(𝑥)ei𝜔𝑡 are used for
omparison purposes, which can be computed from the inverse Fourier
ransform (corresponding to the Fourier transform defined in Eq. (4))
s

0 = 𝑓 (0, 𝑦, 𝑧, 𝜔) = 1
2𝜋 ∫

+∞

−∞
𝑓
(

𝑘𝑥, 𝑦, 𝑧, 𝜔
)

d𝑘𝑥, (22)

where 𝑓 can be representing either pressure 𝑝 or normal velocity 𝑣, as
efore. Moreover, the numerical accuracy is proposed to be globally
valuated in a set of 𝑁𝑡 test points by the root mean square error
RMSE) defined as

MSE =

√

1
𝑁𝑡

∑𝑁𝑡
𝑘=1 |𝑝0𝑛(𝐱𝑘) − 𝑝0𝑟(𝐱𝑘)|2

√

1
𝑁𝑡

∑𝑁𝑡
𝑘=1 |𝑝0𝑟(𝐱𝑘)|

2
, (23)

where 𝑝0𝑛(𝐱𝑘) and 𝑝0𝑟(𝐱𝑘) are the numerical and reference solutions at

the 𝑘th test point, respectively. Depending on the example, reference
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solutions are analytical or, in the case of no available analytical so-
lution, they are computed with a highly accurate numerical method.
Furthermore, to characterize the error decay rate with the discretiza-
tion, i.e. the decay rate of the RMSE as a function of the number of
collocation points or nodes, for each numerical method and for each
specific case study, the following formulation is given:

𝐸𝑑 = −
ln (𝜀(𝑁1)) − ln (𝜀(𝑁2))

ln (𝑁1) − ln (𝑁2)
, (24)

here 𝜀(𝑁1) and 𝜀(𝑁2) are the errors corresponding to each numerical
ethod for 𝑁1 and 𝑁2 collocation points (or nodes, depending on the
ethod), respectively.

For the implementation of the 2.5D MFS, it is also assumed the
ame number of virtual sources than collocation points. Regarding both
oundary element approaches, the amount of Gaussian points adopted
or the integration is 8. To implement the 2.5D SBM, two scenarios
re considered. In the first one, it is supposed that the 2.5D SBM uses
he exact geometrical data from the curve equation of the boundary to
etermine the influence lengths 𝐿𝑖, used to calculate the OIFs, and to
btain the normal vectors, required for the computation of the 2.5D
undamental solutions. To facilitate the comparisons, this method is
alled 2.5D SBM-EGD in this paper. In the second scenario, the 2.5D
BM utilizes the nodal geometry data, and it is referred as 2.5D SBM-
GD approach. Hereby, it is assumed that the 2.5D SBM discretizes the
oundary to the collocation points by considering a linear shape of the
oundary between them. For the 2.5D SBM-NGD approach, the OIFs
re calculated numerically considering this approximated boundary.

.1. Example 1. Radiation problem of an infinite pulsating cylinder

The problem under consideration in this example is the sound field
enerated by an infinitely long pulsating cylinder. For this case, the
nalytical solution of the induced pressure field in the wavenumber-
requency domain is [31]

(𝑟, 𝑘𝑎) =
𝑖𝜌𝜔𝑣𝑛𝐾0

(

𝑘𝑎𝑟
)

𝑘𝑎𝐾1
(

𝑘𝑎𝑎
) , 𝑟 > 𝑎, (25)

where 𝑎 is the radius of the cylinder, 𝑟 is the distance between the
valuation point and the cylinder axis, 𝜌 is the air density, 𝜔 is the
ngular frequency, 𝑣𝑛 is the amplitude of the vibration velocity of
he cylinder boundary in the radial direction and 𝐾0 and 𝐾1 are the
odified Bessel functions of the second kind of order zero and one,

espectively. In this simulation, a cylinder of unit radius is considered
nd a radial pulsating displacement of the form 𝑢𝑛(𝑡) = 𝛿(𝑥)ei𝜔𝑡 is
onsidered as a Neumann boundary condition. In this boundary con-
ition, the radial displacement is applied uniformly in all points of
he boundary. A 𝛿(𝑥) distribution of the boundary condition in the
ongitudinal direction is selected since it is an adequate choice to
erify the method for any potential longitudinal distribution of the
oundary condition. This comes from the fact that a delta distribution
(𝑥) transforms into a constant spectrum in the wavenumber domain,
llowing for a verification of the method all along the wavenumber
pectrum at once. Regarding the 2.5D MFS, the auxiliary boundary
here the virtual sources are uniformly distributed is a concentric circle
f radius 𝑎−𝑑, being 𝑑 the distance between the physical and auxiliary
oundaries.

To obtain the RMSE, two distinct sets of 𝑁𝑡 = 100 test points are
onsidered, both distributed along the plane 𝑦− 𝑧 on circles centred at
he cylinder axis and with radii 𝑟 = 1.1 m and 𝑟 = 20 m, representing
he near-field and far-field responses, respectively. For both sets, the
est points are uniformly distributed along the circle. Two frequencies
re considered for the present RMSE analysis: 100 Hz and 2000 Hz.
he pressures 𝑝0 delivered by the different methods at each test point
re computed via Eq. (22), in which the numerical integration is
arried out by the trapezoidal rule using a logarithmic sampling for

8
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he wavenumber with a total amount of 2 sampling points ranging s
etween 10−3 rad/m and a higher limit, the latter being specifically
etermined for each frequency. The number of collocation points or
odes per wavelength (referred also as 𝑁∕𝜆 or nodes/wavelength from
ow on) is varying in the range of 2–20, where 𝜆 = 2𝜋𝑐∕𝜔. The error
ecay rates calculated via Eq. (24) are evaluated for two consecutive
∕𝜆 in the range of 10–20. The results of the described error analysis

omparing the different numerical approaches are illustrated in Fig. 3.
verall, it can be observed that all methods deliver a good accuracy at
oth near-field and far-field points for the two frequencies selected, and
lso their associated errors decrease as the number of collocation points
r boundary nodes increase. Consequently, it can be stated that all of
ethods are verified with the analytical solution for this calculation

xample. It should be also mentioned that for all frequencies below
he selected frequency, errors delivered by the methods are always
maller. In Fig. 3, it can be also observed that the 2.5D MFS shows
he most accurate solutions among all methods. However, as depicted,
he 2.5D MFS solutions are sensitive to the placement of the fictitious
oundary and only using the optimal fictitious boundary leads to much
igher accuracy for all 𝑁∕𝜆 values considered. Comparing the results
btained from the 2.5D SBM and the 2.5D BEM, it is found that the
.5D SBM-NGD presents a higher numerical accuracy than the 2.5D
E-BEM. However, it never reaches the accuracy of the 2.5D QE-BEM.
t is also worth to mention that both 2.5D SBM-NGD and 2.5D LE-
EM present the same error decay rates of about 𝐸𝑑 = 2. On the other
and, the 2.5D SBM-EGD converges rapidly, in this particular case, to
he analytical solution showing an error decay rate of about 𝐸𝑑 = 3.
hus, it can be observed that the 2.5D SBM-EGD shows more accuracy
han the 2.5D QE-BEM at the frequency of 100 Hz for 𝑁∕𝜆 > 16
nd 𝑁∕𝜆 > 4 for the near-field and far-field test points, respectively,
ince 2.5D QE-BEM tends to reach the analytical solution following
n error decay rate of 𝐸𝑑 = 1 for large 𝑁∕𝜆. The results obtained
ndicate how strongly the accuracy of the SBM solutions is affected
y the exact or the approximated definitions of the boundary shape.
his conclusion is specially relevant to denote the strong effect that
he uncertainty of the geometrical definition of the boundary has over
he accuracy of the proposed method. This is of special importance in
he application of the proposed scheme to real engineering problems,
hich retain an inherent uncertainty on the parametric definition of
oundary geometry.

.2. Example 2. Wave scattering problem of an infinite cylinder

In this case, the scattering problem of an infinite cylinder subjected
o an incident plane wave of the form 𝛿(𝑥)ei𝑘𝑦ei𝜔𝑡 propagating along
he horizontal direction 𝑦 is considered. The analytical solution of the
cattering field is [38]

(𝑟, 𝜃) = −
𝐽 ′
0
(

𝑘𝑎𝑎
)

𝐻 ′
0
(

𝑘𝑎𝑎
)𝐻 (1)

0
(

𝑘𝑎𝑟
)

− 2
∞
∑

𝑛=1
i𝑛

𝐽 ′
𝑛
(

𝑘𝑎𝑎
)

𝐻 ′
𝑛
(

𝑘𝑎𝑎
)𝐻 (1)

𝑛
(

𝑘𝑎𝑟
)

cos 𝑛𝜃, 𝑟 ≥ 𝑎, 0 ≤ 𝜃 ≤ 2𝜋, (26)

here 𝑎 is the radius of the cylinder, (𝑟, 𝜃) represents the location of
he evaluation point in the polar coordinate system, 𝐽𝑛 is the Bessel
unction of the order 𝑛, 𝐻 (1)

𝑛 is the Hankel function of the first kind
f order 𝑛 and the prime denotes their differentiation with respect to
ts argument. As before, a cylinder of unit radius has been considered.
s in the previous example, the analysis is done for the frequencies
f 100 Hz and 2000 Hz. The analytical solution is calculated by using
50 terms for the series appearing in Eq. (26), which ensures double
recision accuracy.

Fig. 4 displays the results of the RMSE analysis for the wave
cattering problem under consideration and for the different numerical
ethods. The same test points sets presented in the previous example

re adopted here. The results illustrate that the 2.5D MFS approach

hows the most accurate performance for both frequencies and for both
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Fig. 3. RMSE analysis of the different methods considered for the radiation problem of an infinite pulsating cylinder obtained at (a) near-field and (b) far-field test points and for
the frequencies of (i) 100 Hz and (ii) 2000 Hz. The corresponding upper limits of the wavenumber sampling considered for integration at the frequency of 100 Hz are 10 rad/m and
2 rad/m for near-field and far-field test points, respectively. At the frequency of 2000 Hz, the corresponding higher limits are 60 rad/m and 40 rad/m at near-field and far-field
test points, respectively. For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.
near-field and far-field situations. However, the method strongly relies
on an optimal placement of the fictitious boundary, specially at low
𝑁∕𝜆. This behaviour is more significant in this example in comparison
to the radiation problem. All the other methods stably converge to the
analytical solution by increasing the number of nodes per wavelength.
At the frequency of 100 Hz, similar to the conclusion in Example 1, the
2.5D SBM-NGD provides slightly more accurate results than the 2.5D
LE-BEM under the same number of boundary nodes per wavelength, fol-
lowing in both cases an error decay rate of 𝐸𝑑 = 2. For this frequency,
these two methods are delivering errors 2–4 orders of magnitude higher
than the 2.5D QE-BEM and the 2.5D SBM-EGD, which show similar
accuracy levels specially at low 𝑁∕𝜆. For this particular problem, the
2.5D QE-BEM shows higher error decay rates than the 2.5D SBM-EGD
as the number of nodes per wavelength increase. Specifically, the 2.5D
QE-BEM and 2.5D SBM-NGD for this frequency deliver error decay
rates of 𝐸𝑑 = 4 and 𝐸𝑑 = 3, respectively. On the other hand, at the
frequency of 2000 Hz different trends are observed. As the nodes per
wavelength increase, the 2.5D SBM-NGD shows a numerical accuracy
1–2 orders of magnitude better than the 2.5D LE-BEM. The error decay
rates of these two methods for this situation are similar, being the
one associated to the 2.5D SBM-NGD slightly larger. The 2.5D SBM-
298

NGD also delivers more accurate solutions than the 2.5D QE-BEM at
𝑁∕𝜆 ≤ 10, a behaviour not observed in Example 1, although the error
decay rate of the 2.5D QE-BEM to the analytical solution is significantly
higher, in this case.

In the two aforementioned examples, the validity and accuracy of
the proposed 2.5D SBM were elaborately presented in the framework
of the acoustic problems applying on the infinite circular cylinder. Of
course, no aspect of the present method is restricted to consideration of
simple geometries, such as circle. Hence, in the following, the feasibility
of the method to deal with problems under arbitrary geometries is
investigated. To demonstrate this, the acoustic radiation problem of
an infinite pulsating beam with a constant star-like cross section is
designed.

3.3. Example 3. Radiation problem of an infinite pulsating star-like beam

In this example, the problem of the sound field radiated by an
infinite pulsating beam with a constant cross section of star-like shape
is considered. The star-like shape adopted in this example is shown in
Fig. 5a and it is parametrically defined by

𝜌(𝜃) = 1
𝑚2

[

𝑚2 +2𝑚+2−2(𝑚+1) cos (𝑚𝜃)
]

, 𝑦(𝜃) = 𝜌(𝜃) cos 𝜃, 𝑧(𝜃) = 𝜌(𝜃) sin 𝜃,

(27)
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Fig. 4. RMSE analysis of the different methods considered for the scattering problem of an infinite cylinder obtained at (a) near-field and (b) far-field test points and for the
frequencies of (i) 100 Hz and (ii) 2000 Hz. The corresponding upper limits of the wavenumber sampling considered for integration are 1.8 rad/m and 36.9 rad/m at the frequencies
f 100 Hz and 2000 Hz, respectively, for both sets of near-field and far-field test points. For interpretation of the references to colour in this figure legend, the reader is referred
o the web version of this article.
Fig. 5. (a) Star-like shape captured by Eq. (27) with 𝑚 = 5, (b) discretized physical boundary (blue), the fictitious boundary of the 2.5D MFS located with different distance from
the physical boundary (red). For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.
in which 𝑚 = 5.

Since no analytical solution is available for this problem, the 2.5D
E-BEM is used as alternative reference solution to the analytical one
299
required in Eq. (23). For this aim, the 2.5D QE-BEM is adopted with
40 nodes per wavelength (𝑁∕𝜆 = 40) to ensure that high numerical
accuracy is provided by this reference solution. The same boundary
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Fig. 6. RMSE analysis of the different methods considered for the radiation problem of an infinite star-like beam obtained at (a) near-field and (b) far-field test points and for
he frequencies of (i) 100 Hz and (ii) 2000 Hz. At the frequency of 100 Hz, the corresponding intervals of 𝑘𝑥 considered for integration are [10−3 , 5] rad/m and [10−3 , 3] rad/m for
ear-field and far-field test points, respectively. At the frequency of 2000 Hz, the corresponding intervals are [10−3 , 50] rad/m and [10−3 , 45] rad/m, respectively. For interpretation
f the references to colour in this figure legend, the reader is referred to the web version of this article.
c
s

ondition employed in Example 1 is considered here. The computa-
ional analysis is carried out for the frequencies of 100 Hz and 2000 Hz.
he numerical integration to perform the Fourier transform is here
arried out considering a variable lower limit of integration.

Regarding the implementation of the 2.5D SBM-EGD, the influence
engths required in the calculation of the OIFs in Eq. (21), the arc
engths, can be obtained via numerical integration. In order to imple-
ent the 2.5D MFS, it is worth to mention that, because of complexity

f the geometry in this example, specifying the optimal placement of
he fictitious boundary is a perplexing try-error work. Sever numerical
nstability and ill-conditioning situations can occur if this distance is
ot selected properly. In the current 2.5D MFS implementation, it is
upposed that the fictitious boundary has a star-like shape scaled with
espect to the physical one. The geometry of the auxiliary boundary
an be parametrically defined by

(𝜃) = 1 − 𝑑
𝑚2

[

𝑚2 + 2𝑚 + 2 − 2(𝑚 + 1) cos (𝑚𝜃)
]

, (28)

where 1 − 𝑑, in this example, refers to the scale factor of the auxiliary
boundary geometry. Accordingly, 𝑑 is the only parameter that defines
the virtual sources distribution and the one to be optimized to ensure
the highest numerical accuracy of the 2.5D MFS. As shown in Fig. 5b, it
300
is assumed that the virtual sources are forming a uniform angular distri-
bution along the auxiliary boundary. Considering this, an optimization
process for 𝑑 was carried out, leading to an optimal value for 𝑑 of 0.1 m.

Fig. 6 illustrates the results of the RMSE analysis for Example 3
omputed by different numerical methods. In this case, two distinct
ets of 𝑁𝑡 = 100 test points uniformly distributed along the circles

with radii of 𝑟 = 2.2 m and 𝑟 = 20 m are adopted, representing the
near-field and far-field points, respectively. Overall, it can be found
that by increasing nodes density per wavelength at the two frequencies
selected, the 2.5D LE-BEM and both 2.5D SBM schemes stably approach
to the reference solution, all with the same error decay rate of 𝐸𝑑 = 2.
However, the 2.5D MFS performs different accuracy trends: it gets
steadily close to the reference solution with 𝐸𝑑 = 2 for 𝑁∕𝜆 ≥ 8 Hz
and 𝑁∕𝜆 ≥ 10 at the frequencies of 100 Hz and 2000 Hz, respectively,
while the method shows severe numerical instabilities for nodes per
wavelength less than the mentioned values, a behaviour not detected
in the previous examples. At the frequency of 100 Hz, in contrast to
the previous examples, the 2.5D SBM-EGD provides the most accu-
rate solutions among all methods and it delivers errors 1–2 orders of
magnitude less than the 2.5D LE-BEM and the 2.5D SBM-NGD. At this
frequency, the 2.5D SBM-NGD provides slightly more accurate results
than the 2.5D LE-BEM under the same number of boundary nodes per
wavelength, similar to conclusions from the previous examples. At the
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Fig. 7. RMSE analysis for the infinite pulsating star-like beam in the wavenumber domain obtained by the 2.5D SBM-EGD (green line), the 2.5D SBM-NGD (black line), the 2.5D
LE-BEM (blue line) and the 2.5D MFS with 𝑑 = 0.1 m (red line) at (a) near-field and (b) far-field test points for (1) 𝑁∕𝜆 = 6 and (2) 𝑁∕𝜆 = 10 at the frequencies of (i) 100 Hz
nd (ii) 2000 Hz. For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.
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requency of 2000 Hz, except for the results obtained at 𝑁∕𝜆 = 2,
oth 2.5D SBM schemes deliver higher accuracy than 2.5D LE-BEM.
owever, for 𝑁∕𝜆 ≥ 10, the most accurate solutions are delivered
y the 2.5D MFS, in contrast to the frequency of 100 Hz. However,
t is worth to mention that the accuracy of the MFS is largely more
ensitive to the location of the virtual boundary than in the previous
xamples, denoting that an optimization of its location becomes more
elevant and more computationally expensive in the case of complex
eometries. Consequently, the 2.5D SBM is a more suitable approach
or domains with complex boundary geometries in terms of simplicity
nd robustness.

Here, the error analysis between the methods in the wavenumber
omain is also presented for Example 3. This analysis has been carried
ut in order to evaluate the numerical accuracy of the different 2.5D
ethods along the wavenumber spectrum and, consequently, to evalu-

te the validity of using the transfer functions 𝑝 to robustly compare
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0 d
he accuracy of the methods. In this analysis, the RMSE is reformulated
n the wavenumber domain as

MSE =

√

1
𝑁𝑡

∑𝑁𝑡
𝑘=1 |𝑝̄𝑛(𝐱𝑘) − 𝑝̄𝑟(𝐱𝑘)|2

√

1
𝑁𝑡

∑𝑁𝑡
𝑘=1 |𝑝̄𝑟(𝐱𝑘)|

2
, (29)

here 𝑝̄𝑟(𝐱𝑘) and 𝑝̄𝑛(𝐱𝑘) are the pressure responses computed by the
eference solution adopted in Example 3 and by the other 2.5D nu-
erical methods at the 𝑘th test point, respectively. Fig. 7 shows the

esults of the mentioned error analysis for 𝑁∕𝜆 = 6 and 𝑁∕𝜆 = 10.
hese results are presented only in the wavenumber ranges where the
esponses have significant spectral content. According to Fig. 7, both
.5D SBM schemes and the 2.5D LE-BEM are in a close agreement
ith the 2.5D QE-BEM in the wavenumber domain. Since the error is
istributed all along the significant wavenumber range, the employed
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transfer functions 𝑝0 are capturing the error properly and it can be
concluded that they can be used for the comparison of methods ac-
curacy. Furthermore, it can be observed that, in general, both 2.5D
SBM-EGD and 2.5D SBM-NGD provide higher accuracy than the 2.5D
LE-BEM for both 𝑁∕𝜆 = 6 and 𝑁∕𝜆 = 10. In case of the 2.5D MFS, it
is observed that the method constructed with 6 nodes per wavelength
delivers inaccurate results and shows numerical instability along all the
wavenumber domain, a behaviour already demonstrated in previous
analysis (Fig. 6). In contrast, when it is implemented with 10 nodes
per wavelength, a close agreement with the 2.5D QE-BEM is obtained.

4. Conclusions

In this study, a 2.5D SBM approach for acoustic radiation and
scattering problems in the framework of longitudinally infinite and
invariant structures is developed. The method determines the OIFs for
2.5D fundamental solutions of the Helmholtz equation by means of the
OIFs of fundamental solutions of the Laplace equation taking advantage
of the same singularity order in both fundamental solutions. These OIFs
are derived by applying a desingularisation procedure based on the sub-
tracting and adding-back technique. The proposed 2.5D SBM has been
implemented considering two different calculation scenarios of the
influence lengths and unit normals. The first scenario is considering the
exact shape equation of the boundary while the second one performs a
nodal-based approximation, being these methods referred to the 2.5D
SBM-EGD and the 2.5D SBM-NGD, respectively. The feasibility and
accuracy of the present schemes are studied through three benchmark
examples: the acoustic radiation and wave scattering problems for an
infinite cylinder and the acoustic radiation of an infinite beam with
a star-like cross section. In order to make a detailed assessment of
the proposed 2.5D SBM schemes, the available analytical solutions and
other numerical methodologies including the 2.5D MFS and the 2.5D
BEM with linear and quadratic elements are employed and compared
in terms of numerical accuracy and computational efficiency.

The detailed comparison performed demonstrates the validity and
accuracy of the present 2.5D SBM schemes. In the problems related to
the infinite cylinder, the error analysis shows that the 2.5D SBM-EGD
approaches rapidly to the analytical solution with an error decay rate
of 𝐸𝑑 = 3, while the 2.5D SBM-NGD delivers an error decay rate of
𝐸𝑑 = 2. As a newfound conclusion, it is indicated that the 2.5D SBM-
NGD provides higher numerical accuracy than the 2.5D LE-BEM and
lower than the 2.5D QE-BEM, while the 2.5D SBM-EGD can compete in
several situations with the levels of accuracy of the 2.5D QE-BEM, being
the radiation problem at high frequency the only case where the 2.5D
SBM-EGD is not reaching the quadratic BEM performance. It is worth
mentioning that, although the 2.5D MFS performs the most accurate
results in the circular domain examples, its solutions are highly sen-
sitive to the optimal placement of fictitious boundary, demonstrating
the robustness issues of that method with respect to the other ones
studied. In the problem of the infinite star-like beam, both 2.5D SBM-
EGD and 2.5D SBM-NGD perform with higher accuracy than the 2.5D
MFS and the 2.5D LE-BEM at low frequencies, especially the SBM-EGD.
The 2.5D MFS shows severe numerical instabilities depending on the
placement of the fictitious boundary at low and moderate amounts
of nodes per wavelength. It should be highlighted that the numerical
accuracy of the 2.5D SBM solutions is intensely affected by the exact or
approximated definitions of the boundary shape. The results obtained
depict that using the approximated nodal data of the boundary instead
of its exact one leads to a significant reduction in the accuracy and
convergence of the 2.5D SBM. This is of special importance for the
application of the proposed scheme to real engineering problems in
where the arbitrary shape of the boundary avoids determining an exact
analytical expression of its geometry.

In terms of computational efficiency, the present 2.5D SBM schemes
inherits various advantages with respect to former methods. Due to
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its meshless nature, the proposed 2.5D SBM scheme performs more
efficiently than equivalent 2.5D BEM approaches thanks to avoiding
two procedures: the construction of a boundary mesh and the sophisti-
cated numerical integration over the singularities that BEM approaches
normally carry out. Furthermore, the method is found to be more
robust than the 2.5D MFS, since it does not need to deal with the
troublesome placement of the fictitious boundary which is revealed to
be a complex and time-consuming procedure especially in the case of
irregular boundary geometries.

Overall, the 2.5D SBM is an accurate and computationally fast
numerical method and it appears to be a competitive alternative to
other available 2.5D numerical methods for acoustic analysis.
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Appendix. OIFs for the 2.5D fundamental solutions of the modi-
fied Helmholtz equation

In this appendix, the 2.5D OIFs associated to the modified Helmho-
ltz equation are derived. Adopting the subtracting and adding-back
technique on Eq. (9) when collocation points are placed on the bound-
ary results in

i𝜌𝜔𝑣̄(𝐬𝑚) =
𝑁
∑

𝑗=1
𝛼𝑗𝐻̄(𝐬𝑚, 𝐬𝑗 , 𝑘𝑎,𝐧𝑏) =

𝑁
∑

𝑗=1
(𝛼𝑗 − 𝛼𝑚𝛱𝑗𝑚)𝐻̄(𝐬𝑚, 𝐬𝑗 , 𝑘𝑎,𝐧𝑏)

+ 𝛼𝑚
𝑁
∑

𝑗=1
𝛱𝑗𝑚

(

𝐻̄(𝐬𝑚, 𝐬𝑗 , 𝑘𝑎,𝐧𝑏) −𝐻𝐿(𝐬𝑚, 𝐬𝑗 ,𝐧𝑏)
)

+ 𝛼𝑚
𝑁
∑

𝑗=1
𝛱𝑗𝑚

(

𝐻𝐿(𝐬𝑚, 𝐬𝑗 ,𝐧𝑏) +𝐻𝐿
𝐼 (𝐬𝑚, 𝐬𝑗 ,𝐧𝑏)

)

− 𝛼𝑚
𝑁
∑

𝑗=1
𝛱𝑗𝑚𝐻

𝐿
𝐼 (𝐬𝑚, 𝐬𝑗 ,𝐧𝑏),

(A.1)

where 𝐻𝐿
𝐼 (𝐬𝑚, 𝐬𝑗 ,𝐧𝑏) denotes the fundamental solutions of the flux for

the Laplace equation in interior problems and where 𝛱𝑗𝑚 = 𝐿𝑗∕𝐿𝑚,
noting that 𝛱𝑚𝑚 = 1. According to the dependency of the outward
normal vectors on the fundamental solutions of interior and exterior
problems for the Laplace equation, the following identities can be
stated:
𝐻𝐿(𝐬𝑚, 𝐬𝑗 ,𝐧𝑏) = −𝐻𝐿

𝐼 (𝐬𝑚, 𝐬𝑗 ,𝐧𝑏), for 𝐬𝑚 ≠ 𝐬𝑗 ,
𝐻𝐿(𝐬𝑚, 𝐬𝑗 ,𝐧𝑏) = 𝐻𝐿

𝐼 (𝐬𝑚, 𝐬𝑗 ,𝐧𝑏), for 𝐬𝑚 = 𝐬𝑗 .
(A.2)

Furthermore, another important identity reads as

lim
𝐬 →𝐬

(

𝜕𝐺𝐿(𝐬𝑚, 𝐬𝑗 ) +
𝜕𝐺𝐿(𝐬𝑚, 𝐬𝑗 )

)

= 0, (A.3)

𝑗 𝑚 𝜕𝐧𝑏𝑚 𝜕𝐧𝑏𝑗
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𝐺

for which if the boundary is a straight line, the above equation is
explicitly equal to zero, since 𝐧𝑏𝑚 = 𝐧𝑏(𝐬𝑚) is equal to 𝐧𝑏𝑗 = 𝐧𝑏(𝐬𝑗 ) at all
points. For problems with arbitrarily smooth geometries, fundamental
solutions as well as normal vectors smoothly approach to their corre-
sponding ones when source (𝐬𝑗) and collocation (𝐬𝑚) points get closer to
each other along a line segment. In those situations, Eq. (A.3) is valid.
Considering the relationship between the fundamental solutions of the
Laplace and Helmholtz equations for small source–receiver distances as
follows

𝐻̄(𝐬𝑚, 𝐬𝑗 , 𝑘𝑎,𝐧𝑏) = 𝐻𝐿(𝐬𝑚, 𝐬𝑗 ,𝐧𝑏), 𝑟 → 0, (A.4)

and also using the help of Eqs. (A.2) and (A.3), Eq. (A.1) can be
regularized as:

i𝜌𝜔𝑣̄(𝐬𝑚) =
𝑁
∑

𝑗=1,𝑗≠𝑚
(𝛼𝑗 − 𝛼𝑚𝛱𝑗𝑚)𝐻̄(𝐬𝑚, 𝐬𝑗 , 𝑘𝑎,𝐧𝑏)

+ 𝛼𝑚
𝑁
∑

𝑗=1,𝑗≠𝑚
𝛱𝑗𝑚

(

𝐻̄(𝐬𝑚, 𝐬𝑗 , 𝑘𝑎,𝐧𝑏) −𝐻𝐿(𝐬𝑚, 𝐬𝑗 ,𝐧𝑏)
)

+ 𝛼𝑚
𝑁
∑

𝑗=1,𝑗≠𝑚
𝛱𝑗𝑚

(

𝐻𝐿(𝐬𝑚, 𝐬𝑗 ,𝐧𝑏) +𝐻𝐿
𝐼 (𝐬𝑚, 𝐬𝑗 ,𝐧𝑏)

)

− 𝛼𝑚
𝑁
∑

𝑗=1
𝛱𝑗𝑚𝐻

𝐿
𝐼 (𝐬𝑚, 𝐬𝑗 ,𝐧𝑏).

(A.5)

Now, the above equation is regularized except for its last term which
still involves singularity. However, it has a finite value equal to 𝑉𝑚 =
−1∕𝐿𝑚, which can be derived based on the following direct boundary
integral equation:

𝑢(𝐱𝑚) = ∫𝛤

(

𝐺𝐿
𝐼 (𝐱𝑚, 𝐬)

𝜕𝑢(𝐬)
𝜕𝐧𝑏

− 𝑢(𝐬)𝐻𝐿
𝐼 (𝐱𝑚, 𝐬,𝐧𝑏)

)

d𝛤 (𝐬), 𝐱𝑚 ∈ 𝛺𝐼 . (A.6)

Substituting the simple test solution 𝑢(𝐬) = 1 and 𝜕𝑢(𝐬)∕𝜕𝐧𝑏 = 0, into
Eq. (A.6) we can obtain the following equation:

∫𝛤
𝐻𝐿

𝐼 (𝐱𝑚, 𝐬,𝐧𝑏)d𝛤 (𝐬) = −1, 𝐱𝑚 ∈ 𝛺𝐼 . (A.7)

When the field point 𝐱𝑚 approaches the boundary, we can discretize
Eq. (A.7) as follows:

∫𝛤
𝐻𝐿

𝐼 (𝐱𝑚, 𝐬,𝐧𝑏)d𝛤 (𝐬) =
𝑁
∑

𝑗=1
∫𝛤𝑗

𝐻𝐿
𝐼 (𝐱𝑚, 𝐬,𝐧𝑏)d𝛤𝑗 (𝐬)

≈
𝑁
∑

𝑗=1
𝐻𝐿

𝐼 (𝐱𝑚, 𝐬𝑗 ,𝐧𝑏)𝐿𝑗 = −1, 𝐱𝑚 ∈ 𝛤 . (A.8)

Dividing by non-zero value 𝐿𝑚, we have
𝑁
∑

𝑗=1
𝛱𝑗𝑚𝐻

𝐿
𝐼 (𝐱𝑚, 𝐬𝑗 ,𝐧𝑏) = 𝑉𝑚, 𝐱𝑚 ∈ 𝛤 , (A.9)

where 𝑉𝑚 = −1∕𝐿𝑚. Then, the regular formulation of Eq. (A.1) is
represented as:

i𝜌𝜔𝑣̄(𝐬𝑚) =
𝑁
∑

𝑗=1,𝑗≠𝑚
𝛼𝑗𝐻̄(𝐬𝑚, 𝐬𝑗 , 𝑘𝑎,𝐧𝑏) + 𝛼𝑚

𝑁
∑

𝑗=1,𝑗≠𝑚
𝛱𝑗𝑚𝐻

𝐿
𝐼 (𝐬𝑚, 𝐬𝑗 ,𝐧𝑏) − 𝛼𝑚𝑉𝑚

=
𝑁
∑

𝑗=1,𝑗≠𝑚
𝛼𝑗𝐻̄(𝐬𝑚, 𝐬𝑗 , 𝑘𝑎,𝐧𝑏) − 𝛼𝑚

𝑁
∑

𝑗=1,𝑗≠𝑚
𝛱𝑗𝑚𝐻

𝐿(𝐬𝑚, 𝐬𝑗 ,𝐧𝑏) − 𝛼𝑚𝑉𝑚

(A.10)

Compared with Eq. (15) at 𝐬𝑚 = 𝐬𝑗 , it is obtained that:

𝐻̄𝑚𝑚 = 𝐻𝐿
𝑚𝑚 = −𝑉𝑚 −

𝑁
∑

𝑗=1,𝑗≠𝑚
𝛱𝑗𝑚𝐻

𝐿(𝐬𝑚, 𝐬𝑗 ,𝐧𝑏), (A.11)

which is the OIFs of the 2.5D fundamental solutions of Helmholtz
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equation for Neumann boundary conditions in Eq. (15).
Thanks to the following asymptotic expression between the Helm-
holtz and Laplace fundamental solutions:

𝐺̄(𝐬𝑚, 𝐬𝑗 , 𝑘𝑎) = 𝐺𝐿(𝐬𝑚, 𝐬𝑗 ) +
1
2𝜋

(

− ln(𝑘𝑎) + ln 2 − 𝛾
)

, 𝑟 → 0 (A.12)

the OIFs 𝐺̄𝑚𝑚 of the 2.5D fundamental solutions of Helmholtz equation
in Eq. (14) can be determined indirectly by calculating the OIFs 𝐺𝐿

𝑚𝑚
of the Laplace equation, namely,

𝐺̄𝑚𝑚 = 𝐺𝐿
𝑚𝑚 + 1

2𝜋
(

− ln(𝑘𝑎) + ln 2 − 𝛾
)

, (A.13)

here the OIFs 𝐺𝐿
𝑚𝑚 can be derived as [24,27]:

𝐿
𝑚𝑚 = 1

𝐿𝑚 ∫𝛤𝑠
𝐺𝐿(𝐱𝑚, 𝐬)d𝛤𝑠(𝐬) = − 1

2𝜋
ln
(

𝐿𝑚
2𝜋

)

. (A.14)
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