Dual band Circular Polarization Selector Using Asymmetric SRR Mirrors

Ismael Barba⁽¹⁾, Ana Grande⁽¹⁾, Ana C. López Cabeceira⁽¹⁾, Óscar Fernández⁽²⁾, Álvaro Gómez⁽²⁾

 Departamento de Electricidad y Electrónica, Universidad de Valladolid, Valladolid 47011, Spain (e-mail: ismael.barba@uva.es, anamaria.grande@uva.es, anac.lopez@uva.es)
Departamento de Ingeniería de Comunicaciones, Universidad de Cantabria, Santander 39005, Spain (e-mail: fernanos@unican.es; gomezal@unican.es). Corresponding author: ismael.barba@uva.es

In this work we aim to design circularly polarized flat mirror/reflectarray to work at a dual frequency. The design approach uses a unit cell made by four assymetrical split-ring resonators with an opposite rotation plus an element size variation, a seen in Fig.1

Fig. 1. Proposed structure (unit cell). The SRRs are made on copper on a FR4 substrate. There is a metallic (copper) plane mirror behind the structure. The inner rings have a radius of 5.8 mm (1st and 3rd quadrant) and 5mm (2nd and 4th quadrant). The outer rings have a radius of 10.2mm and 10mm, respectively.

Fig. 2. Reflection coefficient for a circularly polarized wave normally incident on a structure as shown in Fig.1. The superindexes +/- stand for right-handed/left-handed circular polarized waves.

As we may see in Fig.2, the proposed structure presents a dual-band circular polarization selection: in the band around 2.97 GHz it absorbs LHCP incident waves while reflecting LHCP incident waves, doing the opposite around 3.28 GHz

ACKNOWLEDGEMENTS

This research was funded in part by the Ministerio de Ciencia e Innovación and by the European Regional Development Fund (ERDF) under Grants PGC2018-098350-BC21 and PGC2018-098350-BC22.