

MASTER THESIS

TITLE: Implementation of an NFV monitoring system for reactive
environments

MASTER DEGREE: Master's degree in Applied Telecommunications and
Engineering Management (MASTEAM)

AUTHOR: César Cornelio Cajas Parra

ADVISOR: Carolina Fernández

TUTOR: David Rincón Rivera

DATE: July 14th, 2022

Title: Implementation of an NFV monitoring system for reactive
environments.

Author: César Cornelio Cajas Parra

Advisor: Carolina Fernández

Tutor: David Rincón Rivera

Date: July 14th, 2022

ABSTRACT

This work aims at researching the existent solutions of monitoring and alerting
techniques, as well as defining a suitable architecture, design and
implementation of a complete and customizable monitoring and alerting
framework used to inspect and notify specific conditions on dynamically
instantiated applications operating in the network. Such Network Services (NS)
are used in the Network Function Virtualization (NFV) architecture, allowing
rapid instantiation and configuration of virtualized environments that handle
network configuration.

This design and implementation seek to provide more flexibility and dynamicity
to the network operator to monitor custom or generic metrics and trigger
notifications based on custom thresholds, without depending on the Virtual
Network Function (VNF) developer to adapt its descriptor and onboard each
version into the NFV Orchestrator (NFVO) prior to each usage. The framework
here developed follows a modular architecture that separates the monitoring
and alerting policies from the onboarding and instantiation process of the
Network Functions. The architecture also facilitates the integration with other
systems and adapting the functionality of an operational environment thanks to
its decoupled and modular approach.

The presented work considers a monitoring and alerting framework that is
especially useful for dynamic environments such as those relying in NFV, like
those in the EU H2020 PALANTIR project. There, the framework is used to
help assessing the correct behavior of the Security NSs that are used to
prevent or mitigate security anomalies in the network of each client. If
abnormalities are found, remediation measures will take place to replace the
potentially compromised NS instances with clean, appropriate ones.

4

ACKNOWLEDGEMENTS

I would like to thank my tutor Carolina Fernandez for guiding me through all the
processes required to accomplish the objectives of this work and to all the
Software Networks team (part of the i2CAT foundation) involved in it.

I want to thank also to my parents Cornelio and Cecilia and my sisters Daniela
and Valeria, who have supported me in this journey and motivated me to
accomplish another milestone in my career.

LIST OF FIGURES

Figure 1: High Level NFV framework ... 4

Figure 2: ETSI NFV reference architectural framework 5

Figure 3: Prometheus Architecture ... 8

Figure 4: Grafana dashboard ... 9

Figure 5: OSM Monitoring structure ... 13

Figure 6: DCAE architecture diagram. .. 14

Figure 7: Proposed active monitoring framework ... 15

Figure 8: Message sequence flow for active monitoring 16

Figure 9: Monitoring schemes: a) passive/centralized, b) active/centralized 17

Figure 10: Proposed monitoring and alerting framework, as part of the SCO
subcomponent ... 21

Figure 11: Monitoring module architecture ... 23

Figure 12: Policies module architecture ... 23

Figure 13: MongoDB data model for monitoring and alert system 24

Figure 14: Data modeling for MON ... 25

Figure 15: Data modeling for POL .. 25

Figure 16: Mean response time for a metric under passive monitoring
(Prometheus) .. 32

Figure 17: Mean response time for a metric under active monitoring (SSH
Channel) .. 32

Figure 18: Mean response time for POL to notify upon detecting a threshold being
surpassed .. 33

Figure 19: Mean response time for POL as MON increases its observed metrics
 .. 34

Figure 20: Performance degradation of POL for 10h .. 36

Figure 21: Performance comparison between active and passive monitoring .. 37

Figure 22: VIM account creation ... 48

Figure 23: NS onboarding .. 49

Figure 24: Instantiated VNFs list .. 50

Figure 25: VNF specifications ... 51

Figure 26: Prometheus Server (Targets) .. 53

Figure 27: Node Exporter Metrics ... 54

Figure 28: Prometheus Pushgateway dashboard ... 56

6

LIST OF TABLES

Table 1: VNFs’ data sources, measurements to collect and problems. 12

Table 2: Differences between active and passive monitoring. 17

Table 3: Relation between system’s scraping time and Prometheus Overload 35

Table 4: Whitelist of allowed monitoring commands ... 40

CONTENTS

INTRODUCTION .. 1

CHAPTER 1. BACKGROUND ... 3

1.1. Network Function Virtualization (NFV) .. 3
1.1.1 Reference Architecture ... 4
1.1.2 Monitoring framework ... 7

1.2 Monitoring and alerting tools ... 7
1.2.1 Prometheus and Grafana ... 8
1.2.2 PerfSONAR .. 9
1.2.3 Zabbix and Nagios .. 9
1.2.4 Network Management as a Service (NMaaS) .. 10

CHAPTER 2. STATE OF THE ART ... 11

2.1. Monitoring in NFVOs ... 11
2.1.1. OSM .. 12
2.1.2. ONAP .. 13
2.1.3. OPNFV ... 14

2.2. Active monitoring framework ... 14
2.2.1 Workflow definition ... 15

2.3. Passive monitoring framework .. 16

2.4. Summary of monitoring techniques .. 17

CHAPTER 3. PROBLEM STATEMENT AND ARCHITECTURE OF THE
SOLUTION ... 19

3.1 Problem Analysis... 19
3.1.1 Proposed solution ... 20

3.2 Architecture of the monitoring framework ... 21

3.3 Design of the solution ... 22
3.3.1 Guiding principles ... 23
3.3.2 Data modeling .. 24
3.3.3 Interfaces .. 25

CHAPTER 4. IMPLEMENTATION AND DEPLOYMENT 27

4.1 Implementation decisions .. 27
4.1.1 Retrieval of metrics ... 23
4.1.2 Data persistance ... 24
4.1.3 Language .. 25
4.1.4 Maintainability ... 23

4.2 Deployment decisions .. 29
4.2.1 Virtualization layer .. 23
4.2.2 Access control .. 24
4.2.3 Configuration .. 25

8

CHAPTER 5. EXPERIMENTATION AND EVALUATION 31

5.1 Mean response time .. 31
5.1.1 Comparison of mean response time to extract a metric between active and passive
monitoring .. 31
5.1.2 Mean response time for the alerting subsystem ... 33

5.2 Compromise in selected configuration values ... 34
5.2.1 Selection of the acquisition frequency for metrics .. 34
5.2.2 Selection of the maximum data retention ... 35

5.3 Performance Degradation ... 36

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 38

6.1 Conclusions of the work ... 38

6.2 Future work .. 39

6.3 Considerations on security, ethics and privacy ... 39
6.3.1 Security ... 39
6.3.2 Potential to detect Indicators of compromise ... 40
6.3.3 Ethics and privacy .. 41

6.4 Considerations on environmental sustainability ... 42

ACRONYMS .. 43

REFERENCES ... 44

ANNEX I: DATA MODELS .. 46

1.1 MongoDB data modeling ... 46

1.2 MON and POL data modeling .. 47

ANNEX II: OSM ... 48

1.1 Virtual Infrastructure Manager (VIM) account setup ... 48

1.2 Network Service (NS) onboarding and instantiation .. 49

ANNEX III: OPENSTACK .. 50

1.1 Navigating the VMs in use by the VNFs ... 50

ANNEX IV: PROMETHEUS ... 52

1.1 Creating the Prometheus Server (e.g., locally) ... 52
1.1.1 Prometheus Node Exporter .. 53
1.1.2 Creating the Prometheus Pushgateway ... 54

ANNEX V: REST CALLS ... 57

1.1 Monitoring subsystem MON.. 57

1.2 Alerting subsystem POL .. 59

 1

INTRODUCTION

The Network Function Virtualization (NFV) paradigm leverages on the benefits
and growth of the virtualization technology. NFV offloads Network Functions
(NFs) from dedicated hardware to software running on Commercial Off-The-Shelf
(COTS) equipment [1]. Several telecommunication operators have worked
together to release an Industry Specification Group for NFV in accordance with
the European Telecommunication Standard Institute (ETSI) in 2012 [2]. One of
these standards is dedicated to active monitoring and failure detection, where the
design of the proposed monitoring system is based on the described reference
framework.

One way to obtain a good performance of NFs is to monitor them properly. From
the point of view of the technology, the measurements provided by the monitoring
process heavily rely upon for managing systems, given that such outcomes
indicate the state of the system and can expose abnormalities on any of its
components.

The monitoring of NFs in the Open-Source MANO (Management and
Orchestration) (OSM)1 NFVO, widely used in the research ecosystem, requires
defining specific metrics inside of the VNF descriptor, prior to its packaging and
onboarding in OSM. This introduces a dependency from the network operator
towards the developer. Instead, a more adequate approach is to avert this need
and provide operators with enough flexibility and customization to dynamically
monitor the NS instances running in their infrastructure. Furthermore, it should
serve as a generic and modular monitoring system that any developer, integrator
or operator can use without OSM.

The benefits of the proposed approach are the following:

 Separation between the definition of the VNF and the extracted metrics.
Thus, the operator does not need to understand nor update the VNF
descriptor, repackage and onboard it again; which hogs the infrastructure
and the OSM instance with slightly changed versions, as well as increased
management tasks. Another benefit is that the operator does not need to
understand the inner behavior of the NF instance.

 Selection of both generic and custom metrics. Generic metrics are
extracted by a third-party module called Prometheus Node Exporter; whilst
custom metrics are manually defined (as UNIX commands) and fetched
directly from the NF instance

 Binding of alerts with previously defined metrics. With this, alerts are
generated once a given condition is met.

1 ETSI-hosted project to develop an Open Source NFV for management and orchestration
(MANO)

2

This thesis seeks to compare currently available monitoring solutions, design the
architecture of the complete system and of the monitoring and alerting
subsystems, implement these and evaluate the overall performance. Therefore,
this work focused on developing and implementing a modular NFV monitoring
and alerting system that allows any operator to manage a number of NFs
instantiated in a Network Function Virtualization Infrastructure (NFVI).

This document is organized as follows:

This document is organized as follows: (1) a first chapter dedicated to the
background information about key concepts related to NFV, as well as tools used
for monitoring and alerting; (2) a second chapter related to the State of the Art,
where both general monitoring techniques are detailed and where the monitoring
approaches adopted by NFVOs; (3) a third chapter that explains the problem
analysis/statement and proposed solution, design and architecture and resources
needed to develop the API; (4) a fourth chapter that contains all the
implementation and deployment description of the monitoring and alert system;
and (5) a final chapter elaborating on the API´s evaluation and performance.

The document ends with a final chapter that contains general conclusions and
future work lines to be implemented as well as brief sustainability considerations.
There are also several annexes with details that were omitted in the main body
of the document for the sake of brevity and clarity of the narration.

 3

CHAPTER 1. BACKGROUND

This chapter will delve into the concepts of the involved technologies that are
used to develop the monitoring and alert system.

First, the Network Function Virtualization concept is described, along with its
reference architecture and the active and passive monitoring framework to be
used. In a second part of the chapter, different monitoring and alerting tools are
shown to be compared to have a better understanding of the benefits and
drawbacks of each of them and look for the implementation of the best fit.

1.1. Network Function Virtualization (NFV)

The NFV concept involves the offloading (that is, transferring the logic of the
network functions) from dedicated hardware appliances to software-based
applications, taking advantage of the rapid evolution of IT virtualization. These
applications are executed on standard IT platforms like high-volume servers,
switches, and storage. With NFV, the instantiation of Network Functions (NFs) is
possible and allow deploying in heterogeneous networks in a transparent manner
[3].

NFV provides a good number of benefits to the telecommunication industry, such
as the flexibility and scalability, open-source platforms, improvements in
operations performance and time development cycle, but most importantly
reducing CAPEX and OPEX investments [4].

The high level NFV architectural framework [5] is composed of three important
working domains, as shown in (Figure 1). Specifically, these are the Virtualized
Network Functions (top), the NFV Infrastructure (bottom) and the NFV
Management and Orchestration (right).

4

Figure 1: High Level NFV framework

Each VNF runs the network-related logic on top of the NFVI. On the other hand,
the NFVI conforms the virtualized resources where the VNF is running. Finally,
the NFV Management and Orchestration (MANO) oversees the orchestration and
lifecycle management of the VNFs; and could partially interact with other physical
and/or software resources.

1.1.1 Reference Architecture

The NFV architectural framework focal point is on the new functional blocks in
the operator’s network resulting from the virtualization process. Figure 2 [5]
illustrates the NFV architectural framework illustrating the functional blocks and
most relevant points in the NFV framework. The most important functional blocks
are the VNFs, Element Management (EM), NFV infrastructure, Virtualized
Infrastructure Manager (VIM), NFV Orchestrator, VNF Manager, Service, VNF
and Infrastructure Description and the Operations and Business Support
Systems (OSS/BSS). Solid lines highlight the reference points of NFV, while
dotted lines represent available points present in actual deployments that might
require adaptations to support NFV. This framework focuses on the functionalities
that must be included in a virtualized environment able to operate a network,
other than that, the network operator decides which network function should be
virtualized.

 5

Figure 2: ETSI NFV reference architectural framework

1.1.1.1 Virtualized Network Function (VNF)

VNFs carry out virtualized tasks in the networks, which were previously
performed by proprietary dedicated hardware [6]. VNFs can run as a Virtual
Machine (VM) or containers (i.e., Docker). These tasks, which are used by both
network service providers and enterprises, include functionalities typically
present in routers, switches, firewalls and other devices.

1.1.1.2 Element Management (EM)

The Element Management is the responsible of the good functioning of the VNF
[7]. The EM manages important functional components of the VNF called FCAPS
(Fault, Configuration, Accounting, Performance and Security management). One
EM could manage one or several VNFs, additionally, EM could be considered as
a VNF itself.

1.1.1.3 VNF Manager

The VNF Manager (VNFM) is in charge principally of VNF lifecycle management
[7]. The lifecycle management executes diverse operations over the NSs such as
deployment, deletion and lifecycle operations which includes service start/stop,
scalability, inner configuration, monitoring, etc. The main difference between the

6

EM and the VNFM is that the first one is responsible for the management of the
functional components of the VNF, meanwhile, the second one manages the
virtual components.

As an example, let us assume we have a virtualized mobile core, VNFM could
manage issues related to the deployment of the VNF and the EM manages issues
related to the inner configuration/functionality of the service.

1.1.1.4 Network Function Virtualization Infrastructure (NFVI)

NFVI [5], includes the physical and virtual resources (both, hardware and
software) that make up the virtualization environment where the VNF is deployed.
NFVI could be potentially distributed across multiple locations.

1.1.1.5 Virtualization Layer

The Virtualization Layer [5], decouples the software of the VNF from the hardware
it sits on. The Virtualization Layer guarantees that the VNFs lifecycle is
independent of the hardware.

1.1.1.6 Virtualized Infrastructure Manager (VIM)

The Virtualized Infrastructure Manager [5], is the authority that allows a smooth
interaction between the VNF and the network resources, storage and computing.
The VIM manages the VNFs virtualization as well.

There are several VIMs that are accepted for the ETSI Open-Source MANO [8]:
Openstack, OpenVIM, VMware’s vCloud Director, AWS, Microsoft Azure or
Google Cloud Platform. For this thesis, we will be using Openstack as our VIM.

1.1.1.7 NFV Orchestrator

The NFV Orchestrator [5], will be the one that orchestrates and manages the
NFVI and software resources. The NFVO acknowledges the network services
instantiated in the NFVI. The NFVO interfaces are with the VNFM (Or-Vnfm) and
VIM (Or-Vi).

1.1.1.8 Operation Support System/Business Support System
(OSS/BSS)

The OSS and BSS [7], may be directly used by the network operator. OSS deals
with network, fault, configuration, and service management. The BSS oversees
customer, product, and order management. The OSS/BSS communicates
directly to the NFV MANO through the Os-Ma interface.

 7

For this work, the monitoring process is expected to act at the "Ve-Vnfm" interface
to passively obtain or actively retrieve metrics. It could also potentially act at the
"Or-Vi" interface in case the targeted node to monitor is not a VNF, but part of the
VIM. This latter option is open to the operator.

1.1.2 Monitoring framework

Monitoring techniques can be active and passive. The following subsections
describes both of them. These techniques, and other aspects related to
monitoring are more detailed in Chapter 2.

1.1.2.1 Active monitoring techniques

Active monitoring acquires specific metric(s) lively from the network in a proactive
manner. This is used to monitor live networks. To monitor a network using an
active technique, it is necessary to send traffic to the network in order to assess
its health properly [9]. The importance of the active monitoring appliance is that it
could provide fault detection, performance degradation and configuration issues.

1.1.2.2 Passive monitoring techniques

This monitoring technique, called passive monitoring [10], also monitors live
networks. It focuses on the analysis of the user’s real data. One benefit of using
passive monitoring is the response time, as it usually collects metrics faster than
the active monitoring. The disadvantage of these techniques is that the
measurements can be only analyzed off-line. This creates two problems: delay in
actionable results and big amount of data processing at once.

Chapter 2 elaborates on the active and passive monitoring framework techniques
applied to NFV, as well as its workflow definition.

1.2 Monitoring and alerting tools

This section is dedicated to elaborating on the most used and common monitoring
tools that address traditional monitoring and alerting problems. The ones that are
considered to be described are (i) Prometheus [11] and (ii) Grafana, (iii)
perfSONAR [12], (iv) Zabbix and Nagios [13], (v) Icinga [14] and (vi) Network
Management as a Service (NMaaS).

8

1.2.1 Prometheus and Grafana

1.2.1.1 Prometheus

Prometheus is an open-source monitoring and alerting system toolkit.
Prometheus collects and stores its metrics as time series data. That is, values
from metrics are stored with the timestamp at which it was recorded, alongside
optional key-value pairs called labels.

Prometheus's main features provide a multi-dimensional data model with time
series data identified by metric name and key/value pairs, a flexible query
language to leverage this dimensionality, autonomous single server nodes, time
series collection via a pull model over HTTP, time series pushing supported for a
gateway, targets discovery via static configuration, multiple modes of graphing
and support for dashboards.

Figure 3 [11] shows the Prometheus server architecture, depicting the most
relevant components: the main Prometheus Server, which scrapes and stores
time series data; client libraries for instrumenting application code; a
Pushgateway for supporting short-lived jobs; and Grafana, the data visualization
tool.

Figure 3: Prometheus Architecture

Prometheus scrapes metrics from instrumented jobs, either directly or via
Prometheus Pushgateway for short-lived jobs. It stores all scraped samples
locally and runs rules over this data to either aggregate and record new time
series from existing data or generate alerts. Grafana or other API consumers can
be used to visualize the collected data.

 9

Prometheus works well for recording any purely numeric time series. It fits both
machine-centric monitoring as well as monitoring of highly dynamic service-
oriented architectures. In a world of micro-services, its support for multi-
dimensional data collection and querying is a particular strength.

1.2.1.2 Grafana

Grafana is a fully manageable observability platform for different applications and
infrastructures, its benefits can be leveraged by connecting it to other tools like
Prometheus, Loki and Tempo. This platform provides a graphical interface and a
fully functional dashboard as shown in Figure 4.

Figure 4: Grafana dashboard

Other benefits of this tool are the collection, storage, visualization and alerting on
data running in a specific environment.

1.2.2 PerfSONAR

perfSONAR is a network measurement toolkit. perfSONAR principal aim is to
transmit and share network measurements information/data with an end-to-end
connection. The amount of tools that perfSONAR provides is extensive. This
might seem a benefit, but it would increase the difficulty of the implementation for
our monitoring and alerting subsystem.

1.2.3 Zabbix and Nagios

The Zabbix tool can be categorized as a monitoring application which is used to
monitor the performance of VMs, networks and servers and is available as open
source which can monitor CPU usage, network usage and disk consumption on
machines. The monitoring tool can be configured with an API through a specific

10

interface. This tool can be a good candidate to use for the monitoring and alerting
system but its approach is to fit big enterprises requirements.

Nagios is an open source continuous monitoring tool used to monitor the health
of system machines, network infrastructure and architectures. The Nagios tool
immediately sends an alert to the technician if something goes wrong with the
system. A principal disadvantage of the use of Nagios is the lack of easy
configurations access through a web interface, this is only permitted in a paid
version of the tool. The time that requires configure the monitoring tool is around
15 minutes, but this process requires turn down the Nagios server and edit the
configuration files. For this reason, it is not suitable for our monitoring and alerting
system.

1.2.3.1 Icinga

Icinga is a monitoring system that checks the availability and performance of
network resources, notifies problems to the users through its alert system, and
creates data reports. Scalable and extensible, Icinga can monitor large, complex
environments across multiple locations. Icinga was built as a fork of Nagios
monitoring system. Its new release is Icinga 2 which contains new features that
can be deployed on top of the Icinga stack. The main disadvantage of Icinga is
that the architecture does not use the benefits of the time series databases and
this will be necessary to use it next with Prometheus, therefore, is not a good
selection.

1.2.4 Network Management as a Service (NMaaS)

NMaaS is a set of tools comprising network management applications that run in
a secure network monitoring infrastructure. NMaaS user targets are the big
organizations that are willing to outsource network management. GÉANT’s
NMaaS provides several services such as the management of the network
infrastructure and support for both system and tools utilization.

Since the core service of NMaaS is outsourcing the network management, it is
not suitable for our monitoring and alert system. This is because we could lose
control and customization on the system being dependent on a third entity, which
is not the objective of this work.

 11

CHAPTER 2. STATE OF THE ART

This chapter provides an overview of the current monitoring techniques used by
different widely adopted NFVOs to monitor VNFs, describing the followed
methodology for each and the advantages or drawbacks of each approach.
Besides this, active and passive monitoring techniques are discussed in the
context of NFV.

2.1. Monitoring in NFVOs

Orchestration is key when it comes to deploying different NSs, each made up of
one or more NFs running in the same common NFV Infrastructure (NFVI) [15]. In
order to provide the end users with their expected performance, different
segments and nodes in the network must be monitored and potentially notified in
a seamless way, making it possible to detect anomalies (e.g., security issues or
potential service breaches) as soon as they occur.

The inherent multi-layer infrastructure implementing the NFV architecture
requires an evolved monitoring approach relying on the following key aspects:

Real-time analytics capability i.e., the monitoring system should be able to
correlate data from all the layers of the NFV architecture. This is important to
realize the root of the problem. The correlation should be analyzed from top
(service or function-related) and from bottom (infrastructure-related) layers.

End-to-end active service monitoring: i.e., it should be able to implement an
active monitoring to test continuously end users service layers. This process
should be automated.

Table 1 [15] resumes the data sources, measurements to collect and detect
possible problems to consider for the VNFs and the virtualization layer.

In this thesis, it is considered collecting different metrics from the NFs (here,
VNFs) that provide data for virtual system resources usage (CPU, Disk, RAM) by
VNF application process; virtual system level KPIs; alarms; events and
configuration.

12

Table 1: VNFs’ data sources, measurements to collect and problems.

Virtual Network Functions & Virtualization layer

Data sources Measurements to
collect

Problems for VNFs

•Application and OS data.
•VNF Agents/Proxies or CLI
scripts at VM level (for system
resources)

•Virtual System resources
usage (CPU, Disk, RAM) by
VNF application process
•Virtual System level KPIs,
Alarms, Events,
Configuration

•System blackout
•Application Process blackout
•Resource Usage Thresholds
Alarms,
•Unexpected events
•Inconsistent VNF
configuration

Infrastructure orchestration
VNF Managers

•Virtual Infrastructure lifecycle
events and triggered actions
•Virtual Infrastructure
inventory
•VNF lifecycle events and
triggered actions
•VNF inventory

Infrastructure and VNF
Alarms (Resources
unavailable, recovery action
failures)

Compute workload active
probes

Processing KPIs, RAM R/W
KPIs I/O KPIs, Disk R/W KPIs

Percentage of operations
above correctness and timing
thresholds

VIM telemetry data (e.g.
Openstack Telemetry)
collected by agents/ proxies

•Virtual resources
consumption per VM
•Cloud system resources
usage, system level and
application level KPIs,
alarms, events, configuration
•VM and VN inventory

•Node blackout
•Application process blackout
•Resource Usage Thresholds
Alarms,
•Unexpected events
•Inconsistent SDN
configuration (model,
policies.)

2.1.1. OSM

Open Source MANO (OSM) [16], implements an Open-Source Management and
Orchestration (MANO) stack that is aligned with ETSI NFV standards (e.g.,
information models and interfaces). This project is led by a world-wide community
that helps to deliver a production-quality MANO stack used for NFV deployments
that meets requirements from the telecommunication operators.

The documentation of this NFVO delivers a complete and up-to-date user guide,
detailing every step from the first setup and configuration to NS development and
instantiation, among other key functionalities. One of the guide’s sections
comprehends the monitoring and autoscaling features, in which VNFs metrics
collection processes are described in the Virtual Network Function Descriptor
(VNFD), and specific life-cycle management actions can be triggered upon
metrics.

In order to collect metrics from a VNF, the OSM monitoring subsystem features
a “mon-collector” module to extract metrics specified at the VNFD [17]. The
metrics will be collected only if these exist at any of these two levels:

● NFVI, which can be made available by the VIM’s built-in telemetry system.

 13

● VNF, which are made available by OSM VCA (using Juju Metrics) and
fetched from the VNF instances.

Figure 5 [17] describes graphically the OSM monitoring overall structure and its
relation with ancillary tools for fetching and persisting data (Prometheus) and
rendering it (Grafana).

Figure 5: OSM Monitoring structure

2.1.2. ONAP

Open Network Automation Platform (ONAP) [18], is the orchestration framework
in which the Data Collection Analytics and Events (DCAE) project is developed.

DCAE provides intelligence for ONAP to support automation by performing
network data collections, analytics & correlation and trigger actionable root-cause
events. To that end, it collects, receives and analyses monitoring data (e.g.,
health, performance, operational status) from VNFs. Active monitoring is used
when polling from the VNF, but DCAE also uses passive monitoring, where VNFs
directly register this information. The DCAE services components includes all the
micro services - collectors, analytics and event processor which supports active
data flow and processing as required by ONAP use cases.

Figure 6 [18] shows the DCAE architecture and how components work with each
other. The components on the right constitute the platform controller which are
statically deployed. The components on the left represent the services which can
be both deployed statically or dynamically.

14

Figure 6: DCAE architecture diagram.

All services included in DCAE are offered as Docker containers and can be
deployed as well as Kubernetes Deployments and Services.

The DCAE Services are: (1) collectors, such as Virtual Event Streaming (VES)
collector or RESTConf collector; (2) analytics, such as Docker based Threshold
Crossing Analytics and (3) event processors.

2.1.3. OPNFV

Open Platform for NFV (OPNFV) [19] has projects like “doctor” for the operators
to detect faults in the systems and perform maintenance. They monitor with
Nagios or Zabbix and is relying on the virtual resource manager (e.g., any
resource provider) of OpenStack, the VIM in use. Another project is “barometer”,
used to monitor performance to detect violations in the Service Level Agreements
SLAs, as well as degradation in the performance of the resources in the NFVI,
among others.

2.2. Active monitoring framework

The active monitoring framework proposed for NFV [20] consists of three core
modules: test controller, Virtual Test Agent (VTA) and Test Result Analysis
Module (TRAM). Each of these modules have a specific responsibilities and roles
into the monitoring framework:

Virtual Test Agent: virtual entity that keeps the monitoring running in a VNF even
within VNF migration scenarios.

Test Controller: maintains the configuration and catalogue of the Test Agent,
tracks active tests, and other responsibilities.

 15

Test Result Analysis Module: provides a report of scalability status, pulls
information from the VTA and sends it to the OSS/BSS via NFVO and provides
different test results.

Figure 7 [20] illustrates the proposed active monitoring framework.

Figure 7: Proposed active monitoring framework

2.2.1 Workflow definition

Figure 8 [20] illustrates the messages exchanged between the active monitoring
entities and the NFV entities for the provisioning of VTAs and the collection of
NFVI statistics [21].

16

Figure 8: Message sequence flow for active monitoring

In the development of this thesis, VTAs are provisioned too. This process is done
by directly placing the monitoring agent in the targeted VNF, in this case the VTA
will be the Prometheus Node Exporter which uses passive monitoring. The active
monitoring is a “built in” feature in the used Virtual Machines (VMs) since they
have the Open SSH installed in their system to perform the SSH tunneling. The
exporters will be monitoring metrics from inside of each VNF's system.

2.3. Passive monitoring framework

As the name suggests, passive monitoring does not require the involvement, or
even awareness, of another site on the network. In its simplest form, passive
monitoring may be nothing more than a periodic collection of port statistics such
as bytes and packet sending and receiving counts.

Table 2 presents the main differences between active and passive monitoring.

 17

Table 2: Differences between active and passive monitoring.

 Active Monitoring Passive Monitoring

Quality Quality of service Quality of experience
(QoE)

Analysis Direct, end-to-end

Correlated end-to-end

Type of monitoring

results
Deterministic and

predictive

Detailed traces for
diagnosis

Type of monitoring Real-time, end-to-end

transport, network and
service performance

Non-real-time, in-depth
network, service and

subscriber experience

2.4. Summary of monitoring techniques

The Orchestration solution design shall take into account several monitoring
aspects. The first aspect to be considered is how the monitoring agents collect
the metrics measurements. This enables a classification of monitoring as passive
of active (Figure 9 (a) and Figure 9 (b), respectively).

Figure 9: Monitoring schemes: a) passive/centralized, b) active/centralized

According to the related specification proposed by ETSI [20], monitoring tasks
may be passive, active, or hybrid.

In passive monitoring it is assumed that the monitoring server does not use a
proactive approach to obtain metrics. Instead, it gathers unmodified metrics
provided by the VNFs monitoring elements. Passive monitoring can analyze, for
instance, the user traffic in real time and assume that the metrics obtained will be
collected and processed off-line, this could provoke substantial delays between
the events and the corresponding actions.

18

Active monitoring will use proactive fault detection in this case. The server waits
for the metrics sent by the monitoring agents. It also runs autonomous actions,
like tests or new flows generations for specific monitoring situations. The use of
active monitoring techniques enables an iterative approach to analyze VNFs or
NFVI resources without the need of user traffic [22].

 19

CHAPTER 3. PROBLEM STATEMENT AND
ARCHITECTURE OF THE SOLUTION

In this chapter, the problem analysis that led to this proposal is discussed. The
architecture and design of the monitoring subsystem MON and the alerting
subsystem POL (also Policies Management Module) are also described,
indicating the role that each module take and how the communications between
the NFs and the monitoring subsystem MON are established

3.1 Problem Analysis

The NFV monitoring tools provided by OSM use the VNFD to configure and setup
internal monitoring metrics for the VNF or VIM. The monitoring metrics must be
defined in the descriptor file, in a way that fulfils the needs of the network operator.
The monitoring definition in the descriptor is limited to some predefined reacting
operations, like autoscaling. Therefore, this scenario presents a higher difficulty
to accommodate the operator’s needs that relate to the configuration and
management of the monitoring services.

The main problem to tackle in this project is to remove the need of the operator
to frequently modify the VNFD to be able to monitor the NSs by creating an
independent and customizable metrics monitoring module. Currently, the
monitoring in OSM is dependent on the VNFD. This reduces the capacity of the
operator of stablishing new monitoring processes in a fast way. There are several
limitations at the descriptor level of the OSM monitoring. These pitfalls are mostly
related to the descriptor participation as a central point in the process of setting
a monitoring and alerting configuration. A better approach to improve monitoring
services is to decouple the VNF metrics from the descriptor to enable a better
and more manageable system.

The VNFD is composed of a list of instructions that builds the VNF properties.
These properties define the VNF resources such as virtual compute, storage and
networking. Other properties to define are the type of connectivity, flavor, lifecycle
management, autoscaling and monitoring.

To implement a new metric into the VNFD it is necessary to describe it at both
the VDU and VNF levels. The description requires providing a metric ID and a
normalized metric name (e.g., id: disk_used, nfvi_metric: cpu_utilization). This is
an example of how monitoring metrics are detailed in the VNFD. Therefore, the
addition of a new metric represents the creation and instantiation of a new VNFD
for the NS and the VNF, affecting the memory and space disk resources used in
the NFVO (OSM). This, along with the predefined reacting operations, limits the
ability of the operator to extend the life-cycle management and tailor it to its needs

This monitoring approach is not convenient since it does not provide enough
flexibility to define customized metrics to be monitored, to configure these easily

20

and independently of both the NFVO in place and the logic of any given VNF in
their VNFD; as well as not providing easy ways to bind with other reaction
operations (e.g., though the emission of alerts to specific endpoints, which
execute specific actions).

3.1.1 Proposed solution

The devised solution averts the dependency between the definition of the logic
for the NF instances that will operate the network and the network operation
lifecycle itself. This provides the infrastructure operator with enough flexibility and
customization to programmatically monitor the NS instances running in their
infrastructure without the need to understand the logic of the NS and NF, nor of
their descriptors. In general, with the abstraction of the VNFD dependency, the
system becomes more flexible and enables the opportunity of dedicating more
resources to other functionalities and services of the NFs. This is the reason why
it is important to remove this characteristic of the OSM approach. Besides this,
the proposed monitoring and alerting subsystem can be used by developers,
integrators or operators in a modular fashion, making it possible to export to
different environments, platforms and MANO tooling (e.g., to use with other
NFVO other than OSM).

The benefits of the proposed approach are the following: (1) separation between
the NF and the metrics extracted from it, so there is no need to understand nor
update the VNF descriptor, repackage and on-board again – which hogs the infra
and OSM with slightly changed versions or requiring running instances to be
removed beforehand; (2) selection of generic metrics definition or custom metrics
, where the generic metrics are defined by Prometheus Node Exporter and
custom metrics are manually defined, as UNIX commands, and subject to filters;
(3) binding of alerts with previously defined (generic or custom) metrics and
where alerts are emitted upon meeting a given condition or threshold; and (4)
easy integration with other systems and interfaces, given its modular approach.

The expected workflow followed by the proposed solution performs the first
onboarding of the NS and associated NF(s) packages through OSM, with a basic
descriptor configuration and allocates enough resources to the NF. The second
step instantiates the NS into OpenStack as a VM. The third step is to set up a
communication channel (here, SSH) to the running VM of the VNF instance and
it must be accessible from the API. In the fourth step, the MON module can
register the VM's IP into MongoDB and then, MON is ready to use it to send
commands and receive data in return. Here, metrics will be obtained through
custom or generic commands and a background monitoring feature will be
running for each metric. Finally, the policies subsystem will be able to register
new custom alerts and compare the obtained VNF’s metrics with the alert’s
condition in order to enable the notification subsystem when the condition is met.

See Annexes II and III to have a bigger picture of the instantiation processes of
NS and VNFs, respectively.

 21

3.2 Architecture of the monitoring framework

The PALANTIR project is focused on the mitigation of cybersecurity threats,
leveraging the NFV architecture. To that end, the Security Orchestrator (SO)
subcomponent within the Security Capabilities Orchestration (SCO) component
is used. The SO contains the monitoring (MON) and alerting (POL) modules or
subsystems. Figure 10 displays the design of SO, where the internal design for
the MON and POL modules are highlighted. Other supporting modules are
shown, as well as transversal elements, like the database and the Kafka broker,
a message/notification bus for notifications.

Figure 10: Proposed monitoring and alerting framework, as part of the SCO subcomponent

22

3.3 Design of the solution

To provide the monitoring and alerting functionalities it is necessary to develop
APIs, background process and data modelling, among others. Both MON and
POL modules must characterize the data in use by each of them, implement the
interfaces to be exposed and to interconnect across modules, deploy third-party
tools to extract measurement data or trigger notifications, etc.

The functions provided by MON are listed below:

● Registration of NFs to be monitored. The client is able to add, delete and
replace the IP or ID of the target NF.

● Listing of the already registered NFs to be monitored, extracted from the
database.

● Remote setup of the Prometheus Node Exporter. This can be done in an
automatic or manual fashion, installing or uninstalling the exporter into the
target NF. The installation process is automatically performed every time
a new NF is registered, yet manual installation is also permitted.

● Registration of custom metric to monitor in a VNF. The client (typically the
network operator) can request the monitoring of a customized metric to be
monitored periodically and registered to the database.

● Trigger of background monitoring on customized metrics. This ad-hoc
request starts the background monitoring of a previously registered NF
and the metric.

● Listing of all metrics from monitored NFs. This retrieves all metrics from all
target NFs that are persisted in the database. While both kind of metrics
are stored in the database, it is easy to differentiate the generic metrics
from these that are customized.

● Listing of metrics from the Prometheus Node Exporter. This retrieves
specifically the metrics of the exporter registered in the database, given a
specific target NF.

● Listing of alerts from metrics. This retrieves a list of the registered metrics
alerts from the database.

Figure 11 depicts the design for MON, which shows the internal elements and
how they relate to each other.

To extract generic metrics from the targets it is possible to use the passive
monitoring techniques, using the standard Prometheus Node Exporter which
scraps certain metric from a pool of metrics already obtained from the NF running
this exporter. To fetch this data from MON, the name of the metric and the ID of
the NF is provided. On the other hand, customized metrics can be fetched from
a target NF by using remote commands via SSH (using the Paramiko library in
Python).

All the data is stored into the MongoDB database and is made available at any
time so the network operator can query it. In this database coexist the
measurements of the metrics/alerts previously obtained as well as the list of
registered NFs.

 23

Figure 11: Monitoring module architecture

The second part of the monitoring and alerting subsystem is realized by the
Policies Management (POL) module, providing the following features:

● Registration of custom alerts into the shared database.
● Listing of all custom alerts. This returns a list of all customized alerts that

are registered into the database.
● Listing of metrics related to a given alert.
● Evaluation of the alert and notification triggering.

Figure 12 presents the design of POL’s where the background monitoring is
activated to obtain the metrics from the target. In this design, the “Event Hooks”
element compares the value of the obtained metric with the condition that is
already configured and registered in one of the customized alert fields and
activates the event if that specific condition is met during a given period.

Figure 12: Policies module architecture

3.3.1 Guiding principles

The principles being considered for the design of the solution relate to the
flexibility and modularity, as well as the independence between the network
operator and the NF developer and between the operator and third-party tools
that are not built-in in the encompassing PALANTIR framework. This results in a
monitoring and alerting subsystem that can monitor any simple command without
imposing specific templating for that, and which is designed to integrate easily
into different environments and frameworks, such as other networking stacks and
even different MANO solutions.

24

3.3.2 Data modeling

The MON and POL modules work each with a specific JSON data model. This
model is used to register or to retrieve data from the database. The data is shown
as a document with different fields. To obtain or register any information it is
necessary to use REST calls (Annex V elaborates on a complete REST calls
guide used in this work) to request the function from the web application. The
data modeling for the database entries used by MON and POL is structured as
depicted in Figure 13 and described in detail in the Annex I.

There are 3 different data modelling for MON when it comes to store the data in
MongoDB: (1) “Targets operation” registers the data that the user wants to modify
or add. (2) The user can register a new target, eliminate it, or override it. This
model is called “Prometheus Targets”. Finally, (3) the user can register a custom
metric “Custom Metrics”.

In POL, there are 2 registration data modelling: (1) The registration of an alert
related to a specific metric. This model is called “Metrics alerts”. (2) The
registration of new alerts with specific conditions and threshold. This model is
called “Alerts Registration”.

Figure 13: MongoDB data model for monitoring and alert system

The data modeling for the monitoring and alerting subsystems MON and POL are
as shown in Figure 14 and Figure 15 respectively, Annex I also elaborates on
these too.

 25

Data modeling for MON basically responds the user with the important data being
requested. There are 4 types of requests the user can make: (1) customized
metric from a target (VNF), where the response is a data modelling named
“Custom metric response”; (2) all metrics from all registered targets, with the
response named “All metrics response”; (3) target scraped from Node Exporter,
with a response named “Prometheus Exporter response”; and (4) target that is
scraped via the SSH channel, the same as for a custom metric request, but with
the metric is going through the Pushgateway.

Figure 14: Data modeling for MON

The data modelling for POL is dedicated to informing the user about a metric
value surpassing the stablished threshold, previously indicated by the network
operator. Once the value of the metric is surpassed, the alert notification is sent
and displayed. This response is called “Alert Notification”.

Figure 15: Data modeling for POL

3.3.3 Interfaces

The interfaces for MON are:

 Prometheus with NF: communicates the NF with the Prometheus Node
exporter to obtain the metrics from the NS through the Node Exporter
instance and store it in Prometheus.

26

 SSH channel communicates NF and API to send requests commands and
receive the metric.

 MON with database: to retrieve and store data.

The interfaces for POL are:

 POL with database: to retrieve and store data.

Interfaces between MON and POL:

 Background monitoring: communicates MON and POL to obtain registered
metric requests and starts the background process.

 Database: both POL and MON share the same database engine
(MongoDB) and the virtual network to access it, but the data is properly
allocated and organized in different databases and collections inside
MongoDB to differentiate them.

 27

CHAPTER 4. IMPLEMENTATION AND DEPLOYMENT

This chapter describes the implementation and deployment decisions of the MON
and POL modules to give the reader a better understanding of how the API works
and the reason of the selected tools and elements used for the development of
this project.

4.1 Implementation decisions

The MON and POL modules dictate a proper implementation of different tools
that help the retrieval of metrics and data persistence. It is important to select
also an adequate programming language and stablish the correct structure for
maintainability purposes. The following subsections elaborate on the decisions
we have made to ensure the quality of the API and the overall project.

4.1.1 Retrieval of metrics

The following subsections describe the tools used for the retrieval of metrics.
Specifically, it elaborates on what this tools are and the use of them into the
project.

SSH channel

In order to establish a communication channel between the VNF and the
application, the Paramiko2 library is used [23]. This permits the client used by the
operator to remotely reach the NF, for this, the key pair has been proportioned –
which is configured initially by the operator and is automatically passed during
the instantiation to the VIM. Paramiko will be used to execute metric commands
to the registered targets in the API, and then receive the metric data to be stored
in the database.

Prometheus Pushgateway

The Prometheus Pushgateway [24] is a tool that helps to push time series data
from live services batch jobs to another intermediary job that Prometheus can
easily scrape due to its simple format that contains only relevant information.
This tool is used as an alternative path to scrape metrics from the VNF, being
useful to obtain only integer values. (Pushgateway deployment is explained in
Annex IV)

Prometheus Node Exporter

Node Exporter [25] is an important tool of Prometheus, with this we can export
metrics from the VNF to the Prometheus Server. It has configurable metric

2 Full python implementation of the SSHv2 protocol with Client and Server functionality

28

collectors and can measure a variety of server resources such as RAM, CPU
utilization or disk space. It can be deployed with Docker into the VNF in an easy
way to obtain a set of metrics from it. (Annex IV explains the deployment of the
Node Exporter)

4.1.2 Data persistence

The following subsections explains the implementation decisions in regard of the
data persistence processes. For this, the MongoDB and Prometheus were
selected.

MongoDB

MongoDB is a NoSQL database program that has a document-oriented and
JSON-like approach [26]. It is useful to store the metrics in JSON format and
organizing it in different collections. The access to the data is simple and has
libraries that can be added to the MON and POL modules to manage the retrieval
and registration of the data.

Prometheus

Prometheus can store the data from the exporters. When the Prometheus Node
Exporter is deployed in the VNF, the Prometheus server scrapes the set of
metrics from it so the information can be available to be shown when the user
requests any of those metrics.

To acquire more information about the Prometheus deployment, see Annex IV.

4.1.3 Language

Python is the ideal selection for this project. The principal reasons for this decision
are explained next.

Python

Python is a computer programming language with a simple scripting system that
allows the developer to code and build prototypes in a faster way. The evaluation
of the code is dynamic, and it can benefit to the maintainability of the MON and
POL modules.

4.1.4 Maintainability

Having a maintainable software is very important to this project due to the
possible interchange of client or operator of the system, for this, it is crucial to
have the benefits of an easy maintained modules.

 29

Maintainable software allows to quickly and easily fix bugs and add new features
preventing the introduction of new bugs, improve usability, increase the
performance, fixing structures or code to prevent bugs occurring in the future,
make changes to support new environments, tools or operating systems and can
easily introduce new developers on board the project [27].

The modularity makes the API easy to use and adapt into other systems.
Specifically, the development follows a hybrid approach, combining micro-
services and micro-apps. That is, on the one hand, each service (understood as
a group of similar functionalities) is provided in its own container, as the micro-
service paradigm dictates. On the other hand, shared functionalities (e.g., access
to data persistence layer, data modelling, authentication and authorization
control) are not replicated per micro service, but deployed as micro-apps,
transversal and accessible to the services. While this imposes dependencies
across them, it also increases maintainability.

Configuration files and key pairs must be updated regularly in order to improve
the security.

4.2 Deployment decisions

The next subsections are related to an important aspect for the development of
this project. Deployment decisions were taken to accomplish an efficient use of
the resources, future implementations and optimal functionalities. The details of
each decision are described below.

Usage of Docker for virtualization

Docker containers were selected for its fast deployment, their independence with
the underlying environment (so MON and POL can run not only at development
and testing environments, but also to production environments), as well as for its
ease of use to define new instances, the possibility of either creating images
locally or exporting them to reuse later with a reduced time to deployment (e.g.,
in production environments), for its easy-to-set virtualized networks on top (which
are useful to complement access control between containers), among others.

The Docker-compose tool offers features such as allowing multiple isolated
environments on one host. This feature permits the MON and POL modules to
consist of more than one service, as well as interconnecting them in a
straightforward manner.

Coexistence of Docker and Virtualenv deployments

Typically, Docker is used for production-like deployments, while virtualenv
provides a development-oriented environment that accounts for easier
modification and quicker redeployment of the different modules. Both MON and
POL modules use bash scripts to deploy Docker and virtualenv environments.

30

MongoDB as the principal database

MongoDB is used for its JSON-type collections data model. This helps to the
development of the modules since Python uses JSON-convertible dictionaries.
Also, MongoDB deployment helps on reducing resources consumption and
avoiding duplicated instances.

Prometheus Server and monitoring module MON deployment

MON is deployed along with the Prometheus Server instance, instead of
referencing to an external Prometheus instance. This decision is made to simplify
the deployment process and provide a self-hosted environment.

4.2.1 Virtualization layer

As indicated previously, MON and POL shall use Docker to deploy instances and
facilitate the transparent deployment disregarding the environment. Kubernetes
is also considered for the future in order to take advantage of the same image
generation that Docker offers, besides the HA and orchestration features
provided by the latter.

4.2.2 Access control

To ensure the minimum access to MON and POL, it is necessary to use proper
access control and setup adequate connectivity to them. This control is based on
a group of Docker virtual networks that expose proper services and ports to other
containers in the same network. In this regard, MON and POL are in a shared
network, along with the global API subsystem that receives requests from the
users and steers these internally to each relevant subsystem.

4.2.3 Configuration

The configuration of the overall system is centralized. This general configuration
will dictate the ports in which the different containers with its services will expose
and the access to the database. There are other specific configurations in the
subsystem level (i.e., “mon.yaml”) where we can configure the instances, scrape
intervals, whitelists of commands, etc. This hierarchical structure is made to
enable the deployment and to fill data in memory when we initiate the services.

 31

CHAPTER 5. EXPERIMENTATION AND EVALUATION

This chapter is dedicated to the experimentation and evaluation of the MON and
POL modules. In order to analyze the application properly and prepare it for
successfully accomplishing the service requirements, it is necessary to subject it
to extreme conditions.

To do so, it is worth mentioning that different factors may affect the results; such
as the computer architecture, system’s software/hardware components and
microprocessor, among compilers, libraries or other tools more subject to the
specifics of their implementation. In such cases, the presented results may vary
from others performed under different conditions. For the following tests, the
MON and POL modules were tested on top of the Linux Ubuntu Operating
System, with the 20.04 LTS release. The hardware used featured an x64_86 Intel
core i7-4700MQ @ 2.40GHz with 12GB RAM.

5.1 Mean response time

One important indicator of the overall performance of MON and POL is the time
taken to fetch and store the data internally, as well as to return it back to the
requesting user. To that end, several measurements have been done into the
system.

5.1.1 Comparison of mean response time to extract a metric between
active and passive monitoring

The first test uses the Prometheus Node Exporter to extract the metric data. This
experiment has considered a varying number of metrics (from 1 to 20) requested
on a single VNF. Figure 16 shows the comparison between the number of metric
requests for active monitoring to the Prometheus node exporter and the time
taken, in milliseconds. Each point in the chart corresponds to the average
response time taken by five different attempts with the same number of metrics.

32

Figure 16: Mean response time for a metric under passive monitoring (Prometheus)

The second test relies on the SSH channel to execute custom command on the
NF and extract its data. Figure 17 depicts the number of custom metrics
requested by the operator and the time taken by the system to retrieve such data
from each NF from the SSH channel established for the active monitoring. It is
important to remark that the metrics requested to the NFs perform different
operations and therefore result in different response times across them.

Figure 17: Mean response time for a metric under active monitoring (SSH Channel)

This assessment validates the basic premise that the response time grows
proportionally to the number of metrics requested to the monitoring subsystem.
The test with passive monitoring, based on Prometheus Node Exporters
exposing HTTP endpoints that are polled by the Prometheus Server operate in

 33

the order of milliseconds. This provides a significant reduction in time when
compared to the use of ad-hoc, custom metric requests; which run in the order of
seconds, as this active monitoring approach requires establishing the SSH
channel every time towards each NF.

A possible direction for improvement in this regard relates to the exposure of a
lightweight HTTP service within the NF, so that it can extract requested
measurements at a system-wide level.

5.1.2 Mean response time for the alerting subsystem

To evaluate the performance of the alerting subsystem (POL), the considered
time between the detection of an alert (once the metric’s value surpasses that
defined by the threshold) and the time of the notification’s emission is taken.
Figure 18 lays out the time it takes for the POL subsystem to send the notification
after detecting that a given metric has already surpassed the previously indicated
threshold. This test has been executed 20 times with one metric request for one
VNF, giving an average time response of 513.5 milliseconds.

Figure 18: Mean response time for POL to notify upon detecting a threshold being surpassed

Given that both subsystems are intertwined, the background evaluation process
from MON that continuously extracts the metrics can affect that used in POL to
evaluate the metrics’ status against the alerts’ thresholds. Thus, delays in the
former have a direct impact in the latter. To measure this, another test analyzed
the time it takes for the alerting subsystem to evaluate the metrics in these
occasions where the monitoring subsystem has a big amount of metric requests.
Figure 19 indicates how the response time increases in proportion to the number
of requested metrics that are being monitored.

34

Figure 19: Mean response time for POL as MON increases its observed metrics

As a future work, an improvement in response time of POL should be considered.
In this thesis, the communication between the VNF and the API is stablished
through SSH channel tunneling. Another methodology could be implemented to
reduce the time issue to the minimum.

5.2 Compromise in selected configuration values

There are important configurations to take into account in order to obtain a good
performance of the monitoring process and the proper use of the resources. The
frequency of metrics acquisition and maximum data retention selections are
analyzed next.

5.2.1 Selection of the acquisition frequency for metrics

Any monitoring system needs to establish a frequency for the acquisition of
measurements (“data scraping”). Such frequency should be the result of a good
trade-off between the data scraping time and the system overload. Likewise, the
metrics’ scrape frequency may also depend on other factors, such as the
relevance and how important it is for the operator in a certain time.

The proposed MON and POL modules adopt the scraping time as a configurable
value, in the same fashion as Prometheus does. The "MON" configuration file
(“mon.yaml”) allows setting such frequency as a general value to all monitored
targets (i.e., VNFs). This value will be taken as the frequency used by the
background monitoring process, in charge of updating the values for the
customized measurements requested by the operator.

Table 4 shows the result of different tests taken in one VNF to observe the relation
between the scraping time and the Prometheus Overload (% of CPU utilization).

 35

Here, the observed metric requests in MON are increasing. The tests are made
with 1, 5, 10 and 20 metric requests at a time to see the consumption of resources
on the Prometheus instance (which store the data). To evaluate this, four
scraping times were tested with values less or equal to the default scraping time
(15 seconds). Specifically, frequencies of 5, 10, and 15 seconds were considered.
This table shows that the scraping time has an impact in the resource
consumption in the monitoring subsystem.

Table 3: Relation between system’s scraping time and Prometheus Overload

 Prometheus Overload (CPU Usage (%))
Scraping
time (sec)

1 metric
requests

5 metric
requests

10 metric
requests

20 metric
requests

5 1 10 17 28
10 1 8 15 22
15 1 7 14 20

The best result to minimize the CPU usage in the Prometheus instance is
achieved when using the default scraping time (15 seconds). The suggested
scraping time for MON and POL varies between 5 and 15 seconds, as this is an
adequate range to monitor metrics in the VNFs. However, since this is applied to
a cybersecurity framework, scraping times should be as low as supported by the
network bandwidth, the available disk and the processing capacity to minimize
the loss of measurements.

It is worth mentioning that Prometheus has an imposed time limit of 5 minutes
before declaring a time series as “stale” (meaning that the data can be discarded
or considered as old by that time).

5.2.2 Selection of the maximum data retention

Prometheus stores an on-disk time series data under specific directories. These
directories can be configured and allows the modification of the retention time to
persist the data. It is recommended to configure this retention time based on the
available disk space in the system.

The maximum data retention considered for the monitoring subsystem (MON)
depends on the requirements of the client service. The proposed system is
expected to be able of protecting the network of micro (fewer than 10 employees)
and small companies (10 to 49 employees) considering, on average, up to 10
security-related NFs deployed in their network

In this scenario, local storage is preferred over remote storage due to the extra
costs incurred by the public cloud, which small organizations would not be able
or willing to pay. On the other hand, local storage imposes some limitations; such
as data not being replicated and/or configured in HA mode or even with data loss
of overwriting, even if relying on some write-ahead techniques to minimize the
potential data loss.

36

5.3 Performance Degradation

Now, the performance degradation of the MON and POL modules is assessed.
This is evaluated when the background monitoring process is running under
different circumstances. The first test accounts for the degradation of POL in a
range of 10 hours, and the second one considers the continued requests of new
metrics to the background process.

Figure 20 shows the performance degradation of POL for 10 hours. The default
scraping time (15 seconds) is used, considering one metric requested per VNF.
The response time for POL is the average in each hour, which means that the
measurements were taken in ranges of one hour and then we obtained the
average value. The test indicates that the performance for POL slightly
deteriorates throughout this time.

Figure 20: Performance degradation of POL for 10h

Figure 21 shows the performance degradation of MON. This experiment has
considered a varying number of metric requests (from 1 to 10), which were
requested on a single NF with the default scraping time of 15 seconds. The time
response of the subsystem is based on a one-time measurement since the
background process is running and just one new metric request is added every
time. We can observe that the large difference in time remains between the
passive monitoring using Prometheus Node Exporter (blue line) and the active
monitoring using SSH channel (orange line).

 37

Figure 21: Performance comparison between active and passive monitoring

A possible improvement to this loss of performance must focus on the
implementation of more efficient and faster communications between the
targeted VNF and MON.

38

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

The last chapter is dedicated to summarizing the extracted conclusions
throughout the document, as well as sharing the upcoming lines of work that were
identified to improve the behavior and set of features, impacting the design,
implementation and deployment of both MON and POL. Finally, considerations
are given on the security, ethics and privacy.

6.1 Conclusions of the work

The provided work conforms an adaptable monitoring and alerting subsystem
that can be deployed as a separate, modular entity for basic monitoring and
notification needs in virtualized environments. Its key objective is to provide a
generic and dynamic modelling of metrics and alerting that decouples the
monitoring from the service definition.

Active and passive monitoring within the proposed monitoring subsystem shows
significant differences and a high variability in the response time. As seen in
Figure 17, the time taken to acquire the value of a metric from the NF instance is
almost negligible when using passive monitoring (Prometheus), yet its
performance degrades significantly when using active monitoring (SSH channel).
In the latter case, the time response takes 7 seconds or more for the background
monitoring process when the system is stressed (Figure 18); compared to the
order of milliseconds incurred by Prometheus, which relies on passive monitoring
techniques.

It can be concluded that the usage of passive monitoring, as implemented by the
Prometheus Node Exporters exposing HTTP endpoints, which are polled by the
Prometheus Server, is a much more efficient option to ensure fast monitoring time
responses. The use of ad-hoc requests with customized metrics in the monitoring
subsystem, on the other hand, is deemed a more independent and generic
monitoring technique that leverages on extremely common tools in the remote
servers (I.e., the SSH channel) and account for better flexibility and ease of
deployment when it comes down to request customized metrics.

The current implementation comes at the cost of hindering the system
performance and must be addressed before moving to a production environment.
The performance degradation of the monitoring subsystem is more visible as the
background monitoring process is stressed in a continuously fashion, increasing
the number of metric requests to server (Figure 21). In the current
implementation, the system could have an acceptable performance until certain
number of monitored metrics per NF (roughly from 3 to 8), which could be
imposed by the operator as a compromise between its monitoring needs and the
performance of the monitoring subsystem. The network operator could also tailor
the scraping time according to the best compromise of data freshness and
network saturation.

 39

6.2 Future work

While the main benefit of using the active monitoring in this system is the
generalization of the metric retrieval process and customization of the requested
metric command, improvements must be applied to enhance the reliability,
throughput (e.g., minimizing the response time of MON) and further
generalization; as well as the set of provided features.

By observing the results of chapter 5, the throughput and reliability are key
aspects to improve. There, the throughput of the metric acquisition (especially
that related to custom metrics, obtained through active monitoring means) must
be improved to reduce the time to milliseconds, ideally. This could be achieved
by following a similar approach to the Prometheus’ deployment of internal HTTP
servers per NF or even defining and deploying custom Prometheus Node
Exporters that encompass the set of required custom metrics defined at any time.
The reliability must be also improved, assessing scalability and increasing the
availability of the system, both in terms of High Availability (HA) of instances and
disk space. This could end up materializing in long-term and/or remote storage
and with a hierarchical and distributed monitoring setup to aggregate the data in
each network segment.

On the other hand, the monitoring subsystem must be abstracted to allow
transparent monitoring in any kind of virtualized nodes, such as Containerized
Network Functions (CNFs) which run in Docker of Kubernetes, possibly with an
appropriate deployment of the Prometheus Node Exporter and accompanied by
system and network adaptations. Requesting commands in non-UNIX virtualized
nodes is also a feature to implement for the system to run in e.g., Windows-like
virtualized images. The data model shall also be refined for more advanced
modelling of custom metrics in the monitoring subsystem, as well as enable the
composition of complex thresholds to be met, as an aggregation of different
metrics (whether these are generic or customized). Finally, the alerting
subsystem should integrate with other traditional communication interfaces for
notification, as well as consider integrating with components featuring reaction
capabilities, e.g., for automated mitigation response.

6.3 Considerations on security, ethics and privacy

The following subsections narrate about the considerations taken on security
ethics and privacy.

6.3.1 Security

Given the application of the MON and POL modules for cybersecurity purposes,
two main aspects are considered: the potentially malicious usage of the

40

commands to monitor and its applicability to complement the detection of
abnormal conditions.

6.3.1.1 Potentially malicious custom metrics in active monitoring

The active monitoring process is used to directly fetch user-defined metrics in the
form of UNIX commands. As with any user-based input, the possibility of
malicious intents cannot be disregarded; and thus, some sanitization or filtering
process must take place beforehand executing it in the Operating System.

In order to prevent malicious actions that could put in danger the performance,
security or configuration of a VNF, a filtering method is triggered before executing
the command given by any metric request. The chosen method is a simple
whitelist of allowed commands that are configurable by the network operator in
the configuration file for the monitoring subsystem (“mon.yaml”).

The list of the allowed commands provided by default in such configuration, as
deemed useful for the monitoring of a VNF, are listed in Table 4:

Table 4: Whitelist of allowed monitoring commands

Commands for
monitoring

Function

acct User activity monitoring
arpwatch Ethernet activity monitoring

df Free disk space available
env Available environments

free, vmstat RAM and virtual memory statistics
iftop Network Bandwidth Monitoring
iostat Time device activity
iptraf Real-time IP LAN monitoring
lostat Input/output statistics
lotop Monitor Linux disk I/O

ls List elements in the file system
lsof List open files for a process

htop, top Monitoring of Linux processes
monit Linux process and service monitoring

monitorix System and network monitoring
nethogs, netstat Network statistics

ps Status of active processes
tcpdump Network packet analyzer

acct User activity monitoring

6.3.2 Potential to detect Indicators of compromise

Indicators of compromise or IoCs [28] provide evidence of data breach and help
determining basic information on how a cybersecurity attack has been done (e.g.,

 41

involved suspicious domains and tools). These can be obtained during the
analysis of a cyberattack and then are subject so sharing with other security
response teams. This information can be collected from a specific software such
as antivirus or antimalware systems.

Some common IoCs that look at the behavior of the system or network are (1)
unusual outbound network traffic; (2) activity from unusual geographic areas; (3)
unexplained activity by privileged users; (3) substantial increase in read
operations on the DB; (4) large and increasing number of authentication failures;
(5) increase of requests of critical core filesystem or application’s configuration;
as well as (6) unexplained and suspicious configuration changes.

The detection of several of these anomalies can be complemented by the
monitoring subsystem here presented. For instance, the network or system
operator could define specific commands to assess the mean consumption of
network data from a given NF, as high ingress traffic could be related with a DoS
attack and high egress traffic could be indicative of connection to malicious
servers outside. The network operator could, for instance, also help evaluating
the trustworthiness of the VM by setting controls that observe the amount, date
and type of changes on the core files and emit notifications on suspicious
conditions, etc.

In the PALANTIR project, the monitoring subsystem can integrate with other
systems to enhance their detection capabilities. One of them is the threat
detection system (the Threat Intelligence component), where the monitoring
complements its signature and Machine-Learning based detection with other
custom measurements. Another one is the SLA detection systems, which can
benefit from the identification of specific breaches on the assurance level on the
deployed security NS.

6.3.3 Ethics and privacy

Although MON and POL are not devised nor used in a manner that could raise
ethic issues (given that the network and security logic processing does not
typically need to access any personal data, or even identifiable information); there
could be privacy issues to be considered if that was not the case. Specifically,
privacy issues could arise if any of these two conditions coexist: (1) any given NF
performs behavior inspection from identifiable users; or (2) personal data is
available within the NF instance. If so, and assuming the operator knew what to
extract, data leaks of personal information could occur.

To mitigate such threats to privacy and honor the main tenets and articles set in
the General Data Protection Regulation (GDPR), the NF developer should take
extra care not to process or persist personal data unless absolutely needed
(fulfilling the data minimization principle) – and if so, adequate security measures
must be in place to secure the data. On the infrastructure side, the operator
should comply with the principle of least privilege to access and process data, as
well as providing similar measures to avoid unauthorized access or usage of
personal data.

42

6.4 Considerations on environmental sustainability

The monitoring and alerting modules designed and developed in this thesis are
based on the virtualization concept of NFs over the NFV architecture framework.
Such an implementation, heavily relying on virtualization, provides environmental
benefits since the underlying system makes it easier to minimize energy
consumption by co-locating virtual resources in the same machine and
scheduling the usage of resources in the system adequately to maximize
performance and minimize consumption. Additionally, NFV aims to minimize the
usage of dedicated hardware, which also reduces dedicated computing power.

 43

ACRONYMS

API Application Programming Interface
BSS Business Support System
CAPEX Capital Expenditure
CNF Cloud-Native Network Function
COTS Commercial Off-The-Shelf
DCAE Data Collection Analytics and Events
EM Element Manager
ETSI European Telecommunication Standard Institute
FCAPS Fault Configuration Accounting Performance Security
IT Information and Technology
MANO Management and Orchestration
MON Monitoring Module
NF Network Function
NFV Network Function Virtualization
NFVI NFV Infrastructure
NFVO Network Function Virtualization Orchestrator
NMaaS Network Management as a Service
NS Network Service
ONAP Open Network Automation Platform
OPEX Operational Expenditure
OPNFV Open Platform for NFV
OSM Open Source MANO
OSS Operation Support System
POL Policies Management Module
QoE Quality of Experience
QoS Quality of Service
REST Representational State Transfer
SLA Service Level Agreements
SO Security Orchestrator
TC Test Controller
TRAM Test Result Analysis Module
VCA VNF Configuration and Abstraction
VIM Virtual Infrastructure Manager
VM Virtual Machine
VNF Virtual Network Function
VNFD Virtual Network Function Descriptor
VNFM Virtual Network Function Manager
VTA Virtual Test Agent

44

REFERENCES

[1] H. Hawilo, A. Shami, M. Mirahmadi, and R. Asal, “NFV: State of the art,

challenges, and implementation in next generation mobile networks
(vEPC),” IEEE Netw., vol. 28, no. 6, pp. 18–26, 2014, doi:
10.1109/MNET.2014.6963800.

[2] P. Greendyk, A. Parikh, and S. Tripathi, “Service platforms,” Build. Netw.
Futur. Get. Smarter, Faster, More Flex. with a Softw. Centric Approach, no.
1, pp. 293–329, 2017, doi: 10.1201/9781315208787.

[3] V. Sciancalepore, F. Z. Yousaf, and X. Costa-Perez, “Z-TORCH: An
Automated NFV Orchestration and Monitoring Solution,” IEEE Trans. Netw.
Serv. Manag., vol. 15, no. 4, pp. 1292–1306, 2018, doi:
10.1109/TNSM.2018.2867827.

[4] ETSI, “Network Function Virtualization: An Introduction, Benefits, Enablers,
Challenges, & Call for Action,” 2012. [Online]. Available:
portal.etsi.org/NFV/NFV_White_Paper.pdf

[5] ETSI, “Network Function Virtualization: Architectural Framework,” 2013.
[Online]. Available:
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.01.01_60/%0Ags
_NFV002v010101p.pdf%0A

[6] A. Froehlich, “virtual network functions (VNFs),” 2022.
https://www.techtarget.com/searchnetworking/definition/virtual-network-
functions-VNF

[7] Faisal, “A Cheat Sheet for Understanding ‘NFV Architecture,’” 2015.
https://telcocloudbridge.com/blog/a-cheat-sheet-for-understanding-nfv-
architecture/#:~:text=EM (Element Management)%3A&text=This is
responsible for the,itself can be a VNF.

[8] OSM ETSI, “How to Set Up Virtual Infrastructure Managers (VIMs),” 2022.
https://osm.etsi.org/docs/user-guide/latest/04-vim-setup.html

[9] R. Hohemberger, A. F. Lorenzon, F. Rossi, and M. C. Luizelli, “Optimizing
Distributed Network Monitoring for NFV Service Chains,” IEEE Commun.
Lett., vol. 23, no. 8, pp. 1332–1336, 2019, doi:
10.1109/lcomm.2019.2922184.

[10] G. Gardikis et al., “An integrating framework for efficient NFV monitoring,”
IEEE NETSOFT 2016 - 2016 IEEE NetSoft Conf. Work. Software-Defined
Infrastruct. Networks, Clouds, IoT Serv., pp. 1–5, 2016, doi:
10.1109/NETSOFT.2016.7502431.

[11] Prometheus, “Overview of Prometheus Server,” 2022.
https://prometheus.io/docs/introduction/overview/

[12] perfSONAR, “perfSONAR,” 2022.
https://www.perfsonar.net/gtk_whatis.html

[13] EDUCBA, “Key differences between Zabbix and Nagios,” 2022.
https://www.educba.com/zabbix-vs-nagios/

[14] Icinga GmbH, “Icinga 2,” 2022. https://icinga.com/docs/icinga-
2/latest/doc/01-about/

[15] Altran, “Mano and Monitoring : Two Bumps on the Road To Sdn / Nfv,”
White Pap., 2018.

[16] ETSI, “Open Source MANO,” 2022. https://osm.etsi.org/

 45

[17] ETSI, “Monitoring and Autoscaling,” 2022, [Online]. Available:
https://osm.etsi.org/docs/user-guide/latest/05-osm-
usage.html#monitoring-and-autoscaling

[18] ONAP, “DCAE Architecture,” 2022. https://docs.onap.org/projects/onap-
dcaegen2/en/latest/sections/architecture.html

[19] OPNFV, “Understanding NFV and OPNFV,” 2022.
https://www.opnfv.org/resources/download-understanding-opnfv-ebook

[20] ETSI, “Network Functions Virtualisation (NFV); Assurance; Report on
Active Monitoring and Failure Detection,” 2016.

[21] W. Jardine, S. Frey, B. Green, and A. Rashid, “Senami,” pp. 23–34, 2016,
doi: 10.1145/2994487.2994496.

[22] A. J. Gonzalez, G. Nencioni, A. Kamisínski, B. E. Helvik, and P. E.
Heegaard, “Dependability of the NFV orchestrator: State of the art and
research challenges,” IEEE Commun. Surv. Tutorials, vol. 20, no. 4, pp.
3307–3329, 2018, doi: 10.1109/COMST.2018.2830648.

[23] J. Forcier, “Paramiko,” 2022. https://www.paramiko.org/
[24] Prometheus, “Prometheus Pushgateway,” 2022.

https://prometheus.io/docs/practices/pushing/
[25] Prometheus, “Prometheus Node Exporter,” 2022.

https://prometheus.io/docs/guides/node-exporter/
[26] MongoDB, “MongoDB,” 2022.

https://www.mongodb.com/cloud/atlas/lp/try2?utm_source=google&utm_c
ampaign=gs_emea_spain_search_core_brand_atlas_desktop&utm_term
=mongodb&utm_medium=cpc_paid_search&utm_ad=e&utm_ad_campai
gn_id=12212624563&adgroup=115749706983&gclid=CjwKCAjwquWVBh
BrEiwAt1K

[27] S. Crouch, “Developing maintainable software,” 2022.
https://software.ac.uk/resources/guides/developing-maintainable-
software#:~:text=More formally%2C the IEEE Standard,adapt to a
changed environment.%22

[28] A. Popa, “8 types of Indicators of Compromise (IoCs) and how to recognize
them,” 2021. https://attacksimulator.com/blog/how-to-recognize-indicators-
of-compromise/

46

ANNEX I: Data Models

1.1 MongoDB data modeling

1.1.1 Monitoring Module MON

Targets Operation: The “Current_target” value indicates the id of the already
registered VNF. “New_target” value indicates the id of the new target to be
registered. “Operation” value can have 3 options: (1) add, which adds a new
target to the database; (2) replace, which replace an existent target id; and (3)
delete, which deletes the target from the database.

Prometheus Targets: “Date” is the value of the date used for chronological
reference. “Modification” value indicates the type of modification the user wants
to apply. “Targets” value indicates the id of the registered targets.

Custom Metrics: “Data” indicates the value of the requested metric. “Date is the
value of the date used for chronological reference. “Metric_command” is the value
that indicates the metric command requested to the VNF. “Metric_name”
indicates the name of the requested metric. “Vnf_id” is the id value of the target.

1.1.2 Policies management module POL

Metrics alerts: “Vnf_id” is the id of the VNF target. “Metric_name” is the name
of the metric related with the alert. “Metric_command” is the command the user
will send to obtain the metric. “Data” is the value of the requested metric. “Date”
is the value of the date used for chronological reference.

Alerts Registration: “Alert_name” indicates the name of the new alert
registration. “Date” is the value of the date used for chronological reference. The
“Operator” could be a simple comparison sign such as >, <, >=, <=, ==.
“Hook_endpoint” is the url where the alert notification will be sent when the
threshold is surpassed. “Threshold” is the value that the operator defines as a
limit, this will be compared later with the metric value. “Time_validity” indicates
the limit time the alert system should wait before sending the alert notification. If
the metric value keeps surpassing the threshold after this time, the alert
notification is sent.

 47

1.2 MON and POL data modeling

1.2.1 MON data modeling

Custom metric response, all metrics response and Pushgateway response has
the same data modeling: “vnf-id” indicates the id of the target. “metric-name”
indicates the name of the requested metric. “metric-command” indicates the
command needed to obtain the metric. “data” indicates the metric value obtained.

Prometheus exporter response: “vnf-id”: indicates the id of the target. “metric-
name” indicates the name of the requested metric. “metric-value”: indicates the
metric value obtained.

1.2.2 POL data modeling

Alert Notification: “Alert” indicates the alert name. “vnf-id” indicates the id of the
target. “related to the metric” indicates which metric is related to this specific alert.
“threshold” indicates the value that has been surpassed for the metric value.
“data” indicates the value of the metric.

48

ANNEX II: OSM

Open-Source MANO (OSM) is the NFVO in use, a framework that oversees the
life-cycle management of the NS instances in the NFV Infrastructure (NFVI). The
NFVOs work hand in hand with a Virtual Infrastructure Manager (VIM), in charge
of managing the virtual resources offered for management to the NFVO. Once
the VIM is successfully registered, the NS instances can be deployed with the
requested configuration.

The following subsections explain the details and steps for configuration and
deployment of the required elements and tools needed by the OSM NFVO in
order to manage the lifecycle of the NS instances.

1.1 Virtual Infrastructure Manager (VIM) account setup

There are two ways to register a new VIM account: via the (1) OSM CLI and the
(2) OSM GUI. The first option is used for this exercise.

The following command registers a new VIM in OSM (with type OpenStack,
although other are available). This command provides the parameters that
indicate the authentication URL and username (or tenant) and password to
access the VIM and access its virtual resources.

$ osm vim-create --name <infra_name> --user <infra_tenant> --password ******** --
auth_url <infra_url>:5000/v3/ --tenant <infra_tenant> --account_type openstack --
config='{security_groups: <allow_from_network_x>, keypair: <mon_keypair>}'

In the Figure 22, the new VIM account details are shown:

Figure 22: VIM account creation

 49

1.2 Network Service (NS) onboarding and instantiation

To instantiate a new Network Service:

i) Create the NS and VNF packages from the set of files that conform each of
their descriptors (that is, the logic that indicates OSM how to load and behave
when interacting with the packages that model a given service).

ii) Onboard the VNF first, and then the NS. This is so because the VNF is
referenced by the NS and must exist beforehand.

$ osm vnfd-create descriptors/vnfs/ping.tar.gz
$ osm nsd-create descriptors /ns/cirros_alarm-ns.tar.gz

iii) Instantiate the NS. This step communicates with the VIM to deploy the VNF
as a VM in the selected OpenStack VIM.

$ osm ns-create --nsd_name cirros_alarm-ns --ns_name cirros_alarm-xvgrb --
vim_account test

After the onboarding, a successful message will be seen in the OSM dashboard
like in Figure 23:

Figure 23: NS onboarding

50

ANNEX III: OpenStack

OpenStack allows deploying virtual machines easily. It can be linked from the
OSM NFVO to deploy the NS instances, as well as deploying any test
VM manually, whether using the GUI or the CLI.

1.1 Navigating the VMs in use by the VNFs

Once the VM used by the VNF is up and running, the dashboard will show the list
of instantiated VNFs in a similar fashion as in Figure 24.

Figure 24: Instantiated VNFs list

Each row provides information on the VM’s name, image with the Operating
System in use and its release, network interfaces along with IPs, the OpenStack
flavor (i.e., specifications of CPUs, RAM, disk, etc), the SSH keypair in use, its
status and so on. When clicking for details, an exhaustive list is provided, as
depicted in Figure 25.

 51

.

Figure 25: VNF specifications

52

ANNEX IV: Prometheus

1.1 Creating the Prometheus Server (e.g., locally)

1. Locally pull the Docker image of the Prometheus server

Create network to place Prometheus and the monitoring API altogether, so that
the latter can access the former

$ docker network create palantir-monitoring-network --driver bridge

Pull image

$ docker pull prom/prometheus

2. Create the prometheus.yml file

$ cat <<EOF>>prometheus.yaml
global:
external_labels:
monitor: codelab-monitor
scrape_interval: 15s
scrape_configs:
- job_name: prometheus
scrape_interval: 5s
static_configs:
- targets:
- "localhost:9090"
- job_name: prometheus-exporter
scrape_interval: 90s
scrape_timeout: 45s
static_configs:
- targets:
- "\${VNF_IP}:9100"
- job_name: prometheus-pushgateway
scrape_interval: 20s
scrape_timeout: 10s
honor_labels: true
static_configs:
- targets:
- "palantir-prometheus-pushgateway:9091"
EOF

Right afterwards do change the “targets” under “static_configs” to replace
${VNF_IP} with the IP of the VNF you want to read from.

Important: (apparently) when adding/editing/removing new “scrape jobs” (to
obtain data from exporters), the Prometheus server instance must be reloaded

 53

Important: when using docker do not use 127.0.0.1, instead use the FQDN/DNS
name (the name of the container)

3. Run the Prometheus server instance:

Create instance:

$ docker run --name palantir-prometheus-server -itd\
--network "palantir-monitoring-network" \
-p 9090:9090 \
-v ${PWD}/prometheus.yaml:/etc/prometheus/prometheus.yml \
-v ${PWD}/prometheus-targets.json:/etc/prometheus/prometheus-targets.json \
prom/prometheus

Important: the /etc/prometheus/prometheus.yml must be overwritten (volume or
copied), otherwise any change in the configuration will not work

The Prometheus server has the following endpoints:

● Root UI: http://127.0.0.1:9090
● Metrics: http://127.0.0.1:9090/metrics

Example with an exporter and a Pushgateway in Figure 26:

Figure 26: Prometheus Server (Targets)

1.1.1 Prometheus Node exporter

1. Locally pull the Docker image of the Prometheus Node exporter

$ docker pull prom/node-exporter

2. Run the Prometheus Node exporter instance:

54

Create instance:

$ docker run --name palantir-prometheus-node-exporter -itd\
-p 9100:9100 \
prom/node-exporter

The Prometheus Node exporter has the following endpoints (NB: change IP to
the one of the VNF):

● Metrics: http://127.0.0.1:9100/metrics

Figure 27: Node Exporter Metrics

1.1.2 Creating the Prometheus Pushgateway

1. Locally pull the Docker image of the Prometheus server

Create network to place Prometheus Pushgateway, the Prometheus Server and
the monitoring API altogether, so that the two latter can access the former

$ docker network create palantir-monitoring-network --driver bridge

Pull image:

$ docker pull prom/pushgateway

Run instance:

$ docker run --name palantir-prometheus-pushgateway -itd \
--network "palantir-monitoring-network" \
-p 9091:9091 \
prom/pushgateway

2. Consider the following to be added later on, in prometheus.yaml from the
Prometheus Server instance (under “scrape_configs”):

$ vim prometheus.yaml
- job_name: prometheus-pushgateway

 55

scrape_interval: 20s
scrape_timeout: 10s
honor_labels: true
static_configs:
- targets:
- "palantir-prometheus-pushgateway:9091"

Important: note that the target is pointed using the name of the container. This is
required since Prometheus Server will run in another Docker container and these
can easily reach others based on their names

3. Install the prometheus-client with pip (pip3 for python3):

$ pip3 install prometheus-client

4. Code the metric as gauge/histogram/etc values and insert the monitored
value into the gateway

from prometheus_client import CollectorRegistry, Gauge, push_to_gateway
registry = CollectorRegistry()
g = Gauge("memory_free", "Free memory (MB)", registry=registry)
g.set(2000)
h = Histogram('resource_192_168_1_3', 'Description of histogram for node X',
registry=registry)
h.observe(14.7)
push_to_gateway("localhost:9091", job="monitor_vim_palantir-1", registry=registry)

Important: note that the code uses “localhost:9091” instead of the container’s
name. This is because this code is ran from the local host where Docker
containers are running, but outside the Docker networks (which are available to
containers only, not to other processes)

5. Metrics can also be inserted with cURL:

Simple (no type defined):

$ echo "cpu_utilization 20.25" | curl --data-binary @-
http://localhost:9091/metrics/job/monitor_vim_palantir-
2/instance/172.168.100.1:9000/provider/vim-2

Complex (define type, help, etc):

$ cat <<EOF | curl --data-binary @-
http://localhost:9091/metrics/job/monitor_vim_palantir-
2/instance/172.168.100.1:9000/provider/vim-2
TYPE memory_utilization gauge
HELP memory_utilization Information on how much memory is in use (in MB)
memory_utilization{label="os"} 2000
EOF

$ curl -L http://localhost:9091/metrics/

56

The Prometheus Pushgateway has the following endpoints:

● Root UI: http://127.0.0.1:9091
● Metrics: http://127.0.0.1:9091/metrics

The Root UI served by the Pushgateway running dashboard is shown in Figure
28

Figure 28: Prometheus Pushgateway dashboard

 57

ANNEX V: REST calls

1.1Monitoring subsystem MON

1.1.1 Registering VNFs to be monitored

Registration, edition or deletion of one or more targets (i.e., VNFs to be
monitored). Requires: target IP/FQDN+port, target port (for Prometheus Node
Exporter).

cURL:
$ curl -i -H "Accept: application/json" -H "Content-Type: application/json" -X POST
http://127.0.0.1:50106/mon/targets -d '{"url": "target-ip-or-fqdn:9090"}'

$ curl -i -H "Accept: application/json" -H "Content-Type: application/json" -X PUT
http://127.0.0.1:50106/mon/targets -d '{"current-url": "target-ip-or-fqdn:9090", "new-url":
"10.10.10.11:9090"}'

$ curl -i -H "Accept: application/json" -HcURL: "Content-Type: application/json" -X DELETE
http://127.0.0.1:50106/mon/targets -d '{"url": "target-ip-or-fqdn:9090"}'

Obtained structure:
Http code response

1.1.2 Listing VNFs to be monitored

Retrieval of the complete list of targets previously registered.

cURL:
$ curl http://127.0.0.1:50106/mon/targets

Obtained structure:
Http code response
{"results": {"targets": ["target-ip-or-fqdn:9090", "second-target:9100", "third-target:9091", ...]}}

1.1.3 Remotely setup the Prometheus exporter (manual)

Install or uninstall Prometheus Node Exporter on given [list of] target[s]. Requires:
target IP/FQDN+port.

$ curl -i -H "Accept: application/json" -H "Content-Type: application/json" -X POST
http://127.0.0.1:50106/mon/metrics/node -d '{"vnf-ip": ["target-ip", "second-target-ip", ...]}‘

$ curl -i -H "Accept: application/json" -H "Content-Type: application/json" -X DELETE
http://127.0.0.1:50106/mon/metrics/node -d '{"vnf-ip": ["target-ip", "second-target-ip", ...]}'

Obtained structure:
Http code response
{"results": "Node Exporter Installation status on VNF(s) ['target-ip']: [installed/deleted,
sha256:f2269e73124dd0f60a7d19a2ce1264d33d08a985aed0ee6b0b89d0be470592cd, prom/node-exporter]"}

58

1.1.4 Registering custom metric to monitor in a VNF

A customised UNIX-like command can be executed into the target to return its
data. Requires: target IP/FQDN+port, custom metric name, custom metric
command.

cURL:
$ curl -i -H "Accept: application/json" -H "Content-Type: application/json" -X POST
http://127.0.0.1:50106/mon/metrics/vnf -d '{
"vnf-id": "target-ip-or-fqdn:9100",
"metric-name": "metric-name",
"metric-command": "metric-command"
}'

Obtained structure:
Http code response
{"vnf-id": "target-ip-or-fqdn:9100", "metric-name": "metric_name", "metric-command": "metric_command",
"data": "data"}

1.1.5 Triggering background monitoring on new custom metric

Starts a background monitoring process of a custom metric in a target and returns
its data. Requires: target IP/FQDN+port, custom metric name, custom metric
command.

cURL:
$ curl -i -H "Accept: application/json" -H "Content-Type: application/json" -X POST
http://127.0.0.1:50106/mon/metrics/background -d '{
"vnf-id": "target-ip-or-fqdn:9100",
"metric-name": "metric-name",
"metric-command": "metric-command"
}‘

Obtained structure:
Http code response
{"vnf-id": "target-ip-or-fqdn:9100", "metric-name": "__so_pol__metric", "metric-command": "command",
"data": "data"}, ...

1.1.6 Listing all metrics from monitored VNFs

Obtains the (filtered) list of all metrics in all targets. Requires: target
IP/FQDN+port and/or metric name.

cURL:
$ curl http://127.0.0.1:50106/mon/targets/metrics?vnf-id=target-ip-or-fqdn:9090\&metric-name=metric-
name

Obtained structure:
Http code response
{"results": [
{"prometheus-node-exporter-metrics"},
{"vnf-id": "target-ip-or-fqdn:9090", "metric-name": "metric-name", "metric-command": "command",
"data": "data"}
]}

 59

1.1.7 Listing Prometheus Node Exporter’s metrics

Obtains one metric of the Prometheus Node Exporter. Required: metric name,
target IP/FQDN+port.

cURL:
$ curl -i -H "Accept: application/json" -H "Content-Type: application/json" -X GET
http://127.0.0.1:50106/mon/metrics -d '{
"vnf-id": "target-ip-or-fqdn:9100",
"metric-name": "node_metric_name"
}'

Obtained structure:
Http code response
{"vnf-id": "target-ip-or-fqdn:9100", "metric-name": "node_metric_name", "metric-value": "metric-value"}

1.2 Alerting subsystem POL

1.2.1 Listing metrics’ alerts

Lists (filtered) alerts registered from the POL module. Requires: target
IP/FQDN+port and/or metric name.

cURL:
$ curl http://127.0.0.1:50106/mon/metrics/alerts?vnf-id=target-ip-or-fqdn:9100\&metric-
name=__so_pol__metric

Obtained structure:
Http code response
{"results": [{"vnf-id": "target-ip-or-fqdn:9100", "metric-name": "__so_pol__metric", "metric-command":
"command", "data": "data"}, ...]}

1.2.2 Registration of custom alert

Registration of customised alerts. Requires: alert name, type of threshold and
comparison operator, validity (seconds) to fulfil the condition before triggering the
alert, hook type and details (to send the notification).

cURL:
$ curl -i -H "Accept: application/json" -H "Content-Type: application/json" -X POST
http://127.0.0.1:50108/pol/alerts -d '{
"alert-name": “__so_pol__alert-name",
"threshold": "threshold-quantity",
"operator": "==, <=, >=, <, >",
"time-validity": "time-in-sec",
"hook-type": "webhook",

"hook-endpoint": "http://127.0.0.1:50108/pol/notification"
}'

Obtained structure:
Http code response

60

{"alert-name": “__so_pol__alert-name", "threshold": "threshold-quantity", "operator": "==, <=, >=, <, >",
"time-validity": "time-in-sec", "hook-type": "webhook", "hook-endpoint":
"http://127.0.0.1:50108/pol/notification"}

1.2.3 Listing all custom alerts

Lists all customised alerts registered.

cURL:
$ curl http://127.0.0.1:50108/pol/alerts

Obtained structure:
Http code response
{"results": [{"alert-name": “__so_pol__alert-name", "threshold": "threshold-quantity", "operator": "==, <=,
>=, <, >", "time-validity": "time-in-sec", "hook-type": "webhook", "hook-endpoint":
http://127.0.0.1:50108/pol/notification}], ...}

1.2.4 Listing metrics related to a given alert

Retrieves a list of (filtered) metrics related to registered alerts. Requires: target
IP/FQDN+port and/or metric name.

cURL:
$ curl http://127.0.0.1:50108/pol/metrics?vnf-id=target-ip-or-fqdn:9100\&metric-name=__so_pol__metric-
name

Obtained structure:
Http code response
{"results": [{"vnf-id": "target-ip-or-fqdn:9100", "metric-name": "__so_pol__metric", "metric-command":
"command", "data": "data"}, …]}

1.2.5 Triggering background monitoring on new custom metric

Triggers a background monitoring process in MON. Requires: target ID (in OSM),
target IP/FQDN+port, custom metric name, custom metric command.

cURL:
$ curl -i -H "Accept: application/json" -H "Content-Type: application/json" -X POST
http://127.0.0.1:50108/pol/metrics -d '{
"vnf-id": "target-ip-or-fqdn:9100",
"metric-name": “__so_pol__metric-name",
"metric-command": "metric-command"
}'

Obtained structure:
Http code response
{"vnf-id": "target-ip-or-fqdn:9100", "metric-name": "__so_pol__metric", "metric-command": "command",
"data": "data"}

 61

1.2.6 Evaluate alert and trigger notification

Triggers a comparison between the monitored metric data and alerts'
threshold/condition, then sends a notification when the conditions are met.
Requires: custom alert name, custom metric name.

cURL:
$ curl -i -H "Accept: application/json" -H "Content-Type: application/json" -X POST
http://127.0.0.1:50108/pol/events -d '{
"alert-name": "__so_pol__alert-name",
"metric-name": “__so_pol__metric-name"
}'

Obtained structure:
Http code response

When conditions are met: "target-ip-or-fqdn:9100. Sending alarm to webhook
Alert: __so_pol__date1, vnf-id: target-ip-or-fqdn:9100, related to the metric: __so_pol__metric-name,
threshold: threshold, data: data"

When conditions are not met: "Monitoring target-ip-or-fqdn:9100"

