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The pseudogap phenomenology is one of the enigmas of the physics of high-Tc superconductors.
Many members of the cuprate family have now been experimentally characterized with high reso-
lution in both real and momentum space, which revealed highly anisotropic Fermi arcs and local
domains which break rotational symmetry in the CuO2 plane at the intraunit cell level. While
most theoretical approaches to date have focused on the role of electronic correlations and doping-
induced disorder to explain these features, we show that many features of the pseudogap phase
can be reproduced by considering the interplay between electronic and nonlinear electron-phonon
interactions within a model of fluctuating Cu-O-Cu bonds. Remarkably, we find that electronic
segregation arises naturally without the need to explicitly include disorder. Our approach points
not only to the key role played by the oxygen bond in the pseudogap phase, but opens different
directions to explore how nonequilibrium lattice excitations can be used to control the properties of
the pseudogap phase.

I. INTRODUCTION

The physics of high-Tc cuprate superconductors is
one of the great challenges of contemporary many-body
physics. Independently of material details, high-Tc su-
perconductors support a very rich and complex phase
diagram [1, 2]. While the Mott insulator and the ba-
sic phenomenology of d-wave superconductivity itself are
reasonably well understood, the nature of the metallic
phase from which superconductivity emerges is a mystery
of the high-Tc landscape. In particular, the origin of the
pseudogap metal (PG) [3–5]—a phase with highly sup-
pressed low energy excitations that appears as the hole
doping is increased beyond the Mott insulator phase, and
also above the superconducting dome up to a character-
istic temperature T ∗—is a widely debated topic. The
pseudogap has two complementary intriguing features:
anisotropic Fermi arcs in momentum resolved photoe-
mission spectra [6–8] instead of closed Fermi surfaces ex-
pected of metallic states, and real-space nanoscale C4

(discrete rotational) symmetry-breaking domains often
associated with a local charge modulation [9–11].

The Fermi-surface properties of the PG phase [12–19]
have been theoretically linked to various mechanisms:
topological order and spin liquid physics [20], phase inco-
herent d-wave superconductivity [21–26], and the break-
ing of various electronic symmetries not necessarily re-
lated to superconductivity [27–35]. A number of elec-
tronic correlation-based approaches [36, 37] predict ne-
matic C4 symmetry-breaking real-space orderings, where
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the organization of such phases into nanoscale domains
is usually considered to arise from glassiness, i.e., the
disordering effect of impurities [38, 39]. While the main
route to explain the high-Tc phenomenology and its as-
sociated PG has been undertaken via electronic corre-
lations, several effects suggest that the coupling to the
lattice modes should not be neglected. These include the
anomalous isotope effect [40], the universal oxygen vibra-
tion frequency shift in the superconducting phase [41–43],
and more recently the identification of the inequivalence
of oxygen electronic and vibrational states in the two lat-
tice directions of the CuO plane in the PG phase [44, 45].
Furthermore, experiments which drive the Cu-O bond
to large displacements with resonant femtosecond laser
pulses have shown evidence that a light-induced super-
conducting phase can be achieved for temperatures up to
T ∗ [46].

A development in this direction has been made through
the modeling of fluctuating Cu-O-Cu bonds [47–49]:
these works were able to reproduce the d-wave super-
conductivity and some characteristics of the PG with-
out electronic correlation effects. Interestingly, the fluc-
tuating bond model (FBM) predicts a uniform smec-
tic/nematic oxygen bond order with C2 spatial symme-
try. The mechanism for its disintegration into the exper-
imentally observed nanoscale domains remains, however,
unclear.

In this work, we revisit the FBM and show that (i)
its uniform smectic PG phase is intrinsically unstable to-
wards macroscopic charge separation, (ii) it is therefore
necessary to include effects of Coulomb interactions and
consider the PG phase resulting from the interplay of
bond-phonon instabilities and electron correlations, (iii)
this interplay leads to a nanoscale phase separated PG
in real space with a local C4 symmetry-breaking bond
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order and Fermi arcs in momentum space, and (iv) the
nanoscale separation in this scenario does not result from
quenched disorder. However, as reported in experiments,
the PG is enhanced (reduced) by adding magnetic (non-
magnetic) impurities to the system.

II. DESCRIPTION OF THE FLUCTUATING
BOND MODEL

The FBM describes the interplay of the buckling of
anharmonically oscillating Cu-O-Cu bonds and hopping
of electrons via a non-linear electron-phonon coupling.
The Hamiltonian HFBM = Hel + Hph + Hel-ph consists
of the bare electron and phonon Hamiltonians, and the
electron-phonon interaction. The bare electron Hamilto-
nian reads

Hel = −t0
∑
〈i,j〉,σ

c†i,σcj,σ + t′
∑
〈〈i,j〉〉,σ

c†i,σcj,σ − µ
∑
j,σ

nj,σ,

(1)
where cj,σ (nj,σ) is the electron annihilation (occupation)
operator of a spin-σ electron in the 3dx2−y2 orbital cen-
tered on site j, and t0 and t′ are the nearest- and next-
nearest neighbor hopping amplitudes. The bare phonon
Hamiltonian is written as the sum over the bond oscilla-
tors,

Hph =
∑
b

p2
b

2M
+
χ0

2
u2
b +

w

16
u4
b , (2)

where M is the O mass and ub is its displacement per-
pendicular to the Cu-O-Cu nearest-neighbour bond b.
The oscillator potential has a double-well structure with
χ0 < 0 and w > 0. A strong quartic potential for
the Cu-O bond has been recently observed in coher-
ent phonon experiments in Yttrium Barium Copper Ox-
ide [50]. The electron-phonon interaction couples the
anti-bonding electron orbital charge Qb = 1

2

∑
σ(ni,σ +

nj,σ − c†i,σcj,σ − c†j,σci,σ) nonlinearly to the displacement
ub,

Hel-ph = −ν
2

∑
b

u2
bQb. (3)

In this work, we show that the effects due to the in-
terplay of HFBM and Coulomb interactions, which we
consider as maximally screened, i.e., via an on-site term
U
∑
i ni,↑ni,↓, are of defining importance. These inter-

actions are distinct from the long-range interactions be-
tween charges in antibonding orbitals∝QbQb′ at different
bonds considered in earlier works on FBM [48, 49].

III. MEAN-FIELD DECOUPLING OF THE
ELECTRON-PHONON INTERACTION

The large dimension of the Hilbert space of the Hamil-
tonian HFBM makes it impossible to treat with exact

numerical methods: In addition to the square lattice of
fermions, the motion of each O atom represents an ad-
ditional continuum quantum degree of freedom. Hence,
one needs to perform a series of approximations in order
to extract the physics of the model.

Due to the large difference in electron and O masses,
the motion of the latter on each bond can be treated as
an oscillation around the quartic potential minima, which
allows for a mean-field (MF) decoupling. One defines the
mean-field FBM as

HFBM = HMF
FBM + ∆HFBM, (4)

where HMF
FBM differs from HFBM in the electron-phonon

interaction term

HMF
el-ph =− ν

4

∑
b,σ

〈u2
b〉(ni,σ + nj,σ − c†i,σcj,σ − c†j,σci,σ)

− ν

4

∑
b,σ

u2
b〈ni,σ + nj,σ − c†i,σcj,σ − c†j,σci,σ〉

+
ν

4

∑
b,σ

〈u2
b〉〈ni,σ + nj,σ − c†i,σcj,σ − c†j,σci,σ〉.

(5)

Notice that the MF Hamiltonian consists of a quadratic
electron Hamiltonian with renormalized bond-dependent
hopping amplitudes tb = t0 − ν〈u2

b〉/4, and a set
of isolated phonon oscillators with renormalized bond-
dependent χb = χ0 + ν〈Qb〉/2. This MF system can be
solved by finding, self-consistently, the values 〈u2

b〉 and
〈Qb〉 minimizing the free energy of the hole system (see
Appendixes A and B for details).

Finally, in order to benchmark the accuracy of the MF
decoupling of the electron-phonon term, we have exactly
solved a simplified system of a four-site lattice and com-
pared the results of the two approaches (see Table I in
Appendix C for a quantitative analysis). The results
show that the MF energy is higher than the one obtained
through exact diagonalization (ED), but close to it, and
that the effective hopping tb is also similar in the two
approaches.

IV. INSTABILITY OF THE FBM

The authors of Refs. [47–49] found the spontaneous
symmetry breaking C4 to C2 〈u2

x〉 6= 〈u2
y〉 within a trans-

lationally invariant mean-field ansatz. From the elec-
tronic viewpoint, this is a bond ordered state with dif-
ferent hopping strengths tx 6= ty. The PG phase is then
characterised by the splitting of the Van Hove singularity,
which has an energy scale of the order of ΩPG ∝ |tx− ty|.
This leads to a strong reduction of the density of states
between the Van Hove peaks. Figure 1 shows the order
parameter ΩPG with respect to hole doping δ = 1− n (n
is the electron density) at different temperatures (solid
lines). We notice that the corresponding Fermi surface
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FIG. 1. Pseudogap phase as a function of hole doping and for
different temperatures. The Figure shows the homogeneous
MF parameter |tx − ty| of the HFBM Hamiltonian on an 80×
80-site lattice (solid lines) and the spatial average |tx − ty|
of the residual interactions model on a 30 × 30-site lattice
(dashed lines). The inset depicts the chemical potential as a
function of the hole doping at 174 K. We observe a negative
compressibility ∂µ/∂n < 0 in the homogeneous PG phase of
HFBM, which indicates the instability of this phase. On the
contrary, the PG phase of HRI has a positive compressibility.
The parameters of both Hamiltonians are fixed to t0 = 0.0083,
t′ = 0.0011, ν = 0.03, w = 0.17, χ0 = −0.0025, and U = 0,
where we use atomic units (energy E0 = 27.2 eV and length
a0 = 0.53 Å).

does not present Fermi arcs, which exhibit a C4 symme-
try. Instead, the system only has a suppression of the
spectral weight at ktx>ty = (π, 0) or kty>tx = (0, π).
The authors of Ref. [47] suggested that impurities would
form, in real space, domains of the two sectors of the
symmetry breaking, leading to a restoration of the Fermi
arcs.

A more careful analysis nevertheless shows that
this homogeneous PG solution is intrinsically unsta-
ble. The inset of Fig. 1 shows that the compressibil-
ity ∂µ/∂n = −∂µ/∂δ is negative in the PG phase. We
find this feature not to be specific to the choice of FBM
parameters but rather to persist for 〈u2

x〉 6= 〈u2
y〉 solu-

tions. The effects of this instability can be visualized
in real-space calculations using an unrestricted MF ap-
proach, in which the self-consistent averages 〈u2

b〉 and
〈Qb〉 are allowed to be independent for each bond. One
then obtains macroscopic phase separation with distinct
uniform regions of low and high electron density, without
any bond order (see Fig. 2 for U = 0).

V. INCLUSION OF ELECTRON
INTERACTIONS: TOWARDS AN EFFECTIVE

MODEL

An important conclusion of the previous Sec. IV is that
Coulomb interactions are intrinsically needed to suppress
the large charge imbalance of the FBM, and are therefore
not only interesting from the point of view of competing

0 30x/a
0

30

y
/a

δ =0.2 (U = 3.6t0) δ =0.1 (U = 3.6t0) δ =0.1 (U = 0)

0 30x/a
0

30

y
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FIG. 2. Real-space features of HFBM+U at KBT = t0/15
for different dopings on a 30x30-site lattice. Parameters are
set as in Fig. 1, except for the Hubbard, which is specified
on each column. (a) Density plots showing microphase sep-
aration with small density amplitude (left and center) and
macrophase separation with huge density amplitude (right).
(b) Local spin polarization showing strongly polarized anti-
ferromagnetic (AF) phase in the cases with finite U (left and
center).

phases (e.g., the charge density wave). A minimal exten-
sion of the FBM including Coulomb interactions leads to
the Fermi-Hubbard model with bond phonons

HFBM+U = He +Hph +Hel-ph + U
∑
i

ni,↑ni,↓. (6)

A rigorous analysis of the FBM+U Hamiltonian, for U
values typical for cuprate superconductors, constitutes a
great challenge due to the strong electron correlations
brought by the Hubbard term. In the following, we first
discuss the numerical results obtained under different ap-
proximations. We then present an effective model that
can be numerically studied in large clusters and leads to
a stable pseudogap phase.

A. Hartree-Fock study of the FBM+U

We first study the effect of a large Hubbard repulsive
U on the phase separation with the unrestricted Hartree-
Fock (HF) decoupling

(ni,↑ni,↓)
HF

= 〈ni,↑〉ni,↓ + ni,↑ 〈ni,↓〉 − 〈ni,↑〉 〈ni,↓〉 .
(7)

where we do not impose the translational invariance
ansatz of Sec. IV. The solution of the self-consistent
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FIG. 3. Exact diagonalization results for KBT = t0/15. (a)
U = 0. (b) U = 3.6t0. (c) U = 3.6t0, ν = 0. We show the
relevant local observables on a 3× 3 lattice at electron filling
8/9. The site colors encode the on-site occupation while the
bond colors encode the values of the bond charge Qb. The
color scales are shown in the lower panel.

equations (see Fig. 2) shows that, for a sufficiently large
U & 3t0, the on-site interaction cures the macrophase
separation generated by the electron-phonon interaction:
the system exhibits smaller disconnected charge domains
with lower density fluctuations. However, we do not ob-
serve any local C4 symmetry breaking. This is due to
the well-known overestimation of the magnetic correla-
tions from the HF decoupling (see, e.g., Ref. [51]). In
particular, the system has here a true gap with antiferro-
magnetic order at the relevant dopings and temperatures,
as shown in Fig. 2(b), which masks any PG features.

B. Exact diagonalization study of the FBM+U

We now characterize more rigorously the PG close to
half filling and in the presence of Hubbard interactions.
To this end, we study the FBM+U model for a 3 × 3
cluster with periodic boundary conditions. We treat the
Hubbard interactions exactly and the electron-phonon in-
teractions with an unrestricted MF decoupling. In Fig. 3,
for the unpolarized subspace of eight electrons (density
n = 0.89), we observe macrophase separation at U = 0
with large density fluctuations through the lattice. For
a moderately large interaction U = 3.6t0, these fluctua-
tions are strongly suppressed. Importantly, the C4 sym-
metry breaking of the bonds is manifest and survives the

formation of local magnetic moments.
We emphasize that the exact treatment of the FBM+U

model for larger system sizes is numerically challenging
due to the large values of U typical of the cuprates. Nev-
ertheless, we are here interested in the phonon bond order
mechanism of the PG state and the associated generation
of microphase separation, and the previous numerical re-
sults point to a scenario where electronic correlations do
not generate the PG phase but are essential to stabilize
it.

C. Residual interactions model

We propose to discard the spatial fluctuations of the lo-
cal density in the electron-phonon interaction as it would
allow one to better treat larger systems without having
the exaggerated effects of magnetic correlations at low
hole doping. This effective model preserves the main
effect of the repulsive interaction, which is to prevent
macrophase separation. One then obtains a model with
at most a residual small U that now does not lead to mag-
netic order at temperatures relevant for the PG phase.
We will see that this approximation reproduces qualita-
tively the ED results of the FBM+U model, preventing
the macrophase separation while allowing for a C4 sym-
metry breaking.

The resulting model, which we call the residual inter-
actions (RI) model, differs from the FBM in the electron-
phonon term, which is obtained by replacing the number
operators ni,σ by the average density per spin species
〈nσ〉 in the Qb of Eq. (5). The latter gives rise to an
effective

Q̃b = −1

2

∑
σ

(c†j,σcj+1,σ + H.c.), (8)

and a (total) density dependent renormalization of the
quadratic part of the oscillator potential,

χ̃0 = χ0 − ν/2〈n〉. (9)

VI. PSEUDOGAP PHASE IN THE RI MODEL

In this section we analyze in depth the pseudogap
phase of the RI model within MF+HF approximation
with no translational invariance.

A. Fermi arcs and nanoscale domains

Figure 1 shows the pseudogap parameters obtained for
the unrestricted MF of the RI model for U = 0 at differ-
ent temperatures (dashed lines). These results are quali-
tatively similar to the ones obtained for the homogeneous
solution of the FBM, but with a positive compressibility.
We now characterize more in depth the PG phase of the



5

0 20x/a
0

20

y
/a

δ =0.2

0 20x/a

δ =0.1

0 20x/a

δ =0.05

−π πkxa

−π

π

k
y
a

−π πkxa −π πkxa

tb/t0D(k)

(a)

(b)
0.5 1.0 1.5 2.0 0.5 0.6 0.7 0.8

FIG. 4. PG dependence on hole doping for a fixed temper-
ature T = 174 K on a 30 × 30-site lattice for the RI model
with the parameters of Fig. 1. (a) Real-space plots of the
effective electron hopping at each bond tb. For δ = 0.2, the
system presents an homogeneous C4 symmetry breaking. For
smaller dopings, we observe the formation of nanoscale do-
mains with ladder structures. (b) Fermi surface D(k) in the
Brillouin zone. We observe the appearance of Fermi arcs when
increasing the hole doping.

RI model. Figure 4 shows the PG dependence with re-
spect to hole doping for a fixed temperature. Figure 4(a)
shows the real-space distribution of the bond order pa-
rameter: for large doping, i.e., δ = 0.2, we observe a
homogeneous C4 symmetry breaking. Then, for smaller
dopings, the system adopts a microphase separation with
nanoscale domains, restoring on average the C4 symme-
try. We also study the Fermi surface D(k) given by

D(k) =
∑
j∈F
| 〈k|φj〉 |2, (10)

where |k〉 are the periodic Bloch states of the square lat-
tice, |φj〉 are the single-particle states of the unrestricted
Hartree-Fock solution, and F is the subset of these states
whose energy lies inside a window of width t0/10 around
the Fermi energy. The results are shown in Fig. 4(b).
For δ = 0.2, close to the C4 symmetry-breaking tran-
sition, the system is homogeneous and the Fermi sur-
face is simply connected. The quasiparticle energies at
the nodal points k = (±π/2,±π/2) are not affected by
bond orderings, whereas at antinodal points, the depen-
dence on bond orderings is stronger. Therefore, for small
dopings where microphase separation occurs, the system
presents nodal “cold regions” [52], forming characteristic
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87 K

0 20x/a
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0 20x/a

260 K

−π πkxa

−π

π

k
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−π πkxa −π πkxa

tb/t0

(a)

(b)
D(k)

0.5 1.0 1.5 2.0 0.5 0.6 0.7 0.8

FIG. 5. PG dependence on temperature for a fixed hole dop-
ing of δ = 0.1 on a 30× 30-site lattice for the RI model with
the parameters of Fig. 1 (a) Real-space plots of the effective
electron hopping at each bond tb. The nanoscale domains are
smeared out for increasing temperatures. (b) Fermi surface
in the Brillouin zone. As the temperature is increased, the
Fermi arcs evolve towards a closed metallic surface.

anisotropic Fermi arcs, and strongly scattered “hot re-
gions” at anti-nodal points, resulting in a disconnected
Fermi surface. This picture bears some similarity to the
nematic glass theory [33, 39], which however depends on
external disorder. The Fermi arcs’ length increases with
hole doping and leads to reconstruction of a simply con-
nected Fermi surface close to the C4-C2 transition. The
latter is in qualitative agreement with experimental ob-
servations [1, 53].

Figure 5 depicts the dependence of the PG with re-
spect to temperature for a fixed doping. For increasing
temperature, a progressive closing of the Fermi arcs to-
wards a metallic Fermi surface is observed. In real space,
the local amplitudes of the inhomogeneous C4 symmetry
breaking then become strongly suppressed.

B. Role of impurities in the RI model

The previous section shows that the nanoscale domains
appear without the need of any type of quenched disor-
der. We now address the effect of non-doping impurities
on the PG phase. These are often used as (destructive)
probes of superconducting and PG properties of high-Tc

materials. In particular, disorder is expected to destabi-
lize nematic phases. However, two different behaviors are
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FIG. 6. Density of states N (ω) histograms for the cases con-
sidered in Fig. 4 of the main text. The number of bins is set
to 45. For the residual interactions model (FBM+RI) we set
the bare hole density δ = 0.1, T = 174 K, and U/t0 = 1.6 on
a 30× 30 lattice. The rest of the parameters are fixed to the
same values of the main text.

observed in experiments [54]: while substituting Cu for
nonmagnetic Zn suppresses the PG, substitution by mag-
netic Ni, remarkably, seems to have an enhancing effect
on the PG energy scale. Here, we show that the results
obtained from the RI model are in qualitative agreement
with this impurity related phenomenology. For Ni impu-
rities, we use the Hamiltonian proposed by Vašátko and
Munzar [55]

H =− t0
∑
〈i,j〉,σ

c̃†i,σ c̃j,σ + J
∑
〈i,j〉

(
Si · Sj −

1

4
ninj

)
+ ENi

∑
α

nα − 4K
∑
α

S′α · Sα,
(11)

where c̃†i,σ = c†i,σ(1 − ni,−σ) are the electron creation
operators in the 3dx2−y2 orbitals projected such as to

avoid double occupancy ni =
∑
σ c
†
i,σci,σ, and Si are the

spin operators of the d orbital. The Ni impurity sites
are denoted as α and host additional 3d3z2−r2 orbitals.
These orbitals carry a magnetic spin S′α. The last term
in Eq. (11) describes ferromagnetic Ni on-site interaction
between d orbitals. Considering an initial AF state polar-
ized in the z direction and in mean-field approximation,
only the Sz components survive,

Sα · S′α ≈ 〈Szα〉S′zα + Szα〈S′zα 〉 − 〈Szα〉〈S′zα 〉. (12)

Since the 3d3z2−r2 orbitals are not affected by hopping,
their spin within such approximation is classical. Nev-
ertheless, the effect of these classical spins S′α cannot
be considered as quenched disorder, as their equilibrium

0 1 2 3

ω/t0

0.0

0.5

1.0

σ
1
c

(ω
)

[a
rb

.
u

n
it

s] pure

6% Ni

6% Zn

metallic

FIG. 7. Effect of impurities on the real part of the c-axis
conductivity spectra in the residual interactions model for
hole density δ = 0.1, T = 174 K, and U/t0 = 1.6 on a 30 ×
30 lattice. The metallic solution (violet, dashed curve) is
compared to the PG phase with and without impurities. The
PG without impurities presents a characteristic peak. The
latter is shifted to the left (right) for Zn (Ni) impurities.

magnetization is determined self-consistently with the
other spins Sα: at each step of the self-consistent loop,
the requirement for 〈S′zα 〉 = 1/2 sgn(Szα) aligns it to the
local 3dx2−y2 orbital magnetization Sα lowering the en-
ergy by

− 4K ′Szα〈S′zα 〉 ≈ −4K ′(Szα)2. (13)

The latter follows from that sgn(4Szα) ≈ 4Szα. As a con-
sequence, we can consider the following effective Hamil-
tonian for Ni impurities: for the doped sites α we neglect
the shift in the chemical potential proportional to ENi

and consider that the Hamiltonian is modified by the ad-
dition of the on-site term

Hα,Ni =− 4KS2
z,α = −K(nα,↑ − nα,↓)2

=−K(nα,↑ + nα,↓) + 2Knα,↑nα,↓,
(14)

which leads to a modified on-site chemical potential µi →
µi + K and Hubbard strength Ui → Ui + 2K. K is set
to 3/4t0.

On the other hand, we denote the Zn-doped sites as λ,
and we set µλ = ∞ to effectively remove the doped site
from the lattice [56]. In order to keep the hole concentra-
tion constant in the remaining available sites, we increase
this quantity by δ̃ = δ+nZn, nZn being the concentration
of Zn impurities.

To quantify the effect of the above-mentioned impu-
rities in the pseudogap unrestricted solutions we use
the frequency-dependent transverse conductivity σ1c(ω).
The transverse conductivity is in general some com-
bination of two parts, a momentum-conserving and a
momentum-nonconserving part (see discussion in [57]).
The hole doping in cuprates results in disorder in in-
terlayer coupling since dopants can reside between the
copper oxide layers. In this paper we focus therefore on
the nonconserving part of the c-axis conductivity assum-
ing that interlayer tunnelings are in principle randomized
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both with and without Zn/Ni substitution, as in Ref. [55].
This c-axis conductivity contribution is given by

σ1c(ω) ∼ 1

ω

∫
dω′ [f(ω′ − µ)− f(ω′ + ω − µ)]

×N (ω′)N (ω′ + ω) ,

(15)

where N (ω) is the density of states, and f(ω) is the
Fermi-Dirac distribution. For completeness, we show in
Fig. 6 the density of states N (ω) corresponding to the
cases plotted in Fig. 4 of the main text.

The c-axis conductivity results are shown in Fig. 7
for both types of impurities, together for the pure case
and a metallic solution, obtained as the self-consistent
homogeneous mean-field solution with C4 symmetry
(ni,σ = n/2 and tb = t). The PG solutions show a
characteristic low-energy suppression in the real c-axis
conductivity spectrum as well as a peak. The PG energy
scale ΩPG is often taken to be the peak position. It
indeed behaves as advertised above. Furthermore, the
depth of the suppression of the pure and Ni cases are
similar, while the Zn PG is more filled in.

VII. CONCLUSIONS

We have shown that including anharmonic Cu-O-Cu
bond oscillations in Hubbard-type models leads to a num-
ber of key features of the PG phase including an inherent
mechanism for nanoscale phase separation, Fermi arcs,
and appropriate response to defects. This points towards
the fact that phonons play a key role in dictating the
properties of high-Tc cuprates, and are not simply sec-
ondary corrections to electronic correlation effects. Fun-
damentally, we therefore believe that our results will fuel
deeper investigations into the FBM+U model, in par-
ticular via the treatment of electronic correlation effects
more exactly beyond the mean-field approximation. Fur-
thermore, it would be interesting to study the interplay of
the electron-phonon interaction and the Coulomb inter-
action on the properties of the high-Tc superconductiv-
ity, within a non-transitionally invariant ansatz. Finally,
the FBM+U model could also serve as a natural basis
to investigate how non-thermal and dynamical phonon
distributions can be used to enhance and control phase
competition in the cuprates. This would provide insights
into the origins of light-induced non-equilibrium super-
conductivity and potentially lead to improved nonequi-
librium control of the cuprates phase diagram.
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Appendix A: Bogoliubov inequality

The mean-field treatment approach is based on the Bo-
goliubov inequality. We express the exact FBM Hamil-
tonian as HFBM = HMF

FBM + ∆HFBM. The Bogoliubov
inequality reads

FFBM 6 FMF
FBM + 〈∆HFBM〉MF, (A1)

where F is the thermodynamic free energy, and the ther-
mal ensemble of HMF

FBM with partition function ZMF
FBM

is used to compute the expectation value 〈∆HFBM〉MF

and the free energy FMF
FBM = −KBT lnZMF

FBM. The prob-
lem then reduces in finding the equilibrium state |Ψ0〉 of
HMF
FBM minimizing the right-hand side of Eq. (A1). No-

tice that |Ψ0〉 will only contain MF correlations between
electrons and phonons, and that it will satisfy the con-
straint 〈Ψ0|HMF

FBM |Ψ0〉 = 〈HMF
FBM〉. These conditions can

be used to find |Ψ0〉 within the self-consistency iterative
algorithm described in Appendix B.

Appendix B: Self-consistent mean-field +
Hartree-Fock loop

Here we discuss the self-consistent loop used to de-
termine the equilibrium state of HFBM+U , equivalent
to the FBM for U = 0. After the MF+HF decou-
pling, the electron Hamiltonian has a quadratic form
H̃el with renormalized bond-dependent hopping ampli-
tudes tb = t0 − ν〈u2

b〉/4 and on-site chemical potential
µi,σ = −U 〈ni,σ̄〉 + ν

4

∑
b∈i〈u2

b〉. The phonon Hamil-

tonian H̃ph =
∑
b H̃

b
ph consists of a set of isolated

phonon oscillators b with renormalised bond-dependent
χb = χ0 + ν〈Qb〉/2.

The MF parameters 〈u2
b〉, 〈Qb〉, and 〈ni,σ〉 are found

with a self-consistent iterative loop. Before starting the
iterative algorithm, we have fitted the value of 〈u2

b〉 as
a function of 〈Qb〉 at a given temperature T . For this
purpose, we have used a local phononic basis of 800 states
to find the eigenstates of H̃ph for 200 values of 〈Qb〉 in
the interval [0, 2]. These eigenstates are then used to
compute the thermal expectation value of 〈u2

b〉 according
to the Boltzmann distribution. Finally, a simple fitting
routine is used to extract 〈u2

b〉 as a function of 〈Qb〉 from
the 200 values obtained.

Once the fitting for the phonons has been performed,
the iterative algorithm proceeds as follows: the initial
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×10−7 − 2.66641

FIG. 8. Example of the free-energy evolution during a self-
consistent loop. This figure corresponds to the residual inter-
actions model with the same parameters as in Fig. 2 of the
main text, at T = 174K.

conditions are imposed in the bond phonons, with an
initial distribution for each variable 〈u2

b〉, and to the elec-
tronic density, with an initial density distribution 〈ni,σ〉.
At each iteration step, the single-particle states of H̃el are
obtained, and from them the fermionic state at temper-
ature T and filling n is constructed. From this fermionic
state, one obtains the new distribution for 〈ni,σ〉, and
〈Qb〉, which gives the new value of 〈u2

b〉 through the pre-
viously fitted function. In order to avoid oscillating so-
lutions, the update of the mean-field parameters is done
progressively as

〈·〉i+1 = (1− η)〈·〉i + η〈·〉new
i . (B1)

Here 〈·〉i represents some mean-field parameter at the
ith iteration, and 〈·〉new

i its new value after performing
one iteration step. The update parameter η lies in the
interval (0, 1].

Each unrestricted solution has been obtained after
∼3 × 104 iterations (see Fig. 8), starting from noisy
homogeneous distributions of 〈u2

b〉 and 〈ni,σ〉. The
fact that the mean-field parameters evolve towards non-
homogeneous patterns reflects the meta-stability of the
homogeneous ansatz. The update parameter η has been
initialized at η = 0.03 and progressively increased until
reaching the value η = 1 for the last ∼3 × 103 iteration
steps. The variation in the free energy in the last steps
of the iteration algorithm is around ∆F ∼ 10−8t0. The
restricted solution is obtained in the homogeneous un-
polarized parameter space (〈u2

x〉, 〈u2
y〉, 〈Qx〉, 〈Qy〉, 〈ni〉).

That is, only the breaking of the global rotational sym-
metry is allowed. In this case, one can take advantage
of the spatial symmetry properties of the problem and
express the quantities in Fourier space in order to re-
duce the computational task. The number of iterations
needed to achieve convergence is much smaller for this
case (<100) and, for a given set of parameters, the con-
verged energy is significantly higher than the unrestricted
mean-field solutions.

Finally, notice that the convergence of the self-
consistent algorithm only ensures that a metastable so-
lution has been found. Thus, in order to choose between

different solutions, one needs to compare their Free en-
ergies and chose the lowest one (e.g., in Fig. 8 the un-
restricted mean-field solution has lower free energy than
the restricted one).

The free energy of the electron-phonon system treated
in MF + HF approximation can be written as

FMF = Fel + Fph + C, (B2)

where Fel (Fph) is the free energy of the effective electron
(phonon) Hamiltonian, and C accounts for the energy
shift due the MF + HF decouplings. For free fermions
the free energy F reads

Fel =
∑
i

{
µ

1 + exp( εi−µKBT
)
− kBT ln

[
exp

(
−εi − µ
KBT

)
+ 1

]}
,

(B3)

where εi are the single-particle energies of H̃el, and µ
is the chemical potential. On the other hand, the free
energy of the phonon of the bond b with Hamiltonian
Hb

ph reads

F bph = −KBT ln

(∑
i

e−Ei/(KBT )

)
, (B4)

where Ei are the energies of Hb
ph, and Fph =

∑
b F

b
ph.
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Appendix C: Comparison between the mean field and the exact diagonalization

In Table I, we compare the results in a 4-site cluster with periodic boundary conditions, obtained with exact
diagonalization and a mean-field decoupling of the electron-phonon interaction.

TABLE I. Comparison of the homogeneous ground-state properties using exact diagonalization (left columns) and a MF
decoupling of the electron-phonon interaction (right columns) for different sizes of the local phononic basis. Here we work at
zero T , half-filling, t0 = 0.0083, t′ = 0, ν = 0.03, w = 0.17, χ0 = −0.0025, and U = 0, where we use atomic units (energy
E0 = 27.2 eV and length a0 = 0.53 Å). For both methods the set of coherent states is used as a variational ansatz of the bond
phonons to find the ground state around one of the minima of the quartic potential. The different parameters appearing in the
table are the number of local phononic states taken into account (basis), the effective hopping of the electrons tb ≡ t0−ν〈x2〉/4,
the ground-state energy (E), and the expected value of the local phonon operator (〈Nph〉).

Basis tb/t0 E/t0 〈Nph〉
1 0.742 0.742 −5.795 −5.795 0 0

5 0.786 0.799 −5.855 −5.819 0.099 0.084

10 0.792 0.805 −5.855 −5.819 0.186 0.140

15 0.796 0.808 −5.855 −5.831 0.303 0.226

100 0.819 −5.831 5.594
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