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ABSTRACT
The Zipf distribution attracts considerable attention because it helps describe data from natural
as well as man-made systems. Nevertheless, in most of the cases the Zipf is only appropriate
to fit data in the upper tail. This is why it is important to dispose of Zipf extensions that
allow to fit the data in its entire range. In this paper, we introduce the Zipf-Polylog family of
distributions as a two-parameter generalization of the Zipf. The extended family contains the
Zipf, the geometric, the logarithmic series and the shifted negative binomial with two successes,
as particular distributions. We deduce important properties of the new family and demonstrate
its suitability by analyzing the degree sequence of two real networks in all its range.

roduction
’s Law is widely used in various fields as an appropriate distribution for modeling data, such as frequencies of
cies or ranks. Zipf (1949) applied this distribution to linguistics, for which he was interested in modeling the
cy of words appearing in a text a fixed number of times. It has been used in many different phenomena such that
rlying process makes the majority of the objects to be small, and very few objects to be very large. One can
ny references of application of the Zipf model, also known as power law model, in ecology, financial market,
topology, web visits, and demography, among others. Just to mention two of the most recent ones, the reader
at the paper by Chacoma and Zanette (2021) for a prove that in linguistics, the frequency-rank relationship
on the type of token considered and consequently, it reflects linguistic features related to the grammatical
of the token. In Asif, Hussain, Asghar, Hussain, Raftab, Shah and Khan (2021) it is proved that the upper tail
ealth distribution in the period 2010-2020 also follows a Zipf model, and that the Covid19 pandemic increased
arity in wealth allowing the rich be richer.
of the Zipf distribution for modeling the degree sequence of a network has an special interest, because it is

ular case of power law distribution and it is known that many real networks have a degree sequence power
ributed. Based on that, there are several methodologies that allow to generate random networks that mimic the
ristics of the real ones, for example Barabási and Albert (1999); Barigozzi, Brownlees, Lugosi et al. (2018);
Chung, Graham, Lu, Chung et al. (2006).
and Woodroofe (1975) prove that the Zipf distribution is the limit distribution of the proportion of classes
ctly x units in a classification problem of N units inM categories, when the number of units to be classified
infinity. This result is important, because it explains a large number of situations in which Zipf’s law appears.
eless, as many research papers such as Newman (2005) and Dyer and Owen (2012) have pointed out, real data
follow a Zipf pattern only in the tail of the distribution, although in some cases it may occur in only the central
the distribution. In Broido and Clauset (2019), a diverse corpus of degree sequences in real-world networks
erent domains is fitted by means of a power law distribution, which is the Zipf distribution defined only for
bove a given threshold. In most of the degree sequences analyzed, no evidence of clear Zipf behavior has been
d. The ubiquity of the power law is a controversial topic in the network science community. The controversy
pened after the publication of the aforementioned paper by Briodo and Clauset. The work by Holme (2019)
to find a consensus between the group of researchers assuming scale-free networks as ideal objects and the
responding author
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The Zipf-Polylog Model

terpreting these systems as particular objects part of the real world that are fine and fitted. For the author,
ints of view are correct if one distinguish between finite real networks and their projection to infinity. The
oints out that applying concepts related to large-size systems to finite networks may be inexact. The family of
tions introduced in this paper allows for a more accurate fitting of the degree sequence of finite networks.
objective of this paper is to propose the Zipf-Polylog family of distributions as a Zipf extension that can
fit a large amount of real data sets not only in the tail, but across the whole range. The proposed model is a
two-parameter exponential family containing the Zipf, the logarithmic series, the geometric distribution and
ted negative binomial distribution with two successes as particular cases. In addition, any distribution in the
lylog family that is not in the Zipf family has moments of any order, and verifies the Gauss principle. Moreover,
aximum Shannon entropy under certain conditions. We also establish the hypothesis under which the extended
s a zero-truncated mixed Poisson (ZTMP) and/or a mixture of zero-truncated Poisson distributions (MZTP).
llustrate the behavior of the presented model, we fit the degree sequences of two real networks: the Rovira i
niversity email network that was analyzed in Guimera, Danon, Diaz-Guilera, Giralt and Arenas (2003); and
book network considered in the paper by Traud, Mucha and Porter (2012a). We compare the results with
wing: the results obtained by the Marshall-Olkin Extended Zipf distribution (MOEZipf) in Pérez-Casany and
(2013) and Duarte-López, Pérez-Casany and Valero (2021), which was proven by Duarte-López, Prat-Pérez
z-Casany (2015) to be appropriate for fitting this type of data; the Discrete Gaussian Exponential distribution
defined in Bi, Faloutsos and Korn (2001); and the zero-truncated Zipf-PSS.

Zipf Distribution
Zipf distribution (Zipf, 1949), also known as either a discrete Pareto or a zeta distribution, is a uni-parametric
tion defined in strictly positive integer numbers, such that its probabilities change inversely to a power of the
ince it is a markedly skewed distribution, one may observe in a sample from this model values that sometimes
orders of magnitude. The Zipf distribution is highly recommended for modeling ranks and frequencies of

cy data. For example, Malone and Maher (2012) analyze its suitability for describing the frequency of chosen
ds. The use of this distribution for predicting consumer visitation patterns is shown in Krumme, Llorente,
, Moro et al. (2013). Their research evidences that, independently of shopper preferences, the Zipf distribution
sed to describe how frequently a client visits a store. Recently, in Chen (2021) it is proved that the level of
tion of a country with a large population is related to the Zipf’s parameter. Small values of the parameter are
o highly urbanized countries.
ough highly used in practice, the Zipf distribution has important limitations to fitting real data, as mentioned
This is because plotting probabilities in log-log scale usually leads to pattern of real data being top-concave
n, 2005; Clauset, Shalizi and Newman, 2009; McKelvey et al., 2018), which is contrary to the expected
of a Zipf distribution. As a consequence, as already said, in many instances the Zipf is fitted only in the

h the corresponding loss of information.
said that a random variable (r.v.) X follows a Zipf distribution with parameter � if, and only if, its probability
nction (PMF) is equal to:

P (X = x) = x−�

� (�)
, x ∈ {1, 2, 3,⋯} and � > 1,

(�) =
∑+∞
x=1 x

−� is the Riemann zeta function. The probability generating function (PGF) of a Zipf distributed
ual to:

X(z) = E(zX) =
+∞∑
x=1

zxx−�

� (�)
=
Li�(z)
Li�(1)

, |z| < 1 and � > 1, (1)

e Li�(z) is known as the polylogarithm function or Li function of order �, and it is equal to:

i�(z) =
+∞∑
x=1

zx

x�
. (2)

unction of order � is defined for any arbitrary complex number � and any complex number z, such that |z| < 1.
eless, using analytic prolongation, the Li function is defined throughout the complex plane. For Re(�) > 0,
, M.Pérez-Casany and A. Duarte-López: Preprint submitted to Elsevier Page 2 of 17
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The Zipf-Polylog Model

except for z that are real and larger or equal to one, the polylogarithm function may be expressed in terms of
ral of Bose-Einstein distribution as follows:

i� (z) =
1

Γ (�) ∫
∞

0

t�−1
exp(t)
z − 1

dt, (3)

an be checked by computing the Taylor expansion of the integrand and integrating termwise. Concerning to
er, both � and z will only take values in the real line and � > 0.
nt to observe that Li�(1) = � (�) and thus, the Li function may be seen as an extension of the Riemann zeta
. Also if � = 1, one has that Li1(z) = − log(1 − z) which justifies the name of polylogarithm.
respect to the moments of the Zipf distribution, it is known that the k-th moment, k ∈ ℤ+, is finite if, and

� > k + 1. In this case, it is equal to:

[Xk] = � (� − k)
� (�)

, � > k + 1. (4)

n (4), k = 1 allows one to directly obtain the first moment of the distribution that appears in (5). Computing
= 1 and k = 2 provides the variance of the distribution that appears in (6).

[X] = � (� − 1)
� (�)

, � > 2, (5)

ar[X] = � (� − 2) � (�) − � (� − 1)2

� (�)2
, � > 3. (6)

g the logarithm to a Zipf distributed r.v., it is guaranteed that the transformed variable has moments of any
his is a consequence of the fact that the logarithm reduces the data variability. Moreover, if x1, x2,… , xn ise from an r.v. X with a Zipf(�) distribution, the maximum likelihood estimation (MLE) of � is equal to the
of the equation:

[log(X)] = 1
n

n∑
i=1
log(xi) = log(x), (7)

equivalent to applying the moment-method estimation to the logarithm of the variable. In Visser (2013), it is
hat the Zipf distribution is a discrete uni-parametric distribution with support on the strictly positive integer
ith maximum Shanon entropy, for a fixed value of log(x).

Zipf-Polylog Generalization
e first part of this section, a two-parameter generalization of the Zipf distribution is defined by means of adding
ional parameter to its PGF. The second part is devoted to proving the main properties of the presented model.
tioned previously, the Zipf distribution is not flexible enough to model many real data sets, due to the fact that
ally show a top-concave pattern at the low values when plotted in log-log scale. This is one of the reasons why
resting to find Zipf generalizations that can adapt real observations to its entire range.
finition
.v. Y is said to follow a Zipf-Polylog distribution with parameters (�, �) ∈ (−∞,+∞)× (0, 1) ∪ (1,+∞)× {1}
rom now on will be denoted by Zipf-Polylog(�, �)) if and only if, for any z ∈ (−∞, 1), its PGF is equal to:

Y (z) =
⎧⎪⎨⎪⎩

Li�(�z)
Li�(�)

if � ≠ 1 and � ∈ (−∞,+∞)
Li�(z)
Li�(1)

if � = 1 and � > 1.
(8)

, M.Pérez-Casany and A. Duarte-López: Preprint submitted to Elsevier Page 3 of 17
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The Zipf-Polylog Model

ee that (8) defines a real PGF, it is only necessary to prove that: it takes the value one at one; it is analytical
erval that contains the zero value; and the coefficients of the series expansion at zero are all positive. The first
n is true because

ℎY (1) =
Li�(�)
Li�(�)

= 1.

ond condition is also true because, by (2), ℎY (z) is defined by means of a series expansion centered at zero.
the third condition is true because the n-th coefficient is equal to (Li�(�))−1 �nn−� ≥ 0.
support of a Zipf-Polylog distributed r.v. is the same as that of the Zipf distribution, i.e., strictly positive integer
s. This is because
(Y = 0) = ℎY (0) = Li�(0)∕Li�(�) = 0.

btain the PMF of a Zipf-Polylog distribution, it is enough to see that

ℎY (z) =
+∞∑
x=1

�xx−�

Li�(�)
zx,

s, according to the definition of the PGF, the probabilities are equal to:
(Y = x) = �x x−�

Li�(�)
, x = 1, 2,… . (9)

that by defining  = − log(�), the Zipf-Polylog distribution turns out to be the discrete version of the power
ribution with exponential cut-off , which appears in the paper by Clauset et al. (2009). Their paper states that
er law distribution is on the boundary of the parameter space. In what follows, this result is extended proving
so contains other known families of distributions in the interior of its parameter space.
n � = 1, (9) is plainly the PMF of the logarithmic-series distribution because Li1(�) = − log(1 − �), as
d before. Moreover, if � = 0 we obtain the geometric distribution with support {1, 2, 3,…} and probability of
p = 1 − �. Finally, if � = −1, given that Li−1(�) = �(1 − �)−2, (9) is equal to the PMF of a shifted negative
l distribution with r = 2 successes and probability of success p = 1 − �. Figure 1 contains the parameter
f the Zipf-Polylog family, with the Zipf on the boundary, and the logarithmic-series; the geometric; and the
egative binomial distributions in the interior of the parameter space. Note that the three-parametric family of
tions known as Lerch distribution also contains the Zipf, the logarithmic series and the geometric distributions
ular cases (see Zörnig and Altmann, 1995).

Zipf(�)

1

1

0

β

α

Zipf-Polylog (�, �)

Log-series(p)Geom(1-�)

-1

1 + NB(2, 1-�)

: Parameter space of the Zipf-Polylog family of distributions with the geometric, the log-series, the Zipf and the
egative binomial with r = 2 families as particular cases.

sequence of (9), any distribution in the Zipf-Polylog family may be seen as a weighted version of a distribution
ipf family. If � > 1, the Zipf-Poly(�, �) is the weighted version of the Zipf(�) distribution with weight function
= �x > 0. For � ∈ (0, 1), it is the weighted version of a Zipf(� + 1) with weight w(x; �) = �xx. For � < −1,
e seen as a weighted version of a Zipf(−�) distribution with weight function w(x; �, �) = �x x−2� . Finally, for
, 0) it is a weighted version of a Zipf(� + 2) with weight function w(x; �, �) = �x x2.
concept of weighted distribution first originates in Fisher (1934) and later became well established in Patil and
78). According to these authors, a weighted distribution is needed when the probability of observing a value x
on of the size of the value.

, M.Pérez-Casany and A. Duarte-López: Preprint submitted to Elsevier Page 4 of 17
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The Zipf-Polylog Model

ur case, if we assume that the data come from an r.v.X with a Zipf(�) distribution, with a given � > 1, and that
P (Recording x|X = x) = �x,

e sample comes from a Zipf-Polylog(�, �). As a consequence, the � parameter may be interpreted as the
lity of observing the value 1 when this is the true value. See Saghir, Hamedani, Tazeem and Khadim (2017)
ent review on weighted distributions.
re 2 shows the probabilities of the Zipf-Polylog(�, �) for a fixed � and different values of �. More exactly, �
n taken to be equal to −0.8,−0.5 and 2.3 and � equal to 0.05, 0.1, 0.3 and 0.7. When � > 1 (bottom part of
), the probabilities for � = 1 (Zipf) are also included. On the left-hand side, the probabilities are shown in the
scale and, on the right-hand side, in the log-log scale. In the plot we can observe that, independently of the �
e largest probability at one is attained for the smaller value of �. In fact, the probability at one as a function of
al to: f (�) = �∕Li�(�), and its derivative is equal to f ′(�) = Li�(�) − Li�−1(�) < 0, which proves that this
lity decreases by increasing �. For the remaining values, the probabilities increase by increasing the � value.
observe a mode on the interior of the distribution for negative � and sufficiently large �. Comparing the three
the plot reveal that, independently of the value �, the probabilities tend to concentrate in the first values when
ses.
re 3 contains the probabilities for � = 0.5 and � = −3,−0.6, 0.5, 1.5 and 2. Observe that, with the exception
itial integer values, the probabilities decrease by increasing �. One can also see a mode in the interior of the
tion for the lowest value of �.
operties
section is devoted to proving the main properties of the presented model. We first prove that the Zipf-Polylog
-parameter exponential family. Then, we show that the distributions not on the boundary of the parameter
n have moments of any order; and we describe the ratio of two consecutive probabilities. We end the section
ing that the Zipf-Polylog may be interpreted, under certain conditions, as a mixture distribution.
m 1. The Zipf-Polylog is a bi-parametrical exponential family with canonical parameter � = (�,− log(�)) and
al statistic T (x) = (− log(x),−x).

he Zipf-Polylog distribution may be parametrized in terms of (�, ), with  = − log �. With the new
rization, the PGF and PMF are, respectively, equal to:

Y (z) =
Li�(z exp(−))
Li�(exp(−))

, and

(Y = x) =
x−� exp(−x)
Li�(exp(−))

=
exp(−� log(x) − x)

Li�(exp(−))
. (10)

ight-hand side of (10), one has that the Zipf-Polylog is an exponential family of order two, with canonical
er � = (�, ), parameter space Θ = (−∞,+∞) × (0,+∞) ∪ (1,+∞) × {0}, and canonical statistic T (x) =
),−x).
erve that the Zipf-Polylog is not a regular exponential family in its entire space, since it has the Zipf model at
dary ( = 0); but it is regular if one considers the family defined in the interior of its parameter space. From
ral theory of exponential families (Barndorff-Nielsen, 2014), one has that if x1, x2,⋯ xn is a sample from an
ith a Zipf-Polylog distribution, and one defines log(x) = 1∕n∑n

i=1 log(xi), then t(x) = (x, log(x)) is a minimal
cient statistic. Also, the MLE of the parameter vector is the solution of the following system of equations:
[Y ] = x

[log(Y )] = log(x)

}
,

as a unique solution if t(x) belongs to the interior of the convex hull of t( ), being  the space where takes
(x). Note that from (7), the second equation to be solved is the same as the one for finding the MLE for the
tribution. The first equation corresponds to the Gauss Principle (see Teicher, 1961).
, M.Pérez-Casany and A. Duarte-López: Preprint submitted to Elsevier Page 5 of 17
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: PMF of the Zipf-Polylog(�, �). At the top are negative values of the � parameter and di�erent values of �. At
om are positive � values and di�erent values of �. Both cases include, respectively, the plots in normal scale and
g scale. The probabilities of the Zipf distribution are included when � > 1 and � = 1.

Zipf-Polylog distribution is mentioned in Visser (2013) as a hybrid geometric/power model that is proven to
parametric model with support {1, 2,…} and maximum Shannon entropy once x and log(x) are fixed. Note
author lacks precision when saying that the model is defined for any � < 1. This is because the odd negative
alues for � have negative probabilities; thus, negative integer values for � are not possible.
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l scale; while the right-hand side shows the same probabilities in log-log scale.

tion 1. If Y ∼Zipf-Polylog(�, �) with fixed � ∈ ℝ and � ∈ (0, 1), then E(Y k) < +∞ for any k ≥ 1.
iven that the moments of a distribution may be obtained by means of the factorial moments (Johnson, Kemp

z, 2005), it is enough to prove that the factorial moments are finite. Denoting by �′k the factorial moment of
of Y , we have:
′
k = )k

)tk
ℎY (t)

||||t=1< +∞, (11)
(z) being analytical in (−∞, 1].
next proposition explains the relationship between the ratio of two consecutive probabilities of an r.v. with a
lylog distribution and the same ratio for a Zipf distribution with the same � parameter.
tion 2. If Y ∼ Zipf-Polylog(�, �) with � > 1, and X ∼Zipf(�), then the ratio of two consecutive probabilities
roportional to the ratio of two consecutive probabilities of X, with � being the constant of proportionality.

y (9) we have:
(Y = x + 1)
P (Y = x)

= (x + 1)−��x+1

(x)−��x
= �

(
x + 1
x

)−�
= � P (X = x + 1)

P (X = x)
.

following result states that any Zipf-Polylog with a positive value of � is a mixture of geometric distributions
nson et al. (2005) for more details about the concept of Mixture Distributions).
m 2. The Zipf-Polylog(�, �) distribution with � > 0 and � ∈ (0, 1) is a mixture of geometric distributions
rized by means of s = log(�) − log(1 − p) ∈ (log(�),+∞), with mixing distribution equal to

(s; �, �) =
s�−1

exp(s)−�

∫ +∞0
t�−1

exp(t)−� dt
= �
Γ(�)Li�(�)

s�−1

exp(s) − �
. (12)

he PGF of the geometric distribution parametrized with s = log(�) − log(1 − p) is equal to:
pz

− (1 − p)z
=
(1 − � exp(−s))z
1 − � exp(−s)z

=
(exp(s) − �)z
exp(s) − �z

. (13)

, M.Pérez-Casany and A. Duarte-López: Preprint submitted to Elsevier Page 7 of 17
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prove the theorem, it is necessary to check that:
i�(�z)
i�(�)

= ∫
+∞

0

(exp(s) − �)z
exp(s) − �z

f (s; �, �) ds, (14)

s; �, �) defined as in (12). By substituting f (s; �, �) for its expression and taking into account (3), we have:
+∞

0

(exp(s) − �)z
exp(s) − �z

s�−1

exp(s)−�

∫ +∞0
t�−1

exp(t)−� dt
ds = �z

� ∫ +∞0
t�−1

exp(t)−� dt
∫

+∞

0

s�−1

exp(s) − �z
ds =

Li�(�z)
Li�(�)

, (15)

roves the theorem.
orem 1 of Valero, Pérez-Casany and Ginebra (2010) characterizes the families of distributions with finite mean
ZTMP, based on their PGF. The theorem states that a PGF ℎ(z) is the PGF of a ZTMP distribution if and only
fies that:
(0)=0, ℎ(1) = 1 and ℎ′(1) < +∞;
is analytical in (−∞, 1);
l the coefficients of the series expansion of ℎ(z) around any point z0 ∈ (−∞, 1) are strictly positive, except fore constant term that may be negative or zero; and
mz→−∞ ℎ(z) = −L, with L being a finite strictly positive number.
2 of the same paper establishes that the PGFs of MZTP distributions need to verify the first three conditions

rem 1, but not the last one. As a consequence, any ZTMP distribution is anMZTP distribution, but not the other
und. The characterizations are also true if the distribution has no finite mean. Theorem 4 establishes when the
lylog is an MZTP, a ZTMP or none of them. Previously, we show that the geometric distribution is an MZTP,
this is necessary to prove Theorem 4. This results is stated in the next theorem.
m 3. The geometric distribution with parameter p ∈ (0, 1) and domain {1, 2,⋯} is an MZTP distribution with
istribution:

(�; p) = p
(1 − p)2

exp(−�∕(1 − p))(exp(�) − 1), � ∈ (0,+∞). (16)

he PGF of the geometric(p) distribution (which support the positive integers that are equal to or larger than
qual to pz∕(1 − qz), where q = 1 − p. Given that the PGF of the zero-truncated Poisson distribution is equal
�z) − 1)∕(exp (�) − 1) and that the PGF of an MZTP distribution is the integral, with respect to �, of the PGF
ero-truncated Poisson distribution multiplied by the density function of the mixing distribution, proving the
ion is equivalent to see that:

pz
1 − qz

= ∫
+∞

0

exp(�z) − 1
exp(�) − 1

f (�; p) d�,

�; p) defined as in (16). Substituting f (�; p) for its corresponding expression and taking into account that
− p) < 0 because z < 1 and p ∈ (0, 1), we have:
+∞

0

exp(�z) − 1
exp(�) − 1

f (�; p) d� =

p
(1 − p)2 ∫

+∞

0

[
exp(�(z − 1∕(1 − p))) − exp(−�∕(1 − p))

]
d�

p
(1 − p)2

[
exp(�(z − 1∕(1 − p)))

z − 1∕(1 − p)
||||
+∞

0
+
exp(−�∕(1 − p))

1∕(1 − p)
||||
+∞

0

]

, M.Pérez-Casany and A. Duarte-López: Preprint submitted to Elsevier Page 8 of 17



Journal Pre-proof

=

Theore
a) if

an

b) if

c) if

Proof. T

where f
L
L

Moreov

where

Thus, w
(e
e

Now, su

=

=

and thus
it is eno

J.Valero
Jo
ur

na
l P

re
-p

ro
of

The Zipf-Polylog Model

−p (1 − p)
(1 − p)2

[
1

z(1 − p) − 1
+ 1

]
= pz
1 − (1 − p)z

. (17)

m 4. The Zipf-Polylog(�, �) distribution verifies that:

� > 0, it is an MZTP distributions with mixing distribution defined for � > 0 and equal to:

f (�; �, �) =
exp(�) − 1
�Γ(�)Li�(�) ∫

+∞

0
s�−1 exp(s − �

�
exp(s)) ds, (18)

d it is not a ZTMP.

� = 0, it is an MZTP distribution and also a ZTMP distribution.

� < 0, it is neither an MZTP nor a ZTMP.

o prove the first statement of a), it is necessary to see that
Li�(�z)
Li�(�)

= ∫
+∞

0

exp(�z) − 1
exp(z) − 1

f (�; �, �) d�,

(�; �, ) is defined as in (18). From Theorem 2 we have
i�(�z)
i�(z)

= ∫
+∞

0

(exp(s) − �)z
exp(s) − �z

�
Γ(�)Li�(�)

s�−1

exp(s) − �
ds. (19)

er, taking into account (13), by Theorem 3 we have:
(exp(s) − �)z
exp(s) − �z

= ∫
+∞

0

exp(�z) − 1
exp(�) − 1

f ∗(�; s) d�,

f ∗(�; s) = f (�; 1 − � exp(−s)) =
exp(s) − �

�2
exp(−�

�
exp(s)) (exp(�) − 1).

e have:
xp(s) − �)z
xp(s) − �z

= ∫
+∞

0

exp(�z) − 1
exp(�) − 1

exp(s) − �
�2

exp(−�
�
exp(s)) (exp(�) − 1) d�.

bstituting the last equality in (19) gives:
Li�(�z)
Li�(z)

= ∫
+∞

0

[
∫

+∞

0

exp(�z) − 1
exp(�) − 1

exp(s) − �
�2

exp(−�
�
exp(s)) (exp(�) − 1) d�

]
⋅

�
Γ(�)Li�(�)

s�−1

exp(s) − �
ds =

∫
+∞

0

exp(�z) − 1
exp(�) − 1

[ exp(�) − 1
� Γ(�)Li�(�) ∫

+∞

0
exp(s − �

�
exp(s))s�−1 ds

]
d�

∫
+∞

0

exp(�z) − 1
exp(z) − 1

f (�; �, �) d�,

, any Zipf-Polylog with a positive value of � is an MZTP distribution. To see that it is not a ZTMP distribution
ugh to see that:

lim
t→−∞

ℎY (t) = lim
t→−∞

Li�(�t)
Li�(�)

= −∞.

, M.Pérez-Casany and A. Duarte-López: Preprint submitted to Elsevier Page 9 of 17
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e b) it is necessary to remember that when � = 0, the Zipf-Polylog reduces to the geometric distribution with
er p = 1 − � and, in this case, it is an MZTP distribution, as proved in Theorem 3. Moreover, given that

lim
z→−∞

pz
1 − (1 − p)z

= − p
1 − p

,

-Polylog is also a ZTMP distribution.
us now prove c). To that end, we see that when � < 0, ℎ′Y (z) < 0 at some interval on the negative real line,
ns that condition (c) of Theorem 1 of Valero et al. (2010) is not verified. To prove that the first derivative of
negative, it is enough to see that the first derivative of the Li� function is also negative. This is proved by
ishing whether or not � is a negative integer.
ssume that � is a negative integer value. Then, taking into account that the Li� function for integer values of
verifies:

z
)Li�(z)
)z

= Li�−1(z),

e have that when � = −1,
)Li−1(z)
)z

= 1
z
Li0(z) =

1
z

z
1 − z

= 1
1 − z

, (20)
d it is negative when z < −1. For � = −n, by applying (20) recursively n times, we have that for certain real
lues a1, a2,⋯ , an−2,

)Li−n(z)
)z

=
z(zn−1 + an−2zn−2 +⋯ + a1z + 1)

(1 − z)n
,

om which we have ∀ n Li′−n(0) = 0. Moreover, given that limz→−∞ Li−n(z) = 0, it must be negative at a
rtain interval on the negative real line.
� is negative but not an integer number, we also have Li�(0) = 0, and given that

Li′�(z) = 1 +
z
2�−1

+ z2

3�−1
+ z3

4�−1
+⋯ ,

e have Li′�(0) = 1. Moreover,

lim
z→0−

Li�(z) = lim
u→+∞

Li�(− exp(−u)) =
−u�

Γ(� + 1)
= 0,

hich proves that, at some interval on the negative real line, Li′�(z) < 0. Consequently, for negative values of
, the Zipf-Polylog is neither a ZTMP nor an MZTP distribution. See Figure 4 for representations of the Li�(z)nction for � = −0.8,−1,−1.7 and −2.55, and z ∈ (−∞, 0).

conomics, informetrics and information sciences it is quite usual to consider a Lorenz curve (LC) as an
ent that allows to see, for instance, the proportion of income earned by a given percentage of population.
miology it is also used to illustrate the exposure-disease association. In the paper by Sarabia, Gómez-Déniz,
and Prieto (2010) the authors explain how from an initial LC L0(⋅), it is possible to generate a parametric
f LCs that contains the initial one in the limit, and that is more flexible as a consequence of having an additional
er. The generalization arises from compounding the PGF of a discrete and strictly positive r.v. X with L0(⋅)27 of the aforementioned paper). The authors consider different distributions forX and, in particular, analyze
of the Zipf distribution. If instead of the Zipf family we use the Zipf-Polylog as a distribution family for X,
ins that the resulting LCs are equal to:

ZP (p) =
⎧⎪⎨⎪⎩

Li�(L0(p))
Li�(1)

if � = 1
Li�(� L0(p))
Li�(�)

if � ≠ 1
, M.Pérez-Casany and A. Duarte-López: Preprint submitted to Elsevier Page 10 of 17
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Figure 4: Plots of the Li�(z) function for � = −0.8,−1,−1.7 and −2.55, and z ∈ (−∞, 0)
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: LCs associated with the Zipf-Polylog distribution taking as initial LC L0(p) = p. On the left-hand side for
−0.6, 0.5, 1.5, 2 and � = 0.5 and, on the right-hand side, for � = 0.9 and the same values of �

re 5 contains the plots of the LCs associated to the Zipf-Polylog distribution taking as initial LC L0(p) = p.
eft-hand side for � = −3,−0.6, 0.5, 1.5, 2 and � = 0.5 and, on the right-hand side, for � = 0.9 and the same
f �. Figure 6 contains some of the LCs corresponding to the Zipf distribution, more exactly the ones associated
and � = 1.5, 2, 3.5, 5, 6.5. We leave as future work to do more research around the role of the proposed family
butions in the econometric environment.
e Zipf-Polylog in regression models
ould be of a great interest to consider a response variable with a Zipf-Polylog distribution in the presence of
es. This not part of the objectives pursued in this paper but in this section, we introduce how this can be done.
consider the Zipf-Polylog distributions with parameters in the interior of the parameter space, that is � ∈ (0, 1)
(−∞,+∞). First, we need to take into account that, if Y ∼ Zipf-Polylog(�, �) with � ∈ (0, 1), then
= E(Y ) = Li�−1(�)∕Li�(�). (21)
erve that parameter � is the argument of both Li functions and that � is related to the particular Li functions
red. If we assume that parameter � changes with the covariates and that � remains constant, for a given
on vector yt = (y1, y2,⋯ yn) of the response vector Y t, and for a given monotone and invertible function
model may be written as:

�(�i) = Xt
i ,

, M.Pérez-Casany and A. Duarte-López: Preprint submitted to Elsevier Page 11 of 17
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Figure 6: LCs associated with the Zipf distribution for � = 1.5, 2, 3.5, 5, 6.5, and � = 1.

i = (1, xi1, xi2, ⋅, xik) the experimental conditions under which yi has been observed, and  the parameter
The  parameter vector is proposed to be estimated by maximum likelihood, that is maximizing the log-
od function that is equal to:

l(�i, �; y) = log(�)
n∑
i=1

yi −
n∑
i=1

�i log(yi) −
n∑
i=1
log(Li�i (�)).

imum needs to be found numerically, and given that we do not have an explicit expression for �i as a functionean, at each step it is necessary to solve n times equation (21). Also it will be necessary to invert n times
tion �(⋅) which can require a lot of computational time. All the process can be done by using the functions
nlm from R as it is suggested in the paper by Sáez-Castillo and Conde-Sánchez (2013). To increase the model
ty it could also be assumed that parameter � evolves as a function of some covariates.

plications
aim of this section is to illustrate the performance of the Zipf-Polylog family of distributions when it is used to
ata. In particular, the two case studies presented belong to the field of Network Analysis and the distribution
o fit the degree sequence of real networks. In order to ensure the suitability of the presented model, the results
pared with those obtained by other bi-parametric families of distributions: the DGX (Bi et al., 2001) and the
pf (Pérez-Casany and Casellas, 2013; Duarte-López et al., 2021), both of which with support in the strictly
integers; and the zero truncation of the Zipf-PSS (Duarte-López, Pérez-Casany and Valero, 2020). The last
uires to be zero-truncated because its support is the positive integer values including the zero. The work by
López et al. (2015) demonstrates the suitability of the MOEZipf model for fitting this type of data and, thus,
s an appropriate model for comparison. For all the families, the parameter estimates are the m.l.e. For the
ar cases of MOEZipf and Zipf-PSS, the m.l.e. were obtained with the R-package zipfextR (Duarte-López and
asany, 2020). The models are compared by means of the log-likelihood and the Akaïke Information Criterion
t the end of each example, the Likelihood Ratio Test (LRT) is performed to compare the Zipf model with its

lylog extension. Since the Zipf distribution belongs to the boundary of the parameter space, the likelihood ratio
follows a 50:50 mixture of �20 and �21 (Self and Liang, 1987).
se Study 1: University Rovira i Virgili, E-mail Network
first case study analyzes the degree sequence of the undirected e-mail network at the University Rovira i Virgili
n the year 2003. This data set was created by researchers in this institution and it is analyzed in the paper by
a et al. (2003), in which the authors inspect the self-similarity structure of the network. In their words, this
ructure replication at different levels of the communication network. The network comprises a total of 1133
ll of them belonging to the giant component; and there are neither loops nor multi-edges. In this particular

, M.Pérez-Casany and A. Duarte-López: Preprint submitted to Elsevier Page 12 of 17
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istributions jointly with their parameter estimates, con�dence intervals, log-likelihood and the AIC goodness-of-�t
, for the degree sequence of the e-mail network of the URV.

tion StdError CI StdError CI Log-like AIC

lylog �̂ =0.1774 0.0553 (0.0689, 0.2859) �̂ =0.9108 0.0059 (0.8994, 0.9223) -3632.2648 7268.5295

�̂ =1.7524 0.0345 (1.6848, 1.82) �̂ =1.0924 0.0275 (1.0385, 1.1463) -3673.7135 7351.4271

pf �̂ =2.4980 0.0446 (2.4105, 2.5855) �̂ =28.8413 3.4213 (22.1355, 35.547) -3698.9643 7401.9286

PSS �̂ =2.0056 0.0271 (1.9524, 2.0588) �̂ =3.1180 0.1086 (2.9051, 3.3309) -3722.6859 7449.3719
�̂ =2.0102 0.0261 (1.959, 2.0613) � =5.9809 0.3121 (5.3691, 6.5927) -3770.9683 7545.9366
�̂ =1.4374 0.0132 (1.4116, 1.4632) - - - -4106.6291 8215.2582

, an edge is created between two nodes if user A sends an email to user B and user B sends an email to user A.
ber of edges in the network is 5451. This data set can be downloaded from the network repository KONECT
s, 2013).
e 1 contains the results obtained after fitting the Zipf model and the four models mentioned in this section’s
tion. It can be observed that the best fit is obtained with the Zipf-Polylog distribution, since this is the one that
e minimum value of the AIC and the maximum log-likelihood. Figure 7 shows the fits obtained by the four
using the real data. Observe not only that the MOEZipf and the zero-truncated Zipf-PSS distributions behave
ilarly, but also that the DGX gives a slightly better fit than the previous two models, because it shows a larger
e at the beginning. Nevertheless, the Zipf-Polylog is the only one that is able to give a probability at one that is
lose to the real one, and unlike the other distributions, it does not show a linear pattern for values greater than

1 2 5 10 20 50

1
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1
0

0

E−mail Network URV 2003

Degree

D
e

g
re

e
 F

re
q

u
e

n
c
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Zipf−Polylog

DGX

MOEZipf

zt−Zipf−PSS

Zipf−PE

Zipf

PL fit

: Degree sequence of the URV e-mail network for the year 2003, and the �t obtained by each of the considered

is performed to compare the Zipf-Polylog distribution with that of the Zipf, that is, to test if � = 1 vs.
Given that for the Zipf distribution the log-likelihood is equal to −4106.629 and for the Zipf-Polylog it is
−3632.26, the likelihood ratio statistics is equal to −2 [−4106.629 − (−3632.26)] = 948.738. Under the null
sis, the likelihood ratio statistic follows a 50:50 mixture of �20 and �21 . Thus, the critical value for � = 0.05 is
0.5�20.95,1 = 0.5 ⋅ 3.84 = 1.92. Given that 948.738 ≥ 1.92, we clearly reject the null hypothesis and concludeZipf-Polylog gives a better fit than the Zipf model.
erve that the parameter estimates of the Zipf-Polylog do not allow for their direct interpretation as a weighted
because � is smaller than one. Nevertheless, by transforming the model as suggested in Section 3, defining
+ 1 and considering the weight function w(x; �) = x ⋅ 0.91x, one can assume that the data follow a weighted
of a Zipf(1.18) distribution. Parameter �̂ = 0.91 is interpreted as the probability of observing that the degree
e is one when it is actually equal to one. Hence, values of �̂ close to one ensure that almost all the nodes
gree one are observed to be like they are in reality. On the other hand, as a consequence of Theorem 4, the
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istributions jointly with their parameter estimates, con�dence intervals, log-likelihood and the AIC goodness-of-�t
, for the Facebook degree sequence at the University of California.

ion StdError CI StdError CI Log-like AIC

ylog �̂ = −0.0566 0.0160 (-0.0879, -0.0252) �̂ = 0.9789 0.0004 (0.9782, 0.9797) -44059.6760 88123.3521

f �̂ = 2.5038 0.0138 (2.4767, 2.5309) �̂ = 401.8319 23.5524 (355.6692, 447.9946) -44847.7235 89699.4471
�̂ = 3.4084 0.0129 (3.383, 3.4335) �̂ = 1.2084 0.0095 (1.19, 1.2274) -44936.4704 89876.9409

SS �̂ = 1.7104 0.0049 (1.7008, 1.7201) �̂ = 6.6136 0.0701 (6.4763, 6.7509) -46066.8610 92137.7219

�̂ = 1.7408 0.0056 (1.7298, 1.7518) �̂ = 11.4596 0.2095 (11.0489, 11.8702) -46666.5545 93337.1091
�̂ = 1.2542 0.0027 (1.2489, 1.2595) - - - -51935.0908 103872.1816

lylog(�̂, �̂) is an MZTP distribution. Thus, it is possible to say that the number of connections of the nodes
om a zero-truncated Poisson distribution, although each node has a different Poisson parameter.
se Study 2: Facebook 100, the University of California, Santa Cruz network
second analyzed data set appears in Traud et al. (2012a). In their work, the authors studied the complete
k network of 100 universities and colleges in the United States on a non-specified day in September 2005,
aim of comparing homophily and determining its community structure. The comparison was made using
s of data that was based on categorical information collected for each user, such as, gender, major, class year,
authors remark that at the time the data were collected, it was necessary to have an .edu e-mail address for
le to create a Facebook profile. A peculiarity of this dataset is that the links between different institutions are
, which allows for unconnected networks, one for each of the different institutions considered.
is particular example, the degree sequence associated with the University of California, Santa Cruz (UCSC)
zed. The network comprises a total of 8979 nodes and 224578 edges. The degree sequence is available through
ub repository: https://github.com/adbroido/SFAnalysis, mentioned in Broido and Clauset (2019).
e 2 contains the results obtained after fitting the same models as before. Similarly to the previous example, the
lylog family of distributions provides the best fit because it is the one that gives not only the maximum value
g-likelihood, but also the minimum value of the AIC. As can be appreciated in the table, the goodness-of-fit
by the DGX and the MOEZipf models are quite similar, but not as good as that of the Zipf-Polylog. The worst

ametric models are clearly the zero-truncated Zipf-PSS and the Zipf-PE. Figure 8 illustrates the performance
one of the models jointly with the real observations. Observe that the Zipf-Polylog is the only one able to
e frequency of the smallest degrees. The DGX, the MOEZipf, the zero truncated Zipf-PSS and the Zipf-PE
t the real observations properly, since on the one hand they underestimate the first integer values and, on the
ey overestimate the middle values. In addition, these distributions also show a heavier right-hand tail than the
lylog, which decays similarly to the real data.
means of the log-likelihood values of the Zipf and Zipf-Polylog models (see Table 2), the likelihood ratio
is computed and comes out equal to −2 [−51935.09 − (−44059.68)] = 15750.82, which is clearly larger than
cal value 1.92. Hence, the null hypothesis is rejected with a significance level of 0.05, and � is significatively
t from one.
n that �̂ ∈ (−1, 0), one can assume that the data follow a weighted Zipf(�̂ + 2 = 1.94) distribution with
unction w(x; �) = x2 ⋅ 0.98x. Since �̂ = 0.98 is close to one, the same interpretation made in the first example
s to be valid in this case. Based on Theorem 4, this dataset is not fitted by an MZTP because �̂ is negative.
rge scale analysis
goal of this section is to provide an overview of the performance of the Zipf-Polylog distribution when applied
e-scale study. We show the results obtained by fitting all the degree sequences of the networks in the ICON
t, Tucker and Sainz, 2020) repository of the University of Colorado. These networks are also analyzed in
k by Broido and Clauset (2019) already mentioned in the paper. They are interesting because they describe
ena of multiple domains as: biology, technology, social networks, or transportation among others.
whole collection of degree sequences appears in the github repository mentioned in Subsection 4.2, and it
3649 degree sequences. In the analysis we have excluded the sequences that verify one of the three following
ns: i) it contains information about isolated nodes, ii) it has less than 30 value on its support, and iii) it takes
an two minutes to fit at least one of the six distribution families considered. The final number of sequences
2759.
, M.Pérez-Casany and A. Duarte-López: Preprint submitted to Elsevier Page 14 of 17
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8: Degree sequence of the Facebook network at UCSC, and the �t obtained by each of the considered models.

probability distribution, the table contains the number of the degree sequences (%) for which the model provides
�t, based on the AIC criterion.

Distribution T otal(%)
Zipf-PE 1740 (63%)
zt-Zipf-PSS 522 (19%)
Zipf-Polylog 316 (11.5%)
MOEZipf 89 (3.2%)
DGX 86 (3.1%)
Zipf 6 (0.2%)
Total 2759

e 3 contains the ranking of the models based on the number of sequences in which they provide the best fit
the AIC criterion. When we say that a probability distribution provides the best fit, it means that it is the best

he ones considered in this research paper. Moreover, this does not necessary imply that the data set is properly
the proposed model. It is also important to mention that, in many cases, the models Zipf-PE, MOEZipf, and
PSS provides similar results.
Zipf-Polylog is the third distribution in the ranking and provides the best fits for 316 sequences. One can assume
distribution is appropriate for fitting sequences that show a moderate decrease in the probabilities at the first
nd an abruptly decreasing of the probabilities for large values. This can be seen in the four examples presented
e 9. On the top left- and right- hand side of that figure, we show the degree sequences of the within-college
etwork (thefacebook.com) for Dartmouth and Harvard respectively. In these networks the nodes represent
d the edges are created if two users are friends. This data set appears in the work by (Traud, Mucha and Porter,
On the bottom-left hand side, we show the degree sequence obtained using Roget’s Thesaurus book (Knuth,
his network belongs to the domain of Informational Language. The nodes represent the categories in the 1879
of Roget’s Thesaurus of English Words and Phrases, and edges represent references among categories. On the
right hand side, we show the fits obtained for the degree sequence of the scientific collaboration network, of
munity of Astrophysics (Newman, 2001) from 1995 to 1999. The nodes represent scientists, and an edge is
etween a pair of nodes if the scientists co-author a paper.

clusions
is paper a new family of discrete probability distributions that generalizes the Zipf distribution is proposed.
vantages of the introduced family are:
has finite moments of any order out of the boundary of the parameter space.
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: On the top, the �ts obtained with the degree sequences of the Facebook 100 network. On the left-hand side
mouth, and on the right-hand side for Harvard. On the bottom-left hand side, the �ts obtained for the Roget's
us book and, on the bottom-right hand side, for the collaboration network of astrophysics on 1995-1999.

contains several classical distributions as particular cases.
is able to properly fit frequencies of frequency data from many different areas, in particular when in log-log
ale they show a concave pattern at the beginning, and then the probabilities decrease sharply.
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