Universitat Politecnica de Catalunya

Facultat d'Informatica de Barcelona

Master en Formacid del Professorat d’'Educacio Secundaria
Obligatoria i Batxillerat, Formacié Professional i
Ensenyament d'ldiomes

Master's thesis

Analysis of the use of automatic judges
In computer programming classes

in vocational education

Elitza Nikolaeva Maneva

Supervised by Antoni Hernandez-Fenandez

June, 2022

Acknowledgements

| would like to thank all the teachers who were kind enough to fill out my survey, in spite of their
full schedules, and also the students who completed a questionnaire, in spite of it not counting for
a grade. | also owe thanks to the creators of automatic judges - Jordi Petit of Jutge.org, Marc
Albareda of JOEL, and Marco Antonio Gémez Martin of jAcepta el Reto! - for answering all of my
questions about their creations. Many thanks to my colleagues Iriana Bonet and Santi Rivas for
letting me learn from their experience and supporting my work on the master thesis. Thanks also
to Alex Rios and Fran Arias for letting me present jAcepta el Reto! to their students, which was
a great way to learn about the challenges of introducing automatic judges to vocational training
students.

Most of all, | want to thank my thesis advisor Toni Hernandez for all the ideas he has given
me, and, especially, for the immediate and thorough responses to all my questions, even when they
reached him right in the middle of a long weekend. | have learned a lot about educational research
(and about how much | still don't know) from all the sources and the guidance he has given me.

Abstract

The goal of this master thesis is to analyse the use of automatic judges in the teaching of Computer
Programming in Vocational Training programs, in a sample of secondary schools in Catalonia and
Spain. We review the academic literature on automatic judges and describe their history and the
different services that are currently available, with emphasis on the ones that are relevant to our
geographic area. Through surveys to teachers and students from Vocational Training centres, we
have collected information about the specific tools in use. We classify twelve of them according to
features that we have found to be relevant to the teachers we surveyed.

Using the collected data, we study the reasons in favour and against using automatic judges, as
well as the level of familiarity of active teachers with those tools. We identify some discrepancies
between teacher's expectations and actual experiences of teachers who have adopted them. We
use students’ responses to derive statistics about their satisfaction, and to detect differences in the
attitude of those students who use judges in class and those who don't with respect to programming.

In order to detect any effects on student learning, we use three “Bebras” challenges to evaluate
the competence of algorithmic and computational thinking, which is central to the discipline of
computer programming. No difference in the ability of students to complete these challenges has
been observed, but a difference in how willing they are to work on them has been detected. The
effect is contrary to the one originally hypothesised, which leads to some interesting questions for
further study.

Resum

L'objectiu d'aquesta tesi és analitzar |'Us dels jutges automatics en I'ensenyament de la Programacié
en els cicles de Formacié Professional (FP), en una mostra d'instituts de secundaria de Catalunya
i d'Espanya. Revisem la literatura académica sobre jutges automatics i expliquem la seva historia
i els diferents serveis que hi ha actualment, fent emfasi en els que sén rellevants per a la nostra
area geografica. Mitjancant enquestes a professors i a alumnes dels centres de FP, hem recollit
informacié sobre les eines concretes que s'utilitzen. Classifiquem dotze jutges automatics segons les
caracteristiques que hem trobat rellevants per als professors enquestats.

Utilitzant les dades recollides, estudiem les raons a favor i en contra de I'ds de jutges automatics,
aixi com el nivell de familiaritat dels professors actius amb aquestes eines. ldentifiquem algunes
discrepancies entre les expectatives del professorat i les experiencies reals dels professors que les han
adoptat. Utilitzem les respostes dels estudiants per obtenir estadistiques sobre la seva satisfaccid,
i per detectar diferéncies en |'actitud d'aquells alumnes que fan servir jutges a classe i els que no,
respecte de la programacid.

Per tal de detectar I'efecte en |'aprenentatge dels estudiants, utilitzem tres reptes de “Bebras”
per avaluar la competencia del pensament algoritmic i computacional, que és fonamental per a
la disciplina de la programacié d'ordinadors. No s’ha observat cap diferencia en la capacitat dels
estudiants per completar aquests reptes, pero si una diferencia en la seva voluntat de treballar-hi.
L'efecte és contrari al que es va plantejar originalment, la qual cosa porta a algunes preguntes
interessants per a un posterior estudi.

Automatic judges in vocational training

Keywords

programming, vocational training, automatic judge, automatic assessment, computational thinking

Contents

co

0O w >

Introduction
What are automatic judges?

Literature review

3.1 History of automatic judges
3.2 Relation to gamificationo
3.3 Relation to course organisation ecosystems L.
3.4 Relation to developments in Al technology

Context of vocational training
4.1 ProgramaMe: annual programming competition
4.2 Context of our surveys to teachers

Review of automatic judges

5.1 Features of automatic judgeso
5.2 Platforms created in vocational training institutions L.
5.3 Closed-access and paid platforms
5.4 English-language options
5.5 Sites for job recruitment that are also automatic judges

Attitudes towards judges among teachers

6.1 Familiarity with automatic judge options
6.2 Pros and cons of judges according to respondents
6.3 Teachers' experiences of using judgesinclass
6.4 Applicability to the vocational training curriculum in Spain
6.5 Correlations between the use of judges and other teacher or institution descriptors

Study of effects on student learning and attitude
7.1 Testing computational-thinking using Bebras challenges
7.2 Effect of the use of automatic judges on students’ attitude

Conclusions
Questionnaire for teachers
Questionnaire for students

Qualitative data from the survey to teachers

11
11
13
14
14

15
15
16

17
17
20
21
21
21

22
22
23
25
27
28

29
30
33

38
46
63

74

Automatic judges in vocational training

List of Figures

coO~NOOGOlT P~ N

15
16
17
18
19
20
21
22

Example from Codeforces 7
Example from Jutge.org 8
Programming workflowo 9
Judge verdicts 10
Participation in ProgramaMe 16
Statistics of usage of automatic judges 17
Familiarity with automatic judges 22
Quality of experience with judges, and recommendation to other teachers 26
Expected and estimated effects on learning 27
Estimated difficulty of adopting judges for the classroom 27
Participation in ProgramaMe among respondents 29
Correct vs. wrong answers to Bebras challenges 32
Affinity of students towards programming 34
Self-evaluation of student programming skills 34
Auto-evaluation of 9 different skills by students split according to judge use 35
Reported affinity to competitiono 36
Reported affinity to team-worko 36
Time students spend at home on practising programming 37
Number of programs written 37
Satisfaction with the amount of teacher feedback 38
Answers to Question 11: Do you think judges are useful for learning to program? . . 38
Structure of the questionnaire 46

List of Tables

coO~NOOCT P~ WN

=== == O
Gl A~ W N = O

Conclusions of meta-study in [1] 13
Features of automatic judges 18
Value respondents give to different features 20
Reasons against using judges in the classroom 25
Reasons in favour of using judges in the classroom 26
Applicability of judges by UFs and degrees 28
Distribution of students respondents 30
Summary of answers to Bebras challenges 31
Attempts and correct answers to Bebras challenges by degree and use of a judge . . 32
Conclusions 39
Answers to Question 12 L 74
Answers to Question 36 75
Answers to Question 17 75
Answers to Question 29 L L 76
Answers to Question 29 (continued) 77

1. Introduction

Programming is one of the main pillars of informatics education, and without any doubt the most
important one in the specialties of software development. In this master thesis we will consider a tool
for teaching this subject that has been adopted by many universities, and is gradually getting adopted
by more and more vocational training programs. The automated program evaluators, sometimes also
called “automated assessment tools”, and also “automatic judges” are online services that evaluate
the correctness of programs submitted by users [2, 3]. They usually have a large repository of tasks
in the form of problem statements, together with several examples of input for the problem and the
correct output that the user's program should compute. In addition, there are private test cases
that are not known to the user, on which their program gets evaluated [4].

The large majority of automatic judges give as feedback only very limited information. We will
describe what this information is in the next section. Even with this limitation,they are doubtlessly
a handy tool for any learner, as they take only seconds to detect if a given program works correctly
for all the available test cases (which can be hundreds). In the classroom automatic judges can be
very useful, because they give immediate feedback that otherwise would take a long time to receive
from the teacher, since each student may run into different issues. It is an interesting question
then, why are they not more widely adopted, especially in classrooms with high ratios of students
to instructors such as in the vocational training setting in Spain?

In this master thesis we have the following objectives:

e Review the literature on automatic judges and their use in introductory programming courses
worldwide.

e Describe and categorise the different automatic judges that can be applied to the teaching
of computer programming in vocational education in Catalonia and Spain and estimate their
adoption, based on surveys and information from the communities of users.

e |dentify the positive and negative aspects of using automatic judges in teaching, using surveys
to vocational training teaching professionals. The questionnaire, included in Appendix A, was
completed by 40 teachers.

e Analyse the effects of automatic judges on student learning and on the students’ attitude
towards programming, using surveys to current students. The questionnaire, included in
Appendix B, was completed by 57 students from three different schools.

2. What are automatic judges?

An automatic judge is an online service that includes a large repository of programming tasks, also
known as exercices, problems or challenges [2, 3]. These tasks are often organised in categories,
according to the skills they require. The exercises in most automatic judges are not just straightfor-
ward statements of the requirements of the program, but instead contain an elaborate description
of a situation in which the required computation might need to be performed. The first challenge

Automatic judges in vocational training

for the user is to read the statement and filter out the technical requirements for what the program
should do. In Figures 1 and Figure 2 we show two examples of problem statements from the websites
Codeforces [5] and Jutge.org [6] of UPC.

In addition to the statement, the user is given a few examples of input and the corresponding
output that is desired. These are usually very helpful for making sure the reader understands the
statement correctly. There is a field where the user can submit their program. The program can be
submitted in several different programming languages, and the user can choose which one. (This
section is visible in Figure 1 in the middle of the right column.) On submission, the server compiles
and runs the user's program on a large set of test cases, which are unknown to the user. As a result
it outputs a message that can be one of several different kinds.

In order to describe the response of the judge we first need to explain some details about the
programming process, and the kind of issues that can arise while programming. It's important to
keep in mind that this is the workflow only for very small problems, such as the ones that are
used typically to practise programming, and the ones proposed in programming competitions and
in the repositories of all automatic judges. Programming for a larger project involves a much more
complicated process that involves breaking up the project into small tasks. The design of tasks,
scheduling and distributing the tasks among a team of developers is a completely different problem,
which is also very important, but is not the subject of this thesis.

Figure 3 illustrates the workflow of solving a programming practice problem. We detail the
sequence of steps below:

1. Understanding the statement. The first step in attacking a programming challenge or
practice problem is reading and understanding the problem statement. We can verify that we
have understood the problem correctly by checking that the input that is proposed as a test
case, which is always sufficiently small to be processed by hand, corresponds to the output
shown.

2. Designing an algorithm. After having understood the statement, a programmer has to
design an algorithm that works for all inputs. This can be done with pen and paper in pseu-
docode (language similar to the programming languages, that doesn’t have to be syntactically
correct), or just schematically. It can also be done only mentally. It's good practice for first
year students to write down their algorithms, but it is usually hard to convince them to do
that consistently.

3. Writing a program in a programming language. Converting the algorithm into a program
in a given programming language is an easy step, once we know what the algorithm is. It
requires only knowing the syntax of the language.

4. Compiling the program. Some programming languages, such as Python, do not need to be
compiled, and in that case we would skip directly to the next step. The compilation step is
also often obscured for other languages by the development environment (IDE), because it is
possible to do the compilation and the execution steps with just the press of a button. It is
better practice for beginner programmers to split the two steps, because there is a big difference
between compilation errors, which have to do with errors in the syntax, and execution errors,
which are much more sophisticated.

Il CODEFORCES Enter | R_:gis er

Sponsored by Telegram

HOME TOP CATALOG CONTESTS GYM PROBLEMSET GROUPS RATING EDU APl CALENDAR HELP

PROBLEMS ~ SUBMIT CODE MY SUBMISSIONS ~ STATUS ~ HACKS ROOM STANDINGS ~ CUSTOM INVOCATION

Codeforces Round #238 (Div. 2)
A. Gravity Flip Finished

time limit per test: 1 second
memory limit per test: 256 megabytes — Practice?
input: standard input

output: standard output Want to solve the contest problems after the

official contest ends? Just register for
practice and you will be able to submit
Little Chris is bored during his physics lessons (too easy), so he has built a toy box to keep solutions.

himself occupied. The box is special, since it has the ability to change gravity. Regetentorpraciice

There are 1 columns of toy cubes in the box arranged in a line. The i-th column contains @;

cubes. At first, the gravity in the box is pulling the cubes downwards. When Chris switches

the gravity, it begins to pull all the cubes to the right side of the box. The figure shows the — Virtual participation

initial and final configurations of the cubes in the box: the cubes that have changed their Virtual contest is a way to take part in past

position are highlighted with orange. contest, as close as possible to participation
on time. It is supported only ICPC mode for
virtual contests. If you've seen these
———=e=> problems, a virtual contest is not for you -
solve these problems in the archive. If you

just want to solve some problem from a
contest, a virtual contest is not for you -

solve this problem in the archive. Never use
someone else's code, read the tutorials or

Given the initial configuration of the toy cubes in the box, find the amounts of cubes in each

of the n columns after the gravity switch!

communicate with other person during a
virtual contest.

Start virtual contest

-

— Problem tags

greedy implementation sortings *900
No tag edit access

Input

The first line of input contains an integer 1 (1 <n < 100), the number of the columns in the
box. The next line contains # space-separated integer numbers. The i-th number a; .
(1 <a; < 100) denotes the number of cubes in the i-th column. — Contest materials

Output + Codeforces Round #238
Output 71 integer numbers separated by spaces, where the i-th number is the amount of
cubes in the i-th column after the gravity switch.

« Tutorial

Examples

input Copy

4
3212

output Copy
1223

input Copy

3
238

output Copy
238

Figure 1: Example of a problem statement in the repository of Codeforces [5].

Automatic judges in vocational training

Jutge.org

The Virtual Learning Environment for Computer Programming

Correct dates

P29448 en

Input

Write a program that reads several dates, and for each one tells if it is correct or not according
to the Gregorian calendar.

You can find the rule for leap years in the exercise P61634: “Leap years”.

Each date consists of three integer numbers, corresponding to the day, month and year,
respectively. All years are between 1800 and 9999.

Output

For every date, tell if it is correct or not.

Sample input Sample output
30 11 1971 Correct Date

6 4 1971 Correct Date

4 8 2001 Correct Date

29 2 2001 I ncorrect Date
32 11 2005 I ncorrect Date
30 11 2004 Correct Date
-20 15 2000 I ncorrect Date

Problem information

Author : Jordi Petit
Translator : Carlos Molina
Generation : 2016-12-08 18:10:05

© Jutge.org, 2006-2016.
http: //www.jutge.org

Figure 2: Example of a problem statement in the repository of Jutge.org [6].

If errors occur in this step we need to go back to step 3 and interpret what the compilation
error is telling us about why our program is not able to compile.

Executing the program. The compiled program can be executed with any test case we
might want to try. It is a good idea to start with test cases that we know well from step 1.
The result could be that the program generates output that we can go ahead and verify in the
next step. Another possibility is that the program enters an infinite loop and never outputs
anything. Finally, the program could crash with or without an error message. In the cases in
which we don't get any output we know that our problem “has a bug” and we have to start

Start

Problem
statement

/

Input/Output Understand
pairs the statement

Design an
algorithm

Write a program

Compile

Compilation

error? yes

Execute

!

Execution
error?

no

Compare results —— - Correct?

yes l

Stop H Solution

Figure 3: The workflow of solving small programming tasks.

Automatic judges in vocational training

debugging it. This means going back to step 3, and modifying the code.

6. Verifying the output. Once we have managed to get some output from the program we can
check whether it is consistent with what we expected to get based on the problem statement
and the pairs of input/output examples. If it is consistent, our program might be correct. If
not, we have to go back to 1 and 2 to check if we had really understood the problem statement
corrected, and whether our algorithm when run by hand gives the correct output or not. Our
mistake could be hiding anywhere between steps 1 and 3.

When the problem we are solving is from the repository of an automatic judge, at the end of the
above process, we can submit the program to the judge for evaluation. The server of the judge will
run many more test cases and there are several different possibilities for the outcome. The program
can either be accepted by the judge (verdict AC), or we could be told that it failed for one of the
following reasons:

e Wrong Answer (WA): the output to one of the test cases is not the expected one;

e Execution Error (EE): the program crashes during execution on at least one of the test cases;

Time Limit Exceeded (TLE): the program takes too long to finish;

Memory Limit Exceeded (MLE): the program uses up all of the memory allowed;

Compilation Error (CE): the program doesn’'t compile.

Figure 4 shows the different types of Judge.org verdicts.

Submission S001 Submission S002
Verdict Accepted Verdict I?x?cutlon Error (time
2 limit exceeded)
Compiler G++ Compiier '@
Time 2013-03-05 17:55:07 .
Time 2013-06-19 14:40:45
Submission S001 Submission S002
Verdict Compilation Error A | @)\ | 4 Verdict Wrong Answer
Compiler G++ A |@ | 48 Compiler G++
Time 2013-02-22 13:56:10 A | 4 Time 2013-02-22 14:00:02

Figure 4: Verdicts that the automatic judge can give depending on the outcome of running the program
on the full set of test cases. The images are taken from Jutge.org [6].

A program accepted by the judge is not guaranteed to be correct. From getting the AC verdict
we can only conclude that it has passed the test cases of the judge, but it could still fail on other

10

test cases. However, good test-case design covers all the edge cases and likely errors, so in practice
this is a rare situation. In any case, even if the program works correctly, it might be of bad quality.
It could be very hard to read and interpret, or it could be doing unnecessary operations. ldeally, a
teacher should still look at the accepted submission and give comments about style or efficiency.

What are the savings for the teacher, then? Primarily, the savings come from the detection of
wrong algorithms. It is very common for students to be under the impression that they have finished
a problem, when in fact it doesn’'t work correctly even on the test cases that are given with the
problem statement. There are even cases when a student is under the impression that they have
solved the problem, before they have even compiled it. Having the very precise objective of passing
the judge's check is an excellent way to make sure that students reach the end of the workflow in
Figure 3 before submitting their work for evaluation by a teacher.

Ultimately, we would like to have a judge that also gives useful information, similar to the one
that might be given by a human teacher, in the cases when the program fails to pass the tests.
One such piece of information is the actual test case that has failed, and some judges provide this
information. An even more useful piece of information would be a hint about where in the algorithm
the student might be making a mistake. We expect teachers to have an advantage in such tasks
over computers, because they have personal experience with human error.

The task of finding errors in programs is computationally a very difficult one [7]. Theoretically,
by Rice's Theorem the decision problem of whether a program is correct or not is an undecidable
one [8]. This doesn't mean we should give up looking for ways to find errors automatically, because
we can still hope to be able to find those in most programs written by human programmers. In
fact, the necessary technology might be just around the corner. In Section 3.4 we will discuss some
advances in Al research that make this seem ever less implausible.

3. Literature review

3.1 History of automatic judges

Interestingly, the first automatic judge was created in the 1960s in Stanford for grading student’s
programs in ALGOL (one of the first programming languages) [9]. Other early automatic judges
were implemented for carrying out the international programming competitions at both university
and highschool levels [10, 11]. The most important competition for university students is the
International Collegiate Programming Contest (ICPC) [10] which was established in 1977. For
highschool students it is the International Olympiad in Informatics (IOI) [11], established in 1989.
The IOl is an individual competition, and students represent their countries, while the ICPC is by
teams of 3, and the teams represent their universities [10]. They are both annual competitions.
The first automatic judge system that gained high popularity worldwide is the UVa Online Judge
[12]. It was created in 1996 in the University of Valladolid by Miguel Angel Revilla, a mathematician
who lectures on algorithms at the University of Valladolid in Spain. Its purpose was training for
the International Collegiate Programming Contest. It has a repository of all major international
competitions at university and highschool levels, and by now has accumulated more than 250,000
users. The problem archive of the UVa Online Judge has over 5,000 problems. The entire website

11

Automatic judges in vocational training

is in English.

The history of UVa Online Judge is described in [12]. The article [12] from 2008 also discusses
some of the kinds of data the owners of the judge have collected through the years. This data
can be useful for designing pedagogical systems, and the authors describe efforts towards creating a
pedagogical tool based on the technology and data from their judge, as part of a large collaborative
project funded by the European Commission, called EduJudge. In 2022, the UVa Online Judge is still
very popular, but it has not become any friendlier to beginner programmers, such as the first-year
students in vocational training programs. The “edujudge.eu” website associated with the project is
not functional.

Most early articles on the subject of automatic program evaluation, such as [13], which describes
an implementation in the National University of Singapore in 1999-2000, mention courses for prepa-
ration for programming competitions as their main application. In [13], the authors describe many
of the technical issues around implementing an automatic judge system.

In the early 2000s several open-source systems were created that made it much easier for in-
stitutions to develop their own systems by modifying the existing ones, and for creating their own
repository and competitions (or exams). The most famous open-source automatic evaluation sys-
tems Mooshak from the University of Porto was described in [14] in 2003. Another open-source
system that is very widely used, especially for hosting contests, but also for creating judges for use
in the classroom, is DOMjudge.

One authomatic judge that is very relevant to our setting is the system created in Universitat
Politecnica de Catalunya (UPC) by Prof. Jordi Petit in 2006, the Jurge.org [6, 4]. It was created
to reduce the grading load on professors of the introductory programming course in the Faculty of
Informatics. An example of a task from Jutge.org, and different possible verdicts were shown in
Figures 2 and 4. Unlike the UVa Online Judge, the Jutge.org allows for the creation of users with
instructor privileges who can create groups of students, and access their submissions. The added
functionality of users with different privileges is very important for the possibility of using these
evaluation systems in introductory classes. In Section 5.1 we will discuss the different features that
make a judge better suited to classroom teaching.

The organisation of the site of Jutge.org is by courses so that teachers can easily find the material
of the right level of difficulty. There has been significant research supporting the use of Jutge.org
in programming classes at UPC [15], as well as a cost-benefit analysis with respect to the effect of
different assessment strategies applied through the years [16].

There are many more papers analysing different automatic judge systems, however most of them
are about systems that are property of the institution where they are used, and are not open-access.
For a rather exhaustive list of the open-access ones we recommend an article on Programador Clic
[17]. There are also commercial systems, which are not usually studied in the academic literature.
A meta-study of published papers on automatic judges was carried out in [1]. The results are
summarised in Table 1 taken from that paper. AAT stands for “automated assessment tools”.

Another positive experience with an automatic judge in Spain is reported by professors at the
University of Murcia in [18]. In a second-year programming course they achieved a decrease in the
dropout rate from 75% to 45% by introducing programming competitions with a judge built using
the system Mooshak [14].

In the context of vocational training programs in Spain, the judge that has been most influential

12

Have AATs proven to be helpful in improving student learning? Yes

Do students think that AATs have improved their performance? Inconclusive

After having used the tools, do instructors think that the tools have | Yes
improved their teaching experiences?

Is the assessment performed by AATs accurate enough to be helpful? | Yes

Table 1: Table of conclusions of the study in [1].

is jAcepta el Reto!l. It was built originally for use in classes in the Complutense University in
Madrid in 2014 by Professors Marco Antonio Gémez Martin and Pedro Pablo Gémez Martin. It
was first described in a research paper in 2018 in [19]. The document serving as a Project Proposal
for innovation from 2015 is also available online [20]. The judge jAcepta el Reto! is used for
programming competitions for vocational training students called ProgramaMe. We will explain the
details of this competition in Section 4.1.

Since we are interested mostly in judges that use Spanish or Catalan, we should mention the
largest automatic judge system based in Latin America, specifically in Brazil. It's called beecrowd,
but it is better known by its previous name - URI Online judge [21]. It's available in English, Spanish
and Portugueses. It was introduced in 2012 in Universidade Regional Integrada (URI) at Erechim in
Brazil. Currently, there are more than 2300 programming challenges in their repository.

Finally, a very extensive classification of automatic judges can be found in [22]. A notable
exception is jAcepta el Reto!, because only judges with an English language option are included.
The judges are classified in six different categories according to their main intended applications. Out
of these six, four categories are relevant to us, or include judges that have already been mentioned:

e For holding competitions: the list includes the UVa Online Judge [23], Codeforces [5], Top-
coder [24] and 39 others;

e For educational purposes: the list includes Jutge.org [6], URI Online Judge [21], Exercism
[25], Codewars [26], RACSO [27] ! and 13 others;

e For recruitment: the list includes HackerRank [28], LeetCode [29], and 4 others.

e For development of judges: the list includes Mooshak [14], DOM,judge [30] and 11 others.

3.2 Relation to gamification

Although it is not necessary, some automatic judge systems apply gamification concepts to attract
users. Many of them use leaderboards ([5, 31, 32, 26]), and some use points, badges and avatars
(e.g. [31]). There are, however, much more sophisticated ways to convert an automatic program

YRACSO is another evaluation tool created at UPC, specifically for the Theory of Computing class, for evaluating
formal languages, formal reductions, etc.

13

Automatic judges in vocational training

evaluation system into a game. For example, the user can be given the task to create a software
agent (small program) for solving tasks within the game. An example of such a system is Asura
of [33]. In the same article [33], there is a list of more than a dozen other systems existing in the
research literature, although most of them are probably not available for public use.

3.3 Relation to course organisation ecosystems

Whereas we are concentrating on program evaluation, an automatic judge can be considered just a
small part of a larger system of course organisation. For an example of a complete architecture for
such a system we refer the reader to [34]. For an alternative way of integrating an automatic judge
and a learning management system for a course using blended learning, we recommend the work of
Georgouli, Skalkidis and Guerreiro in [35] and [36].

3.4 Relation to developments in Al technology

There are several aspects of automatic judges that can be addressed using Al and data-driven
technology. The most important one is feedback generation. See for example recent progress with
a system used in Rutgers University in [37]. Unfortunately, we don't know of any such system that
is open-access. The latest meta-study of the literature on automated feedback generation systems
that we are aware of is from 2015 [38].

Among the open-access judges that we introduced in Section 3.1, there are also efforts to create
systems of feedback and hints. There is a beta version of jAcepta el Reto! with hints on the site
[39]. However only 25 exercises are available as of June 2022. The research effort is described in
[40]. With respect to the UPC judge Jutge.org, some important progress for generating feedback
was reported in [41]. The approach taken in this work is to find test cases that are most likely to
give useful information to the user about why their code fails. However, as the authors note “an
important question that remains to be addressed is how to use these distilled sets in the workflow
of educative online judges”. As of 2022 the idea has not been applied to the general site yet.

Another application of Al to automatic judge services has as an objective the personalization of
the learning process via recommender systems. A recommender system would suggest to the user
the next task to work on, based on their history and on data from the submissions of previous users
with similar histories. In this way, the learning process is personalised based on the strengths and
the weaknesses of the student. For some advances in this direction we refer the reader to the work
of Fantozzi and Laura [42] and the references therein. Specific developments of recommendation
systems for the judge jAcepta el Reto! are presented in [43] and [44].

Finally, there is progress in Al research that one could argue makes it less necessary for humans to
learn how to program. The reason is that Al is ever more capable of substituting human programers.
We prefer to look at these technologies as a warning call that programming abilities are becoming
more important than ever, because we believe humankind should stay in control of the software
creations of Al agents. The concrete advancement that is very relevant to the topic of this work
is Al technology capable of generating programs that solve problems stated in natural language,
exactly in the format of the regular automatic judges. A recent advance of the company DeepMind,
presented in [45] and made public in March 2022, is an Al system that performs as well as a medium

14

level human user on computer programming tasks from the repository of the Codeforces automatic
judge.

4. Context of vocational training

The general trend in the world is to look for ways to nourish computational-thinking skills in all
children from young age (see the European Commission report [46]). However, in Spain, there
is no programming requirement in secondary education, beyond the development of some basic
competences in the subject of " Technology” in secondary education, some of them extended in the
recent legislative modification of the LOMLOE?. Programming is not included in the curriculum
of tertiary-education (“cicle formatius de grau mitja”) of informatics and communication degrees.
Some schools, by their own initiative, include in their curriculum 1 or 2 hours a week of programming
during the second year of the “cicle formatius de grau mitja".

The programming courses in higher-education vocational training programs (‘“cicles formatius
de grau superior”) assume no previous knowledge of programming. There are two kinds of degrees
- systems administration (“Administracié de sistemes informatics i xarxes"), with the abbreviation
ASIX in Catalan and ASIR in Spanish; and software development (“Desenvolupament d'aplicacions
multiplataforma/web"), with the abbreviations DAM/DAW. The programming class for systems
administration students is significantly smaller - approximately 4 hours/week during the first year.
For the development degree the programming class is the most important introductory class and
can take 7-9 hours/week of class time during the first year.

4.1 ProgramaMe: annual programming competition

ProgramaMe is an annual programming competition held in the Spring semester for all vocational
training students in informatics and communication. It is done in teams of 3 students, and each
school can send one or two teams. The competition is executed with the automatic judge jAcepta
El Reto! which is the most widely used automatic judge in vocational training programs. In Figure 5
we have plotted the number of schools participating in this competition in Spain, and in Catalonia
specifically, since the year 2014. These numbers should be compared with the total number of
schools offering the degrees of applications development (DAM and DAW), which in Spain in 2022
is approximately 515, and in Catalonia approximately 75.

In 2018 the competition ProgramaMe was part of the Catskills program [48], which is the local
organiser of Skills competitions [49]. Before the year of the pandemic, 2020, the competition was
held in two rounds - regional and national. It was always on-site. In 2020 it had to be cancelled
due to the pandemic. In 2021 and 2022 it was held online. There is a surprising negative effect of
distance learning and the Covid-19 pandemic on participation. Although it seems like it should be
easier for schools to participate when the competition is in online format, there was a very important
drop in motivation among students and professors in the year 2020. The team work culture also

2“Ley Orgdanica 3/2020 (LOMLOE)" dated 29 Dec, 2021, modifying the previous law “LOE 2/2006 (LOE)" of 3
May,2006.

15

Automatic judges in vocational training

Participation in ProgramaMe
B Spain A Catalonia

100

75 87 86
2 79
2 72
O
@ 50 62 64
o
g 52
€ 42
2 25
30
26
20 22 23 22
0 16

2014 2015 2016 2017 2018 2019 2020 2021 2022

Year

Figure 5: The number of schools participating in the annual ProgramaMe competition since 2014. Data
taken from the site of ProgramaMe [47].

suffered and this has made it more difficult for schools to create teams. For schools that use jAcepta
el Reto! as a tool in the classroom it is significantly easier to find a team.

4.2 Context of our surveys to teachers

Teachers in vocational training programs of informatics have several informal channels to keep
in touch with each other. There is a Telegram group for teachers from all of Spain with 1309
members, and a Discord group with 869 members. In addition, there is a Telegram channel dedicated
specifically to the ProgramaMe competition with 112 members. Finally, there is a Telegram channel
for techology and informatics teachers in Catalonia with 584 members.

The survey in Appendix A was sent to all these channels, asking for collaboration. The question-
naire was prepared with Google Forms, was available online, and could be filled both in Catalan and
in Spanish. The responses are anonymous. We received 40 answers from teachers who have given
programming in vocational training programs, out of which 24 are teachers who have used judges
in class, and the rest haven't. Out of the 16 teachers who haven't used automatic judges in class,
7 said that they had considered it in the past.

Since the sample of teachers is not uniformly random, and instead was based on the choice of
the teachers to fill out the survey, it is not possible to deduce what percentage of teachers use
automatic judges. Among the 40 respondents of our survey, there is only one who has used jAcepta
el Reto! in class, but has not had students participate in ProgramaMe. On the other hand, there are
many examples of schools that use jAcepta El Reto! only with a small group of students during the
competition and for preparation. Among the teachers who responded to our survey 7 out of the 16
who have not used judges have had students participate in the competition. This data suggests that

16

the numbers of participation in ProgramaMe can be used at least as an approximate upper bound
on the number of schools that use jAcepta el reto! in the classroom. That number is approximately
20%.

We can also conclude that our sample of teachers (who responded to the survey) is very heavily
biassed towards teachers who have used judges, and ones who have participated in ProgramaMe. In
our sample 70% of the teachers have participated in ProgramaMe, which is very high in comparison
with the approximately 20% of schools out of the total that have participated.

5. Review of automatic judges

In this section we will discuss automatic judges that are available to teachers in vocational training
programs in Spain. They are listed in Table 2, ordered according to how many people have used
them in class among the 40 respondents to our questionnaire to teachers. The frequencies are shown
in Figure 6. The judge Gripau is not included in the table, because we don't have access to it (see
Section 5.3 for an explanation).

iAcepta el Reto!
Jutge.org

JOEL

HackerRank
aprendeaprogramar

Codewars
Codeforces
Gripau

LeetCode
EXercism
UVa Online Judge
CodeChef
Topcoder

0 5 10 15 20

Figure 6: A histogram of how many respondents have used each judge based on the answers collected
for Question 4 of the questionnaire in Appendix A.

In the next section we will describe the automatic judge features that most affect a teacher’s
decision to use a specific one in the classroom. Next, in Sections 5.2 to 5.5 we will introduce all the
automatic judges in our list that were not already introduced in Section 3.1 (because they do not
appear in the academic literature, as far as we know).

5.1 Features of automatic judges

The first two considerations when choosing an automated evaluation tool are (1) the language in
which the problem statements are given, and (2) the programming languages that the judge accepts.

17

Automatic judges in vocational training

We have presented in Table 2 the information about each judge with respect to the availability of
English, Catalan, and Spanish, and of the most common programming languages used in introductory
classes.

(=)
o,
- : =
N > a —
) s o o,
5 o | E 5 —
5 e |E|s S ==
< | @ | 2| I& 8 |e b2
— — = | | «
clelB|e| 58 qg) S|e |2 2%
2l s || g |2 q;) 5 | O |8 © 9|2
o = I O S I = T = N TR <3 D
< |38 |5|S|S|13]|5|3|8]38
English X X X
Catalan X X X | X | X X
Spanish X | X X | X | X | X | X | X
C/C++ X
Java
Python X
Rich repository of introduc- X | X X X
tory problems
Classification of tasks by pro- X X | X | X | X | X X
gramming concept
User “Teacher” with acces | X X | X | X | X | X | X | X | X
to students’ submissions and
progress
User or their “Teacher” has | X | X X X | X
access to failed test cases
Scheduled tasks X X | X | X | X | X | X | X | X
New problems can be added | X X | X | X | X | X X | X | X
to the repository
Access to solutions of other | X | X X | X | X X | X | X X
users
Forums/comments X | X X | X X X | X
Recruitment X1 X | X X | X | X X | X | X

Table 2: Availability of most essential features for the set of judges under consideration.

18

Next, we need to consider how we want to use the judge in class:

Sporadic use. All of the available automatic judges have something to offer for sporadic use.
Naturally, it would be easier to make good use of a platform that has a rich repository of introductory
level tasks, and on which the tasks are categorised by the concepts practised (such as conditionals,
loops, arrays, string, etc). A good example of such a judge is jAcepta el Reto! [32]. For such
sporadic use, the teacher just has to select the problems that best capture the concepts of the
lesson, and ask the students to work on those problems. We have to keep in mind that on some
platforms - such as CodeChef, solutions are readily available to the user [51]. These platforms can
be used only with students who are not going to look for a shortcut to the solution.

Regular use. In order to use a judge on a regular basis we would need to be able to keep track
of the progress of all students in class over a sequence of weeks. For this, the automatic judge
should have the feature of a user with privileges (“Teacher”) with access to the submissions of other
users. This feature is offered by only a very small number of automatic judge platforms. Among

the platforms that have a “Teacher” user we can distinguish between those that give access to the
test cases that the submitted code has failed, and those that don't. Most notably, Jutge.org does
not give access to such test cases. On the other hand there are many automatic judges that give
access to this information even to the regular or “Student” user.

All judges that have a “Teacher” user give such a user the ability to assign scheduled tasks.
Another useful feature is the possibility to add new problems to the repository, so that the teacher
can create automatically graded exams.

The last three features in the table are not of great importance, but they give the user a sense
of being part of a community. The first is access to other user’s solutions once a challenge is solved.
This can be very useful for comparing different styles of solutions. One can learn a lot from another
user's code, especially if it happens that the other user is more advanced. The second feature is
the availability of forums or comments under the challenges where students can discuss ideas, ask
about problems they run into, or help each other out with hints. Finally, several sites are also used
for job recruitment, and preparation for interviews. We will discuss these in Section 5.5.

As discussed in Section 3.4 a very valuable feature for an online judge is the ability to give
non-binary feedback and hints to the user. In 2022 these capabilities are still very rudimentary for
all the judges that we have considered, and are still under development, so we have not included
this feature in Table 3, but it is a very important aspect to be considered in future works, and when
making recommendations to teachers.

In Question 16 we asked teachers who have used automatic judges in class how much they value
each of the features described above, and three more. In Table 3 we show the average value for
each feature® on a scale from 1 to 4.

3The feature “Classification of the tasks by programming concept” was not included in the questionnaire, because
it was identified as an important one in a later stage of the research.

19

Automatic judges in vocational training

Feature Avg. value
There is a rich repository of introductory problems. 3.3
User “Teacher” has access to students’ submissions and progress. 3.3
User or their “Teacher” has access to failed test cases. 3.3
New problems can be added to the repository. 3.3
Student is provided hints when a program fails. 2.9
“Teacher” can create scheduled tasks. 2.5
There is space for giving feedback to students’ submissions. 2.5
Student has access to other's solutions after passing a task. 2.3
Grades can be transferred automatically to Moodle. 2.2

Table 3: The average of the value that respondents gave to each feature on a scale from 1 to 4 (based
on 24 replies by teachers who have used judges in the classroom).

5.2 Platforms created in vocational training institutions

In addition to the judges created by universities - Jutge.org, jAcepta el Reto!, URI Online Judge and
UVa Online Judge, that we already introduced in Section 5.1, there are judges that were created in
Vocational Training schools, and do not appear in the academic literature.

JOEL [31] The name is an abbreviation for Free Online Judge for Education (“Jutge Online
Educatiu Lliure"). It was created by Marc Albareda in IES Sabadell and was open for student use
during the pandemic in 2020 to help them work from home. It is now used by 3 different schools. It
has some features that make it very friendly for the setting of vocational training programs. In 2022
it was recognized by the Catalan department of education in their program ImpulsFP as a valuable
innovation, and is going to be implemented in more schools during the next academic year.

Among its features, it's worth mentioning the fact that the feedback is not binary. The student
is given partial credit if their program passes some of the test cases. There are hints, and also the
possibility of adding new problems. Several competitions have already been hosted on site too, so
it has been shown to be robust, too.

aprendeaprogramar.org [50] This site was built in 2017 by Sergi Garcia of IES Serra Perenxisa.
It is organised by courses on different programming languages, so that the students have a fixed
itinerary to follow. There is no capability for a “Teacher” user, which makes it harder to monitor
students’ progress, so it is more appropriate for sporadic use. One advantage of the site is that it is
built with Moodle, so its interface is very familiar to both students and teachers.

20

5.3 Closed-access and paid platforms

We are aware of at least one example of a school that uses its own automatic judge in the vocational
training program, which is not made available to the wider community. It's called Gripau. There
may be others that we are not aware of.

In the last few years several paid platforms have been introduced, but due to their commercial
nature it is hard to review them. For the same reason they have not been adopted by many schools
yet. Concrete examples, specifically located within Catalonia, are CodedArena [53], Leagues of Code
[54], and Codelearn [55]. Their primary market for the moment are extracurricular activities and
programming classes at the secondary education level in private schools.

5.4 English-language options

Some of the most popular English language sites that can be used as automatic judges are Codeforces
[5], Codewars [26] and exercism [25]. The oldest one is Codeforces, and, although it is primarily
designed for competitions, it is a very rich source of good problems of all levels. It has the added
advantage that it offers very frequent online competitions. In each competition there are at least one
or two problems that can be tackled by beginner programmers. Codewars also has a competitive
spirit, but its gamification system is much more complicated than just leaderboards, which can
be very motivating for some students. It is modelled after martial arts and the challenges are
called “kata”. Finally, exercism is a relatively new site, but has much less competitive and more
pedagogical spirit. Anyone can add exercises, and act as a mentor. There are tracks for the different
programming languages. In none of these three sites there is a role of “teacher” or “instructor”
who can follow the progress of a group of students. For this reason, they are primarily suitable for
sporadic use.

5.5 Sites for job recruitment that are also automatic judges

There are a number of popular sites that have automatic assessment capabilities, but their primary
purpose is not education. This is the case of HackerRank [28], LeetCode [29], and CodeChef [51].
They are for-profit sites and their business is head-hunting. They are a good place for employers
to find good programmers and for good programmers to exhibit their skills. They can be useful
as automatic judges for sporadic use, because they also expose the students to the market of
programming jobs.

The site beecrowd [52] is a very new site of this type, but it is really the sequel of the academic
URI Online Judge [21]. It has an academic section, which allows for the creation of instructor
accounts, granted by request. Currently the service to academics is free. Given that many of the
problem statements are available in Spanish, and that it has the nice features of academic judges,
it's a good alternative for teachers in Spain, which seems to not be very well known. None of our
respondents quoted it as a site they use in Question 4. We were also not aware of it until the later
stages of this research.

21

Automatic judges in vocational training

6. Attitudes towards judges among teachers

We have said a lot about the advantages of using an automatic judge, but there are also some
difficulties, and there are teachers who are generally against their adoption, independent of how well
these evaluation tools might be made, or what nice features they might have. In this section we
will use the results from our questionnaire to try to put some light on the reasons different teachers
give for using them and for avoiding them. We have 40 replies, out of which 24 have used them,
and 16 have not. In Section 4.2 we explained how the respondents were selected.

In Section 6.1 we will try to clarify how familiar teachers are with the available options. In
Section 6.2 we will study in detail teachers’ opinions and give a ranking of the reasons for and
against the use of judges. Section 6.3 is about the experience of teachers who have used the judges.
In Section 6.4 we will give data about the degrees and teaching units in which judges are useful within
the Vocational Training curriculum for Informatics in Spain. Finally, in Section 6.5 we will describe
our attempt to correlate the use of judges to other characteristics of the teacher's methodology or
experience.

6.1 Familiarity with automatic judge options

We asked teachers who haven't used automatic judges about their opinion and familiarity with the
concept. In Figure 7 we show how many people have heard of each judge from Figure 6, out of our
16 respondents.

jAcepta el Reto!

Jutge.org

JOEL

HackerRank

aprendeaprogramar

Codewars =
Codeforces

Gripau

LeetCode

exercism

UVa Online Judge

CodeChef

Topcoder

0 5 10 15

Figure 7: The number of respondents who have heard of each judge, out of the 16 respondents who
don’t use judges in class.

The judge of IES Sabadell JOEL is very new so it is understandable that none of the teachers
who haven't used judges have heard of it. On the other hand, it is surprising that only half of the
respondents have heard of jAcepta el reto!. For this judge, as well as for Jutge.org and UVa Online

22

Judge, we also included the name of the university from which they come, respectively Complutense
of Madrid, UPC and University of Valladolid. Even so, only 3 people out of 16 were aware of
Jutge.org and only one of UVa Online Judge. The last one has worldwide fame, so it is a bit
sobering that it is unknown in its own country.

Some of the comments of people who use the judges also indicate that teachers are not exposed
to enough options of different judges:

“The possibility to work in different programming languages on the same challenge is
something that few platforms offer.”

In our list of judges, the majority let you choose the language in which you want to submit each
problem. Perhaps this respondent is referring to platforms that have courses or tracks tailored to
particular languages. This is the case only for aprendeaprogramar.org, exercism and HackerRank
out of the 12 judges in our table.

“Another point against is the editing of the statements, because many are not under-
standable (not even I, as a teacher, am able to understand them). In addition, they
contain many spelling mistakes.”

Out of the judges we have considered, the only one that has typos or spelling mistakes is JOEL. It's
understandable, because it is very new, and still edited on the fly, and, also, problems can be added
by students, and although they are monitored the process is still very informal. Other judges don't
have this problem. The problem statements in many repositories (especially the ones created for
competitions) can be long and elaborate, and one has to be able to filter out the technical content,
but this is not unusual for real-life projects, so perhaps should be considered a plus.

“They can save work for the teacher as long as the solution is the one that is expected,
but solutions can come up that are not expected by the professor that might be better
and they will count as wrong. It does not help to automate the work of the teacher,
work that could disappear due to the substitution of these automatic tools. It would be
much better to hire more teachers to do the evaluation and | want to comment that it
closes the results to a programmatic thought without common sense.”[sic]

In this response there is an important misunderstanding about how judges work. Automatic judges
do not consider how the problem is solved, but only whether the output is correct [3]. For this
reason, there can be many different solutions, and they will all be accepted, as long as they work.

6.2 Pros and cons of judges according to respondents

Among teachers who have considered using judges, but have not used them yet, 7 out of 7 said
that the reason they decided not to use them was that they didn't have time to research the
different options. Among teachers who have not considered using judges, there were some interesting
comments about their reasons. Here are some quotes:

23

Automatic judges in vocational training

“I believe that the judges are a complementary way to know if the programs work or
not, but the interaction of the teacher with the student to see the functioning of the
programs provides a qualitative element that the judges do not have.”

“It facilitates the work, but depersonalises and reduces the value of the teacher and the
motivation of the students, there is risc of layoffs for teachers and lack of medium-term
innovation.”

“It is a good way to improve students’ algorithmic reasoning, but | think (without much
experience) that for those who are weak in programming it can be discouraging.”

“The truth is that | have considered it on occasion, but | think that in the end a judge
checks that what was requested is fulfilled but does not check if an efficient, clean code,
etc. has been used, which is verified by seeing what they do and giving personalised
feedback. Then there are the judges like jAccept el Reto! that, if I'm not mistaken,
are thought for computer competitions that involve several test cases, etc. which |
personally find a bit of a drag and unrealistic. | really like Codewars and use it to come
up with ideas, but | have never proposed it to my class. Maybe | should give one of
those a try ... "

“The judge does not act as a guide and | think it is an important task in order for the
students to improve.”

“The judges will create teachers who will not correctly carry out the function of educa-
tors.”

To get a more global and less personalised view of the reasons against using judges, we offered
a set of reasons and asked the teachers to evaluate how valid those reasons are. The responses are
summarised in Table 4. It's interesting that the reasons that teachers who have not used judges
consider the most valid, are among the least valid for the teachers who have used the judges in class.
Among the teachers who have used judges there are also reservations about their effectiveness.

“Really, the judges still have to get better, because they evaluate the result of the
algorithm itself, but they do not value the quality of the code. It's this point where the
Jjudges play pretty bad tricks, because students can take on very bad vices.”

“I think the students have to learn to validate their own programs.”

“[The automatic judges| cannot be integrated into Moodle and there are solutions that
can be copied over the internet.”

All of these are valid points, and should be taken into account when using a judge in class.
We also ranked the reasons in favour of using judges, but in this case we only asked teachers who
have some experience with them. The results are summarised in Table 5. Some more reasons that
teachers wanted to add as positives can be found in Table 11 in Appendix C under Question 12.

24

Avg. validity | Avg. validity

Reasons against using automatic judges according to | according to
users non-users

The repeated rejection of programs can be frustrating. 2.9 3.9
It's easy for the professor to stop reading students’ submis- 2.9 3
sions.
Programs can pass the judge and still be very bad. 2.9 3
The automatic judges generate competitiveness. 2.4 2.9
The problems in the repositories are too difficult for begin- 2.3 3.8
ners.
The output has to be exactly in the right format to pass 2.1 4
the judge.

Table 4: Reasons against using an automatic judge ordered by the average value of validity given by
respondents, on a scale from 1 to 5. The average estimated validity is given separately for the respondents
who have used judges in the classroom, and those who haven't used them.

One reason that was mentioned by three different respondents was that the automatic judges are an
excellent source of additional problems for students who are more advanced than the rest. Another
important reason that was quoted is that it is a very good monitoring tool. Finally, three respondents
mentioned technical knowledge that is better acquired while using automatic judges. Specifically,
the memory and time limitations are very important in practice, and gain special protagonism in
introductory classes that use judges, as they can be one of the reasons for negative verdict.

6.3 Teachers’ experiences of using judges in class

In Question 8 we asked teachers who have used automatic judges about their level of satisfaction.
The question was posed giving several different options regarding their experience (see Appendix A).
We also asked them how much they would recommend the use of a judge to other teachers on a
scale from 1 (No) to 5 (Yes) (Question 13). The answers are detailed in Figure 8. We can conclude
that almost all teachers are positive about their experience, with the exception of between 1 and 3
out of 24 who are neutral.

The most important factor for deciding for or against the use of an automatic judge is the
effect it may have on students’ learning. We asked teachers what they consider this effect is in
Question 9 and in Question 23. In Figure 9 we give a histogram of the answers in the two groups.
The difference between the expectations of teachers who haven't used automatic judges and the
experience of teachers who have used them is very large.

The questions were worded slightly differently, adapting to the two different situations, as you

25

Automatic judges in vocational training

Reasons in favour of using automatic judges Avg. validity
The repository of challenges is a source of good exercises. 4.2
The format motivates the students. 4.1
The feedback is instantaneous. 4
They teach to follow rigorously technical specifications. 3.7
They improve the students’ reading comprehension. 3.1
They are an important time saver for the instructor. 3.1
They create a sense of community among different schools. 2.9

Table 5: Reasons in favour of using an automatic judge ordered by the average value of validity given by
respondents, on a scale from 1 to 5.

Teacher satisfaction Recommendation
L 125 L8
@ @ 151
£ 100/ £
© o 124
£ 159 -
S S 04
g 5.01 2 6]
E E
3 2.5 2 3]
0.0 0
2 3 4 1 2 3 4
Level of satisfaction Level of recommendation

Figure 8: Quality of experience with judges, and recommendation to other teachers. In the question about
the teacher’s experience the options were (1) “l would rather not use them"”, (2) “I'm indifferent”, (3)" They
simplify my work”, (4) “It would be hard to teach without them” and (5)"1 find them indispensible”.

can see in Appendix A. For teachers who have used a judge (Question 9) there were 4 options. In
order to place the centre at 3 we number them from 2 to 5. The possible answers are (2) “They
would learn more without a judge.” (3) “There is no significant effect on their learning.” (4)" They
learn a little bit better with a judge” and (5) “They learn much better with a judge”. For Question
23 it was just a scale from 1 to 5 where 3 means “no effect”.

We asked teachers whether the benefits of using a judge might be different for students of
different levels (Questions 10 and 24). In both groups only one teacher said that they are more
beneficial for students with worse performance. The rest were approximately evenly split among the
option that judges are equally beneficial to all students, and that they are more beneficial for the
better performing students.

Finally, it is interesting to consider whether newer or more experienced teachers would have
more difficulties adopting an automatic judge. On the one hand, one might expect that a more

26

Expected effect on learning Estimated effect on learning
101

—
L o

Number of teachers
Number of teachers
[=1]

Figure 9: The relative effect on learning that automatic judges have according to teachers who haven't
used them on the left, and according to teachers who have used them on the right. The third bin corresponds
to no effect on learning, and higher bins indicate a positive effect on learning.

experienced teacher would be more resilient to change, and have more difficulty adopting automatic
grading. On the other hand, having a lot of experience grading without automatic judges might
make one better prepared to avoid the handicaps that an automatic grading method might have in
allowing bad programming style. We asked the opinion of people who used them and the result is
summarised in Figure 10. On average, they seem to consider experience to be a positive factor.

New teachers s Experienced teachers

8 5
E E 10.0 1
= 6 =
@ @
3 @ 754
G 4 5
5 5 5.0
L2 e}
£2] £ 25,
= =

0- 0.0-

2 3 4 2 3 4 5
Difficulty of adoption Difficulty of adoption

Figure 10: Level of difficulty of adopting a judge for new teachers, and experienced teachers, as estimated
by the respondents who have used judges, based on their responses to Questions 14 and 15 in Appendix A.

6.4 Applicability to the vocational training curriculum in Spain

It’s important to know what parts of the curriculum of vocational training degrees in Catalonia
automatic judges are useful for. For this, we asked teachers in which units of the programming class
they have used an automatic judge, and in which degrees. The results are summarised in Table 6.
From these answers it appears that the automatic judges are used more often for the degrees on
software engineering. In the next section we will discuss the different effects they appear to have on
the attitude of students of the two degrees towards programming.

27

Automatic judges in vocational training

Teaching unit teNaEPrlne.rs
UF 1 - Structured programming 22
UF 2 - Modular design 14
UF 3 - File management 5
UF 4 - Fundamentals of object oriented programming 6
UF 5 - Libraries of fundamental classes 2
UF 6 - Introduction to data base persistence 1
Other classes (e.g. Data bases). 2
Degree teljg:e.rs
DAM /DAW - Multi-platform /web application development 18
ASIX/ASIR - Systems and network administration 5
SMX/SMR - Micro-informatics systems and networks 2

Table 6: The number of respondents who have used automatic judges in each section of the programming
course (“UF" stands for “unitat/unidad formativa” or “teaching unit” in Catalan and Spanish) and in each
degree.

6.5 Correlations between the use of judges and other teacher
or institution descriptors

We looked for correlations between the use of judges in class, and other variables provided by
the teachers, however we did not find any significant correlations. Specifically we considered the
following factors:

e number of different gamification tools used (Questions 33 and 34);

e years of teaching experience (Question 26);

e weather the home institutions offers the degree of video games development (Question 32);

e the percentage of submitted programs that are evaluated by hand, as reported by the teacher
(Question 27);

28

e the average number of words in program evaluations, as reported by the teachers (Question
28).

There was no significant correlation between any of these factors and the use of a judge in the
classroom. On the other hand, as we expected, there is a very strong positive correlation between
the use of judges in the classroom, and participation in the programming competition ProgramaMe
(Question 31). We illustrate this by a histogram of the number of years of participation in the two
groups in Figure 11.

Judge = False Judge = True
g8
=
(%)
S 4]
Q
=)
£ 21
=
0 —
0 2 4 6 8 0 2 4 6 8
fears ‘fears

Figure 11: Number of years teachers have participated in ProgramaMe. In the left graph is the group
who haven't used automatic judges in class, and in the right are those that have used them.

7. Study of effects on student learning and attitude

For our comparative study of the effect of using automatic judges on student learning and student
attitude towards programming, we prepared a questionnaire with Google Forms. The questions are
presented with their original text in Catalan in Appendix B. The questionnaire was sent to 4 different
professors from 3 different institutes. One of these institutes does not use automatic judges (but
participates in ProgramaMe). The other two use primarily the automatic judge JOEL, but also other
tools.

The survey was passed to students of programming classes in their first year of a vocational
training program. It was presented in the beginning of the class of programming during the month
of May (approximately a month before the end of the school year). All the students were first-year
students in the degrees of system administration (ASIX) or software development (DAM or DAW).
We received 57 responses distributed by degree and usage of judges as shown in Table 7.

In order to make informed decisions about the use of automatic judges we have to define clear
goals with respect to student learning, as well as define measures of whether those goals are better
achieved with or without the automatic judges. ldeally, we would want to use a common test. An
objective test of programming would necessarily involve an automatic judge for grading programs,
so it is clear that the students who have already used such a judge in class would have an advantage.
Therefore we propose using a different kind of test.

29

Automatic judges in vocational training

ASIX degree | DAM/DAW degree
Use an automatic judge 8 14

Do not use an automatic judge 13 22

Table 7: Distribution of student respondents by degree and use of judges in class. Only students who have
used a judge in more than one session are counted in the first category.

Specifically, we propose using a test of computational thinking ability. This kind of test doesn't
involve programming, but it evaluates reasoning skills very closely related to programming. The
concept of “computational thinking” has relatively short history, but it has been studied very ex-
tensively in the last few decades. It's a skill (or “competence”) that many countries have already
included into their school curriculums at all levels (unfortunately, Spain is not one of them), and in
many of the others there are public initiatives for including it.

With the objective of popularising the teaching of computational thinking skills, in 2006 educators
in Lithuania created an international contest named “Bebras” [56]. In the next section we describe
some aspects of this contest and its importance in educational research. We describe how we used
challenges from this contest to gain some first impressions of the effect of automatic judges on
computational thinking skills of students.

In addition to computational thinking skills, we tried to evaluate how the attitude of students
towards programming might be affected by the use of automatic judges. We describe the questions
and the results in Section 7.2.

7.1 Testing computational-thinking using Bebras challenges

The Bebras competition [56] is an international competition of computational thinking, very similar
in format to the Mathematical Kangaroo [57, 58]. It was created in 2004 in Lithuania, and it's
named after the beaver, the engineer of the animal kingdom, which is called “bebras” in Lithuanian.
In 2006, four more countries joined, and it has grown every year since then. Currently there are
more than 50 members in the list of participating countries.

Bebras is a 45-minutes long competition, and it takes place in schools all over the world in the
Fall approximately on the same date [56]. Students of all grades in primary and secondary school
work independently on a set of problems chosen for their grade level. The problems have multiple-
choice answers for ease of grading. There is an international committee that designs the challenges
every year. The local committee for each country (or region, in the case of different languages
within the country) is responsible for translating the problems and selecting ones that they consider
appropriate for each specific grade level, based on the country’s curriculum. Students’ scores are
ranked only within each country.

A presentation of the competition, its objectives and design, can be found in the paper by the
creator of the competition Prof. Valentina Dagiene and Gerald Futschek [59]. The types of tasks
and the skills that they require have been studied extensively by several groups in the last few years
(ex. [60, 61]). Bebras Challenges have been used to analyse computational thinking skills in different

30

Total answers | Avg. attepmts | Avg. correct | Avg. wrong
Using automatic judges 22 1.27 0.82 0.45
Not using automatic judges 35 1.91 1.26 0.66

Table 8: Shown are the average number of attempts out of the 3 possible attempts (for the 3 challenges),
the average number of correct answers, and the average number of wrong answers in each group.

populations, such as students in Uruguay [62], and primary school teachers in Argentina [63] *.

For this work we did not make a specific effort to select tasks that span a range of computational
thinking skills, because most of the materials are not openly available. We used the most convenient
ones - tasks that we could find translated in Catalan, and that would not require too long to read,
so that the students don't give up®. All three questions are in the lower end of the complexity
spectrum in the pool of challenges.

The objective was to check if we can detect significant differences in performance and partici-
pation between students who have studied with automatic judge and students who have not. The
original hypotheses that students who have used an automatic judge are more accustomed to facing
computational thinking challenges, and would be more accepting of them and better able to resolve
them correctly.

The questionnaire was completed by 57 students. The results with respect to their performance
on the three Bebras challenges is summarised in Table 8. We split the students according to whether
they have used an automatic judge during the year (more than once) or not.

The original hypothesis was not confirmed, and actually the opposite trend was observed in terms
of willingness to solve challenges. In both groups approximately 65% of the answers were correct,
but there were more attempts among the group of students who haven't used automatic judges in
class.

The complete distribution of answers is plotted in Figure 12. Each student is a point in one of
the two graphs, depending on the use of automatic judges in class. The coordinates of the point
show the number of correct and the number of wrong answers out of the 3 answers to the challenges.
The x-coordinate is distorted a little in order to be able to visualise multiple data points (otherwise
they would all appear in the same spot).

When we compare the performance of students who have used judges and those who have not
used judges, there is a big difference in the number of participants who have made at least one
mistake, and also in the number of participants who have given at least one correct answer. In the
group of students who have not used judges 43% have made at least one mistake, versus 23% in
the other group. A similar trend can be observed for the number of students who have given at
least one correct answer: there are 66% in the group who have not used judges, versus 32% in the
group that have used judges.

In Table 9 we summarise the percentage of tries and the percentage of correct answers. We split

#We have selected specifically Spanish-speaking examples, because these can be good sources of challenges for
future work

5Students were told the questionnaire wouldn't take more than 5 minutes to complete, in order to assure some
minimum level of participation.

31

Automatic judges in vocational training

Judge = False Judge = True

3 jessssss rrrre
o 2 L L L e
@
E
14 e R

[Messsss o |esse . ..

0 1 2 3 0 1 2 3
wrong wrong

Figure 12: A plot of the number of correct and wrong answers on the 3 Bebra challenges for the 57
students, split according to whether they have used automatic judges or not in class.

Attempted Correct answers
DAM/DAW | ASIX | Total | DAM/DAW | ASIX | Total
Judge = False 56% 77% | 64% 73% 57% | 66%
Judge = True 48% 33% | 42% 80% 25% | 64%
Total 53% 60% | 56% 75% 50% | 65%

Table 9: The fraction of challenges attempted, and the fraction of correct answers (out of the attempts),
split by degree and use of a judge.

the students by degree and by use of a judge. As you can see the results are very different for the
system administration degree ('ASIX") and for the software development degree (“DAM/DAW").

Before we draw any conclusions, we need to point out that the conditions under which the
questionnaires were presented to the students were not sufficiently identical. In all cases, they
were presented by the teacher of a programming module in the beginning of a class during the
last four weeks of the school year. Due to practical constraints, the wording while presenting the
questionnaire was not predefined, and the questionnaire wasn't presented by a stranger. In some
cases (among the classes that haven't used automatic judges) the students knew the researcher
personally. Furthermore, we could not ensure that the timing is identical, such as right before
starting a new topic. Considering all these different factors, we cannot rule out the possibility that
their decisions were influenced by external factors. The results here should be thought of as a
prototype for a more sophisticated experiment, which should take into account the different school's
circumstances, and make the setting as uniform as possible.

With all this in mind, the numerical results are suggesting some hypotheses that might require
further study. They seem to indicate that the performance is very similar between the two groups,
but the willingness to accept a challenge seems noticeably higher among students who have not

32

been using an automatic judge during the year. Perhaps towards the end of the year, the group of
students who have seen a lot of challenges from automatic judges are more worn out.

Overall, the rate of 56% of voluntary participation in the challenges (95 answers out of 3 x 57
possible), as well as the rate of 65% of correct answers are both quite low, considering that the
three Bebras challenges were designed for middle and highschool students who are not preselected
for having special interest in STEM fields. The questions are included in Appendix B.

7.2 Effect of the use of automatic judges on students’ attitude

From the analysis in the previous section, it seems like the differences that we are detecting between
students who have used automatic judges, and those who have not used them are not in their
computational thinking ability, but rather in their attitude towards computational challenges. In
order to understand these differences better, we have to look at the students’ responses to questions
about their preferences and their self-evaluation of their abilities.

The purpose of this part of the questionnaire is to identify differences between the two groups
in the following aspects:

e students’ attitude towards programming, including their level of affinity to programming, and
to what extent they think they are good at it;

e students’ attitude towards competitions and team-work;

e the time students spend programming at home;

e students’ satisfaction with the amount of feedback received;

e the number of programs students write in the course of a year,
e students’ satisfaction with automatic judges.

In Figure 13 we report the responses of the students in the two groups to the question about the
level to which they like programming on a scale from 1 (“not at all") to 5 (“a lot"). We have split
the two groups also according to the degrees of the students, because it turns out that while on
average students who used an automatic judge report to like programming a little more, this is not
the case if we consider only the students in the degree of systems administration (ASIX). Whereas
in the first group there is only a small difference between the students in the two different degrees,
in the second group the distribution of answers is visibly bimodal. The same trend is visible in the
way students evaluate their programming abilities, shown in Figure 14.

33

Automatic judges in vocational training

Affinity to programming (Question 4)

10 Judge = False Judge = True

degree
s DAM/DAW
s ASIX

Number of students

Figure 13: Histogram of the level to which students report to like programming, split by degree, for the
group that didn't use a judge and the one that did.

Auto-evaluation of programming ability (Question 12)

Judge = False Judge = True

n 8
c
[
e
2 6 degree
S EE DAM/DAW
54 e ASIX
0
E>
=4

o]

Figure 14: Histogram of the level to which students report to be good at programming, split by degree,
for the group that didn't use a judge and the one that did.

We asked students to evaluate their abilities in 8 more areas. Other areas that are related to
programming included mathematics, finding errors, abstract thinking, logic puzzles, and arithmetic.
Skills that are only vaguely related to programming included videogames and reading comprehension.
Finally, we also asked about sports skills, in order to account for general bias. In Figure 15 we show
the averages for each of the nine skills. We split the groups by degree.

Among the students of the group of the degree of software engineering (DAM/DAW) there is
very little difference in the self-evaluation of all skills. Perhaps the most important difference is
in how they evaluate their ability to find errors. This could be attributed to their experience with
failing the tests of automatic judges. On the other hand this experience has not resulted in lower
evaluation of their programming skills.

Among the students of the group of the degree of systems administration (ASIX) it looks like

34

degree = DAM/DAW
B Judge=False [Judge=True

Programming
Abstract thinking
Mathematics
Finding errors
Arithmetic

Logic puzzles
Reading compr.
Video games

Sports

degree = ASIX
B Judge=True [Judge=False

Programming
Abstract thinking
Mathematics
Finding errors
Arithmetic

Logic puzzles
Reading compr.
Video games

Sports

Figure 15: The average score that students give to their own skills.

those that use an automatic judge evaluate their abilities much lower in general, including in sports
and videogames. We do not have an explanation for this phenomenon. The programming skills
are especially evaluated much lower than all other skills, whereas this is not true for the group of
students who don't use an automatic judge.

The same trend as the one in Figures 13 is noticeable in the answers to the questions about
competition and teamwork (Questions 13 and 14). In both of these aspects the group that has
used a judge reports higher values for the degrees of software development, and lower values for the
degree of systems administration. The graphs are shown in Figures 16 and 17.

35

Automatic judges in vocational training

Affinity to competitions (Question 13)

Judge = False Judge = True

10
wn
c
s 8
T
26 degree
s N DAM/DAW
o 4 . ASIX
Q0
E
= 2

0_

Figure 16: A histogram of the level to which students report to like competing, displayed by degree, for
the group that didn't use a judge and the one that did.

Affinity to team work (Question 14)

Judge = False Judge = True

degree
N DAM/DAW
I ASIX

Number of students

Figure 17: A histogram of the level to which students report to like to work in a team, displayed by
degree, for the group that didn't use a judge and the one that did.

There is a similar trend, but not exactly the same, for the amount of time spent programming
at home (Question 6). The effect is again different for the students of different degrees - it is much
more positive for the students of the degrees of software development, but in this case, it is not
negative for the students of the degree of systems administration. The histograms of the responses
are shown in Figures 18.

36

Answers to Question 6 about time spent programming at home.

Judge = False Judge = True

n 10
g
g
T 8
Z degree
s 6 BN DAM/DAW
@ . ASIX
o 4
E
=z 2

0

1 2 3 4 5 1 2 3 4 5

Figure 18: A histogram of student’s answers to Question 6: “How many hours per week do you spend
programming at home per week?” The options were (1) “0", (2) “More than 0, but less than 1", (3)
“Between 1 and 2", (4) "Between 2 and 4", (5) “More than 4 hours”.

We did not find any significant differences in the distribution of the answers to Questions 7
and 8 about the number of programs written and the amount of feedback received during the year.
Histograms of the answers are shown in Figures 19 and 20.

Number of programs written (Question 7)

Judge = False Judge = True

8
2
T
56
2 degree
B a N DAM/DAW
@ - ASIX
£
52
b

Figure 19: A histogram of the answers to Question 7: “How many programs have you written this
academic year?" The options were (1) “Less than 20", (2) “Between 20 and 40", (3) “Between 40 and
60", (4) “More than 60"

Finally, one of the most important questions is how do students feel about the use of automatic
judges. Their answers were quite positive as can be seen on Figure 21. Even the students from
the degree of systems administration, who give a very low grade to their own programming skills,
consider that the judge is useful for learning to program.

37

Automatic judges in vocational training

Amount of feedback received (Question 8)

Judge = False Judge = True

wn
€15
[})
T
1."::. degree
45 10 BN DAM/DAW
@ m ASIX
Q0
E 5
3
=

4]

1 2 3 4 1 2 3 4

Figure 20: A histogram of the answers to Question 8: “Do you think you have received enough feedback?”
The options were (1)" Very insufficient”, (2) “Some, but not enough” (3) “The correct amount” (4) “Too
much feedback”.

Do you think judges are useful for learning to program?

=2}

w

o~

degree
mm DAM/DAW
mmm ASIX

w

Number of students
[2%

un

Figure 21: Answers to Question 11 about the usefulness of automatic judges for learning how to program.
The scale is from (1) “Not at all” to (5) “Very useful”.

8. Conclusions

Our results deviate from those of [1] that were described in Table 1. We summarise our answers to
the same four questions in Table 10. Based on the results of the three Bebras challenges evaluating
computational thinking skills, we do not observe any improvement in students’ performance. With
respect to the students’ impression on whether automatic judges have improved their performance,
the data we collected would correspond to a definite “Yes”, based on the answers summarised in
Figure 21. With respect to the instructor's impressions of whether these tools have improved their
teaching experience, we can conclude that the answer is “Yes", based on the answers summarised
in Figure 8.

38

Conclusion | Conclusion

Question of [1] of this work
Have AATSs proven to be helpful in improving student learning? Yes No

Do students think that AATs have improved their performance? | Inconclusive Yes
After having used the tools, do instructors think that the tools Yes Yes
have improved their teaching experiences?

Is the assessment performed by AATs accurate enough to be Yes Inconclusive
helpful?

Table 10: Table of conclusions of this study compared to those of [1].

Finally, the question about whether the assessment performed by AATs is accurate enough to be
helpful, is arguably too vague to have a clear answer. We consider our results “Inconclusive” in this
respect, because one of the issues identified as a reason against using automatic judges was that
programs that pass the judge can be deficient anyway. The majority of teachers think that the lack
of feedback with respect to the style of the programs is a valid reason (rated 3 out of 5 on average)
against using judges as the only method of evaluation. We base this on the answers to Question
35, summarised in Table 4.

The reason we consider the question too vague is that the level to which the automatic assess-
ment is helpful depends on how it is used. While it's true that teachers complain about the lack of
qualitative feedback, at the same time they indicate that the assessment is useful enough to recom-
mend its use to other teachers (as indicated in Figure 8). Perhaps the use of judges frees teachers
from mechanical assessment so that they can give more detailed qualitative help themselves.

On a related note, we did not observe significant differences between the groups of students who
used a judge and those who didn't in their impressions about the quality of feedback they received
(Figure 20). This suggests that the most sceptical comments we got about teachers becoming worse
instructors when they use judges, seem to be misguided.

On the other hand, we did observe that students who hadn't used judges were more likely to
work on the Bebras challenges we proposed (Figure 12). This raises an interesting question: does
the use of judges make students less confident? Our data in Figure 15 seems to indicate that this
is the case for the group of students enrolled in the degree of systems administration (ASIX), but
it could also be a result of some other characteristic of their environment or the school that they
attend.

The fact that we observe v