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ABSTRACT  

Over the past few decades, various novel optical technologies for particle detection and 

characterization have been developed, based on the unprecedented interaction of light with matter. 

Light scattering, a fundamental phenomenon responsible for many physical effects, such as the 

blue colour of the sky, can be exploited to create essential devices. One such example of this is 

particle size analysers (PSA). These devices have gained popularity in industry for counting 

particles and determining their size distribution, which is crucial for monitoring and controlling 

many production processes and for biological and environmental applications. Particularly 

relevant for this thesis is the ability to count bacteria in drinking and recreational water or viral 

particles that can cause infectious diseases. One of the most common methods for such 

applications is flow-cytometry, which uses fluorescence, as well as scattering, to count or analyse 

particles. This approach is highly sensitive and specific due to the use of fluorescent markers to 

tag the target of interest. However, the traditional methods used for particle size and count analysis 

rely on large and expensive devices, often requiring complicated sample preparation, a dedicated 

laboratory and skilled staff.  

The focus of this thesis is on the design, development and validation of two novel photonic sensors 

for the detection and characterisation of industrial and biological samples. The first one is a PSA 

in a collimated beam configuration using an innovative angular spatial filter, and a consumer 

electronic camera similar to that used in a smartphone. The small form factor angular spatial filter 

allows for the collection of diffused light from particles up to predefined discrete angles. By using 

angularly resolved scattering images acquired by the camera, a machine learning (ML) algorithm 

predicts the volume median diameter of the particles. Our system has achieved a mean absolute 

percentage error of only 0.72% for spherical particles in solution with sizes greater than 10 µm 

and at concentrations up to 40 mg mL-1. Compared to traditional laser diffraction systems, the 

proposed PSA is an order of magnitude smaller in size, weight and cost, and offers a promising 

approach to online industrial process monitoring. 

As light scattering is influenced by factors other than particle size, including shape, refractive 

index contrast and suspension concentration, the PSA can also be employed in biological 

applications. To this end, the second part of the thesis aims to optimise the PSA for the 

measurement of small (< 10 µm) particles such as microorganisms. The results demonstrate that 

the modified PSA in combination with ML is able to accurately classify different types of bacteria 

(Escherichia coli and Enterococcus sp.) and distinguish them from silica beads of comparable 

sizes, with an accuracy of 89%. Moreover, it can detect the concentration of bacteria in water with 

a limit of detection (LOD) of approximately 105 cells mL-1. 

The final part of the thesis is dedicated to the development of a low-cost, portable optical 

biosensor for the specific detection of particles smaller than bacteria, such as viruses (< 1 µm). 

The proposed system, which we have called flow virometry reader (FVR), is a modification of a 

flow cytometer and relies on measuring light emissions from fluorescent antibodies that bind to 

specific viral particles. An LOD of 3,834 copies mL-1 for SARS-CoV-2 in saliva can be achieved 

with the device. The FVR is clinically validated using 54 saliva samples in a blind test, with high 

sensitivity and specificity of 91.2% and 90%, respectively. These findings suggest that the FVR 

has the potential to be a highly viable alternative to current diagnostic methods for pandemic 

events, as it is faster (< 30 min) and less expensive than PCR tests, while being more sensitive 

than today’s COVID-19 rapid antigen tests. 
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The photonic sensing technologies developed in the thesis show significant potential for use in a 

wide range of applications, including: 

 particulate air pollution, causing cardiovascular and respiratory problems 

 particulate water pollution, which affects the ecosystems of rivers, lakes and oceans 

 total bacterial count in environmental or bathing water 

 viral pandemics   

The technologies are particularly appealing in countries with limited resources due to their simple 

design, portability, short-time-to-result and affordability, as well as the fact that they do not 

require a specialised laboratory or trained personnel to operate them.  
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RESUMEN  

En las últimas décadas, se han desarrollado nuevas tecnologías ópticas para la detección y 

caracterización de partículas, basadas en la interacción luz-materia. La dispersión de la luz, un 

fenómeno fundamental responsable de varios efectos físicos, como el color azul del cielo, puede 

ser utilizado para crear dispositivos esenciales. Un ejemplo de estos dispositivos son los 

analizadores de tamaño para partículas (siglas PSA en inglés). Estos dispositivos han adquirido 

popularidad en la industria al poder determinar el número de partículas y la distribución de 

tamaños de estas, un punto crucial para monitorizar y controlar procesos de producción y para 

aplicaciones biológicas y medioambientales. En esta tesis, es particularmente importante la 

habilidad de contar bacterias en bebidas y aguas de uso recreativo o partículas víricas que puedan 

causar enfermedades infecciosas. Uno de los métodos más comunes para esta clase de 

aplicaciones es la citometría de flujo, la cual usa fluorescencia, así como la dispersión, para contar 

o analizar las partículas. Este método es muy sensible y específico dada la utilización de 

marcadores fluorescentes para etiquetar el objeto de interés. No obstante, los métodos utilizados 

tradicionalmente para determinar el tamaño de las partículas y hacer un recuento de estas 

requieren de equipos costosos y de grandes dimensiones, a veces requiriendo de preparaciones 

complejas en las muestras, laboratorios dedicados y personal experimentado. 

El objetivo de esta tesis es el diseño, desarrollo y validación de dos nuevos sensores fotónicos 

para la detección y caracterización de muestras industriales y biológicas. El primero es un PSA 

en configuración de haz colimado que usa un innovador filtro espacial angular y una cámara 

electrónica similar a la usada en móviles. El pequeño factor de tamaño del filtro angular espacial 

permite la detección de la luz difusa de las partículas hasta ángulos discretos predefinidos. A partir 

del uso de imágenes difusas angularmente resueltas obtenidas por la cámara, un algoritmo de 

aprendizaje automático, machine learning (ML) en inglés, puede predecir la mediana del diámetro 

del volumen de las partículas. Nuestro sistema ha conseguido un error absoluto medio porcentual 

de solamente un 0.72% para partículas esféricas en disoluciones con tamaños superiores a 10 µm 

y concentraciones de hasta 40 mg mL-1. En comparación a sistemas tradicionales de difracción 

láser, el propuesto PSA es un orden de magnitud más pequeño en tamaño, peso y coste, y ofrece 

un enfoque prometedor para la supervisión online de procesos industriales. 

Dado que la difusión de luz depende de más factores aparte del tamaño de la partícula, incluyendo 

la forma, el contraste del índice de refracción y la suspensión de la concentración, el PSA también 

puede ser empleado en aplicaciones biológicas. Con este objetivo, la segunda parte de la tesis 

busca optimizar el PSA para la medida de partículas pequeñas (< 10 µm) como microorganismos. 

Los resultados demuestran que el PSA modificado en combinación con ML es capaz de clasificar 

con exactitud diferentes tipos de bacterias (Escherichia coli y Enterococcus sp.) y diferéncialas 

de partículas de silicio con tamaños similares, con una precisión del 89%. Además, puede detectar 

una concentración de bacterias en agua con un límite de detección (LOD en inglés) de 

aproximadamente 105 células mL-1. 

La parte final de tesis está dedicada al desarrollo de un biosensor óptico de bajo coste y portátil 

para la detección especifica de partículas más pequeñas que bacterias, como virus (< 1 µm). El 

sistema propuesto, el cual hemos llamado flow virometry reader (FVR), es una modificación de 

un citómetro de flujo y se basa en la medida de emisiones de luz provenientes de anticuerpos 

fluorescentes que son unidos a partículas virales específicas. Con este dispositivo se puede 
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conseguir un LOD de 3,834 copias mL-1 para el SARS-CoV-2 en saliva. El FVR ha sido validado 

clínicamente usando 54 muestras de saliva en un test a ciegas, con una sensibilidad y especificidad 

del 91.2% y 90%, respectivamente. Estos hallazgos sugieren que el FVR tiene el potencial de ser 

una alternativa viable a los métodos de diagnóstico actuales en escenarios de pandemias, pues es 

rápido (< 30 min) y menos costoso que los test por PCR, mientras que es más sensible que los 

actuales test de antígenos para COVID-19.  

Las tecnologías de detección fotónicas desarrolladas en esta tesis muestran un potencial 

significativo para su uso en un amplio rango de aplicaciones, incluyendo: 

 contaminación de aire por partículas, causantes de problemas cardiovasculares y 

respiratorios 

 contaminación de agua por partículas, el cual afecta a ecosistemas como ríos, lagos y 

océanos 

 recuento total de bacterias en aguas de baño o ambientales 

 pandemias víricas. 

Estas tecnologías son particularmente atractivas en países con recursos limitados, dado sus 

simples diseños, portabilidad, el poco tiempo de espera para obtener resultados y asequibilidad, 

así como el hecho de que estos no requieren un laboratorio especializado o un personal cualificado 

para operar con ellas. 
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CHAPTER 1  

Introduction 

In recent years, particle detection and characterisation have become crucial in many fields of 

industrial research. For example, in the biopharmaceutical industry manufacturing processes are 

required to comply with strict regulations regarding particulates to ensure product safety, quality 

and efficacy1. Characterising particles is also critical in food processing for managing the taste, 

texture, appearance, stability, processability, and functionality of the final product. Other 

examples of industrial processes that require the ability to determine particle characteristics 

include catalysis, adhesion, grinding and electro-deposition, among many others3. Moreover, in 

medical diagnostics, the timely detection and identification of particles such as bacteria and 

viruses is critical in treating many life-threating diseases4. Another important application involves 

monitoring environmental pollutants such as microplastic5 in sea water or airborne particles6 that 

cause respiratory diseases.  

With the advent of optical sensors, conventional particle characterisation methods have been 

gradually replaced with light-based techniques in most of the above-mentioned industries. The 

unique interaction of light with particles led to the development of these sensors decades ago, 

even before the invention of the first laser in the 60s. By using the intrinsic properties of laser 

light, the precision and accuracy of optical sensors improved. Since then, these sensors have 

experienced an exponential growth in research and development, and have gained much 

popularity due to their inherent benefits over traditional analytical approaches. For example, 

optical sensors enable real-time fast detection which is also cost-effective and highly sensitive7.  

In addition, most of the time they are non-invasive as they allow complete sample recovery after 

measurement. This is particularly important in industries where material costs are continuously 

monitored and must be kept to the minimum.  

The main objective of particle characterisation is to determine information regarding a particle’s 

physical and geometrical properties, such as counts, size and distribution, shape, specific surface 

area etc3. Among these, the characterisation of a particle’s size is the most important because the 

behaviour of a particulate system, as well as many of its physical properties, is highly impacted 

by its size. The dissolution rate of active components in drugs, stability of emulsions and 

suspensions (e.g., sediments, paints), powder flowability, viscosity, texture and feel (e.g., food 

products), and finish of paints and coatings are all affected by particle size distribution (PSD). As 

a result, in many industrial manufacturing processes, analysing the PSD of samples is crucial in 

controlling the quality of the end product and helping manufacturers to comply with industry 

standards and regulations.  

Traditional methods for determining PSD include sieving and sedimentation, which have now 

been substituted in industries worldwide with state-of-the-art laser diffraction (LD)8 based 

systems. LD devices probe the radial distribution of diffracted or scattered light at a defined 
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distance from the sample. The size distribution is then estimated from the scattering pattern using 

appropriate optical models. Commercially available LD devices gained popularity due to their 

broad dynamic range, robustness, high accuracy, repeatability and reproducibility. They are, 

however, large (each dimension is on the order of half a meter), heavy (tens of kilograms), and 

costly (often costing a hundred thousand euros or more). Furthermore, their complexity, along 

with the fact that they frequently demand maintenance and highly trained personnel, renders them 

impractical in most online industrial applications, which necessitate the installation of probes in 

processing environments, often at numerous sites. 

In addition to particle size determination, particle counting is essential in many biological 

applications, such as monitoring the presence of airborne microorganisms in controlled 

environments9, determining contamination levels like bacterial counts in drinking water10, and 

detecting and quantifying viral particles that cause infectious diseases11, among many others. The 

most commonly used optical technique for particle counting and characterisation in suspension is 

flow-cytometry. Not only can this method detect light scattering from particles, but it can also 

detect fluorescence. Fluorescence is caused by the molecular absorption of incident high energy 

photons, which leads to the spontaneous emission of photons with lower energy, i.e., longer 

wavelength, than the incident photons. Hence, in order to detect fluorescence, the particles must 

either be fluorescent or conjugated with appropriate fluorophores. Fluorescence detection is a 

highly specific and sensitive method for identifying and distinguishing target particles from other 

particles and can be particularly useful in characterising diseases in clinical settings. Although 

conventional flow-cytometers are multifunctional devices capable of rapid and reliable particle 

analysis, they are large and expensive, with a price typically ranging from a hundred to five 

hundred thousand euros. Furthermore, their operation necessitates trained personnel, complex 

sample pre-treatment involving expensive reagents and large sample volumes. They are not 

suitable for point-of-care (POC) applications, and research institutions and hospitals are often 

required to share a single system among different departments due to their high price. Therefore, 

their implementation in many rural areas or developing countries with limited resources becomes 

extremely challenging.  

1.1 Objectives of the Thesis 

The discussion in the previous section demonstrates the need to develop compact, portable, easy-

to-use and cost-effective systems for particle characterisation. Therefore, the main aim of this 

thesis is to develop novel optical sensors of small form factor using consumer electronic 

components for the non-invasive detection of particles, including bacteria and viruses. The 

specific objectives involve: 

i. Development of a miniaturised particle size analyser (PSA) based on light scattering and 

an ad hoc machine learning algorithm to measure particles in the size range from 10 µm 

to 100 µm.  

ii. Optimisation of the PSA for small particle measurements, targeting between 1 µm and 

10 µm, to demonstrate its applicability in detecting microorganisms like Escherichia coli 

(E. coli) and Enterococcus sp. in water.  

iii. Development of an application-specific flow-virometry POC reader that utilises the 

fluorescence measurement feature of a flow-cytometer in order to detect and quantify 

particles smaller than 1 µm, such as SARS-CoV-2 (Severe acute respiratory syndrome 

coronavirus type 2) in saliva. 
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1.2 Thesis Outline 

The thesis is organised into five chapters: 

This chapter describes the importance of particle detection and characterisation for industrial, as 

well as biological, applications and presents the main Thesis’ objectives. 

Chapter 2 presents the notion of particles, as well as various non-optical and optical particle 

characterisation techniques, with a focus on well-known and commercial state-of-the-art methods 

that are currently used in the industry. Since the optical methods presented in this chapter are 

dependent on light scattering, some theoretical background and modelling of light scattering are 

also included. 

Chapter 3 introduces the concept of a light scattering based compact and low-cost PSA.  This 

device uses consumer electronic components, a simple light emitting diode (LED) and a single 

metal-oxide-semiconductor (CMOS) image sensor, similar to those used in smart phones, as well 

as a custom machine learning model to predict the median particle size. This chapter also explains 

how the system is validated by measuring particles with various size distributions ranging from 

10 µm to 100 µm at several concentrations. 

To measure particles smaller than 1 µm, the developed PSA requires design changes, which is the 

focus of Chapter 4. This chapter also presents the preliminary results from measuring different 

concentrations of E. coli and Enterococcus sp.in water as an application case study, demonstrating 

how the PSA can classify E. coli, Enterococcus sp., and other particles while also predicting 

bacterial concentrations in water using two different machine learning models. 

For the specific and sensitive detection of particles smaller than 1 µm, like viruses, direct light 

scattering measurement is insufficient. Therefore, Chapter 5 introduces the notion of a small-

form-factor flow-virometry reader (FVR) for POC applications, which employs a small 

microfluidic chip and a laser-pumped optical head to detect the presence of viruses tagged with 

fluorescent antibodies. The FVR’s performance is assessed using clinical samples of SARS-CoV-

2 in saliva, as described in the chapter. The detection limit and sensitivity obtained from the 

measurements are also presented. 

Finally, Chapter 6 summarises the conclusions of the thesis and provides an outlook for future 

work 
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CHAPTER 2  

State-of-the-Art Methods for Particle Detection 

and Characterisation 

1.1 Particles  

Particles are mostly interpreted as tiny fragments that constitute all matter. Industrial particles 

cover a wide range of sizes, from nanometres to hundreds of millimetres. Therefore, the concept 

of particles is limited within the scope of this thesis. The particle sizes studied span from a few 

hundred nanometres to approximately a hundred micrometres. Figure 2.1 shows some common 

industrial particles and their approximate size ranges. 

 

 

Figure 2.1: Industrial particles.  Some examples of various particles and their approximate size ranges. 

Adapted from references1,2. 
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Table 2.1: Equivalent sphere concept for irregularly shaped particles2,4 

Particles most often present themselves in particulate form, consisting of a large number of 

particles, as opposed to their bulk form for the same volume or weight. The physical properties 

of particles in a particulate system can vary, and the ensemble's macroscopically observable 

behaviour is frequently different from that of the bulk material1. Depending on the property being 

investigated, a particulate system can be classified into monodisperse or polydisperse. All 

particles in a monodisperse system have the same properties, whereas all or some particles in a 

polydisperse system have distinct characteristics.  

Particle sizing methods can be classified into two categories, namely ensemble and non-ensemble. 

The particle size distribution (PSD) obtained from the contribution of signals from all particles is 

acquired using the ensemble approach, which involves measuring all particles at the same time. 

In non-ensemble approaches, particles are measured one at a time and sorted into distinct bins to 

determine the PSD, or they are physically separated based on size using an external force or 

process, and the PSD is derived by measuring the number of the different sizes being separated. 

Depending on the method used, there is a variety of commercially available particle sizing devices 

on the market, each with its own set of benefits and drawbacks. These devices are usually designed 

to work within a specific particle size range and, hence, are best suited for specific applications. 

In the following sections, we present a brief overview of the most commonly used traditional 

methods, as well as some of the advanced optical methods currently employed for particle 

characterisation in many industries.  

Equivalent 

Diameter 
Symbol 

Definition 

 

Volume 

diameter 
dv 

Diameter of a sphere with the same volume 

as the particle 

 

Surface 

diameter 
ds 

Diameter of a sphere with the same surface 

area (SA) as the particle 

 

Stokes’ 

diameter 
dst 

Diameter of a sphere with the same density, 

ρ, and settling rate, v, as the particle under 

conditions defined by Stokes’ law 
 

Sieve 

diameter 
dsieve 

Diameter of a sphere equal to the width of 

the sieve aperture through which the 

particle will pass 

 

Projected 

area 

diameter 

da 
Diameter of a circle with the same area as 

that projected by the particle 
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2.1 Particle Characterisation Techniques: Non-Optical 

2.1.1 Sieving (~ 5 µm – 10 cm) 

Sieving5 is one of the earliest and most straightforward procedures for characterising particles. 

Fine particles are separated from coarse particles using a set of sieves with varied mesh sizes, as 

shown in Figure 2.2. This is accomplished by vibrating the particles in a combination of vertical, 

horizontal, and rotational motions, causing the particles to orientate themselves and fall through 

the mesh apertures into a sieve with a smaller mesh size. After the sieving procedure is completed, 

the weight of each sieve is measured and compared to the weight of the sieve before adding the 

sample. This yields the weight of the material in each sieve, which is then used to calculate the 

PSD and the mean diameter of the sample.  

 

Figure 2.2: Sieve Analysis. Particles are separated by passing them through sieves with different mesh 

sizes from large to fine [adapted from reference6]. The zoomed in portion shows that an elongated particle 

can pass through the mesh by orientating itself ‛on end’ [adapted from reference7]. 

Due to the simple working principle of sieving, it is frequently used in many industrial 

applications and is particularly advantageous in determining particle sizes in the range of several 

millimetres, as this range is well above the detection limit of other conventional particle sizing 

methods. However, despite being the most common method, this approach has several drawbacks. 

Firstly, it ignores particle shape, and a particle's ability to pass through the mesh is determined by 

its second smallest dimension, i.e., its width. Two elongated particles with comparable widths but 

different lengths, for example, could pass through the mesh and produce the same result. Hence, 

this method is unreliable for flat and elongated particles. In addition, it is a low-resolution 

approach, especially for particles with a narrow size distribution, owing to the limited mesh sizes 

available commercially. The accuracy of the results is determined by particle characteristics, 

orientation, mechanics of the sieve movement, and the agitation time. Moreover, sieving is time-

consuming, slow, requires a large number of samples for analysis and lacks the ability to provide 

real-time monitoring of industrial processes. 
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2.1.2 Sedimentation (~ 50 nm – 100 µm) 

Sedimentation8 involves measuring the time taken for particles to settle through a liquid, either 

due to a gravitational field or through centrifugation, and then relating this to the particle mass 

using the Stoke’s law. The principle behind this technique is the fact that larger particles settle 

faster than smaller particles in a liquid medium. On determining the settling rate, the particle size 

can be calculated using its density. Hence, this method requires a prior knowledge of the particle’s 

density, as well as the viscosity and the density of the liquid medium. It is also assumed that the 

particles are all spherical in shape, have equal densities, and settle in a laminar flow. The concept 

of equivalent diameter is used when applying this method to non-spherical particles. This means 

that the calculated Stoke’s diameter is equal to the diameter of a spherical particle exhibiting the 

same properties (geometric, optical, electrical etc.)9 as the measured particles.  

Sedimentation has been widely used in the past due to its low cost, high accuracy and 

reproducibility, continuous operation and fairly large measurement range. This approach, 

however, is unsuitable for particles larger than 50 μm due to turbulent-flow (large Reynolds 

numbers) and smaller than 2 μm because of diffusion due to the Brownian motion. In addition, 

emulsions (which do not settle), highly dense materials (which settle quickly), and mixes of 

different densities are not suitable for sedimentation. Also, the viscosity is affected by the 

surrounding temperature. Moreover, the various types of sedimentation methods that require 

separation, such as the pipette method, sedimentation balance method, and diver method, are 

particularly time consuming since fine particles in samples require extensive settling durations 

(up to 60 minutes). Centrifugal sedimentation with light or X-ray detection is a more recent form 

of sedimentation and, nowadays, is the most typically used version due to shorter measuring 

times10. Further details on the different forms of sedimentation method can be found in reference8. 

2.1.3 Electrozone Sensing (~ 0.4 µm – 1.2 mm) 

Electrozone sensing11, or the Coulter Counter, is a particle counting method that provides 

information regarding the particle size, as well as the number and volume distribution. In a Coulter 

Counter, a tube with an aperture of known diameter is placed in an electrolyte (electrically 

conducting liquid), and particles (non-conductive) are suspended in it (Figure 2.3). The flow of 

current through the electrolyte is caused by two electrodes, one within the tube and the other 

outside. When a particle passes through the aperture, i.e., the sensing zone, it displaces a volume 

of the electrolyte solution equal to its own volume, increasing the resistance between the 

electrodes. This results in a voltage pulse, the intensity of which is proportional to the volume of 

the particle and the number of which gives the particle count. The particle size is then derived as 

the equivalent spherical diameter based on a calibration curve. 

The electrozone technique is capable of performing rapid (< 1 min) measurements with high 

resolution, reproducibility and sensitivity and a minimal sample quantity. The accuracy of the 

size measurement is usually within 1 to 2 percent. The electrical response of the particles is not 

influenced by their shape, hence the particle size obtained is unbiased. Other optical properties of 

the particle, including colour, refractive index, and composition, are likewise unaffected by this 

approach. The lower size limit of 0.4 µm is determined by the signal-to-noise ratio and the upper 

size limit (~1200 µm) is set by the ability to suspend particles uniformly in the electrolyte. Two 

or more apertures must be used for measurements across a broad range, with the data being 

combined to produce a complete size distribution. The main drawbacks of this approach are that 

it cannot measure conductive particles like metals and that it necessitates the use of an electrolyte 

solution. Moreover, this method cannot produce reliable data for porous samples because the  
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pores can become filled with the electrolyte solution and the effective volume displaced may be 

much smaller than its true “envelope volume”12. 

 

Figure 2.3: Working principle of electrozone sensing or Coulter Counter. 

While the three methods explained above are the most common non-optical techniques, there are 

also other, less popular, particle characterisation techniques. These include chromatographic 

methods and acoustic spectroscopy for sub-micron particle sizing, as well as some other more 

application-specific methods, for example, electroacoustic spectral analysis for zeta potential 

determination and particle sizing, pulsed field gradient nuclear magnetic resonance (PFG-NMR) 

for determining diffusion coefficient, and many more. An elaborate description of each of these 

methods with their benefits and drawbacks can be found in references1,13. 

2.2 Particle Characterisation Techniques: Optical  

When a light beam illuminates a particle, a part of the incident light is either scattered or absorbed 

or both depending on the wavelength of the incident light, and the physical (complex refractive 

index) and geometrical (size and shape) properties of the particle. This combined effect results in 

the extinction of the incident light. The majority of optical characterisation techniques rely on 

determining the relationship between the characteristics of the target particles and such properties 

as the intensity, phase, etc. of the light scattered or absorbed by them. The most widely used 

methods for particle characterisation are based on light scattering and, hence, we will limit our 

discussion to only these techniques in the following sections. A brief theoretical background is 

provided on light scattering to better understand the concept behind these methods. 

2.2.1 Light Scattering Phenomena 

When an electromagnetic (EM) wave (i.e., a light beam) illuminates a particle, the electrons in 

the particle oscillate around the positive nucleus. Because of this charge separation, the particle 

acquires a dipole moment, which oscillates at the frequency of the incident wave, reradiating 

secondary EM waves in all directions. These secondary waves are referred to as scattered waves, 

and what we see from a particle is a superposition of the incident wave from the source and the 

scattered waves from the particle or scattering centres. In an isotropic and homogeneous material, 



 Chapter 2: State-of-the-Art Methods for Particle Detection and Characterisation  

26 

 

the scattered waves from individual particles causes destructive superposition and, therefore, no 

scattering occurs1. 

Most particle sizing techniques use elastic scattering of light to determine the size of various 

particles. Elastic scattering occurs when the frequency (or wavelength) of the scattered wave is 

the same as the incident wave. Examples of this type of scattering include Rayleigh and Mie 

scattering. Mie scattering is applied essentially for spherical particles with diameters, D, equal to 

or greater than the incident wavelength λ, in contrast to Rayleigh scattering, which is used for 

particles much smaller than the wavelength of the incident light (Figure 2.4).  

 

Figure 2.4: Rayleigh and Mie scattering. The scattering pattern is dependent on the particle diameter D 

and wavelength of the incident light λ. 

When characterising particles using light scattering, most often the Mie theory is used due to the 

high accuracy this model can provide in analysing samples with a wide size range and varied 

optical properties. The Mie theory, developed by Gustav Mie in 1908, gives the analytical solution 

to Maxwell’s classic equations for the scattering of light by a single homogeneous, isotropic and 

spherical particle of arbitrary diameter immersed in a non-absorbing medium with a refractive 

index that is different from the particle itself. In brief, Maxwell’s electromagnetic equations in 

spherical co-ordinates are solved by applying the standard boundary conditions at the surface of 

the particle. To match the inside and outside electromagnetic fields at the boundary of the 

spherical particle, the incoming plane wave is expanded into vector spherical harmonics using 

Legendre polynomials. For practical applications, the solution sought is in the far-field zone, i.e., 

at a distance, r, much larger than the incident wavelength.  

In the far-field region, the Mie theory gives the relationship between the incident and scattered 

components of the electromagnetic field that are parallel and perpendicular to the scattering plane. 

Since practical scattering experiments measure intensity, in general, for unpolarised light, the total 

scattered intensity by a single spherical particle can be expressed as14: 

 

𝐼(𝜃) =
𝐼0(|𝑆1 (𝜃)|2 + |𝑆2(𝜃)|2)

2𝑘2𝑟2
 (2.1) 
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where, wavenumber  𝑘 =
2𝜋

𝜆
,  with 𝜆 the wavelength of incident light, 𝐼(𝜃)  is the total scattered 

intensity, 𝐼0 is the incident light intensity,  𝑆1(θ) and 𝑆2(θ) are the scattering amplitude functions 

with θ being the scattering angle with respect to forward direction and are given by the following 

equations14: 

 

𝑆1(θ) = ∑
2𝑛 + 1

𝑛(𝑛 + 1)
𝑛

(𝑎𝑛𝜏𝑛 + 𝑏𝑛𝜏𝑛), (2.2) 

 

 

𝑆2(θ) = ∑
2𝑛 + 1

𝑛(𝑛 + 1)
𝑛

(𝑎𝑛𝜏𝑛 + 𝑏𝑛𝜋𝑛), (2.3) 

 

 

In the above equations, 𝜏𝑛 and 𝜋𝑛 are the Mie angular functions and  𝑎𝑛 and 𝑏𝑛 are the Mie 

coefficients for the scattered field given by14: 

 

𝜋𝑛 =
𝑃𝑛

1

𝑠𝑖𝑛𝜃
 

(2.4) 

𝜏𝑛 =
𝑑𝑃𝑛

1

𝑑𝜃
 

(2.5) 

𝑎𝑛 =  
𝑚𝜓𝑛(𝑚𝑥)𝜓′

𝑛
(𝑥) − 𝜓𝑛(𝑥)𝜓′

𝑛
(𝑚𝑥)

𝑚𝜓𝑛(𝑚𝑥)𝜉′
𝑛

(𝑥) − 𝜉𝑛(𝑥)𝜓′
𝑛

(𝑚𝑥)
 

(2.6) 

𝑏𝑛 =  
𝜓𝑛(𝑚𝑥)𝜓′

𝑛
(𝑥) − 𝑚𝜓𝑛(𝑥)𝜓′

𝑛
(𝑚𝑥)

𝜓𝑛(𝑚𝑥)𝜉′
𝑛

(𝑥) − 𝑚𝜉𝑛(𝑥)𝜓′
𝑛

(𝑚𝑥)
 (2.7) 

 

where, 𝑃𝑛
1is the associated Legendre function of first kind of degree n,  𝑥 = 𝑘𝑎 is the size 

parameter, a is the radius of the particle, m=
𝑛𝑝

𝑛
 is the relative refractive index between the particle 

(𝑛𝑝) and the medium (𝑛) , 𝜓𝑛 and 𝜉𝑛are related to the Ricatti-Bessel functions. The detailed 

derivation of the Mie theory can be found in reference 14.  

In order to better understand how the scattered intensity varies with the scattering angle for 

spherical particles of various sizes, polar plots of different particle diameters are shown in Figure 

2.5. The size parameter has a major influence on the angular distribution of scattered light from 

spherical particles. Large particles have a narrow scattering lobe that is predominantly in the 

forward direction, and the scattering intensity is substantially higher than that of smaller particles 

at the same scattering angle. The angular dependence of scattered light diminishes as the particle 

size decreases, becoming practically flat for particles smaller than 50 nm in diameter. Based on 

these characteristics, the size of particles can be derived using light scattering measurements. 
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Figure 2.5: Mie scattering patterns from spherical particles of different diameters. Polar plot of particles 

(np =1.59) with diameter 50 nm (left), 1 µm (middle) and 10 µm (right) suspended in water (n =1.33), 

showing how the angular distribution of scattered intensity varies with particle size. The graphs are plotted 

using BHMIE14 code in Matlab.  

With advancements in computation techniques, calculation of Mie scattering for a single sphere 

has become relatively easier. Reference15 provides a compilation of several computer source 

codes based on Mie theory. Among those, the BHMIE code by Bohren and Huffman14 is the 

standard algorithm and is used in this thesis for most particle scattering simulations. 

In some particle size analysers, Fraunhofer diffraction theory14,16, a simplified model of Mie 

theory, is sometimes used especially for medium or coarse particles which are much larger than 

the wavelength of light (typically > 25 µm). In Fraunhofer theory, diffraction or scattering of light 

is considered only at the contour of the particle. This theory assumes particles to be opaque discs 

which means that the scattering pattern obtained from these discs will be the same as that obtained 

from circular apertures2 according to Babinet’s principle. The diffraction pattern is usually 

measured at a large distance (“far-field”) from the scatterer and since this theory applies to large 

particles the scattering intensity is concentrated mostly in the near forward direction, i.e. at angles 

smaller than 10 degrees. For small scattering angles θ, the intensity distribution according to 

Fraunhofer diffraction theory can be expressed by the following equation14,16: 

𝐼(𝜃) =
𝐼0

𝑘2𝑟2
𝑥4 [

𝐽1(𝑥𝜃)

𝑥𝜃
]

2

 (2.8) 

 

where 𝐽1 is the Bessel function of the first kind of order unity. 

The main advantage of the Fraunhofer theory is that it is relatively straightforward and does not 

require any prior knowledge of the optical properties (e.g., refractive index) of the samples to be 

measured. However, this method can only be used for larger particles and cannot provide the 

precision offered by the Mie theory, especially for small particles. 

2.2.2 Laser diffraction (~ 10 nm – 4 mm) 

Laser diffraction (LD)17–19 or Static Light Scattering (SLS) is the most widely used technique for 

particle size analysis today. In this particle characterisation method, the particle size is derived by 

directly probing the angular distribution of scattered light from the sample, and, unlike other 

methods, once the device is properly set, this method does not require any prior calibration or 

scaling. Despite the fact that most modern equipment employs the generalised Mie theory to 

determine particle size, this method is still known as laser diffraction. This is because laser 
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diffraction devices were previously constrained to employing solely the Fraunhofer diffraction 

theory for particle size calculation due to limited computation power.  

In a classical LD setup, as shown in the illustration in Figure 2.6, a laser is used as the light 

source, followed by a beam processing unit that includes a beam expander and other components 

such as lenses and pinholes to produce a collimated beam of light. Particles dispersed in a liquid 

or air (in a sample chamber) are illuminated by the laser beam and the angular distribution of 

scattered light from the particles is detected by a multi-element photodetector array placed mostly 

in the near forward direction. The unscattered forward light is also collected by the detector 

element, and can later be used for determining the light obscuration of the sample. The optical 

signal is then converted into an electrical signal by the detector array, and the particle size 

distribution is determined using computer software based on an appropriate scattering model.  

The detector geometry is determined by the desired angular range, angular resolution, and 

sensitivity, among other factors, and can be of various types, such as concentric half-rings, X 

patterns, fly-wing patterns, and so on1. Most often ring detectors are used, i.e., the detector 

elements are arranged in a logarithmic fashion, with the size (radii and width) of each detector 

increasing as a constant multiple of the size of the preceding detector element. Since the total area 

of each detector element increases with an increasing angle, this arrangement aids in improving 

the signal-to-noise ratio when measuring small particles that scatter light at a low intensity.  

The volume equivalent sphere diameter is used to report particle size in LD devices. Three 

parameters are frequently used to define the width of a sample's particle size distribution. The 

D50 which is the median diameter dividing the sample population into equal halves, the diameter 

D10 meaning that 10 percent of the sample diameter falls below this value, and the D90 is the 

diameter below which 90 percent of the sample diameter lies. Since the angular scattering profile 

recorded by the detector array is a superposition of various intensity patterns generated by 

individual particles of various sizes and shapes, LD is referred to as an ensemble method. 

 

Figure 2.6: A typical LD setup used in commercial particle size analysers. When particles are irradiated 

by a laser beam, a scattering pattern is created, which is observed by front, side and rear detectors.  

The measuring range of LD devices is mostly determined by the distance between the laser, 

sample chamber and photodetector, as well as the position of and distance between the detector 
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elements. The typical measurement size range is from 0.1 µm to more than 1 mm, although new 

instruments can now perform measurements down to the nanometre level. The upper size limit is 

set by the fact that large particles scatter at small angles, making it difficult to resolve particles of 

similar sizes. The lower limit is defined by the weak scattering intensity from small particles, 

which can be enhanced by using a shorter incident wavelength such as blue or violet. Thus, many 

current instruments employ multiple laser sources for improved performance over a broad particle 

size range. 

There are two types of optical setups commonly used in recent commercial laser diffraction 

system designs, namely the Fourier optics or reverse Fourier optics setups20. As shown in Figure 

2.7, in a traditional Fourier optics configuration the collection lens is placed after the measuring 

zone, which has the advantage that regardless of the position of a particle in the laser beam, 

scattered light at a specified angle will be refracted by the lens to fall at a specific detector. This 

is especially useful for spray measurements since the particles can be dispersed over a larger 

measuring zone. Because the scattering angle is proportional to the particle size (small particles 

scatter at large angles), the measuring range in this configuration is mainly determined by the 

focal length of the lens. 

 

Figure 2.7: Lens arrangements for laser diffraction systems. Fourier optics setup (top) and reverse 

Fourier optics setup (bottom). Adapted from reference21. 

In the reverse Fourier setup, the collection lens is placed before the measuring zone and, thus, 

particles are illuminated by a convergent beam. The distance between the measuring zone and the 

detector determines the measurement range in this arrangement, and depending on the location of 

the particle in the converging beam, the scattered light at different scattering angles will arrive at 

a particular detector. Unfortunately, this results in a blurred diffraction pattern compared to the 

Fourier setup, leading to sizing errors. Therefore, in order to improve particle sizing accuracy, the 

sample chamber must be narrow in this setup. The advantage of the inverse Fourier method is that 

it allows for the collection of wider scattering angles as additional detectors can be placed around 

the sample chamber. Hence, this setup provides a broader measurement range with an improved 

resolution. 

The data evaluation procedure in LD devices is based on the solution to the following integral 

equation16, which is the sum of the scattering intensities from an ensemble of particles: 
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𝐼(𝜃) =  ∫ 𝐴(𝜃, 𝑥)𝑓(𝑥)𝑑𝑥 

 

(2.9) 

where, x is the size parameter, the kernel A(θ, x) is the scattered light intensity at angle 𝜃 of a 

single spherical particle with size parameter  𝑥, and  f(x) is the particle size distribution. This is 

the so-called inverse problem, the numerical solution of which is complicated and, typically, an 

ill-posed problem1,22. Many inversion methods have been developed over the years, details of 

which can be found in literature references22–25. In practice, the size distribution f(x) is discretised 

into f sizes and equation (2.9) is reduced to a series of linear algebraic equations that can be 

represented by the following matrix equation: 

𝐼 = 𝐴 ∙ 𝑓 
 

(2.10) 

where, 

 

 

𝐼 =  [

𝐼1

𝐼2

⋮
𝐼𝑚

]             𝑓 =  [

𝑓1

𝑓2

⋮
𝑓𝑛

] (2.11) 

 

𝐴 = [

𝑎1,1 ⋯ 𝑎1,𝑛

⋮ ⋱ ⋮
𝑎𝑚,1 ⋯ 𝑎𝑚,𝑛

]             

 

 

(2.12) 

In equation (2.11), Ii (i=1, 2 ... m) is the scattering intensity detected by each element of the ring 

detector, i.e., at each detection angle. The measurement target particle size range is divided into 

size classes where each class is a group of similar sized particles defined by two diameters. 

Therefore, each element of the particle size distribution f, fj (j=1, 2 ... n) represents the percentage 

of particles in the size class (xj, xj+1). The matrix A in equation (2.12) contains the scattering 

coefficients calculated using the Mie theory. Each element of A, aij (i=1, 2 … m, and j=1, 2…n) 

represents the expected scattering intensity at each detection angle for each size class. The 

complex refractive index, i.e. both the real and the imaginary part, of the particles and medium 

must be chosen beforehand in order to calculate the elements of A using the Mie scattering theory. 

The PSD is then determined by inversion of equation (2.10): 

 

𝑓 = 𝐴−1 ∙ 𝐼 

 
(2.13) 

where, A-1 is the inverted matrix of equation (2.12). In commercial instruments, this matrix 

inversion is carried out by proprietary algorithms. 

 

LD has become the state-of-the-art technology for particle size determination due to the wide size 

range that can be measured using this method. Commercial LD devices are fast and robust, 

capable of providing results with high accuracy and reproducibility. However, there are 

limitations to this method, including the need to optimise the sample concentration in order to 

achieve a reasonable signal-to-noise ratio while, at the same time, ensuring elastic single particle 

scattering. Also, when measuring concentrated samples, multiple scattering becomes a crucial 

problem, but, using different approaches, several analytical correction factors26 have been 

developed in recent years. Nowadays, commercial LD devices are required to introduce these 

complex correction factors into their proprietary algorithms in order to reduce the effect of 

multiple scattering and retrieve the PSD with greater accuracy. Another drawback of this method 

is that it requires previous knowledge of the refractive index of the sample as well as the medium 

in which the particles are dispersed. This demands a trial-and-error process as incorrect refractive 

indices used for establishing the optical model can result in inaccurate size measurements. 

Moreover, this method assumes that all particles measured are perfect spheres. It has been 
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demonstrated that the size of non-spherical particles are underestimated by LD27, thus reducing 

the measurement accuracy. Furthermore, commercial LD devices are large and expensive 

products, limiting their use in online industrial applications in most cases. 

2.2.3 Dynamic Light Scattering (~ 0.1 nm – 10 µm) 

For submicron particle measurement, dynamic light scattering (DLS)1,28 has now become an 

industry standard technique. The optical setup consists of a laser source that illuminates particles 

in suspension, and the fluctuations of the scattered light intensity are recorded over a certain time 

period by a fast photon detector, such as a photodiode or photomultiplier tube (PMT), placed at a 

specific scattering angle (Figure 2.8). Using a single detector limits the particle size range that 

can be measured so, for polydisperse samples, detectors placed at several angles are required to 

determine the particle size distribution accurately. Depending on the sample concentration, 

detectors can be placed at 90° (side scattering) or 175° (back scattering). 

 

 

Figure 2.8: A typical setup of a DLS system. Examples of intensity fluctuations for two types of particle 

sizes and their corresponding autocorrelation functions are also shown. Adapted from references29,30.  

Due to the random Brownian motion of the particles, the optical signal acquired from the detector 

shows fluctuations in signal intensity. This signal is then analysed in real-time by a digital 

correlator to determine the autocorrelation function, which essentially indicates how long a 

particle stays at a specific location in the sample. As smaller particles move faster, the 

autocorrelation function exhibits a steeper exponential decay compared to that obtained with large 

particles. The diffusion coefficient is then derived from the autocorrelation function, and with a 

prior knowledge of the refractive index of the liquid, the wavelength of the incident light and the 

scattering angle, the hydrodynamic size of the particles is calculated using the Stokes-Einstein 

relationship given below: 
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𝐷ℎ =  
𝑘𝐵𝑇

3𝜋𝜂𝐷𝑡
 (2.14) 

 

where, Dh is the hydrodynamic particle diameter, kB is the Boltzmann’s constant, T the 

thermodynamic temperature, η the dynamic viscosity and Dt is the translational diffusion 

coefficient. 

The main advantages of the DLS method are that it is non-invasive in nature, requires only a small 

sample size and does not require complex sample preparation steps. This method is suitable for 

measuring particles in the lower nanometre range and up to a few micrometres. The lower size 

limit of a few nanometres is usually determined by the signal-to-noise ratio (SNR), where the 

scattered intensity from the particles must be greater than the noise associated with the 

measurement system. The upper limit depends on the sedimentation effect, which means there is 

no random motion from the particles, leading to inaccuracy in the measurements. The particle 

concentration in DLS measurements should ideally be low enough to avoid multiple scattering 

effects while still achieving a good SNR, which can be difficult, especially when measuring food 

particles. Dilution can create changes in structural variation, leading to unreliable results. 

However, in state-of-the-art devices, Non-Invasive Back-scatter31 technology is employed to 

increase the concentration range of the particles to be measured. Another limitation is the need to 

maintain a constant temperature and viscosity, as DLS measurements are highly sensitive to any 

changes in these parameters. DLS is a low-resolution method and the presence of large particles 

or aggregates can also cause measurement inaccuracies28 since the scattering intensity is nearly 

proportional to the 6th power of the particle diameter. Thus, prior to each measurement, it is 

important to clean the sample cell properly in order to achieve reliable results. 

Other scattering approaches for detecting nanometre-sized particles have also recently emerged, 

such as nanoparticle tracking analysis (NTA)32, which uses image recording to monitor individual 

particle movement via scattering. NTA, like DLS, uses the diffusion coefficient to determine the 

hydrodynamic size of the particles, but it is capable of overcoming some of the limitations of DLS 
32,33. 

2.2.4 Flow-Cytometry (~ 0.2 µm – 150 µm) 

Flow-cytometry34,35 is a powerful technology for the rapid detection of particles, most often cells, 

using light scattering and fluorescence. This technique is most widely used to characterise and 

identify distinct types of cells in a heterogeneous population, to quantify cells based on their 

optical properties, and to sort cells into different groups for further evaluation. Flow-cytometry is 

a versatile technology that allows multiple cell parameters to be analysed simultaneously at the 

single-cell level. 

In a traditional flow-cytometer (Figure 2.9), single cell analysis is accomplished via 

hydrodynamic focusing. In other words, the sample consisting of a cell suspension is injected into 

a faster-moving sheath fluid, usually a saline solution, inside a flow chamber. This flow chamber 

is considered the heart of the flow-cytometer since its design causes the sample to be focused into 

a ‘sample core’ at the centre of the sheath fluid. A laminar flow is achieved within the flow-cell 

due to the pressure differences between the two fluids, and the sample core is maintained in the 

centre of the sheath fluid. This forces the cells or particles in suspension to pass through the 

interrogation point (laser intercept) in a single file, where they interact with a focused laser beam. 
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Figure 2.9: Schematic of a conventional flow-cytometer setup. Adapted from reference36. 

The light scattered by the cells is measured by a photodiode or a PMT, either in the forward 

direction (forward scatter, FSC), which provides the relative particle size, or at an angle of 90° 

(single scatter, SSC), which gives information regarding the structural complexity or granularity 

of the cell. Fluorescence measurements can also be performed, simultaneously, if the sample is 

previously stained with fluorescent dyes or with fluorescently tagged antibodies. As the 

fluorescing cells or particles are excited by the laser beam, they emit fluorescence at a longer 

wavelength than the incident light. Using several dichroic mirrors and emission filters, the 

fluorescent and scattered signal pulses from individual cells are directed to the appropriate 

detectors, where they are converted and amplified to voltage pulses often referred to as ‘events’. 

Nowadays, flow-cytometers can measure and analyse up to 30 parameters simultaneously (28 for 

fluorescence measurements and one each for FSC and SSC measurements), thanks to 

advancements in hardware technology, data analysis capabilities, and new fluorescent probes. 

Depending on the flow rate, the analysis can be carried out at a high speed (up to 200 k events/s). 

Additionally, by replacing PMTs with avalanche photodiodes (APD) in numerous flow 

cytometers, enhanced sensitivity for fluorescence detection has been achieved. These recent 

developments have allowed the widespread application of flow-cytometry in many different fields 

from virology, cancer biology and immunology to monitoring infectious diseases and many more. 

However, conventional flow-cytometers are high-maintenance and complicated instruments that 

require highly skilled personnel to operate them. Furthermore, these devices are large and 

expensive, costing tens of thousands of euros, in part due to the hydrodynamic focusing required 

for one-by-one cell analysis. These limitations make them unsuitable for point-of-care (POC) 

diagnostics or for developing countries with limited resources. 

In recent years, different variations of flow-cytometry instrumentation have evolved, combining 

traditional flow-cytometry with other methods, such as fluorescence microscopy in imaging 

cytometers or time-of-flight mass spectrometry in mass cytometers. A detailed description of the 

different types of flow-cytometers can be found in reference35. 
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2.2.5 Other Methods: Light Obscuration 

Single Particle Optical Sensing 

In addition to light scattering methods, light obscuration, or single particle optical sensing 

(SPOS), can also be used to detect particle size and concentration in liquid suspension. This 

method, unlike ensemble methods such as LD, uses a diluted sample suspension to ensure that 

particles arrive in the sensing zone one at a time. When a particle flows within this sensing zone, 

it interacts with the laser beam, leading to light extinction, which is then detected by a 

photodetector. The amount of light that is obscured due to the presence of the particle is 

proportional to its size. The photodetector converts the optical signal into a voltage pulse, from 

which the individual particle's size is calculated by comparing the pulse height to a calibration 

curve previously obtained from measurements of standard particles with known diameters. The 

measurement range of most commercial instruments is from 2 µm to 1000 µm approximately. 

Below 1 µm, light scattering detection is required, which is achieved by placing a photodetector 

at an oblique angle, enabling the detection limit to be lowered to 0.5 µm. In addition to scattering 

measurements, some devices use a focused beam from a high-power laser to further lower the 

detection limit to 0.15 µm. 

SPOS is a high-resolution, high-throughput technology with a wide dynamic range and excellent 

accuracy. This approach can be used to detect contamination (e.g., clean room environment, 

water, hydraulic fluids, etc.), as well as to analyse samples such as emulsions, injectables, 

proteins, and many others. However, sample concentration is a critical issue when employing this 

method, with most commercial devices either using an automatic dilution procedure or requiring 

manual predilution to ensure that a sufficiently diluted sample is used for measurement. 

Image Analysis 

Image analysis is another commonly used particle characterisation technique worth mentioning 

here. Manual microscopy, or static image analysis, is a traditional method for determining the 

morphological information of particles. However, despite the high resolution and great image 

quality that can be achieved, this process is not only time-consuming but also labour-intensive. 

Furthermore, this technique is best suited to analysing samples with narrow size distributions. 

Over the past few decades, advances in camera technology and data processing software have 

facilitated the development of dynamic image analysis37 (DIA) systems. These devices can 

analyse over 300 images per second, in real-time, of particle suspensions in flow and can rapidly 

generate a volume or number distribution of the entire sample population. Depending on the 

application, different size definitions, such as chord dimension, Martin diameter2 or Feret 

diameter2, are used to determine the particle size. Circularity, convexity, aspect-ratio, symmetry, 

and other shape properties can also be examined with DIA. The field of view of the camera 

determines the upper size limit that can be assessed with this technology, while the resolution 

determines the lower limit, with a typical measuring range being around 0.8 µm to 135 mm. DIA 

is a high-resolution technology that enables rapid measurements with great accuracy and 

repeatability across a wide range of sizes. The reliability and repeatability of the measurements 

are determined by the sample volume measured. For accurate results, polydisperse samples, for 

example, require a considerable sample size to be analysed. Some factors38 that can contribute to 

uncertainties in DIA readings are motion blurring, particle overlapping, the optical system's depth 

of focus, and particle orientation.  

A summarised table comparing the different particle characterisation methods discussed in 

sections 2.1 and 2.2 is provided in Table 2.2. 
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Table 2.2: Comparison of various non-optical and optical particle characterisation techniques 

Particle 

characterisation 

technique 

Size Shape 
Measurement 

range 
Resolution 

Measurement 

time 

Sample 

types 

Sieving Yes No 5 µm – 10 cm 

10 – 40% of 

size 

depending on 

sieve series 

chosen 

5-30 min; 

1-2 hr for wet 

sieving 

Dry powders 

(dry or wet 

sieving); 

suspensions 

(wet sieving) 

Sedimentation Yes No 
50 nm – 100 

µm 

3 –10% 

depending on 

the type of 

sedimentation 

0.25-8 hr 

depending on 

PSD and 

required 

resolution 

Dispersed 

dry powders, 

suspensions, 

emulsions 

Electrozone 

sensing 
Yes No 

0.4 µm – 1.2 

mm 
3% relative 

typically 1-5 

min 

Particle 

suspensions 

in 

conductive 

liquid 

Laser diffraction Yes No 10 nm – 4 mm 

10 – 40% 

relative, 

depending on 

particles and 

size of 

detector 

elements 

< 1 min 

Dispersed 

dry powders, 

sprays, 

suspensions, 

emulsions 

Dynamic light 

scattering 
Yes No 

0.1 nm – 10 

µm 
30% relative about 1 min 

Suspensions/

emulsions 

Flow cytometry Yes No 
0.2 µm – 150 

µm 

< 5% 

approximately 

depends on the 

flow rate and 

the measured 

volume 

Particle 

suspension 

Single particle 

optical sensing 
Yes No 

2 µm – 1000 

µm 

Typically < 

5% 
< 10 s 

Particle 

suspension 

Image analysis Yes Yes 
0.8 µm  – 135 

mm 

≥ 0.5% 

relative 

about 1– 60 

min 

Dispersed 

dry powders, 

suspensions, 

emulsions 

 

2.3 Commercial Optical Particle Detection Devices 

The discussion in the previous section illustrates that optical detection techniques invariably 

provide far greater benefits compared to other technologies available for particle characterisation. 

For particle size analysis, it is evident that devices based on light scattering are capable of 

measuring a wide range of sizes, and from the various light scattering-based methods, LD 

provides excellent performance across a wide measurement range. Different particle 

characterisation methods have also evolved into online versions, offering a variety of solutions 

for different applications. Particle size range, shape analysis and integrability constraints in each 

application dictate the recommended method to use.   

Currently, there are several providers offering commercial systems for various applications in 

industrial environments, including Malvern, Horiba, Beckman Coulter and Shimadzu (). The 

Malvern Insitec series, for example, is an LD-based online analyser with a working size range 
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from 0.01 µm to 3500 µm, capable of continuous, real-time particle size analysis for monitoring 

industrial processes. On the other hand, the Malvern Mastersizer range is one of the most popular 

offline, benchtop analysers for measuring particles from 0.1 µm to 2500 µm. Horiba also has a 

similar line of particle size analysers, together with particle counters, based on light scattering for 

applications in the automotive industry. For clinical diagnostics, Beckman Coulter provides a 

range of flow-cytometry instruments for specific applications. Table 2.3 provides a comparison 

between different commercial instruments based on some critical specifications. 

 

 

Figure 2.10: Commercial particle characterisation instruments. From left, Malvern’s Insitec Drya and 

Mastersizer 300b, Horiba’s particle counter MEXA-2000SPCSc (right) and Beckman Coulter’s flow-

cytometer CytoFLEX Sd. 

However, despite their robustness and ability to provide rapid and accurate measurements, these 

devices rely on large-scale instrumentation that has a high maintenance cost and requires skilled 

professionals. To address these issues, the particle detection and characterisation field is currently 

focusing on developing miniaturised, rapid, portable, easy-to-handle and cost-effective systems. 

Such instruments will allow not only large industries but also small and medium scale 

manufacturers to install several platforms in their facilities to monitor certain processes both 

offline and online. Compact particle characterisation systems are also appealing in the health 

sector, particularly for point-of-care applications in low-resource settings.

                                                      
a https://www.labbulletin.com/articles/Big-jump-in-demand-for-Malverns-real-time-process-control-consultancy/ 
b https://www.agfa.com/agfa-labs/news-events/new-apparatus-malvern-mastersizer-3000-particle-size-analyzer/ 
c https://www.horiba.com/en_en/automotive/products/detail/action/show/Product/mexa-2000spcs-series-57/ 
d https://www.beckman.de/en/flow-cytometry/instruments/cytoflex-s 

Specification 

Malvern, 

Mastersizer 

3000 

Malvern, 

Insitec dry 

Horiba, 

Partica LA-

960V2 

Horiba, 

MEXA-

2000SPCS 

Beckman 

Coulter, 

CytoFLEX S 

Measurement 

principle 

Laser 

diffraction 

Laser 

diffraction 

Laser 

diffraction 

Laser 

scattering 

particle 

counting 

Laser 

scattering and 

fluorescence 

Particle size 

range (µm) 
0.01 – 3500 0.1 – 2500 0.01 - 5000 

Lower size 

limit ~ 23 nm 

with 50% 

Lower size 

limit ~ 60 nm 

https://www.labbulletin.com/articles/Big-jump-in-demand-for-Malverns-real-time-process-control-consultancy/
https://www.agfa.com/agfa-labs/news-events/new-apparatus-malvern-mastersizer-3000-particle-size-analyzer/
https://www.horiba.com/en_en/automotive/products/detail/action/show/Product/mexa-2000spcs-series-57/


 Chapter 2: State-of-the-Art Methods for Particle Detection and Characterisation  

38 

 

Table 2.3: Overview of providers and latest light scattering based particle characterisation instruments 

on the market with some key specifications. 

In the following chapter, we will introduce the concept of a novel PSA based on light scattering, 

employing a consumer electronic camera and machine learning. The proposed PSA technology is 

able to overcome the problems of low integrability and high cost related to current commercial 

analysers. Due to its small size, this newly designed PSA has significant potential for use outside 

a standard laboratory, for example, in online and inline industrial process monitoring. 
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CHAPTER 3  

A Compact Particle Size Analyser using 

Machine Learning 

Under the rules of the Creative Commons Attribution-NonCommercial License, the content, text, 

and figures in this chapter have been adapted from the original publication: “An ultra-compact 

particle size analyser using a CMOS image sensor and machine learning”, Hussain, R., Alican 

Noyan, M., Woyessa, G. et al. Light Sci Appl 9, 21 (2020). 

Author contribution: In this work I contributed to the design of the angular spatial filter, 

measurements for characterising and validating the system with the help of other researchers 

involved in the project. I did the initial data analysis and wrote the manuscript with my supervisor 

with contributions from all other authors. Further details of author contributions can be found in 

the above-mentioned article. 

 

3.1 Introduction 

Analysing the size and distribution of particles in a given sample plays a crucial role in improving 

and maintaining the quality of  various products in many industries1–3. According to a report 

published by Research and Market, the global particle size analysis market is predicted to increase 

at a 5.8% compound annual growth rate (CAGR) from 371 million dollars in 2021 to 492 million 

dollars in 20264. The growing demand for precise measurement instruments, particularly in 

nanotechnology applications, increased investment and expansion of R&D facilities in the 

pharmaceutical industry, and strict regulatory criteria for improved product quality across 

multiple industries can all be attributed to this growth. 

The particle size analysis market can be divided into several categories based on the various 

measuring techniques used. Laser diffraction (LD) is the most used method, accounting for nearly 

40% of the entire particle size analyser (PSA) market. PSAs based on LD are widely used because 

of their precision, high reproducibility, and fast measurement time, as well as their ability to 

measure a wide range of particle sizes from nanometres to millimetres. However, a number of 

shortcomings in current instruments are expected to hinder the expansion of the particle analysis 

market over the forecast period. As already mentioned in the previous chapter, these devices are 

expensive (~100–200 k€), heavy (~30 kg), and large (~690 × 300 × 450 mm) due to the fact that 

they incorporate several detectors (one sensor for each angle monitored). Moreover, a large 

distance between the samples and the detectors is necessary to obtain the required scattering 
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angular resolution. Another disadvantage of LD PSAs is the need to dilute samples above their 

typical concentration range of about 0.001–1% (v/v)5, which requires additional sampling and 

dilution systems.  This is due to the fact that these systems determine the particle size distribution 

(PSD) using Mie or Fraunhofer models6,7, both of which are based strictly on single scattering 

events. However, in many industrial processes, it is necessary to measure suspensions at high 

concentrations, in which case multiple scattering8,9 becomes a prominent issue. Although most 

commercial LD PSAs employ complicated multiple scattering correction algorithms10–13 in their 

PSD analysis software, this increases the time-to-result and is not suitable for performing online 

measurements.  

Machine learning (ML)14 approaches are an alternate method for computing the PSD without the 

need of optical models or a sophisticated correction factor. ML is a powerful tool capable of 

adapting to process changes and delivering dependable outcomes through pattern recognition. It 

has previously been demonstrated in literature that using artificial intelligence, particle sizes can 

be determined for concentration ranges above the usual working range for commercial 

devices15,16. This approach can be particularly useful in many industrial applications, thus 

eliminating the need for time-consuming and tedious sample preparation steps. However, the high 

cost of these commercial devices limits the use of multiple sensors in the production line. This, 

in addition to the fact that they are high maintenance devices that require highly skilled staff to 

operate them, still remains a significant impediment to their use for online monitoring of industrial 

operations.  

In this chapter, we introduce the concept of a novel, low cost, robust and miniaturised PSA using 

a collimated beam configuration, together with an image sensor and machine learning (ML), in 

particular, the random forest17 (RF) algorithm. We will discuss the device's design and execution 

in depth, as well as how, depending on the particle size being measured, multiple scattering 

becomes noticeable at large concentrations. Lastly, we will demonstrate how the random forest 

algorithm can be used to correct this problem and achieve good size predictions with high 

accuracy. 

3.2 Concept of PSA Using a Novel Angular Spatial Filter 

Our newly developed PSA is built with off-the-shelf consumer electronic products, such as a 

complementary metal-oxide-semiconductor (CMOS) image sensor array and light emitting diode 

(LED) source. This significantly reduces the cost of the device (<10 k€) compared to the 

commercially available LD based devices. Moreover, unlike LD PSAs, which require several 

detectors placed at large distances in order to obtain an adequately resolved angular scattering 

profile, our device is extremely compact (on the order of 10 cm) as it only requires one CMOS 

image sensor array (camera), placed in close proximity to the sample. This is thanks to a key novel 

feature, namely a patented18 very small (5 × 17 mm) micro-structured element made of plastic or 

resin, which we call the angular spatial filter (ASF). The ASF is made with an array of holes of 

different diameters and extruded from a polymer rod. As shown in Figure 3.1 a when particles 

are illuminated by a collimated light beam, each of these holes in the ASF acts as an aperture and 

allows collecting the forward scattered light by the particles up to a predetermined angle. This 

angle which we designate here as the cut-off angle, θc, can be calculated using geometrical optics 

(we neglect for simplicity diffraction effects) and is given by the following equation: 

𝜃𝑐 = arctan(𝐷
𝐿⁄ ) (3.1) 

where, D and L are the diameter and the length of the filter hole, respectively. Note that θc is 

calculated for particles suspended in air. For particle suspensions in water, these angles need to 
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be corrected for the refraction encountered by the light rays in water. Hence, the actual scattering 

angle θ can be calculated using Snell’s law: 

sin θ =
sin 𝜃𝑐

𝑛𝑤
  (3.2) 

where, θc is the detected scattering angle and nw is the refractive index of water.  

For the sake of simplicity, in this ASF design it is assumed that the response of each hole is like 

that of an ideal low pass filter, i.e., a rectangular response up to the corresponding θc. This means 

that the scattered light above θc will be completely absorbed by the side walls, there is no cross 

talk between the adjacent holes and there is no reflection from the inner walls of the ASF. 

 

Figure 3.1: A novel ASF concept. (a) Schematic diagram of the ASF, showing dependence of the cut-off 

angle, θc, on the filter’s length (L) and diameter (D) of the filter holes. (b) Simulation of the single particle 

scattering profile in water, for three different sizes of polystyrene particles using the Mie algorithm19 in 

MATLAB. (c) Simulation of the cumulative scattering intensity for the three particle sizes in (b). The vertical 

dashed lines represent the cut-off angle for each ASF hole derived from equation (3.1) and corrected for 

refraction in water using (3.2). 

In Figure 3.1 b, the scattering profiles of three sizes of polystyrene beads in water are simulated 

using the Mie scattering theory19. As mentioned previously, commercial LD PSAs rely on 

sampling such angular scattering patterns at each angle in order to determine particle size using a 

large number of sensors. In our PSA design, rather than measuring the scattered intensity at each 

angle, the ASF allows for the measurement of a cumulative scattering profile from zero to a 

defined cut-off angle (Figure 3.1 c). As a result, different groups of pixels can independently 

measure the light intensity from each hole of the ASF array when paired with a single CMOS 

camera. The cut-off angles that can be measured with our ASF are shown by the dashed lines in 

Figure 3.1 b and c. It is important to note here that for the calculation of the filter cut-off angles 

using equation (3.1), we do not take into account the effect of the light diffraction caused by the 

circular apertures, i.e., the filter holes. We assume that the ASF is still able to perform angle 

resolved light-power measurements and that the PSA can distinguish particle size and 

concentration.  
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3.3 Fabrication of the ASF 

The aspect ratio of the holes, which is described by the ratio of their length to their diameter, L/D, 

is a major concern in the fabrication of the ASF. In order to measure particle sizes from tens to 

hundreds of microns, it is necessary to sample small scattering angles, as large particles scatter 

light mostly in the forward direction. For example, if we look at the scattering profile of the 125 

µm particle in Figure 3.1 b, the principal lobe has a minimum at around 0.2°. Using (3.1), the 

L/D ratio can be calculated to be 286. Such a high aspect ratio feature is extremely challenging to 

fabricate as it means, for example, fabricating a hole of 60 µm over a length of 17 mm. Even the 

most advanced 3D micro-printers on the market are unable of layer-by-layer growth of such small 

features over many millimetres. Maskless photolithography, for example, can achieve submicron 

resolution but cannot produce structures with such a high aspect ratio. Other approaches combine 

additive manufacturing with micro machining. However, these increase the final cost of the piece 

and have never achieved optimal results. For example, laser sintering, selective laser melting and 

laser drilling can improve small feature resolution in the order of microns but this would mean 

using multiple parts that require proper alignment.  

A different approach that can be used for fabricating the ASF filter is polymer extrusion, which 

is often used for producing micro-structured polymer optical fibres (mPOFs)20. This technique 

has allows alleviating the above-mentioned fabrication problem posed by conventional methods, 

leading to a highly customised large number of holes with high aspect ratio. To make the ASF, a 

preform of 60 mm in diameter and 100 mm in length, made from commercially available 

poly(methyl methacrylate) (PMMA) rods is prepared by drilling holes with a computer numerical 

control (CNC) mill, using specially coated drill bits with a size range from 1 mm to 10 mm in 

diameter. This primary preform is then annealed at a temperature of 80 °C for a week and then 

drawn to obtain a micro-structured secondary preform or ‘cane’ with a reduced diameter and a 

length of a few centimetres. Details of the entire fabrication method can be found in reference 21. 

This fabrication process allows for a lot of flexibility in designing the ASF as the diameter and 

length of the filter may be easily modified to collect the scattering angles required for certain 

applications. 

The first prototype of the ASF is designed to measure particle sizes in the range from 10 µm to 

130 µm, approximately. Hence, the micro-structured preform is drawn to canes of length 50 mm 

and diameter 5 mm to fit well within the CMOS image sensor area. The ASF is 17 mm long, 

consisting of 23 holes with diameters ranging from 112 µm to 800 µm. This combination of 

diameter and length allows the collection of scattering angles from 0.38° to 2.7°. Using equation 

(3.2), the actual angles are found to be from 0.29° to 2.02°, and using Mie theory, we confirmed 

that this angular range is suitable for measuring our preferred particle size range, i.e., 10-130 µm. 

Since the ASF is manufactured from PMMA, it is mostly transparent in the visible wavelength 

range. For the concept of the ASF to work, it is necessary that the side walls of the filter are 

absorbing. To achieve this, the filter is coated with black acrylic ink, which also helps to reduce 

reflections from the walls, and minimises crosstalk between neighbouring holes. The outside of 

the filter is also covered with a black tape.  

As mentioned previously, multiple scattering becomes a dominant effect when measuring particle 

suspensions at high concentrations. To measure this, we need to collect angles larger than 2.02° 

with our ASF, as the multiple scattering effect causes an apparent increase in the scattering angle. 

A clever way to collect large scattering angles is by polishing one side of the ASF along the whole 

length to give it a semi-circular shape and then inserting it in a holder the same length as the filter 

(Figure 3.2). The remaining semi-circular space in the holder acts as a big aperture, in theory 

collecting all of the sample's forward scattering angles. 
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Figure 3.2. Angular spatial filter (ASF). It is fabricated from PMMA and coated with black acrylic ink. 

The ASF is 17 mm long and consists of 23 holes of various diameters. 

3.4 Proposed PSA Design 

To construct the PSA based on the ASF, we used a fibre-coupled LED at a wavelength of 632.8 

nm, together with a collimator to illuminate the samples with a collimated beam of 10 mm in 

diameter. The ASF, together with the holder, is attached to the CMOS camera and placed in close 

proximity to the sample in order to collect both the forward unscattered and the scattered light. 

The CMOS camera (Micron MT9P0311) has an active area of 24 mm2 (5.7 mm in length and 

4.28 mm in width). As the ASF is placed close to the flow cell, the active area of the CMOS is 

also the field-of-view of the system. The CMOS camera has 2592 × 1944 pixels, with each pixel 

being 2.2 × 2.2 µm in size, and a frame rate of 14 frames per second is used to obtain a full-

resolution image. The sensor consists of four colour channels but only the red channel is used for 

image processing. A schematic diagram of the proposed PSA design, together with the lab 

prototype, is shown in Figure 3.3. 

 

Figure 3.3: Design of the proposed PSA. (a) The PSA is shown schematically with the new ASF coupled 

to the CMOS camera and a collimated LED source. (b) Lab-scale prototype of the PSA. In both (a) and (b) 

particle suspension is shown to be in a cuvette. In order to maintain homogeneity, magnetic stirrers have 

to be used, which are not shown in the figures. 

3.5 Measurement of Particle Suspensions Using the PSA 

3.5.1 Experimental Set-Up 

The samples tested with the proposed PSA were glass beads of various size distributions, 

dispersed in water to prepare different concentrations. The beads have a refractive index of 1.51 
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at the working wavelength of the PSA. The particle characteristics with the concentrations tested 

are listed in Table 3.1.  

Table 3.1: Characteristics of the measured samples. 

The glass beads were initially characterised using a scanning electron microscope (SEM). To 

prepare the particle solution, a known mass of the glass beads in powder form was dispersed in a 

known volume of deionized (DI) water in order to prepare the initial stock solution with a 

concentration of 100 mg mL-1, from which the different concentrations were prepared. The stock 

was stirred continuously at 300 rpm with an overhead stirrer to maintain a homogeneous 

suspension in the beaker.  

A schematic diagram of the entire experimental setup is illustrated in Error! Reference source not f

ound.. Dark images were acquired first without the LED light and, subsequently, subtracted from 

the images acquired with the samples. Prior to measuring the samples, 200 mL of DI water was 

circulated through the flow cell using the peristaltic pump, and five images, which we call the 

reference images, were captured with a time delay of 20 to 60 seconds between each image. It is 

important to control the pressure of the peristaltic pump in such a way that no bubbles form while 

the sample passes through the flow cell. Next, a known volume of the sample stock was added to 

the water and images were captured. The same samples were also measured with a commercial 

laser diffraction device from Sympatec in order to determine the size distribution. Before 

measuring each set of samples, the flow cell was thoroughly cleaned by flowing DI water through 

it several times. All the images are analysed using the ‘regionprops’ function in MATLAB to, 

firstly, locate the holes within the images and then calculate their corresponding intensities.  

Sample 

Size 

range 

(µm) 

Density 

(g cm-3) 

Commercial LD PSA 
Concentrations tested 

(mg mL-1) 
D10 

(µm) 

D50 

(µm) 

D90 

(µm) 

Guyson 
80 

2.5 
55 74 92 1,5,10,15,20,25,30,40,50 

40 24 39 56 1,5,10,15,16,18,20,25,30 

Cp500 13-20 2.56 6 11.9 21 1,2,3,4,5,6,7,8,9,10 

Sovitec 

0-50 

2.46 

18 34.8 51 

1,5,10,15,18,20,22,25,30,40 

40-50 33 43.6 51 

40-70 46 62.3 80 

70-110 68 87.5 108 

90-150 97 125.5 157 
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Figure 3.4: Experimental set-up.  The schematic diagram depicts the flow cell for circulating the sample 

using a peristaltic pump. An overhead stirrer is used to prevent agglomeration and deposition of the 

particles at the bottom of the beaker. A raw image from the CMOS camera for Sovitec 90-50 µm particle 

at 10 mgmL-1 is also shown. 

From the raw image, it can be observed that in some holes the images show local intensities 

deviating from the corresponding average values. These are likely to be associated with residual 

diffraction and reflection from the inner part of the hole walls, as well as geometrical and material 

imperfections of the ASF (e.g., imperfect hole geometry, slight misalignment between holes and 

missing black ink). Next, we will show that despite these imperfections and associated effects, 

the ASF angular dependence of the transmission of each hole is maintained and the ASF is still 

very efficient in discriminating different particle sizes and concentrations. 

3.5.2 Effect of Multiple Scattering on Particle Measurement  

For a fixed particle size, the light distribution in the ASF holes depends on particle concentration. 

This is shown in Figure 3.5 a, where we plot the average intensities in the filter holes, normalised 

to those of the reference (water) against the filter cut-off angles at three different concentrations 

for the particle size range of 40-50 µm. For a fixed concentration, Figure 3.5 b demonstrates that 

smaller particles have a significantly stronger effect, not just on the scattered intensity, but also 

on the angular dependence. This phenomenon can be explained in terms of the multiple scattering 

effect, which causes the particle’s scattering lobe to widen, resulting in a decrease in the scattered 

intensity detected by the CMOS camera. This is also confirmed by the graph in Figure 3.5 c, 

where the average scattered intensity in the smallest ASF hole against concentration is plotted for 

three different particle size distributions. For 13-20 µm particles there is a sharp decrease in the 

intensity after a certain concentration value. This decrease is because light is scattered off from 

additional particles at larger scattering angles that exceed the cut-off angle of the filter holes. 

Since large particles scatter light at very small angles, the multiple scattering effect is less 

prominent for these even at fairly high concentrations. This is evident from the curve for 90-125 

µm particles.  
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Figure 3.5: Multiple scattering effect (a) The average intensities of the filter holes, normalised to those of 

water, for glass beads with size distribution 40–50 µm are plotted as a function of θc for three different 

concentrations. (b) The average intensities of the small filter holes are plotted as a function of the filter cut-

off angles (θc) for the three ranges of glass bead diameters with the same concentration (10 mgml-1). In (a) 

and (b) the error bars represent 95% confidence interval and the dashed lines represent a least square fit. 

(c) The average intensity, normalised to water, of the 112 µm diameter hole against concentration for three 

different glass bead diameter distributions, 13–20, 40–50 and 90–150 µm. The dependence on 

concentration, which increases with the decreasing size of the glass beads, is a sign of multiple scattering. 

3.6 Machine Learning Algorithm for Data Analysis 

Most commercial LD PSAs define a working concentration range depending on the particle sizes 

to be measured. This is because too low a concentration results in a low scattering intensity being 

measured, leading to a poor signal-to-noise ratio and unreliable results, while too high 

concentration gives rise to multiple scattering, meaning that the particle size is underestimated. 

Hence, in order to overcome this problem of concentration dependence and to be able to measure 

particle sizes with a wide concentration range, we developed a machine learning algorithm based 

on the RF algorithm.  

The RF algorithm is a supervised learning algorithm in the sense that it is trained to make 

predictions by observing patterns in a given dataset. This model can be sub-divided into 

classification or regression algorithms. The RF regression approach is used in this study to predict 

continuous values such as particle sizes. To explain briefly, the "forest" in RF model refers to an 

ensemble of decision trees, each of which makes its own prediction and the final outcome of the 

model is determined as the average of the predictions from all the decision trees. This averaging 

improves model precision while reducing overfitting22. A root node, decision nodes, and leaf 

nodes make up each decision tree in an RF algorithm. The root node represents the entire dataset 

and is the top node in a tree. The dataset is sent down from the root node to the leaf nodes via 

decision nodes during the training process through recurrent splitting based on particular 

attributes and their threshold values until the leaf nodes are all homogeneous and can no longer 

be split further. More details on RF algorithm can be found in references17,22. Figure 3.6 below 

depicts the RF structure along with an example of a simple decision tree showing the different 

nodes. 
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Figure 3.6: Random Forest (RF) Algorithm. A simple example of a decision tree showing the root node, 

decision nodes and the leaf nodes (top). Structure of the RF algorithm (bottom). Multiple decision trees 

make up the RF model. Each tree represents a decision-making model in the form of a tree. Each decision 

(data split) is based on a single feature and its threshold value. The features, threshold values, and when 

to end the tree are all part of the training process. 
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Figure 3.7: Flowchart showing the steps of the machine learning algorithm used for prediction. 

The steps of the algorithm used for predicting particle are shown in Figure 3.7 and explained in 

detail below: 

1. The first step is similar to the analysis carried out in the previous section. The location of 

23 filter holes in the sample images are determined using an image processing library 

(scikit-image, blob detection) in Python, and then the pixel intensities inside the filter 

holes are calculated, together with their corresponding diameters. These intensity values 

are then normalised with respect to the reference images and are expressed as relative 

intensities in percentages.  

2. The entire data set, consisting of 459 images, is randomly divided into two sets, namely 

the training set (344 images) and the testing set (115 images). Each image is from a 

particle suspension with known volume median diameter D50 value and concentration. 

Relative intensities, hole diameters and concentrations are given as input to the ML model 

and particle sizes are set as the target values. 

3. In order to find the correlation between the input and the output parameters, we tested 

two algorithms suitable for structured data like ours from among the various ML 

algorithms available23, these being the gradient boosting and the RF algorithms. This 

preliminary test showed that the RF algorithm gives a slightly better prediction for the 

number of data points used in the analysis. A scikit learn machine learning library was 

used to create the model. 

4. Since the training and testing sets are randomly divided, different splitting combinations 

of these sets can cause variations in the model performance. To account for this 

fluctuation, we first observed the mean and the standard deviation of the model 

predictions from one train-test split and evaluated the model performance using the mean 

absolute percentage error (MAPE) for the model predictions. The MAPE for n number of 

images is given by the following equation: 

 𝑀𝐴𝑃𝐸 =  
100%

𝑛
∑ |

𝐴𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑖 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑖
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|

𝑛
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Then the model is tested again on a different randomly-split combination of training and testing 

sets. After repeating this process 100 times no significant change is observed in the model 

performance. Therefore, the model is trained and tested 100 times and the average MAPE of all 

these tests, together with their standard deviations, are reported as the figure of merit. 

The algorithm tested up to this point is referred to as Model 1. For real applications it is necessary 

for the PSA to be able to determine the particle size, i.e., D50, without any input concentration. 

Hence, we developed another model, Model 2, to predict the D50, where the input parameters 

used are only the relative intensities in the filter holes and their respective diameters. 

3.7 Particle Size Prediction Using the Developed ML Model 

The predictions obtained from a single test set for Model 1 are shown in Figure 3.8 a and b. The 

average MAPE from 100 tests is found to be 2.52%, with a standard deviation of 0.73%. It can 

be seen from Figure 3.8 a that there is good agreement between the predicted and the nominal 

particle size using the RF model. It is also evident that the model can correct the effect of multiple 

scattering caused by concentration dependence, as shown in Figure 3.8 b, where the particle size 

predictions remain constant with changing concentration. 

 

Figure 3.8: Particle size prediction using Model 1 and Model 2.  The mean predicted D50 values for one 

of the test sets plotted against (a) the nominal D50 values and (b) particle concentration using Model 1. 

Despite the multiple scattering effects, the predicted diameters are close to the nominal diameters (straight 

lines). (c) The mean predicted D50 against nominal diameter and (d) the D50 prediction against 

concentration using Model 2. The dashed line represents predicted diameter = nominal diameter. The 

interdecile range is also shown for each predicted D50. 

When tested with Model 2 (Figure 3.8 c and d), the mean prediction error of 5.09% is found to 

be higher than that with Model 1. This is as expected since, in this model, concentration was not 

used as an input parameter to train the model.  
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 However, we observe a larger deviation from the nominal size for particles with diameters 39 

and 74 µm, as can be seen in Figure 3.8 d. A closer look at the microscope images (Figure 3.9 a 

and b) shows that there are some non-spherical particles present in these samples. The random 

shape and orientation of these particles may have an effect on the angular distribution of the 

scattering intensity. Therefore, we tested Model 2 again without including the measurements from 

these samples (Figure 3.9 c) and then once more with only these two samples (Figure 3.9 d).  

 

 

Figure 3.9: Particle size prediction with and without non-spherical particles. Microscope image of 

Guyson beads with a D50 of (a) 39 μm and (b) 74 μm show the presence of some non-spherical particles. 

Performance of Model 2 (c) without Guyson beads and (d) with Guyson beads only. It can be seen from (c) 

that when the model is trained and tested without Guyson beads, the model performance improves 

significantly whereas in (d), with only Guyson beads, the MAPE is seen to increase. 

The significant improvement in the prediction (0.72%) compared with that obtained without these 

samples confirms that it was indeed the presence of these particles with non-spherical shape that 

increased the MAPE for Model 2, particularly in the first test.  

In some practical applications, it is necessary to determine the D10 and D90 percentile values, in 

order to give an idea about the size of the fine and coarse particles present in a sample. Hence, 

the next test we performed involved predicting the size distribution of the measured samples. This 

process can be performed very easily with our proposed PSA, without any system adaptation or 

modification, by simply training the ML model with not only the D50 value but also the D10 and 

D90 percentile values. If necessary, additional percentiles, such as D5, D15 or D95, can also be 

included in the machine learning training. On testing Model 1 with D10, D50 and D90 values, the 

MAPE was found to be 4.27 ± 1.64%, 3.02 ± 1.07% and 2.4 ± 0.8%, respectively. Note that these 

values were obtained with only one set of D10 and D90 data for each size, but the prediction 

accuracy could be further improved by training the model with more data from samples with the 

same median diameter but a varying size distribution. 



Chapter 3: A Compact Particle Size Analyser using Machine Learning   

53 

 

In order to further assess the functionality of the ASF and show that the information obtained 

from the different sizes of ASF holes is crucial for the device and the ML model to work, we 

performed an additional test using only the big hole intensity from the same images used for the 

ASF holes. As mentioned previously, the big hole allows the entire angular distribution of the 

forward scattered light to be collected from the sample, thus providing the absorption information 

of the particle solution too. For the ML analysis, Model 1 requires 47 input values, so to train and 

test the model we used intensity values from the big hole within regions defined by the 23 filter 

hole areas (Figure 3.10 a).  

 

Figure 3.10: Testing Model 1 with big hole intensity and concentration as input.  The yellow circles in 

(a) represent the 23 filter holes placed in a random manner inside the big hole region. The mean predictions 

against nominal values for one of the test sets are shown in (b) and against concentration in (c). 

The MAPE of 23.03 % (Figure 3.10 b) and the deviations from predictions with respect to 

nominal values for varying concentrations are significantly larger than those obtained with the 

ASF filter (Figure 3.8 a and b). This clearly indicates that scattering selectively measured through 

ASF filter is required for the machine learning model to predict particle sizes with a high degree 

of accuracy. Also, this analysis, together with the flow-through results reported in the next section, 

confirms the absence of any correlation between the images used to train the ML model other 

than those solely related to particle size and concentration.   

3.8 Flow-Through Measurements 

In many industries, monitoring system changes rather than exact values is necessary for online 

operations. In order to demonstrate the capability of the device and the machine learning model 

for flow-through measurements, rather than batch measurements, we performed preliminary tests 

with two samples, 13-20 μm (Sample 1) and 40-70 μm (Sample 2). In the first trial series, Sample 

1 was measured at a concentration of 2 mgml-1, followed by Sample 2 at 5 mgml-1, without 

cleaning the flow cell. The same experiment was then repeated later the same day. For the second 

trial series, Sample 1 was measured at three different concentrations, one after the other, followed 

by Sample 2, again at three different concentrations, one after the other. The same experiment 
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was then repeated, but this time, Sample 2 was flowed first, followed by Sample 1. The previous 

machine learning Model 1 was then calibrated with three of these new data sets and tested on a 

fourth data set. The MAPE for Model 1, using only two samples, was found to be 1.77 ± 0.25%, 

as shown in Figure 3.11, showing the potential of the current PSA design and the ML model in 

predicting particle size changes in real-time. With further system modification and optimisation, 

the prediction error could be lowered, further improving the precision for such flow through 

measurements. 

 

Figure 3.11: Flow-through measurement. Two samples, 13-20 μm (D50 13 μm) and 40-70 μm (D50 62.3 

μm), are measured continuously, one after the other, without cleaning the flow cell. Note that with the 

current set-up, the transition from one particle size to another is too fast to capture a sufficiently large 

number of images to properly train the ML model. For this reason, the graph does not contain a transitory 

region where both particle sizes coexist. 

3.9 Conclusion 

In this chapter, we have presented a portable, low-cost and, most importantly, compact PSA, using 

mostly off-the-shelf components. The real innovation in the proposed PSA is a patented small 

hole structure called angular spatial filter (ASF), which enables characterisation of the scattering 

properties of wet dispersions without the need for multiple detectors of commercially available 

systems. The ASF, when combined with an LED and a CMOS camera, allows us to capture 

images that we then use with our custom-designed machine learning algorithm to predict particle's 

median diameter. To validate the proposed PSA, we measured glass beads of various size 

distributions at several concentrations. We have shown how multiple scattering affects the angular 

scattering pattern and scattering intensity of different particle sizes, and how our developed ML 

model can correct this concentration dependence. The prediction error, MAPE, obtained with 

concentration as an input parameter was 2.52% while without concentration the error increased 

to around 5%. This was due to the presence of non-spherical particles in two samples, which, 

when removed from the analysis, reduced the MAPE to only 0.72%, without predefining 

concentration as an input. This value, determined using polydisperse particles, is well within that 

recommended by international ISO standard 1332024 for LD PSAs, and is also comparable to the 

accuracy of 0.6% for monomodal latex standards specified by the commercially available laser 

diffraction-based devices. We have further demonstrated the potential of the PSA for online or 

atline applications by performing a proof-of-concept flow-through measurement with two 

different particle sizes and concentrations. Although the error limit of such measurements using 
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the PSA is not as low as that achieved by commercial LD based devices, in online operations, for 

example milling, such devices are often used to monitor system changes rather than measuring 

exact values. As a result, the performance is a trade-off between the device's low cost and the 

desired accuracy. Additionally, as online analysis reduces sample intrusion, measurements in 

many particle processes are often more representative of the system, despite larger absolute device 

error. 

The portability and low cost, combined with a powerful machine-learning model, makes our 

proposed PSA an attractive solution for different industrial processes without the need to perform 

complex sampling and dilution operations. This opens up opportunities for our novel PSA in a 

wide range of applications. In the next chapter we will demonstrate that since the PSA is sensitive 

to changes in the refractive index between the measured particle and the surrounding medium, it 

can also be used for relevant biological applications, such as the detection of microorganisms 

(e.g., Escherichia coli), in water. 
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CHAPTER 4  

PSA for Biological Applications 

Author contribution: My contributions to this work include modifying the PSA, preparing the 

particle solutions, and measuring them. I carried out the initial E. coli and Enterococcus sp. 

experiments with the assistance of other researchers in the group. I analyzed the raw data and 

performed the machine learning analysis, using codes written by a collaborator on this project. 

4.1 Introduction 

Rapid detection of pathogenic bacteria is essential in preventing outbreaks of many serious 

diseases1,2. The traditional method employed widely for identifying and monitoring bacteria relies 

on culturing and counting colonies3 formed by microorganisms on agar plates. This method is 

time-consuming and involves tedious sample preparation steps. The incubation time required for 

visible colony formation by most foodborne or waterborne pathogens is usually 24 to 36 hours 

and can even be 72 hours, depending on the target strain. In many practical applications, such as 

detecting microbial contamination in the food processing industry4,5, or monitoring wastewater 

treatment plants6,7 and recreational beaches8, timely detection is of paramount importance as 

delayed results can lead to public health hazards. Other less standard detection techniques like 

molecular-based polymerase chain reaction (PCR)9,10, and immunological techniques such as 

enzyme-linked immunosorbent assay (ELISA)9,11, etc., may provide faster analysis compared to 

conventional culture-base methods, but they are expensive and require sample pre-treatment, 

skilled personnel and a specialised laboratory.  

Optical biosensors based on Mie light-scattering12–14, on the other hand, have gained much 

popularity as an interesting alternative for pathogen detection, due to their short time-to-result, 

low cost, ease of use and non-destructive nature. Moreover, they allow true label-free and 

reagentless detection, in the sense that they do not rely on binding between target biomolecules 

and some recognition elements, like enzymes, antibodies etc., needed in other label-free sensors15–

17. In light-scatter based devices, the angular scattering signature obtained from biological 

microparticles can be used to infer their size, shape and refractive index in order to identify their 

type. Simultaneously, for a specific type of microorganism, their concentration in a sample can 

be determined by measuring the change in intensity scattered by the cells. These sensors are 

promising detection tools as they allow real-time, onsite measurement with minimal sample 

preparation steps.  

In recent years, these light-scatter based technologies have combined the benefits of machine 

learning (ML) to develop portable and cost-effective platforms for the detection and identification 

of microorganisms17. In such systems, the scattering pattern obtained either from bacterial 

colonies grown on agar plates18,19 or in liquid suspensions12,20 are used to classify different types 
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of bacteria. We have used a similar approach to investigate the application capability of our ML-

based PSA in detecting and classifying microorganisms, particularly Escherichia coli (E. coli) 

and Enterococcus sp. in suspension. These bacteria were chosen because they are among the most 

common indicators of faecal contamination21 which can result in serious illnesses. Apart from 

that, Enterococcus sp. is a pathogen that can develop biofilms on surfaces of medical devices or 

catheters, and it is one of the primary causes of various infections such as urinary tract infection, 

bacteremia, endocarditis, prostatitis as well as wound infections22. E. coli are Gram-negative rod-

shaped bacteria with an approximate width of 0.5 µm and can vary in length from 1.0 to 3.0 µm23. 

In contrast, Enterococcus sp. are Gram-positive bacteria having spherical or oval cells with 

diameters ranging from 0.5 to 1 µm24. Most often, these bacteria occur in pairs or short chains. 

Because bacteria have somewhat higher refractive indices than water, 1.38 to 1.4 Mie-scattering 

patterns can be used to detect their presence directly. 

The scattering signal measured by our PSA is dependent on sample concentration. Hence, we can 

use this property to determine the concentration of E. coli and Enterococcus sp. in water with the 

assistance of ML. This chapter introduces the design of a modified PSA for measuring small 

particles the size of bacterial cells and shows how the system is made more sensitive to small 

particle measurements compared to the previous setup. We then demonstrate how, by using ML 

algorithms, our PSA can classify between two different types of bacteria (E. coli and 

Enterococcus sp.) and particles and can also predict their concentration in water.  

4.2 Optimization of the PSA for Small Particle Measurement 

In this study, some modifications have been made to the ASF to reduce residual reflections from 

the inner walls of the ASF observed in previous measurements. Although the angular dependence 

was maintained in the previous filter, to further improve the functionality of the filter holes, the 

ASF is optimised by dicing parts of the material from the middle, leaving three plates with holes 

separated by air gaps instead of continuous cylindrical holes (Figure 4.1 a).  

 

Figure 4.1: Angular dependence of the ASF holes. (a) The LED is tilted at various angles using a 3-axis 

translation stage. The x-y transverse plane is parallel to the CMOS sensor plane; the angular dependence 
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of the ASF holes is plotted as intensity vs. tilting angle in (b) x and (c) y direction. The full range of negative 

tilting angles could not be measured due to limitations in the maximum tilting angle allowed by the 

translation stage. The zoomed in picture of (a) shows the modified ASF. 

By reducing the thickness of each plate to 0.5 mm, the internal reflection is decreased 

significantly. The two plates on each end of the filter act like pinholes and the middle plate help 

in minimising crosstalk between the neighbouring holes. This new ASF has a length of 15 mm 

and consists of 19 holes, with filter cut-off angles ranging from 0.77° to 2.96°.  

To test the angular dependence of the new ASF holes, the incident light source was gradually 

tilted with respect to the optical axis at different angles, first in the x and then in the y direction 

(Figure 4.1 a). An image was captured for each tilt angle, and the intensity in each filter hole was 

calculated. The changes in light intensity with varying tilt angles are shown in Figure 4.1 b and 

c for selected filter holes. It can be seen that there is an almost 90% decrease in light intensity at 

the cut-off angle for each filter hole shown. This demonstrates that the design efficiently reduces 

internal reflection and improves the angular dependence of the ASF holes. 

The Mie scattering intensity is proportional to the square of the particle diameter25. Hence, to 

measure particles below 10 µm, it is necessary to improve the sensitivity of the PSA in measuring 

low scattering signals from small particles. To achieve this, the system is modified by using a pair 

of lenses and a beam stop placed at the focal point of the first lens to remove the unscattered 

forward light26. The experimental set-up is depicted in Figure 4.2. The ASF now only collects 

scattered light from the sample and hence is more sensitive to not only changes in scattered 

intensity caused by a change in sample concentration, but also to the shape and refractive index 

of the particle to be measured27. A typical raw image from the CMOS sensor is also shown in the 

figure. 

 

 

 

Figure 4.2: Modified PSA. A schematic (not drawn to scale) of the modified PSA.  L1 and L2 are anti-

reflection (AR) coated biconvex lenses with equal focal length, f, of 50 mm. At the focal point of L1, a beam 

stop is placed by putting two layers of a small (approximately 1.2 mm square) piece of black tape on an 

AR-coated glass to block the unscattered light; a typical raw image from the CMOS sensor for a 2 µm 

particle at a concentration of 0.08 mg mL-1 is also shown.  
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4.3 System characterisation with Silica Microspheres 

In order to characterise the modified PSA, silica standard particles from Corpuscular Inc. with 

diameters of 2,5,10 and 15 µm at different concentrations were measured. Details of the silica 

beads are summarised in Table 4.1.  

Table 4.1 Characteristics of measured silica microspheres 

Silica microspheres were chosen in this case as silica has a refractive index of 1.42, similar to that 

of E. coli and Enterococcus sp. For each sample, five 1:5 dilutions were prepared from the mother 

stock at a concentration of 50 mg mL-1 deionised water (DI), and measured in transparent, 

disposable plastic cuvettes with a light path length of 2 mm. Before adding the beam stop to block 

the forward light, a reference image was captured to determine the location of the filter holes and, 

subsequently, the light intensities in the holes were calculated. After the beam stop was placed, 

15 background images were captured without any sample and later subtracted from the sample 

images. Prior to measuring each sample in the cuvette, it was shaken well to ensure a 

homogeneous dispersion of particles in the solution. This process was repeated after every 5 

images in order to avoid particle sedimentation at the bottom, and a total of 15 images were 

acquired per sample.  The images acquired in this study were captured with a CMOS image 

sensor, details of which were given in the previous chapter, and analysed using Matlab and 

Python. 

The measurements were repeated four times in order to obtain four individual datasets. The 

average intensities calculated from all the datasets against concentration for each particle size are 

shown in Figure 4.3. As expected, the graphs show a monotonic increase in intensity up to a 

certain concetration for all particle sizes. The decrease in intensity for higher concentrations is a 

clear indication of a multiple scattering effect. Since multiple scattering effects are more 

prominent in smaller particles, the decrease in intensity is observed at a lower concentration for 

the 2 µm particle compared to the other sizes. The graphs of particle sizes 5 µm, 10 µm and 15 

µm shows similar profile with increasing concentrations. This is probably due to an overlap in 

the particle size distribution between these sizes. 

Sample 
Refractive 

index 

Density 

(g cm-3) 

Mean size 

(µm) 

Coefficient of 

Variation 

(COV) by 

manufacturer 

(%) 

Concentrations 

tested 

(mg mL-1) 

Silica beads 1.42 2.65 

2 2 

0.016, 0.08, 0.4, 

2, 10, 50 

5 6 

10 4.3 

15 6 
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Figure 4.3: System characterisation using silica particles. Average intensities of four selected filter holes 

at cut-off angles 0.77°, 1.52°, 2.21° and 2.96° for particle sizes (a) 2 µm, (b) 5 µm, (c) 10 µm and (d) 15 

µm are plotted as a function of concentration. The error bars represent the standard deviation in the four 

data sets obtained for each particle size. 

4.4 Case-Study: Measurement of E. coli and Enterococcus sp. 

in Deionized Water 

After characterising the PSA with microspheres, we performed measurements to determine 

whether the system can be used to detect different concentrations of E. coli and Enterococcus sp. 

in DI water. The E. coli strain used for all measurements was Op5028. To begin with, bacterial 

cultures were prepared by inoculating single isolated colonies of E. coli in a Luria-Bertani (LB) 

medium and grown at 37 °C in an incubator shaker (Thermo Fisher MaxQ8000). The bacterial 

growth was monitored by measuring the optical density (OD) at 600 nm using a 

spectrophotometer (Thermo Fisher Scientific Nanodrop 2000c). To prepare the samples, the 

culture media was collected at OD600nm ≅ 1.5 during the logarithmic growth phase of the bacteria 

when the concentration was ~109 cells mL-1 according to colony forming units (CFU). This was 

determined by plating serial dilutions of the suspension, in duplicate, on LB agar plates and 

counting the colonies after a 24 hour incubation at 37 °C. The culture media was centrifuged at 

4,000 rpm and 27 °C for 5 minutes in order to pellet cells, after which the supernatant was 

removed and the cell pellets suspended in DI water. This process of centrifugation and re-

suspension was repeated three times. The E. coli suspension was then used to prepare six tenfold 

serial dilutions in DI water and immediately measured with the PSA. The same procedure was 

followed to prepare Enterococcus sp. culture with the exception that the growth medium used 

was Tryptic Soy Broth (TSB) with yeast extract in this case. The culture media was collected at 

OD600nm ≅ 1.6 which corresponds to approximately 3.4×108 CFU mL-1. Dilutions were prepared 

from this culture media in DI water and the final concentration of the samples was from ~103 

to108 cells mL-1. The measurements were repeated four times on different days and four data sets 

were obtained.  
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The dependence of the scattering intensity on the concentration for E. coli and Enterococcus sp. 

is shown in Figure 4.4 for DI water. Note here that the scattering intensity obtained from the PSA 

is from both viable and non-viable bacterial cells. In the case of E. coli (Figure 4.4 a) there is 

almost no intensity variation for concentrations from 104 to 106 cells mL-1 compared to the blank. 

For Enterococcus sp. (Figure 4.4 b) a little change in scattering intensity can be observed between 

the blank and concentrations 103 to 105 cells mL-1 beyond which the scattering signal increases 

monotonically up to about 107 cells mL-1. The decrease in signal after this value is possibly due 

to the shadowing effect from the aggregation of particles in combination with the multiple 

scattering effect.  

 

 

Figure 4.4: Measurement of E. coli. Mean intensities for four ASF holes calculated from four measurement 

sets against log10 of concentration for (a) E. coli in DI water and (b) Enterococcus sp. in DI water. The 

error bars represent the standard deviation in the measurement sets. 

4.5 Data Analysis Using Machine Learning 

In this work, we developed two ML models, one to classify between E. coli, Enterococcus sp. and 

particles in DI water, and the other to predict the concentration for a fixed sample. For both 

algorithms, we selected 9 holes out of 19 holes in the ASF images, based on the tilting experiment 

performed previously, discarding the holes that did not maintain the desired angular dependence 

due to geometrical or material imperfections. The datasets for all samples were split timewise, 

i.e., the most recent measurement set for each sample was used for testing and the rest for training 

the models. Both the models were trained with 100 decision trees for feature selection. The steps 

taken for the two models are summarised in the flowchart in Figure 4.5 below. 
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Figure 4.5: Flow-chart showing the steps in the ML models used for classification and regression analysis. 

4.5.1  Classification between Microorganisms and Particles 

The first model was developed to differentiate between the two types of bacteria and the four 

particles sizes in DI water and is based on Random Forest (RF) Classification29.  This was the 

method of choice for our specific classification problem, mainly due to the short prediction time, 

higher accuracy and robustness with lower risk of overfitting30. 

The steps for the algorithm were essentially the same as those explained in the previous chapter, 

with the exception that it was a classification problem rather than one of regression. The first steps 

included locating the holes from the images, selecting the desired holes and calculating their 

intensities. Each sample image was assigned a numeric label provided in Table 4.2 below.  

Table 4.2: Label assigned to sample images for ML classification  

The ML algorithm was then trained using the training set and predictions made on the test set, 

previously unseen by the algorithm. To visualise the performance of the ML model, a confusion 

matrix was plotted and the accuracy of the model was calculated as follows: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑜. 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 × 100 % 

 

Eq. 4.1 

 

Sample Numeric label assigned 

E. coli 0 

Enterococcus sp. 1 

2  µm 2 

5  µm 5 

10  µm 10 

15  µm 15 
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For the ML analysis, we selected the dataset based on a concentration range where the scattering 

intensity from the samples showed a monotonic trend only, i.e., from 0.016 mg mL-1 to 2 mg mL-

1 for particles and from 106 to 109 CFU mL-1 for E. coli and from 104 to 107 CFU mL-1 for 

Enterococcus sp. in DI water. We selected four concentrations for all the samples within this 

range in order not to bias the classifier with varying sizes of dataset per sample.  

 

Figure 4.6: Classification between E. coli, Enterococcus sp. and particles using RF classification model. 

Confusion matrix for classification model (a) using all samples, (b) removing 10 µm and (c) removing both 

5 and 10 µm particles. The samples corresponding to the numeric labels are listed in Table 4.2. 

The confusion matrix with all samples is depicted in Figure 4.6 a, demonstrating that the model 

can classify the samples with an accuracy of 56%. Interestingly, the model can classify very well 

Enterococcus sp. from the rest of the samples and as seen from the confusion matrix, all 60 images 

were predicted correctly by the RF classification model. A closer look at the confusion matrix 

reveals that the model cannot properly classify between different sizes of silica beads which is 

the reason for the low overall accuracy. Hence, we performed another ML analysis, removing the 

10 µm particle (Figure 4.6 b) first in which case the accuracy improved to 79% and then both 5 

µm and 10 µm particles (Figure 4.6 c) leading to accuracy of nearly 89%. These improvements 

confirm our hypothesis of overlapping size distributions mentioned before. In future, by collecting 

more data with well separated particle size distributions, the model may be improved.  

To demonstrate that the multiple holes of the ASF play a crucial role in classifying the various 

particles and microorganisms, we performed the next analysis using only the biggest ASF hole. 
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The accuracy reduces dramatically from 89% to 49% as seen in the confusion matrix (Figure 4.7 

a), indicating that absorption information from the particle solution alone is insufficient for the 

RF classifier to discriminate between different samples. Following that, we repeated the analysis, 

each time increasing the number of holes used by the model for classifying the samples. The holes 

were randomly selected and for a fixed number of holes, the analysis was performed three times 

with different combinations of hole sizes. In Figure 4.7 b, the classification accuracy obtained is 

plotted against the number of holes. It can be seen that with a single hole, i.e. the big hole, the 

accuracy is 49% and with increasing number of holes, the accuracy also increases till it reaches a 

maximum at 10 holes, after which the accuracy seems to saturate at roughly 85% with some 

fluctuations.   

 

Figure 4.7: RF classification analysis to demonstrate the functionality of the ASF holes. (a) Confusion 

matrix using only the biggest ASF hole for classifying E. coli, Enterococcus sp., 2 µm and 15 µm. (b) 

Accuracy against number of holes. The analysis was repeated three times with different combination of 

hole sizes for a fixed number of holes. The graph shows average classification accuracy with error bars 

representing the standard deviation between the three analyses performed.  

4.5.2 Concentration Prediction for Particles and Microorganisms 

After classifying the different samples, we developed another ML model using RF Regression31 

in order to predict the concentration for a fixed particle size. Intensities in the ASF holes were 

used to train the ML model and predictions were made on the test set. In addition, concentration 

ranges were selected using the aforementioned criteria. However, for particles greater than 2 µm 

we included the entire concentration range, i.e., 0.016 mg mL-1 to 10 mg mL-1, where the graphs 

show an increasing trend. The metric used to evaluate the performance of the model was Mean 

Absolute Error (MAE). For a given test dataset with n number of images, the MAE is given by 

the following equation: 

𝑀𝐴𝐸 =  
1

𝑛
∑|𝐴𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑖 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑖|

𝑛

𝑖=1

 Eq. 4.2 

 

The smaller the MAE, the better and more stable the predictions obtained from the model.  Figure 

4.8 depicts the mean predicted concentration for different particle sizes with respect to the 

corresponding nominal concentration measured for each particle size. The MAE, Pearson’s R and 

R2 values obtained from the prediction plots are reported in Table 4.3 below.  
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Table 4.3: MAE, Pearson’s R and R2 for different particle sizes.  

It can be observed from the graphs that the mean predictions for 2 µm, 5 µm and 15 µm correlate 

well with the actual concentration, whereas for 10 µm, the predictions show a significant deviation 

from the nominal concentrations.  

 

 

Figure 4.8: Predicted concentration of particles using RF regression model. The mean predicted 

concentration values for test set 4 plotted against nominal concentration for (a) 2 µm, (b) 5 µm, (c) 10 µm 

and (d) 15 µm. The dashed lines represent predicted concentration = actual concentration. The interdecile 

range is also shown for each concentration. 

The graphs for the same analysis performed with E. coli and Enterococcus sp. in DI water are 

plotted in Error! Reference source not found. a and b, respectively, showing good agreement b

etween the predicted and measured concentrations. The corresponding MAE are shown in Table 

4.4. The R2 score and the Pearson correlation coefficient, R, obtained for the mean predictions 

fitted on the measured log10 CFU mL-1 (Table 4.4), further confirm a strong correlation between 

actual and predicted concentrations.  

Sample MAE Pearson’s R R2 

2  µm 0.15 0.99 0.99 

5 µm 0.79 0.97 0.92 

10 µm 2.12 0.78 0.30 

15 µm 0.4 0.99 0.98 
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Figure 4.9: Predicted E. coli concentrations using RF regression model.  Mean concentration prediction 

on test set 4 for (a) E. coli in DI water, MAE = 0.36 and (b) Enterococcus sp. in DI water, MAE= 0.16. The 

dashed line represents y=x and the interdecile range is shown for each concentration. 

Table 4.4: MAE, Pearson correlation (R) and R2 score on the mean predictions for the test dataset 

The ML model can be improved with further optimisations to the system and by increasing the 

data size used for training the model. The major benefit of the PSA is the incredibly short (< 10 

minutes) time-to-result, and, although much development is needed to improve the sensitivity of 

the system, the PSA has the potential to be used as a rapid preliminary screening tool for bacterial 

contamination. 

4.6 Conclusion 

In this chapter, we demonstrated the potential of our PSA for biological applications such as the 

detection and classification of E. coli concentration in water from 106 to 109 CFU mL-1 and 

Enterococcus sp. from 105 to 108 CFU mL-1. In order to achieve this, we first modified the system 

to measure small particles (below 20 µm) by removing the forward unscattered light, and 

characterised it by measuring several concentrations of silica microspheres with similar particle 

sizes. The results indicated that the modified PSA is, in fact, able to detect smaller particles and 

is more sensitive to concentrations lower than those measured with the previous system. To 

investigate the detection limit of the system for microorganism measurement, we tested two types 

of microorganisms, E. coli and Enterococcus sp. suspensions in DI with concentrations ranging 

from ~104 to 109 cells mL-1 and from ~103 to 108 cells mL-1 in the former and latter case, 

respectively. The initial results revealed an increasing signal trend for E. coli starting at 106 cells 

mL-1 and 105 cells mL-1 for Enterococcus sp. Below these concentrations, the low scattering signal 

resulted in a poor signal-to-noise ratio, and the system was unable to distinguish bacterial 

suspensions presence. Next, we developed a ML algorithm to distinguish E. coli from particles in 

DI water. The initial model accuracy obtained was 56% when trained with data within the relevant 

concentration range of the PSA. The reason for this low accuracy was mainly due to overlapping 

size distributions for particles above 2 µm. When 10 µm and then both 5 µm and 10 µm particles 

were removed from the analysis, the accuracy improved to 72% and 89%, respectively. In both 

cases, we observed that the model could classify well between E. coli and Enterococcus sp. with 

Sample MAE Pearson’s R R2 

E. coli in DI water 0.36 0.94 0.88 

Enterococcus sp. in DI 

water 
0.16 0.98 0.97 
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only few false predictions, even though their mean sizes are very similar. This is encouraging as 

it suggests that the PSA is capable of differentiating between similar sized particles with different 

shapes and refractive indices. We also demonstrated that, if the classification analysis was 

performed with only the largest hole, which contains mostly the absorption information about the 

measured solution, the accuracy dropped significantly. This clearly shows that a single hole is 

insufficient, and that the ASF's multiple holes are essential for classifying different samples.  

On successfully distinguishing between the two types of bacteria and particles, we developed 

another model to predict the concentration for a fixed sample. The results obtained for the 

particles and the bacteria showed a strong correlation between the actual and the predicted 

concentrations, except for 10 µm particles. For E. coli and Enterococcus sp. in DI water, we 

obtained good predictions with a low MAE for a concentration range from ~106 to 109 cells mL-1 

and ~105 to 108 cells mL-1, respectively. In the future, the detection limit of the PSA may be 

improved by further modifying the system, for example, by combining a blue LED to enhance 

the scattering signal from bacterial cells with a more sensitive CMOS sensor and an ASF filter 

with bigger holes or a shorter length in order to efficiently collect the large scattering angles. With 

these developments, the PSA could become a rapid, easy to use, low-cost on-site monitoring tool 

to determine levels of particulates, for example, downstream of a waste water treatment plant, as 

an increased particle concentration is an indication of treatment failure.  

One current limitation of the system is its lack of specificity as a result of its true label-free 

detection nature, which prevents its widespread application. The PSA could be made more 

specific in the future by using capture mechanisms like antibody-coated magnetic particles to bind 

to target bacteria, which could then be separated from other particles in liquid suspensions. This 

would enable rapid identification of bacteria in food or other relevant samples without the need 

for colonies to be grown or overnight cultures to be prepared, which takes 12-16 hours on average. 

However, using light scattering to detect particle sizes in the nanometre range will likely remain 

a challenge for the proposed PSA system. Hence, the focus of the next chapter will be to design 

a small form factor optical biosensor based on single particle signal, a flow-cytometry which uses 

fluorescence for rapid, sensitive and specific detection of particles smaller than bacterial cells, 

specifically viruses. 
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CHAPTER 5  

Portable Flow-Virometer for Detection of 

SARS-CoV-2 in Saliva 

Under the rules of the Creative Commons Attribution-NonCommercial License, the content, text, 

and figures in this chapter have been adapted from the original publication: “Small form factor 

flow virometer for SARS-CoV-2”, Hussain, R.*, Ongaro, A.*, et al. Biomed. Opt. Express 13, 

1609-1619 (2022). 

 

Author contribution: In this work I contributed to designing the experiments, building the FVR 

prototype, preparing and measuring the samples. I performed the STED imaging together with 

another co-author of the paper and wrote the code for the preliminary analysis from the raw data. 

In addition, I co-wrote the first draft of the manuscript.  

 

5.1 Introduction 

Throughout human history, some of the deadliest pandemics have been caused by sub-

microscopic viruses, often known  as ¨the organisms at the edge of life¨1. The most recent life-

threatening pandemic witnessed by the world is the Coronavirus Disease 2019 or COVID-19, 

caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), infecting over 160 

million people worldwide2. Such a viral outbreak as COVID-19 made evident how critical is 

detecting and isolating infected patients quickly and effectively. With regards to this, a low-cost, 

fast, accurate, and portable diagnosis system is potentially a breakthrough technology for 

controlling the pandemic, returning to normal life quickly and reducing the risk of future 

outbreaks3–5.  

SARS-CoV-2 is a single-stranded RNA-enveloped virus6 and its full genome sequencing has 

enabled the development of various diagnostics. A reverse transcription polymerase chain 

reaction (RT-PCR), which has been endorsed by the Centers for Disease Control and Prevention 

(CDC) and the World Health Organization (WHO), is the current gold standard testing system for 

diagnosing suspected COVID-19 casesc. Reverse transcription loop-mediated isothermal 

amplification (RT-LAMP)11 is a more recent breakthrough in molecular testing. Although RT-

LAMP assays, unlike RT-PCR, do not require expert staff and are, thus, well suited for point-of-

care (POC) and self-testing12, achieving a quantifiable response with this method is still 

challenging. Both of these approaches involve RNA extraction, which is time-consuming and 

requires the use of resource-intensive processes, thus increasing the overall cost. 
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Antigen tests, on the other hand, can detect easy-to-find surface markers (viral antigens) on the 

outside of the virus, and do not require extraction and amplification steps13–15. SARS-CoV-2 has 

two known antigens, nucleocapsid phosphoproteins and spike glycoproteins, capable of attacking 

cells in the human body. The main principle behind antigen detection tests is the use of designed, 

synthetic antibodies to probe a patient sample for the presence of viral proteins, which can be 

detected in the blood or in other tissues or secretions, such as saliva. While there are some 

shortcomings to the sensitivity and specificity of this method compared with RT-PCR or RT-

LAMP methods, it is much easier, cheaper and faster, and can be performed anywhere15–21. 

Apart from molecular assays, optical biosensors are a promising alternative method for 

diagnosing SARS-CoV-2 because of their high sensitivity, ease of use, quick time-to-result, and 

point-of-care testing capabilities. Label-free optical sensors based on surface plasmon resonance 

(SPR), localised surface resonance (LSPR), and surface-enhanced Raman spectroscopy (SERS) 

have recently received a lot of attention22. Other new optical approaches for detecting SARS-

CoV-2 include spatial light-interference microscopy (SLIM) in combination with neural network 

or nano-interferometric biosensor23,24. Although preliminary results reported in the literature 

suggest that these technologies have the potential to be employed as a highly sensitive SARS-

CoV-2 detection platform, there is still a lot of work to be done before they can be used outside 

of the lab and introduced into the commercial phase.  

Recent evidence shows that saliva is a more viable and sensitive alternative to nasal and throat 

swabs17,25. The use of saliva samples has a number of clinical benefits: (1) it is non-invasive and 

improves the patient experience, increasing voluntary testing take-up; (2) the collection can be 

self-administered with simple instructions, reducing the risk of viral transmission to healthcare 

personnel; and (3) it can be used to quickly check for the presence of the virus in asymptomatic 

individuals26. Therefore, the use of saliva allows for large-scale SARS-CoV-2 testing, particularly 

when combined with a rapid and sensitive detection approach27. 

Flow-cytometry28 has been used for decades as a powerful laser-based cell analysis technology 

for counting and sorting cells based on light scattering and/or fluorescence. However, 

conventional flow-cytometers are bulky (~ 42.5×42.5×34 cm ) devices with prices ranging from 

30,000€ to 300,000€, making them unsuitable for POC applications. In recent years, flow-

cytometry has paved the way for the development of flow-virometry29, a technique for the direct 

and accurate detection and characterisation of nanoparticles like viruses, which can be achieved 

by labelling viral particles with fluorescently tagged antibodies.  For this purpose, simple and 

compact flow-virometers for specialised applications can be designed that are easy to use and 

have minimal overall costs. Therefore, the main objective of this chapter is to introduce a cost-

effective and portable (25×30×13 cm) flow-virometry reader (FVR) for the rapid detection of 

whole SARS-CoV-2 viral particles directly from saliva samples, without genetic extraction, thus 

combining the convenience and simplicity of an antigen test with the high precision of RT-PCR. 

We will explain the development and optimisation processes of the FVR assay in depth, as well 

as how the system is validated using clinical data. Finally, we will report the limit of detection 

(LOD), sensitivity and specificity of the developed sensor platform. 

5.2 Concept of the FVR for SARS-CoV-2 Detection from 

Saliva 

When it comes to finding faster, simpler, and more accurate SARS-CoV-2 detection procedures, 

combining precise flow virometry with a quick immunoassay test can increase the speed and 

precision of SARS-CoV-2 detection from saliva. In Figure 5.1, we demonstrate the entire 

workflow of the developed diagnostic system, from the sample collection through to the SARS-
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CoV-2 antigen detection. In brief, saliva is collected in sterile tubes through spitting, with no 

restrictions on when food or drink has previously been consumed. It is then purified using a simple 

sample preparation technique based on heat inactivation at 56 ℃ for 1 hour, followed by dilution 

and filtering. After that, the saliva is labelled with fluorescent anti-SARS-CoV spike antibodies 

and incubated at room temperature for 20 minutes. The labelled sample is circulated inside our 

developed FVR and a fluorescence signal is detected every time the sample passes through the 

interrogation point. We note that in some cases detection of particles can be performed without 

fluorescence labels, as it has been the case of work presented in chapters 3 and 4. However, in the 

case of viruses, given their small size of the order of 100 nm, labels are needed to increase 

detection signal and achieve in this way high sensitivity. In addition, labels with proper antibody 

or ribonucleic acid (RNA) allow reaching specificity.  

 

Figure 5.1: A comprehensive overview of the developed diagnostic system used for the detection of 

SARS-CoV-2 antigens.  

5.3 Development and Characterisation of the FVR 

The proposed FVR is a compact, portable flow-virometer, which does not require flow focusing, 

and which is tailored for the detection and quantification of only the fluorescence signal from the 

labelled SARS-CoV-2 viral particles.  Figure 5.2 a depicts the schematic diagram of the 

developed FVR, and a lab-built prototype with the tablet to control the whole system is shown in 

Figure 5.2 b. An excitation beam from a fibre-coupled 488 nm laser is focused onto the 

microfluidic channel by a 100x microscope objective. As the sample passes through the laser 

intercept, the fluorophores in the sample emit fluorescence, which is then directed to a multi-pixel 

photon counting (MPPC) detector via a dichroic mirror and two emission filters. The optical filters 

ensure that only the emitted fluorescence signal is detected, without any stray light from the 

excitation source, thus reducing the background noise and improving the system’s sensitivity.  

To calibrate the FVR, a known concentration of fluorescent polystyrene beads (with a nominal 

diameter of 2 µm) in phosphate-buffered saline (PBS) was measured. In order to ensure proper 

alignment of the optical system with respect to the straight channel microfluidic chip, the bead 

solution, with a concentration of 250 beads mL-1, was circulated inside the microfluidic channel 

at a flow rate of 1 mL min-1. The position of the chip was then adjusted until a steady rate of at 

least 2 events per second was observed. For the calibration measurements, five 10-fold dilutions 

of the polystyrene bead solution were measured in triplicate. Figure 5.2 c shows the calibration 

plot obtained for the polystyrene particles, with concentrations ranging from 2.5 beads mL-1 to 

2.5×104 beads mL-1. Over the concentration range tested, the graph depicts a sharp linear 

response (R2 = 0.98), showing that the total number of events counted in a 1 mL sample and the 

bead concentration in the solution are in good agreement. 
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In order to detect SARS-CoV-2 viral particles using the FVR, a baseline with the fluorescent 

antibodies must first be established. Four 10-fold serial dilutions, with concentrations ranging 

from 0.5 ng mL-1 to 500 ng mL-1, were measured in triplicate to obtain the analytical response of 

the fluorescent (Alexa-488) anti-SARS-CoV spike antibodies. The results obtained from these 

measurements are plotted in Figure 5.2 d, showing a strong correlation between the prepared 

anti-SARS-CoV spike antibody concentrations and the detected fluorescent events (R2 = 0.94; p 

= 0.001).  

 

Figure 5.2: Design and characterisation of the FVR reader. (a) FVR detection system depicted in a 

schematic diagram; (b) a lab-built FVR prototype with the tablet; (c) standard curve of the polystyrene 

bead concentration vs. total counts, R2 = 0.99; (d) standard curve of the fluorescent (Alexa 488) anti-SARS-

CoV spike antibody concentration vs. counts per minute, R2 = 0.94. 

5.4 FVR Assay Optimisation for SARS-CoV-2 Antigen 

Detection 

The FVR SARS-CoV-2 detection protocol relies on effective binding between the antibodies and 

the target antigen. Several parameters can influence the rate of this binding, including composition 

of the saliva samples, antibody-antigen concentration and temperature, amongst others30. As a 

result, these parameters were optimised to ensure proper formation of the antibody-antigen 

complex. Prior to sample preparation, the saliva samples were heat inactivated for 1 hour at 56 

℃, due to the restrictions of performing the measurements in a Biosafety Level 3 facility31. All 

saliva samples collected from both infected and uninfected healthy donors were confirmed with 

an RT-qPCR test. 



Chapter 5: Portable Flow-Virometer for Detection of SARS-CoV-2 in Saliva   

75 

 

5.4.1 Saliva Pretreatment 

Saliva is a complex fluid comprising of many substances, such as mucin, food debris, 

microorganisms and gingival crevicular fluid, and it differs widely from one individual to another.  

 

Figure 5.3: Picture of collected saliva as received (left) and after vortexing to re-suspend particles and 

heavy molecules (right).  

To obtain a precise analysis, it is important to remove these impurities from the saliva without 

affecting the relevant analytes. However, for POC applications, a quick and simple pre-treatment 

method for the saliva is required, without the need for laboratory equipment such as centrifuges 

or freezers. In order to achieve this, we re-suspended the particles and heavy molecules by means 

of vortexing, and then used a 0.2 µm pore syringe filter to remove any large particles that would 

otherwise increase the background noise and cause blockages in the microfluidic channel and 

tubing in the FVR. Figure 4.4 shows the heavy sediments of salivary contaminants before and 

after vortexing. The graphs in Figure 5.4 a and b demonstrate that the filtration process reduces 

the background noise from the saliva by 98%.  This was also confirmed by the statistical analysis 

performed on the filtered and unfiltered saliva samples (Figure 5.4 c). 

 

Figure 5.4: Background noise associated with the saliva samples. Raw Voltage vs. time signal from 

oscilloscope of (a) unfiltered saliva sample and (b) filtered saliva sample; (c) difference in total counts 
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between the unfiltered (left) and filtered (right) population of 11 saliva samples. The two sample 

populations are statistically different, with p < 0.0054 calculated with a two-tailed student t-test. 

After filtering the saliva, it was then diluted 100-fold in PBS. These filtration and dilution steps 

help to reduce variations in the salivary viscosity and allow for a constant laminar flow in the 

microfluidic channel without the need for high pressure (> 13 bar).  

5.4.2 Optimum Antibody Concentration and Incubation Time 

The extent of antibody-antigen effective binding can also be controlled by varying the relative 

concentrations of an antibody and an antigen solution. Thus, for our assay, the optimal antibody 

concentration that provides the best labelling was determined experimentally. A series of 1:10 

dilutions of a SARS-CoV-2 positive saliva sample (viral load of 107 copies mL-1) was performed 

on healthy donor saliva, i.e., SARS-CoV-2 negative by RT-qPCR. The dilutions had final 

concentrations ranging from 107 copies mL-1 to 100 copies mL-1. Each of these prepared dilutions 

was then labelled with four different Alexa-488 anti-SARS-CoV spike antibody concentrations  

(25 μg mL-1, 5 μg mL-1, 500 ng mL-1 and 50 ng mL-1) and measured.  

 

Figure 5.5: Labelling protocol optimisation. (a) Normalised counts against log of viral load for four 

antibody concentrations, 25 μg mL-1, 5 μg mL-1, 500 ng mL-1 and 50 ng mL-1; (b) Normalised counts from 

labelled saliva samples with 50 ng mL-1 anti-SARS-CoV spike antibodies against incubation time for two 

positive SARS-CoV-2 saliva samples and one uninfected saliva sample spiked with SARS-CoV-2 spike 

proteins. 

The signal obtained from the positive samples was normalised with respect to that of the 

corresponding antibody concentration in the PBS. Figure 5.5 a shows that a 50 ng mL-1 antibody 

concentration gives the highest average response from a viral load of 103 to 106 copies mL-1 

compared to the other antibody concentrations. Hence, this was selected as the optimal 

concentration for the labelling process as it provides nearly optimal discrimination between 

positive samples and the antibody signal.  

Next, we investigated the incubation time required for the labelling protocol. For this, two positive 

SARS-CoV-2 saliva samples, with viral loads 4×104 and 1.6×108 copies mL-1, and one healthy 

donor sample spiked with recombinant spike proteins were tested at different incubation time 

points. The results plotted in Figure 5.5 b show a monotonic trend for all the samples in the first 

20 minutes. The SARS-CoV-2 positive sample with 4×104 copies mL-1 reaches a plateau after 20 

minutes and shows only a small increase in the signal after a prolonged incubation period. This 

effect may be related to the steady formation of antibody-antigen complexes. During the same 

time period, however, the signal in the sample with the highest viral load (1.6×108 copies mL-1) 
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decreases, indicating a Hook effect32. This implies that the antibody's binding sites may have been 

saturated due to the presence of an excess number of viral antigens. Thus, from this result the 

optimum labelling time was found to be around 20 minutes. 

To further confirm that the increase in signal obtained with the FVR is mainly due to aggregation 

formed between the viral antigens and the antibody, we performed stimulated emission depletion 

(STED) imaging on a labelled SARS-CoV-2 positive saliva sample and also on an anti-SARS-

CoV spike antibody only. For this, we used coverslips coated with poly-L-Lysine at 0.01% in 

MiliQ to improve the adhesion of the viral particles. 20 μL of labelled virus solution and the anti-

SARS-CoV spike antibody were spotted on the coated coverslips and left to adhere for 15-20 

minutes, after which they were imaged using LEICA TCS SP8 X. It can be observed from Figure 

5.6 that there is a 5-fold increase in the fluorescence signal of the labelled viral particles with 

respect to the background, whereas there is only a 1-fold increase in that of the antibodies. 

 

 

Figure 5.6: Super-resolution microscopy, STED images of anti-SARS-CoV spike antibodies only (top) 

and labelled SARS-CoV-2 positive saliva sample (bottom). Corresponding plots of frequency vs. area show 

(bottom) a 5-fold increase in the fluorescence signal in the labelled SARS-CoV-2 positive saliva sample, 

and (top) only 1-fold increase in fluorescence signal for the anti-SARS-CoV spike antibodies. The analysis 

was performed with ImageJ 1.53c. 
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5.5 Analytical Characterisation of the FVR 

5.5.1 Limit of Blank (LoB) and Cut-off 

First, we examined the signal from the filtered saliva samples and the Alexa 488-anti-SARS-CoV 

spike antibody in PBS (Figure 5.7 a). It can be seen that the signal obtained from the filtered 

saliva samples is lower than that from the Alexa 488-anti-SARS-CoV spike antibody (p = 0.0001), 

demonstrating that the noise from the remaining saliva content after filtration is negligible and 

has no effect on SARS-CoV-2 detection.  

The Limit of Blank (LoB) of the FVR is calculated using the signal obtained from the Alexa 488-

anti-SARS-CoV spike antibody signal. When samples containing no SARS-CoV-2 antigens are 

tested, the LoB represents the highest apparent SARS-CoV-2 concentration detected by the FVR. 

In our case, the LoB is defined as the average of the blank plus 1.645 times its standard deviation33. 

For the detection of SARS-CoV-2 positive samples, we set the cut-off value higher than the LoB, 

specifically, as the average of the blank (antibody signal) plus two times its standard deviation 

(Figure 5.7 a). Importantly, LoB and cut-off values must be established each time a new batch of 

the fluorescently labelled SARS-CoV-2 spike proteins is measured. 

5.5.2 Standard Curve and LOD 

In order to establish the relationship between the signal acquired from the FVR and the viral load 

in the tested samples, we built a standard curve by measuring triplicates of labelled SARS-CoV-

2 viral antigens from saliva samples with increasing viral load concentrations. Three SARS-CoV-

2 positive samples, with an initial virus load of 109 copies mL-1 (measured by RT-qPCR), were 

first diluted 100-fold in PBS. Further dilutions were prepared from each of these samples to yield 

concentrations ranging from 102 to 107 copies mL-1.  

 

 

Figure 5.7: Determination of FVR cut-off value and standard curve for SARS-CoV-2 detection. (a) 

Counted events per minute of the Alexa 488-anti-SARS-CoV spike antibody (blue) and of filtered saliva 

samples (orange). Mean values (dotted lines) and standard deviations (shaded area) are indicated. Cut-

off, according to the antibody signal (blue), was calculated as mean plus two times its standard deviation 

and is indicated as a solid line. (b) Standard curve of the SARS-CoV-2 viral particle concentration against 

normalised counts; R2 = 0.94. 

In Figure 5.7 b, the counted events of each measured sample are normalised to the antibody 

average signal to account for batch effects and user-to-user variability in sample preparation. The 
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standard curve shows strong linearity with R2= 0.94 and p < 0.001. The sensitivity calculated 

from the slope of the standard curve is 2.17 A.U. mL copies−1, demonstrating the competence of 

the newly developed FVR in screening SARS-CoV-2 viral particles.  

The limit of detection (LOD) of the FVR is calculated as the LOB plus 1.645 times the standard 

deviation of the sample with the lowest concentration of the SARS-CoV-2 viral particles tested34. 

According to the standard curve, the LOD of our FVR is found to be as low as 3,834 copies mL-

1, which is at least three orders of magnitude lower than commercially available rapid antigen 

tests35. The analytical range in which the FVR's response shows a monotonic trend is determined 

to be from 4×103 to 107 viral load mL-1.  

5.6 SARS-CoV-2 Detection Using FVR via Blind Test 

To investigate the potential of our FVR as a novel platform for the fast detection of SARS-CoV-

2 directly from saliva samples, we conducted a blind test using frozen saliva samples from SARS-

CoV-2 infected (n=34) and uninfected (n=20) individuals (Figure 5.8 a). Without disclosing the 

results, these samples were first measured using RT-qPCR. Each sample was diluted 1:100 in 

PBS in order to reduce viscosity and to obtain a sufficient volume for filtering and measurement. 

The diluted samples were then filtered and labelled with an Alexa-488 anti-SARS-CoV spike 

antibody. As previously stated, the fluorescent antibody solution was initially measured as blank 

to determine the cut-off line, allowing the positive and negative SARS-CoV-2 samples to be 

distinguished in this way. The results plotted in Figure 5.8 b show that the FVR is able to reliably 

detect 31 out of 34 SARS-CoV-2 positive patient samples and 18 out of 20 SARS-CoV-2 negative 

patient samples from the samples previously analysed using RT-qPCR. According to the new 

European Commission’s Medical Device Coordination Group’s guidance document36, this 

translates to a diagnostic sensitivity of 91.2 % and a diagnostic specificity of 90%. It's worth 

noting here that we selected a polyclonal antibody for our measurements due to its commercial 

availability. This antibody is elicited against the SARS-CoV spike glycoprotein, which shows 

cross-reactivity with the SARS-CoV-2 spike. In the future, we will focus on selecting antibodies 

that form complexes solely with the antigen of interest, such as monoclonal rather than polyclonal 

antibodies, to further improve the specificity of the assay. 

 

 

Figure 5.8: Detection of SARS-CoV-2 in saliva samples in a blind test. (a) Sample identification by colour 

code (red: SARS-CoV-2 positive samples, n=34; green: SARS-CoV-2 uninfected samples, n=20) according 

to RT-qPCR. (b) Distribution of the saliva samples showing the normalised count obtained with the FVR.(c) 

Correlation between the normalised counts and log of viral load [copies mL-1] by RT-qPCR of the blind 

test samples. The dashed line is a linear fit (R2 = 0.43) to the data from the positive samples that fall within 

our analytical range, eliminating the outliers shown by a circle. Outliers are defined as data points with 

residual values larger than two times the standard deviation of the entire sample. 
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In Figure 5.8 c, the signal from the FVR for the blind samples plotted against the log of viral load 

quantified by the RT-qPCR test shows a linear relationship (R2 = 0.43) within the analytical range 

(~ 103 - 107 copies mL-1) of our FVR. However, this linearity is not maintained over the full viral 

load range of the samples tested. More specifically, the response is linear and monotonically 

increases for low concentrations. For concentrations higher than 107 copies mL-1, the signal starts 

decreasing, almost linearly. A possible explanation for this behaviour is that the FVR response is 

dependent on the antigen concentration. Taking a closer look at the shape of the curve in Figure 

5.9, we can see two distinct regions: (i) an antibody excess region and (ii) an antigen excess 

region. The antigens on the viral particles act as a bridge in the antibody excess region, 

coagulating many labelled antibodies, resulting in an increase in the signal compared to the blank 

solution, and, also, an increase in the signal when viral particle concentration rises. The signal 

begins to decrease in the antigen excess region, most likely because the bridging process is 

unfavourable and the signal from the labelled antibodies is masked by the presence of excess viral 

particles. 

 

Figure 5.9: FVR normalised counts vs. RT-qPCR for the full viral load range measured in the blind 

test. The red dots represent the normalised counts from positive SARS-CoV-2 saliva samples measured with 

the FVR plotted against the log of the viral load determined by RT-qPCR. The grey line indicates the cut-

off line. The shaded blue area is the antibody excess region and the shaded red area is the antigen excess 

region. A vertical black dashed line divides the antibody and antigen excess regions. 

5.7 Quantification of SARS-CoV-2 in Saliva Samples 

The viral load quantification is performed using the standard curve with equation y=2.1742x-

2.3842. To account for the 1:100 dilution ratio used to prepare the blind test samples, the obtained 

viral load estimate is multiplied by 100. The statistical relationship between the viral load detected 

by RT-qPCR and our FVR, calculated using a Pearson's correlation test (Figure 5.10 a), shows a 

good correlation, with a coefficient r of 0.66 and a p value of 0.001 for the blind samples lying 

within our analytical measurement range (107 copies mL-1). We are unable to accurately quantify 

the viral load in samples that fall above the FVR's analytical limit, but we are still able to establish 

whether the tested sample is positive or negative. In order to better understand the correlation 

between the FVR and the RT-qPCR, a Bland-Altman plot is shown in Figure 5.10 b to examine 

the agreement of the two procedures.  
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Figure 5.10: FVR vs RT-qPCR. (a) Red dots represent the viral load quantification with the FVR reader 

versus the RT-qPCR viral load. Dashed red line is the linear regression of the quantification curve. The 

equation of the linear regression is y=0.8216x + 1.0612 (R2=0.43); (b) Bland-Altman plot showing the 

difference in the viral load prediction between the FVR reader and the RT-qPCR. The normalised root-

mean-square deviation NRMSD associated to the FVR predicted viral load is 9.2%. 

Considering that the differences in the measurements between the two methods have a normal 

distribution, we selected the limit of agreement as the mean of the differences in the measurements 

plus 1.96 times its standard deviation. The average of the differences is found to be 0.138, 

meaning that the FVR measures, on average, 0.138 times more than the log10 of the viral load 

with respect to RT-qPCR. 

5.8 Conclusion 

In this chapter, we have demonstrated the development of a novel flow-virometry reader (FVR) 

for fast, inexpensive and reliable SARS-CoV-2 diagnosis directly from saliva samples combining 

the short time to results of an antigen test and a high sensitivity, close to that of RT-PCR (Table 

5.1). The FVR was designed using a small microfluidic chip combined with a laser-pumped 

optical head to detect the presence of viruses directly from saliva samples tagged with fluorescent 

antibodies. For sample preparation, we developed a simple protocol based on saliva collection via 

spit, purification through filtration and labelling of the saliva samples with an Alexa-488 anti-

SARS-CoV spike antibody. The main advantage of such a protocol using saliva is that it does not 

require a dedicated lab, causes less discomfort to patients and can even be self-administered, 

unlike the nasal or nasopharyngeal swabs required for RT-PCR. Furthermore, the saliva was 

collected by directly spitting into a sterile tube without the use of the Salivette® test kit as is used 

in other detection techniques and without prior restrictions on the intake of food or drinks. Also, 

there is no need to purify the sample after labelling because the number of detected events in a 

positive sample is substantially higher than the antibody signal. Since efficient antigen-antibody 

binding is critical for detecting SARS-CoV-2 with the FVR, the labelling technique was first 

optimised by determining the optimal antibody concentration and incubation time required to 

prepare the samples. Next, a standard curve was created using clinical saliva samples with varying 

viral loads from SARS-CoV-2 positive patients confirmed by RT-qPCR. A low LOD of 3,834 

copies mL-1 was achieved and the FVR’s analytical range was established to be from ~ 103 to 107 

viral copies mL-1. In a blind test with 54 clinical samples, the reader was found to have a high 

sensitivity of 91.2 % and a high specificity of 90 %. Furthermore, we were able to predict the 

concentrations of the unknown samples (copies mL-1) based on our standard curve and compare 

them to the RT-qPCR results. After discarding the samples that returned a normalised count over 

the upper limit of our calibration curve, we were able to establish the viral load mL-1 of the 

measured samples within the detection range of the FVR, allowing a normalised root-mean-square 

deviation (NRMSD) of 9.2 %. 
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When comparing the above-mentioned FVR specifications with respect to other detection 

techniques that received FDA Emergency Use Authorization, it can be seen from Table 5.1 that 

in terms of sensitivity, FVR is similar to RT-PCR and RAT while slightly better than RT-LAMP 

depending on the manufacturer. The specificity falls within the lower end of RT-PCR while RT-

LAMP and RAT report a higher specificity compared to FVR. Therefore, future work will focus 

on improving the specificity of the assay. In terms of LOD, FVR is comparable to RT-PCR’s 103-

105 copies mL-1 and RT-LAMP’s 103-7.5×105 copies mL-1, respectively, while at least one to three 

orders of magnitude lower than RAT’s 104-107 copies mL-1 (approximate conversion). 

 
Table 5.1: A comparison of commercial tests for detection of SARS-CoV-210. 

Type 

of Test 
Detection Method Specimen 

Time to 

Results 
Sensitivity* Specificity* 

Limit of 

Detection 

(LOD)† 

Assay 

Complex

ity** 

Portabili

ty 

R
T

-P
C

R
 

Molecular assay for 

qualitative/ 

quantitative 

detection of 

specific gene 

sequences of 

SARS-CoV-2 

Upper and 

lower 

respiratory 

specimens, 

sputum, 

saliva 

2-4 h 87.5% – 100% 90% - 100% 
1 – 100 

copies/ µL 

Middle-

to-High 
Yes 

R
T

-L
A

M
P

 Molecular assay for 

qualitative 

detection of 

specific gene 

sequences of 

SARS-CoV-2 

Anterior 

nasal/ 

nasophary

ngeal 

swab, 

sputum, 

saliva 

15-60 

min 
93% – 100% 98% - 100% 

1 – 75 

copies/µL 
Middle Yes 

R
ap

id
 A

n
ti

g
en

 T
es

ts
 

(R
A

T
) 

Lateral flow 

immunoassay for 

qualitative 

detection of SARS-

CoV-2 

nucleocapsid 

protein 

Anterior 

nasal/  

nasophary

ngeal swab 

15 – 30 

min 
80% - 97% 96.6% - 100% 

101 – 104 

TCID50/mL 
Low Yes 

F
V

R
 

Flow virometry 

for qualitative/ 

quantitative 

detection of 

SARS-CoV-2 

spike protein 

Saliva 
25 – 30 

min 
91% 90% 

3,834 

copies/mL 

Low-to-

Middle 
Yes 

* Depending on manufacturer/ sample type/ collection 

** Low= does not require the use of pipette and it needs little operational steps. 

Middle = it requires the use of pipette and might require the use of additional specialized equipment 

(other than the detection system). 

High = it requires the use of trained personnel, pipette and additional specialized equipment (other than 

the detection system).  

†   Various assays report LODs in different units. Here, we use the unit specified by the manufacturer without 

converting to copies/mL to be more accurate. Units such as Median Tissue Culture Infectious Dose, TCID50, 

may be related to viral copies in different ways depending on the viral preparation. 

Based on the above findings, the FVR has great potential to bridge the gap between RAT and RT-

PCR tests, allowing for a fast, portable, user-friendly, and novel point-of-care device that can run 

up to 2000 tests per day. Its throughput could be substantially improved by multiplexing numerous 

samples within the same device and executing them all at the same time. In terms of cost, the 

current FVR has a bill of materials of approximately 10,000 € since it is built with off-the-shelf 

components. The overall cost of the system will be greatly reduced when transitioning from the 

current prototype to large-scale manufacturing. Saliva collection in that case could be performed 
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using a self-collection kit with a tube pre-filled with reagents and a filter to clarify the saliva. It is 

conceivable that the operational cost of a single test will be as low as 2 €. Furthermore, the 

technology can readily be extended to identify other possible variants of SARS-CoV-2 or other 

particular viruses, such as seasonal coronaviruses or the influenza virus, with correct antibody 

selection. To this end, future research should focus on antibody cross-reactivity investigations 

with other viruses and antigens. Additionally, efforts will be made to establish an integrated FVR 

for simultaneous antigen and antibody analysis of SARS-CoV-2. This combined testing device 

will be able to identify not only an active infection in the body (antigen detection), but also 

information on the immunological response to the infection or after vaccination (antibody 

detection). This will allow for a rapid evaluation of vaccine efficacy and the requirement for 

subsequent vaccination boosters. 
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CHAPTER 6   

Summary and Outlook 

This thesis was aimed at contributing to the field of particle detection and characterisation by 

developing robust, portable and inexpensive photonic sensors with adequate performance for a 

variety of industrial and biological applications. 

In Chapter 2, we discussed the necessity for particle characterisation, specifically the 

determination of particle size and counts. We presented a general overview of the most widely 

used and commercially available particle characterisation techniques and instruments, together 

with their characteristics, advantages, and limitations.  

Optical techniques based on light scattering have been shown to outperform traditional methods, 

particularly in determining the particle size distribution of samples, due to their high accuracy, 

short measurement time, and non-invasive detection principle. This formed the basis for the work 

presented in Chapter 3, in which we introduced the concept of a new design of a simple, compact, 

and reliable particle size analyser (PSA). Our device includes an innovative element, which is a 

patented angular spatial filter (ASF), together with a single CMOS image sensor, and off-the-

shelf electronics. By combining the hardware with a customised machine learning (ML) 

algorithm, we demonstrated that the proposed system can measure particles ranging from 

approximately 10 µm to 100 µm in size with a mean absolute percentage error (MAPE) of only 

0.72% for spherical particles. This performance is comparable to that specified by commercial 

laser diffraction (LD) based PSAs. We also presented the preliminary results from a flow-through 

experiment, which further showed the PSA's potential as an integrable online or at-line platform 

for quality control monitoring in industries such as pharmaceuticals and food, among others. 

The work detailed in Chapter 4 was aimed at improving the performance of the ASF by reducing 

residual spurious effects, such as internal reflections from its inner sidewalls, and incorporating 

this into an optimised PSA design capable of measuring particles smaller than 10 µm. We 

accomplished this by removing the forward unscattered light from the sample suspension, leading 

to an increased system sensitivity and capability to distinguish small particles, particle refractive 

index contrast and shape. When combined with a proper classification ML model, the PSA can 

distinguish between E. coli, Enterococcus sp. and silica particles in water with an accuracy of 

89% within the PSA's optimal operating concentration range. Furthermore, the findings obtained 

from testing deionized water with different bacterial concentrations using a regression ML model 

demonstrated the device's potential in predicting concentrations of E. coli and Enterococcus sp. 

with a mean absolute error (MAE) of only 0.36 and 0.16 within the limit of detection (LOD) of 

the system.  

For the specific detection of viruses, which are smaller than 1 µm, direct light scattering 

measurements alone are not sufficient. We addressed this in Chapter 5, where we described the 

concept behind the development of a portable and cost-effective flow-virometry reader (FVR) 

that takes advantage of the fluorescence detection mechanism of a traditional flow-cytometer 
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while overcoming its limitations in POC applications. To demonstrate a use case, we customised 

the FVR for the rapid detection of a SARS-CoV-2 complex sample, such as saliva, without the 

need for any laboratory equipment, e.g., a centrifuge. The measurement time was less than 30 

minutes, and we obtained an LOD of 3,834 copies mL-1, which is at least three orders of 

magnitude lower than the commercially available antigen tests on the market. The analytical 

measuring range was from ~ 103 to 107 viral copies mL-1. We validated the system in a blind test 

with 54 clinical samples and achieved a high sensitivity of 91.2% and a high specificity of 90%. 

Furthermore, when compared with RT-qPCR results, we demonstrated that we were able to 

quantify the viral load in the unknown saliva samples within the detection range of the FVR.  

The preliminary findings from the compact photonic sensors developed in this thesis show that 

these devices are powerful tools for particle characterisation with great potential for performing 

large-scale and high throughput measurements. This thanks to their low cost, portability, reduced 

testing time and simple measurement techniques that do not require specialised equipment or 

trained personnel. As a result of these benefits, the implementation of such devices will be 

particularly useful in medium to low-income countries, for example in rural areas or hard-to-reach 

locations where resources, budget, and skilled staff are limited. 

Outlook 

The devices described in this thesis were validated in controlled laboratory environments, and 

further research and development are required before the technologies can be fully exploited for 

practical applications in real environments. Future work will focus on several aspects which are 

outlined below. 

 The low prediction error obtained with the PSA for large particle measurement is for 

median diameter D50 only. In industrial applications, particle suspensions are often 

polydisperse in nature; therefore, defining a single average diameter does not provide a 

complete size description of the measured sample. Although the developed ML models 

were used to estimate D10 and D90 values to assess the particle size distribution, the 

prediction errors obtained from the initial results need to be improved further. Efforts will 

be focused on lowering the prediction error by including more data with diverse size 

distributions in the ML analysis.  

 

 When using the modified PSA for biological applications, it would be interesting to 

investigate the potential of the system in distinguishing other types of pathogenic bacteria, 

in addition to E. coli and Enterococci. Another route to explore is labelling E. coli with 

antibody-coated microbeads or alternatively magnetic beads for specific detection. In the 

former case, this could help further improve the limit of detection by enhancing light 

scattering from bacteria at low concentrations.   

 

 The FVR specificity in detecting SARS-CoV-2 may be improved by carefully selecting 

antibodies that only form complexes with the target antigen. In addition, with additional 

limited hardware changes, a similar approach may lead to the employment of the FVR 

for the detection of other viruses. The LOD could also be improved by increasing the 

sample size or adjusting the antibody-antigen ratio, for example. Moreover, further 

developments will be made to the microfluidic components to potentially allow 

simultaneous measurements of multiple samples. With these modifications, the system 

may reach a configuration for clinical trials in various settings, such as hospital 

emergency rooms, care homes, etc. 
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While the proposed devices have shown potential for applications, further work is also needed to 

elucidate which configurations are more likely to have a commercial impact and generate a 

product. To this end, engagement with end-users and customers is needed, and the devices will 

have to be customised for their specific applications. This will also require engineering work to 

make reliable working prototypes outside of the laboratory. 
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