
A Collaborative Statistical Actor-Critic Learning
Approach for 6G Network Slicing Control
Farhad Rezazadeh1, Hatim Chergui1, Luis Blanco1, Luis Alonso2, and Christos Verikoukis1

1 Telecommunications Technological Center of Catalonia (CTTC), Barcelona, Spain
2 Technical University of Catalonia (UPC), Barcelona, Spain

Contact Emails: {frezazadeh, hchergui, lblanco, cveri}@cttc.es, luisg@tsc.upc.edu

Abstract—Artificial intelligence (AI)-driven zero-touch massive
network slicing is envisioned to be a disruptive technology in
beyond 5G (B5G)/6G, where tenancy would be extended to the
final consumer in the form of advanced digital use-cases. In this
paper, we propose a novel model-free deep reinforcement learning
(DRL) framework, called collaborative statistical Actor-Critic (CS-
AC) that enables a scalable and farsighted slice performance
management in a 6G-like RAN scenario that is built upon mobile
edge computing (MEC) and massive multiple-input multiple-
output (mMIMO). In this intent, the proposed CS-AC targets
the optimization of the latency cost under a long-term statistical
service-level agreement (SLA). In particular, we consider the Q-th
delay percentile SLA metric and enforce some slice-specific preset
constraints on it. Moreover, to implement distributed learners, we
propose a developed variant of soft Actor-Critic (SAC) with less
hyperparameter sensitivity. Finally, we present numerical results
to showcase the gain of the adopted approach on our built OpenAI-
based network slicing environment and verify the performance in
terms of latency, SLA Q-th percentile, and time efficiency. To
the best of our knowledge, this is the first work that studies the
feasibility of an AI-driven approach for massive network slicing
under statistical SLA.

Index Terms—B5G/6G, collaborative Actor-Critic, latency, mas-
sive network slicing, statistical SLA, zero-touch.

I. INTRODUCTION

ZERO-TOUCH network and service management (ZSM)
framework reference architecture [1] is an attempt to

tackle the new challenges arising from massive and diversified
service requirements in the next-generation mobile networks.
In this paper, we focus on the algorithmic innovation and
solution aspects of the ZSM standard. Network slicing is the
embodiment of severing the network into different segments
that enables the multiplexing of virtualized and isolated logical
networks—or slices—on top of the same physical network
infrastructure. This paradigm is a paramount feature in B5G/6G
systems that leverages network softwarization and virtualization
technologies such as software-defined networking (SDN) and
network function virtualization (NFV). Moreover, the SLA
guarantees that slice-level quality of service (QoS) is fulfilled
by automating the control of underlying performance metrics
[2]. To account for the plethora of user patterns over different
slices and handle such a heterogeneous and complex network,
automated MANO operations require a flexible and scalable
design that considers also long-term performance.

This tendency towards fully automated MANO has aroused
intensive research interest in the application of AI and DRL
to tackle challenging NP-hard tasks. Koo et al., have proposed
a DRL-based network slicing method and improved resource
utilization and latency performance with time-varying traffic
[3]. In [4], the authors have proposed a scheme to effectively
allocate network resources. The authors have integrated the
alternating direction method of multipliers (ADMM) and DRL
where exploit the deep deterministic policy gradient (DDPG)
[5] as a state-of-the-art (SoA) Actor-Critic technique to learn
the optimal policy. Pujol Roig et al. have proposed an Actor-
Critic, called parameterized action twin (PAT) deterministic
policy gradient algorithm where automated MANO allows
a central unit (CU) to learn to re-configure resources au-
tonomously [6]. Liu et al. have studied a new decentralized
DRL-based resource orchestration system, to automate dynamic
network slicing in wireless edge computing networks [7]. In
[8], the authors have investigated a demand-aware inter-slice
resource management solution based on advantage Actor-Critic
(A2C) as a DRL algorithm. In [9], the authors have proposed
two centralized scheduling algorithms that take into account
latency and SLA requirements in terms of minimal demand and
allocate resources in network slicing systems. From this SoA
overview, it turns out that there is no comprehensive AI-driven
approach to support flexibility, scalability, and robust solutions
that integrating practical SLA constraints to cope with emerging
challenges in network slicing system such as optimizing service
provisioning latency.

In this work without loss of generality, we investigate a multi-
tenant network scenario with a developed variant of mMIMO
[10] edge computing approach as promising B5G/6G wireless
access technology for optimal resources allocation to minimize
the latency and automate the corresponding tasks. We present
the following contributions:

• We investigate the feasibility of a multi-objective and
multi-action approach where model-free agents learn to
jointly allocate optimal power and computing resources to
minimize the latency of service provisioning under long-
term statistical SLA, namely, Q-th delay percentile.

• We propose a massive DRL-based actor-learner framework
dubbed CS-AC. The CS-AC is a software framework
for designing and training DRL agents that attempts to

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. http://dx.doi.org/10.1109/GLOBECOM46510.2021.9685218

address complexity and scalability issues. To cope with
control challenges in network slicing such as increased
dynamism, heterogeneity, and extended training time of
slice instances, we separate the actor from learner where
CS-AC can be scaled up to several thousand parallel
actors-learners across a large collection of tasks without
sacrificing data efficiency. We elaborate the main motiva-
tions behind this approach in Sec. III.

• To implement distributed learners, we combine deep Q-
network (DQN) and policy gradients in form of Actor-
Critic [11] approach and propose a developed variant of
SAC [12] that we term stochastic Actor-Critic to reduce
the need for hyperparameter tuning and stabilize the learn-
ing procedure.

• We develop a 5G RAN network slicing environment
called smartech-v4 where we consider both power and
central processor (CPU) resources in a simulator interfaced
through OpenAI Gym [13], which is the most famous
toolkit in the DRL community.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Figure 1, we consider a slice-enabling cell-free
mMIMO network scheme with edge-cloud computing (central
unit/central processing units) capability and distributed access
points (APs) connected to a central server via serial fronthaul
links. Let us define the C-RAN network consisting of N APs
that cover M single-antenna users in a downlink setup. The
network slicing architecture consist of L ∈ N slice instances
where each slice accommodates Ml users with

∑L
l=1Ml = M .

Each user M sends network slice selection assistance informa-
tion (NSSAI) to assist the network in selecting a particular
network slice where it may be served by a maximum of eight
network slices simultaneously [14]. We suppose each user just
requests one type of service and thereby one slice instance at
each decision time step.

Figure 1: The slice-enabling cell-free mMIMO scheme.

We consider resource allocation (in NFV) tasks where the
mobile network operator (MNO) collects the free and unused
resources from the tenants and allocate them to the slices in
need. It is done either periodically to avoid over-heading or
based on requests of tenants. Moreover, we consider another
action concurrently to allocate power to different users. We
assume that all the APs are connected to a central server that
maintains and deploys a set of virtual network functions (VNFs)
to serve the users of distributed APs and also hosts agents for
the training process to learn best policies and actions for scaling
vertically the computing resources and consequently scale

horizontally for VNFs instantiation to minimize the latency
according to system states.

We follow a slotted resource allocation scheme, where the
central server allocates resources to new arriving users at the
start of the next slot. Indeed, the time horizon is discretized into
the decision time step where t ∈ N+. We define (t)l as number
of new service requests from all APs for l-th slice at time step
t where it follows an independent and identically distributed
Poisson process with parameter λ(t)

l . Therefore, the probability
of new demands to arrive at the central server for time-slot
of duration T is given by, P (

(t)
l =) =

(λ
(t)
l T)

! e−λ
(t)
l T ,

where λ(t)
l = max{x ∼ N (µl, σl,), 0} is time-varying value

to capture slow variations of network traffic over time by
sampling a Gaussian distribution with parameters µl and σl
[6]. Let us define vector of channel gains from the all N APs
to the user m as hm = [h1,m, h2,m, ..., hN,m]H ∈ CN×1,
where (·)H is the conjugate transpose and C represents the
complex set. Let consider the following channel model [15],
hn,m = 10−L

∗(dn,m)/20
√
ϑn,mΘn,mgn,m, where L∗(dn,m)

denotes the path loss with a distance of dn,m. Moreover, ϑn,m
is the antenna gain, Θn,m is the shadowing coefficient and gn,m
is the small-scale fading coefficient. The beamforming vector
vm = [v1,m, v2,m, ..., vN,m]H ∈ CN×1 is associated with user
m and whose expression is given by [16],

vm =
√
pm

(
IN +

∑M
j=1

1
σ2
v
hjh

H
j

)−1

hm∥∥∥∥(IN +
∑M
j=1

1
σ2
v
hjhHj

)−1

hm

∥∥∥∥ , (1)

where pm is beamforming power, IN denotes the N × N
identity matrix and σ2

v is the noise variance. Then we define
approximate data rate for user m with respect to channel band-
width B̂ and signal-to-interference-plus-noise ratio as follow,

R(t)
m = B̂ log2

(
1 +

∣∣hHmvm
∣∣2∑M

j 6=m |hHmvj |2 + σ2

)
. (2)

We suppose each user m has a task to be executed. Let define
data size of task m as d

(t)
m = R

(t)
m k

(t)
m , where k

(t)
m denotes

the transmission time and we consider the coefficient ζm to
compute the required computing CPU frequency cycles ∆

(t)
m as

proportional to data size of corresponding task, ∆
(t)
m = ζmd

(t)
m .

Then the computing delay is given by,

D(t)
m,1 =

ζmdm
Fm

, (3)

where Fm is computing speed of the edge central server. The
n-th fronthaul satisfies, χn,m =

∑
m∈M Rm [1(χn,m = 1)] ≤

ϕn,th capacity constraint, where χn,m ∈ {0, 1} is a binary
variable to detrmine the association between the n-th AP and
the m-th user. Let define g-th flow as a competitive flow for
f -th flow, then the f -th flow should wait for transmission of
the g-th flow. To compute the queuing delay n-th link we have,

D(t)
n,2 =

ψλD,n
ϕn,th

, (4)

where ψ denotes the maximum burst size in a fronthaul network
[17], and λD,n denotes the number of competitive flows at
n-th link. Therefore, the total delay for each task m and
corresponding fronthaul link n is given by,

D(t)
n,m = D(t)

m,1 +D(t)
n,2, (5)

and thereby the optimization problem defined as,

min

N∑
n=1

M∑
m=1

D(t)
n,m (6a)

subject to p(t)
m ≤ Pmax, ∀m ∈M, (6b)

∆(t)
m ≤ ∆th,l, ∀m ∈M,∀l ∈ L, (6c)

χ(t)
n,m ≤ ϕn,th, ∀n ∈ N, ∀m ∈M (6d)

f lQ

(
D(1)
n,m, ...,D(t)

n,m

)
≤ ηl, ∀l ∈ L (6e)

where Pmax is the maximum allowable power level and
{∆th,l} is the maximum CPU cycles threshold which can be
set based on MNO’s preferences and policies. A typical latency
SLA between slice l tenant and the MNO consists on imposing
a long-term statistical constraint on the distribution of latency
values. In this regard, we invoke the Q-th percentile metric
f

(t)
Q that captures, at each step t, the actual latency value

below which Q% of latency samples over the measurement
interval i = 1, . . . , t are located. We then enforce an slice-
specific upper bound ηl on it. To calculate f

(t)
Q (·) over set

Yl =
{
D(1)
n,m, ...,D(t)

n,m

}
, the elements thereof are sorted in

the ascending order, i.e., Yl = {z1, . . . , zt | zi < zi+1}, and
then the Q-th percentile is derived as,

f lQ

(
D(1)
n,m, ...,D(t)

n,m

)
= zj , j =

⌊
Q× (t+ 1)

100

⌋
. (7)

In this constrained optimization problem, the system latency
closely depends on date rate R

(t)
m , the underlying computing

resources delay D(t)
m,1, as well as transmission delay D(t)

n,2.
Specifically, user m allocated power pm has a direct impact
on the achieved data rate and thereby the required computing
resources for VNFs as well as the resulting computing delay.
This approach presents correlated models where the main aim
is to find the best policy for jointly allocating power and
computing resources to minimize the service provisioning la-
tency while respecting the long-term statistical SLA. Following
model-free DRL-based approaches [6]-[18], we formulate the
problem from an MDP perspective and develop a new DRL
scheme to cope with the underlying high dimensional state and
action spaces as detailed in the sequel.

III. CS-AC

Figure 2 presents the proposed cross-platform framework
(CS-AC) concerning the RAN data center. The architecture
consists of six main components: i) The network slicing en-
vironment (smartech-v4), ii) The slice-level SLA buffer that
stores the historical SLA-related metrics, namely, latency states
in the current scenario, to instantly calculate their empirical

distribution, such as the Q-th percentile, and feed it to the DRL
block, iii) The parallel actors typically run on CPUs and interact
with network environment to generate new experiences and be-
haviors (st : state, at : action, rt : reward, st+1 : next− st)
asynchronously and enforce the best actions, iv) The experience
replay (buffers) to store past experiences while coping with
catastrophic interference, v) The parallel learners to train and
optimize the model on GPUs where they sample a random batch
Bi, i ∈ N for all transitions (stB , atB , rtB , stB+1) of βi, and
vi) The memories (Mi) for sharing the parameters and models
where mitigate the load on learners for model update request
and also lessens the average read latency related to the actors.
The memories share the policy model of learners (φ) with actors
to update their policy (µφ). Moreover, the memories can solve
the problem of parameter synchronization of actors and learners
because they are asynchronous. Indeed, The policy gradient
parallelization approach that initially has proposed in A3C [19]
can reduce computation time and stabilizes the learning.

Figure 2: The proposed software-based framework for massive
network slicing.

Separating actors from learners in a network slicing is
motivated by improving the learning efficiency referring to
other high-throughput learning frameworks, such as Gorila [20]
and Impala [21]. Unlike the previous works, the inference
model in CS-AC is executed centrally by the learners. This
approach can reduce bandwidth requirements for transferring
updated model parameters from learners to actors while the
multiple buffers and memories mitigate read latency. We can
classify slices according to different scenarios and metrics (e.g.
QoS, priority, and tenant ID) and assign each class (ci) to
a collection of actors and learners. The CS-AC can support
unbounded limit actors for a massive network such as network
slicing. To reduce waiting time, the CS-AC ignores the slowest
actors. Following MDP in RL parlance, the state (st), action
(at) and proposed reward function (rt) are defined as follows:

1) State space: The state space provides some information
about different possible network configurations. Indeed, it helps
to learn the best policy (mapping states to actions) through
interaction with network slicing parameters. In our scenario,
the state transits to the next state at each time step t as input
can be characterized by S(t) = {S(t)

1 , S
(t)
2 , S

(t)
3 , S

(t)
4 }, where

(S
(t)
1) is the number of arrival requests for each slice, (S

(t)
2) is

data rate status, (S
(t)
3) refers to computing resources allocated

to each slice, and (S
(t)
4) is latency status with respect to latency

cost for each slice.
2) Action space: We define a continuous multi-action space

in telecommunication environment and pursue an experimental
approach aiming to allocate power and computing resources to
each slice and scrutinize the learning behaviour of the agent in
terms of minimizing latency for service provisioning where the
allocated power is given by,

A(t)
P ∈ {o|o ∈ R, 0 ≤ o ≤ P(t)

max}, (8)

where P(t)
max is an experimental value. Moreover, we consider

vertical scaling consists of either scaling up or down, i.e.,
increasing or decreasing the computing resources, respectively.
Therefore, the agents allocate computing resource according to
each time step,

A(t)
CPU ∈ {o|o ∈ R,−

M∑
m=1

∆(t)
m ≤ o ≤ ∆max −

M∑
m=1

∆(t)
m },

(9)
where A(t)

CPU is vertical scaling action for CPU resources.
Note that vertical scaling is limited with respect to the amount
of free computing resources available ∆max on the physical
server hosting the virtual machine. The complete action space
is given by, A(t) , A(t)

CPU ∪ A
(t)
P . Note that we do not

consider horizontal scaling and server selection because it
requires another algorithm with discrete action space.

3) Reward: The total network cost (Problem 6) is an
imprecise and very general metric to guide the agents to learn
best policy and thereby select the best actions. To enforce
both the statistical and punctual constraints, we introduce the
piecewise function Ω

(t)
l,m,

Ω
(t)
l,m = −%l,m1

(
∆(t)
m > ∆th,l ∪ f lQ

(
D(1)
n,m, ...,D(t)

n,m

)
> ηl

)
,

(10)
where %l,m is the penalty coefficient for violating either the
CPU constraint or the Q-th percentile SLA, which can be fine-
tuned. Consequently, the total return is given by,

r(t) =
1

1
M(t)

∑N
n=1

∑M
m=1D

(t)
n,m

+

L∑
l=1

M∑
m=1

Ω
(t)
l,m. (11)

We consider the number of users at each decision time step
(M (t)) to make a balance and normalize the network cost
between heavy and low traffic. This return function is used in
deep neural network (DNN) training. We propose this reward-
penalty technique to increase the expected return (reward, in
RL parlance) while minimizing the latency cost.

The learner part of CS-AC uses an Actor-Critic setup based
on a developed variant of SAC [12]. The DQN and policy
gradient are fundamentals of Actor-Critic methods where the
actor is a DNN to parameterize the policy and critic is another
DNN to parameterize the value function. Note that the actor
task in actor-learner is different from actor task in Actor-
Critic method. Unlike the DDPG [5] method, the SAC ben-
efits from stochastic policy gradient based on policy gradient
theorem [22]. The main goal in standard RL is to learn a

policy π(at, st) to maximize the expected sum of rewards.
The SAC method [12] benefits from a policy entropy term
H. Maximum entropy RL improves the exploration efficiency
of the policy. The objective for finite-horizon MDPs is given
by, Jπ = E

[∑T
i=t γ

i−t[ri + αH(π(·|si))]
]
, where γ is the

discount factor and α denotes a temperature parameter to
determine the relative importance of the H against the reward
and handle the stochasticity of the optimal policy.

To learn the optimal maximum entropy policies, we use the
soft policy iteration method. The convergence and optimality
of this approach have been verified in [23]. Our proposed
SAC method incorporates a set of techniques such as double
(clipped) Q-learning technique [24], target DNN to compute
true target in DQN, the experience replay to memorize past
experiences and solve the catastrophic interference issues, and
the delayed strategy [6] to update the policy, target networks
and temperature less frequently than the value network. The
goal is to mitigate very high sample complexity and meticulous
hyperparameter tuning and also stabilize the learning.

We parameterize functions Qθ(s, a) and πφ(a|s) to ap-
proximate the soft Q-value and policy where (Qθ1 , Qθ2) are
soft Q-value functions and (Qθ′1 , Qθ′2) are target soft Q-value
functions. The updates of Qθ1 , Qθ2 based on targets is given
by, y = r + γ(min

i=1,2
Qθ′i(s

′, a′)) − α log πφ(a′|s′), a′ ∼ πφ.

To train the soft Q-value, we can directly minimize,

JQ(θi) = E[(y −Qθi(s, a))2], i = 1, 2 (12)

The SAC method leverages a reparameterization trick [23]
to reduce variance estimates where reparameterize the policy
using a neural network transformation a = fφ(ξ; s). The policy
update gradients based on experience replay (β) is given by,

∇φJπ(φ) = E[−∇φα log(πφ(a|s)) + (∇aQθ(s, a)

−α∇a log(πφ(a|s))∇φfφ(ξ; s))]
(13)

The temperature α can be updated through following objec-
tive J(α) = E[−α log πφ(a|s)− αH]. The proposed approach
for a single agent of network slicing is summarized in Algo-
rithm 1.

IV. NUMERICAL RESULTS

To evaluate our method (CS-AC) described in section III,
we use our PyTorch-based custom environment (smartech-v4)
with a multi-processing approach interfaced through OpenAI
Gym [13] and compare this method against other SoA DRL
approaches, namely, SAC [12] and DDPG [5]. Note that the
benchmarks have a minor change to make algorithms consistent
and all of them support continuous action space and state space.
We consider a class of slices with three different slices (A, B,
and C). The corresponding class consists of 3 actors, 3 learners,
and 2 buffers. We discussed the procedure of generating new
service requests in section II. Moreover, the size of each task
is in the range [2, 20] Mb that is generated uniformly. There
exist 10 APs and a maximum of 17 registered subscribers that
are assigned randomly to different slices in each decision time

Algorithm 1: CS-AC
#Actor Procedure
Initialize replay buffer βc
Import network slicing environment (‘smartech–v4’)
Initialize action space A and state space S
t=0
while t < max_timesteps do

if t < start_timesteps then
Initial action a = env.action_space.sample() to fill buffer

else
Select action using the updated network parameters a ∼ µφ(a|s)

end
Apply the action in the network slicing
Observe next_state, reward, done, _ = env.step(a)
store the new transition (st, at, rt, st+1) into βc
if done then

obs, done = env.reset(), False
end
Obtain latest network parameters from Mc periodically
t=t+1

end
#Learner Procedure
Initialize actor network φ, critic network θ, and temperature α
Initialize (copy parameters) target networks θ′1, θ′2
Initialize learning rate `Z , `π, `α
Initialize memory Mc
while t < max_timesteps do

if t ≥ start_timesteps then
sample batch of transitions (stB , atB , rtB , stB+1)
θi ←− θi − `Q∇θiJQ(θi), i=1,2 #Update soft Q-function
if t mod freq then

φ←− φ+ `π∇φJπ(φ) #Update policy weights
α←− α− `α∇αJ(α) #Adjust temperature
θ′i ←− τθi + (1− τ)θ′i i=1,2 #Update target network

end
Update memory Mc periodically
Obtain updated parameters from Mc periodically

end
end

step, where the number of subscribers of slice-A is less than
slice-B and slice-C. The adopted percentile value during the
training is Q = 95%

Table I: Network parameters in simulation.

Network Parameter Value

Channel bandwidth 10 MHz
Background noise (σ2) -102 dBm
Antenna gain (ϑn,m) 9 dBi
Log-normal shadowing (Θn,m) 8 dB
Small-scale fading distribution (gn,m) CN (0, I)
Path-loss at distance dn,m (km) 148.1+37.6 log2(dm,n) dB
Distance dm,n distributed uniformly [0, 600]

Table I presents the network parameters. We set hyperpa-
rameters of DNNs through extensive experiments [25] and
adopt a similar architecture for both Actor-Critic and target
DNN models. We use 5 hidden layers and 128 units per layer
with batch size 128. Unlike SAC and DDPG methods that
use ReLU, CS-AC leverages GELU [26] for non-linearity. We
compute the performance of the algorithms based on the total
of 25× 104 decision time steps and evaluate the average over
each 104 iterations with regard to the best 3 of the 5 average
return episodes. In algorithm 1, freq = 2 refers to update
interval for updating policy and target soft Q-value networks.
Moreover, τ = 0.001 denotes the target smoothing coefficient
[24]. Note that the curves are smoothed for visual clarity based
on confidence interval over 3 trials.

In Figure 3, the learning curve of CS-AC outperforms
other approaches in the final performance. Indeed, the CS-AC
leverages a parallel rollouts technique via following parallel
multiple samples or batch gradient descent simultaneously.
As we mentioned in section III, the reward function benefits
from a reward-penalty technique, and agents learn to maximize
the average reward while minimizing the constrained latency
optimization task (Problem 6).

0 5 10 15 20 25

Time Steps (1e4)

0.04

0.02

0.00

A
v
e
ra

g
e
 R

e
tu

rn

Figure 3: Learning curves of smartech-v4 network slicing based
on continuous control benchmarks

As shown in Figure 4, the parallelization approach in CS-
AC yields performance improvement significantly compared
to SAC and DDPG methods in terms of wall-clock time
consumption on the network slicing environment. Note that the
Actor-Critic architecture in CS-AC consists of 5 DNNs while
SAC and DDPG have 6 and 4 DNNs respectively and this is
the reason for the lower wall-clock time of DDPG compared
to SAC. This evaluation was carried out 100 times over
averaging of 50 time steps. To analyze the final performance of
algorithms, we should consider both average return and wall-
clock time.

CS-AC SAC DDPG

2000

4000

W
a
ll
-c

lo
c
k
 t

im
e
 (

s
)

Figure 4: Time efficiency comparison.

Figure 5 demonstrates the performance of CS-AC in terms
of latency compared to SAC and DDPG. The agents learn to
tune optimal power and computing resources to minimize the
latency concerning different traffic demands and network con-
figurations (states). Figures 5-(a), 5-(b), and 5-(c) show that the
performance of CS-AS is better than other approaches for slice-
A, slice-B, and Slice-C. Indeed, the CS-AS can surmount the
curse of dimensionality while coping with the overestimation
problem [24] in Actor-Critic methods and stabilize the learning
procedure. Figure 6 presents the latency percentile vs. Q after
the training, i.e., in evaluation mode with η = [10, 20, 15]
ms latency upper thresholds for slice-A, slice-B, and slice-
C, respectively. Since the CS-AC has been trained with 95%-
perectile statistical constraints, we remark that the three slices
are approximately respecting the enforced latency upper bound
at Q = 95, i.e. the long-term percentile-based SLA is respected.

0 10 20

Time Steps (1e4)

0

5

10

15

20

A
v
e
ra

g
e
 L

a
te

n
c
y
(m

s
/u

)

(a) Latency (Slice-A)

0 10 20

Time Steps (1e4)

5

10

15

20

25

A
v
e
ra

g
e
 L

a
te

n
c
y
(m

s
/u

)
(b) Latency (Slice-B)

0 10 20

Time Steps (1e4)

5.0

7.5

10.0

12.5

15.0

17.5

A
v
e
ra

g
e
 L

a
te

n
c
y
(m

s
/u

)

(c) Latency (Slice-C)

Figure 5: Network performance comparison between CS-AC and other DRL benchmarks.

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98

Q

8

10

12

14

16

18

20

L
a
te

n
c
y
 Q

-P
e
rc

e
n
ti

le
 (

m
s
)

Figure 6: Latency percentile vs. Q in evaluation mode with
η = [10, 20, 15] ms.

V. CONCLUSION

In this paper, we have presented a novel AI-driven software-
based framework for control massive network slicing in
B5G/6G, dubbed CS-AC. Specifically, we have considered a
slice-level statistical DRL method based on the SAC algorithm
for allocating power and computing resources dynamically to
minimize a latency-aware cost optimization under Q-th delay
percentile SLA metric. The numerical results of the proposed
actor-learner approach have shown that the target Q-th per-
centile is respected while also guaranteeing better performance
in terms of latency and time efficiency compared to other SoA
DRL benchmarks.

REFERENCES

[1] ETSI GS ZSM 002, “Zero-touch Network and Service Management
(ZSM),” Reference Architecture, Aug. 2019.

[2] M. Asif Habibi et al., “The Structure of Service Level Agreement of Slice-
Based 5G Network,” (Invited Paper) in IEEE International Symposium on
Personal, Indoor and Mobile Radio Communications (PIMRC), 2018.

[3] J. Koo et al., “Deep Reinforcement Learning for Network Slicing with
Heterogeneous Resource Requirements and Time Varying Traffic Dynam-
ics,” in IEEE CNSM, 2019.

[4] Q. Liu et al., “DeepSlicing: Deep Reinforcement Learning Assisted
Resource Allocation for Network Slicing,” in arXiv:2008.07614v2, 2020.

[5] T.P. Lillicrap et al., “Continuous control with deep reinforcement learn-
ing,” in ICLR, 2016.

[6] JS. Pujol Roig et al., “Management and Orchestration of Virtual Network
Functions via Deep Reinforcement Learning,” in IEEE JSAC, vol. 38, no.
2, pp. 304-317, 2020.

[7] Q. Liu et al., “EdgeSlice: Slicing Wireless Edge Computing Network with
Decentralized Deep Reinforcement Learning,” in IEEE ICDCS, 2020.

[8] R. Li et al., “The LSTM-Based Advantage Actor-Critic Learning for
Resource Management in Network Slicing with User Mobility,” in IEEE
Communications Letters, Vol. 24, No. 9, pp. 2005-2009, 2020.

[9] F. Fossati, S. Moretti and S. Secci, “Multi-Resource Allocation for
Network Slicing under Service Level Agreements,” in 10th International
Conference on Networks of the Future (NoF), pp. 48-53, 2019.

[10] J. Zhang et al., “Cell-Free Massive MIMO: A New Next-Generation
Paradigm,” in IEEE Access, vol. 7, pp. 99878-99888, 2019.

[11] I. Grondman et al., “A Survey of Actor-Critic Reinforcement Learning:
Standard and Natural Policy Gradients,” in IEEE Transactions on Systems,
Man, and Cybernetics, Vol. 42, no. 6, pp. 1291-1307, 2012.

[12] T. Haarnoja et al., “Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor,” in ICML, 2018.

[13] G. Brockman et al., “OpenAI Gym,” in arXiv:1606.01540, 2016.
[14] ETSI GS NFV-MAN, “Network Functions Virtualisation (NFV)-

Management and Orchestration,” V1.1.1, 2014.
[15] Y. Shi et al., “Group sparse beamforming for green Cloud-RAN,” in IEEE

Transactions on Wireless Commun., Vol. 13, No. 5, pp. 2809-2823, 2014.
[16] E. Bjornson et al., “Optimal multiuser transmit beamforming: A difficult

problem with a simple solution structure,” in IEEE Signal Processing
Magazine, vol. 31, no. 4, pp. 142-148, 2014.

[17] Y. Nakayama et al., “Low-latency routing scheme for a fronthaul bridged
network,” in IEEE/OSA Journal of Optical Commu. and Net., Vol. 10,
No. 1, pp. 14-3, 2018.

[18] Q. Liu et al., “EdgeSlice: Slicing Wireless Edge Computing Network with
Decentralized Deep Reinforcement Learning,” in IEEE ICDCS, 2020.

[19] V. Mnih et al., “Asynchronous Methods for Deep Reinforcement Learn-
ing,” in arXiv:1602.01783v2, 2016.

[20] A. Nair et al.,“Massively parallel methods for deep reinforcement learn-
ing,” in ICML, Deep Learning Workshop, 2015.

[21] L. Espeholt et al., “Impala: Scalable distributed Deep-RL with importance
weighted actor-learner a rchitectures,” in arXiv:1802.01561v3, 2018.

[22] D. Silver et al., “Deterministic policy gradient algorithms,” in ICML,
2014.

[23] T. Haarnoja et al., “Soft actor-critic algorithms and applications,” in
arXiv:1812.05905, 2018.

[24] S. Fujimoto et al., “Addressing function approximation error in actor-
critic methods,” in ICML, 2018.

[25] F. Rezazadeh et al., “Continuous Multi-objective Zero-touch Network
Slicing via Twin Delayed DDPG and OpenAI Gym,” in IEEE GLOBE-
COM, 2020.

[26] D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),” in
arXiv:1606.08415, 2020.

