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Abstract

In the High-Performance Computing world, the processor is essential. In
recent years, Europe has devoted a lot of effort into promoting European
technology. The European Processor Initiative stems from this effort. As
part of the initiative, multiple processors are being developed. Some imple-
menting the RISC-V architecture, an open-source ISA. During the develop-
ment of a processor, tools are fundamental to ease testing and automatize
tasks. This final degree project focuses on improving a Continuos Integra-
tion pipeline used to detect bugs in an Field Programmable Gate Array
(FPGA) and Linux environments emulating final user behaviour.

Resum

En el món del High-Performance Computing, el processador és essen-
cial. Recentment, Europa està fent grans esforços en promoure tecnologia
europea. La European Processor Initiative sorgeix d’aquest esforç. Com a
part de la iniciativa, múltiples processadors estan sent dissenyats. Alguns
implementant l’arquitectura RISC-V, una ISA open-source. Al llarg del de-
senvolupament del processador, disposar d’eines és fonamental per facilitar
el testeig i automatitzar tasques. Aquest treball final de grau es focalitza en
millorar una pipeline de Continuous integration emprada per detectar errors
en un entorn Linux i en una Field Programmable Gate Array emulant un
comportament d’usuari final.

Resumen

En el mundo del High-Performance Computing, el procesador es esencial.
Recientemente, Europa está haciendo grandes esfuerzos en promover tec-
nologia europea. La European Processor Initiative emerge de este esfuerzo.
Como parte de la iniciativa, múltiples procesadores estan siendo diseñados.
Algunos implementando la arquitectura RISC-V, una ISA open-source. A lo
largo del desarollo del procesador, disponer de herramientas es fundamental
para facilitar el testing y automatizar tascas. Este trabajo final de grado
se focaliza en mejorar una pipeline de Continuous integration utilizada para
detectar errores en un entorno Linux y en una Field Programmable Gate
Array emulando un comportamiento de usuario final.
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1 INTRODUCTION

1 Introduction

In the context of a large-scale project with multiple developers working on different
elements simultaneously, version control software is crucial to keep track of any
change in the source code. Furthermore, as every modification of the project’s
code comes at a risk, a Continuous Integration system is critical to automatize the
code evolution and its constant testing.

The European Processor Initiative (EPI) is a European project involving more
than 30 partners from industry and academia. The main goal is to push European
technological independence developing hardware and software that can foster High-
Performance Computing (HPC) and automotive markets. The development of
EPAC, a RISC-V based accelerator targeting HPC, is one of the goals of the
project and the Barcelona Supercomputing Center contributes to it.

The design and implementation of a chip is one of the complex tasks where one (or
multiple) code control services are required. The work presented in this document
has been developed at the Barcelona Supercomputer Center in a group whose job
is to create a software and hardware environment to test the EPAC processor and
experiment with it. The main contributions of this final degree project are:

C1: The creation of a benchmark suite that tests individual features of the design
hosted in the EPI project repository, and

C2: The integration in the EPI version control infrastructure of a set of tools
and configurations for detecting modifications able to introduce errors in the
design.

Both contributions resulting from this final degree project have been deployed in
the Continuous Integration pipeline of the EPAC repository and have been adopted
as solutions to detect erroneous modifications to the EPAC design preventing that
such modifications enter the repository.

The following work is a Final Degree Project of Computer’s Engineering special-
ity within the Grau en Enginyeria Informàtica (GEI - Informatics Engineering
Degree) imparted by Facultat d’Informàtica de Barcelona (FIB) at Universitat
Politècnica de Catalunya (UPC).
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1 INTRODUCTION 1.1 Terms and concepts

1.1 Terms and concepts

The most important concepts are listed and explained in this section in order to
provide the reader with a fair starting point to help comprehend every further
aspect of this work. Every element listed includes a reference for supplementary
information.

◦ High-Performance Computing (HPC): It consists in the execution of
hugely complex applications by large computer systems made up by hundreds
of processors working in parallel. Therefore, the system is characterized by
massively high computational power compared to personal computers. [3]

◦ Git: It is a version control software. [4]

◦ Continuous Integration (CI): It is a continuous methodology that con-
sists of a set of scripts to build and test the commits of a repository. Those
scripts are triggered to every push, and they help decrease the chances of
introducing errors in the code. [5]

◦ Job: The most basic units of CI are jobs. A job is an execution process
defined by its own script. [6]

◦ GitLab runner: Agents in charge of running the GitLab CI jobs triggered
by a commit. Different types and number of runners can be configured.

◦ Pipeline: The CI main structure are pipelines, which are a set of jobs.
Pipelines are divided into stages, each including one or more jobs, and in-
tended to let developers design the workflow any way they want. [7]

◦ Artifact: File produced during the execution of a Pipeline’s job. Artifacts
can be downloaded or accessed for a certain amount of time after executing
the pipeline. [8]

◦ Stage: Group of jobs with shared characteristics that can be executed in
parallel.

◦ Vector Processor Unit (VPU): It is a processor type that implements
Single Instruction Multiple Data (SIMD) instructions, which are a type of
instructions that process multiple data in a single instruction, exploiting
data-level parallelism. [9]

10



1 INTRODUCTION 1.2 Aim

◦ Instruction Set Architecture (ISA): It is an interface between hardware
and software. It defines the operations and instructions that the hardware
executes without specifying how they are implemented. Thus, the hardware
design implementation is in the hands of the programmer, whose job is to
meet the specifications. [10]

◦ RISC-V: It is an open-source Instruction Set Architecture (ISA) developed
at the University of California in Berkeley. It is an extensible architecture
based on modules. Each module consists of a set of basic instructions that
target a specific set of features. This is a fundamental aspect since hardware
developers can implement more specialized processors, depending on the
modules implemented. [11]

◦ Field Programmable Gate Array (FPGA): It is a semiconductor device
based around a matrix of configurable logic blocks (CLBs) connected via
programmable interconnects. This device can be reprogrammed to desired
application or functionality requirements after manufacturing. [12]

◦ Bitstream: A file specifying the configuration of all the internal FPGA
resources, so the device behaves as the programmer has developed. [13]

◦ Benchmark: It is a test used to measure the hardware or software perfor-
mance, which is useful to compare different systems between them. [14]

◦ Git submodule: It is a git repository kept as a subdirectory of another git
repository. [15]

1.2 Aim

Any time new lines of code are pushed to a project, a bug could be introduced
unknowingly. That bug could either be immediately found, or hidden until it is
detected several updates after. If that is the case, that bug could be extremely
hard to find, even if using version control.

In a project with several layers designed by several partners at different points
in time, a hidden bug becomes a real challenge, resulting in lots of hours spent
purifying the code, instead of further developing new features. As an additional
layer of security, the usage of CI becomes crucial.

By adding new layers of testing, the reliability of the whole project becomes im-
proved, as developers can assume more safely that the code has no undetected
bugs.

11



1 INTRODUCTION 1.3 Stakeholders

As a large-scale project with multiple programmers involved, trusting other peo-
ple’s code —and the code written by itself— is a life-saving functionality. Conse-
quently, this project aims at guaranteeing a level as high as possible of security, by
avoiding the spending of both human and technological resources detecting bugs,
that can be instantly detected otherwise with a tough CI implementation.

1.3 Stakeholders

◦ Researcher
The researcher is responsible for developing all the tasks associated with this
project and documenting its progress.

◦ Director
The director is both the project’s and the researcher’s supervisor, whose job
is to plan and validate all the tasks and assist with all required help. For
this project, the director is also in charge of Mobile and embedded-based HPC
research team at Barcelona Supercomputing Center (BSC), which is directly
involved with new technologies and EPI.

◦ Barcelona Supercomputing Center (BSC)
BSC is involved in the development of RISC-V hardware support. It will use
and benefit from the results of this project, as it will contribute to its role
within the EPI project. [16]

◦ European Processor Iniciative (EPI)
The European project will benefit from the continuous automatic hardware
validation adapted to RISC-V architectures, as all EPI partners will be able
to focus on further development of the project. [17]

◦ Scientific community
The development of a new processor aimed at HPC will be a great improve-
ment for the global technological scene, fundamentally for the European
supercomputation community.

◦ Team coworkers
All the researches within the BSC team responsible for developing the project
will benefit by having the opportunity to focus on the validation of certain
crucial aspects of the design, rather than constantly having to validate any
new design update.

12



1 INTRODUCTION 1.4 Technical competences

1.4 Technical competences

Here you can see the technical compentences related to this project.

◦ CEC2.1: To analyse, evaluate, select and configure hardware platforms for
the development and execution of computer applications and services. [In
depth]
All the benchmarks have been compiled and executed in an FPGA environ-
ment.

◦ CEC2.2: To program taking into account the hardware architecture, using
assembly language as well as high-level programming languages. [Enough]
Bash scripts have been developed for the CI.

◦ CEC2.3: To develop and analyse software for systems based on micropro-
cessors and its interfaces with users and other devices. [In depth]
Benchmarks have been analyzed and tested in different processors.

◦ CEC2.4: To design and implement system and communications software.
[A little bit]
A communication method has been implemented between the CI and the
FPGA.

◦ CEC3.1: To analyse, evaluate and select the most adequate hardware and
software platform to support embedded and real-time applications. [Enough]
The implemented benchmarks have been chosen based on the necessities of
the EPI project and the architectures where those have been tested.

◦ CEC4.2: To demonstrate comprehension, to apply and manage the guar-
antee and security of computer systems. [Enough]
The CI has been designed to protect the EPI repository.

1.5 Justification

Starting from a minimal setup able to produce a bitstream and deploy it for further
usage, it only included a single benchmark with a simple design. This allowed for
some basic testing, but many bugs could still go unnoticed.
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1 INTRODUCTION 1.5 Justification

In fact, right after my incorporation to BSC’s team, a bug was detected, and after
some research the most reasonable explanation seemed to be that it appeared a
couple commits prior to its discovery.

The only benchmark implemented failed to detect that bug, because it is a bench-
mark that does not stress the specific element of the processor that had that precise
bug.

That put into light the need for an improvement of the security of the project’s
CI.

Figure 1: Initial CI pipeline prior to this work. Benchmarks are executed in the
last stage. Notice how only the last step of the pipeline is relevant to this work,
initial stages are outside the scope of this project. Screenshot from EPI’s GitLab.
As a result, any tough implementation should have a set of benchmarks where
each benchmark targets a different element of the processor, such as the vectorial
load or the cache coherence. Therefore, when a benchmark fails developers can
safely assume the bug is hidden within that element of the processor.

Given the CI will trigger a new pipeline for every new code being pushed to the
repository, and because that pipeline will execute all implemented benchmarks
over that new processor version, a benchmark not failing previously to the new
push, but failing for that new version, tells developers when the bug has been
introduced.

Thus, if the CI has a wide range of benchmarks implemented correctly, when
a benchmark fails, it will give a decent amount of information to programmers,
so they can find any bug or error relatively fast, saving lots of resources for the
addition of new features, rather than detecting bugs.

That is the reason why this project’s purpose is to end with a CI able to stress
every possible failure point of the processor, consequently adding a wide range of
benchmarks and making sure no processor characteristic is left behind.
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1 INTRODUCTION 1.6 Scope

Additionally to the inclusion of new benchmarks to the CI, and the improvement
of the way they were implemented, the introduction of automatical performance
analysis is an interesting feature the CI lacks.

Benchmarks will not only help detect critical bugs that make the processor mal-
function, but benchmarks will also provide execution times and other performance
statistics, so bugs slowing the processor down will also be spotted, and it will also
help the improvement of the performance of the processor’s design.

1.6 Scope

Prior to this work, pipelines triggered by the already existing CI had a design as
seen in Figure 1. As mentioned early, this implementation lacked a more compre-
hensive set of benchmarks for testing purposes, therefore if a single most important
crucial had to be stated, that is the addition of new benchmarks.

Obviously, a well-planned project follows an extensive list of objectives and sec-
ondary goals to help the author develop the work as successful as possible.

Nevertheless, the author should also be aware of any structural risk that could
lead to a scenario where a specific task can not be satisfied.

All milestones and possible obstacles are listed hereunder.

1.6.1 Objectives and sub-objectives

Main objectives offer a set of sub-objectives derivated from them. All of them are
listed and explained below.

◦ Improvement of Benchmarks stage
As a first objective, it is established to take the already implemented bench-
mark as a starting point and modify how the benchmark execution is handled
in order to pave the way for all further objectives.

– Extract performance metrics to automatize the performance anal-
ysis of all benchmarks.

– Generalize scripts to adapt to any new benchmarks for easily
adding new benchmarks to the set and simplifying maintenance.
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◦ Comprehensive automatic bug detection
Identifying which benchmarks are interesting for the sake of stressing as
many characteristics as possible of the processor’s design and implementing
them accordingly to the new scripting design, done as a previous objective.

– Addition of memory bound benchmarks.
– Addition of compute bound benchmarks.
– Addition of benchmarks to stress different instruction types of the
Vector Processor Unit (VPU).

– Identification and addition of any other benchmark that targets an in-
teresting element.

◦ Automatic generation of performance plots
Generate performance plots of each benchmark, comparing the metric results
with previous versions in the master branch (releases).

1.6.2 Requirements

◦ Guarantee correct benchmark execution
It is fundamental to test every binary before using it in the CI.

◦ Avoid false positives
When a benchmark is malfunctioning as a result of a problem with the code
being tested, the CI must act accordingly, and the job should fail.

◦ Reject a commit if any of its benchmark jobs fails
If a benchmark fails its execution for a certain commit, that commit will not
be successfull and will not be pushed to master branch.

1.6.3 Risks and obstacles

- GitLab server malfunctions
In case the GitLab server is down or malfunctioning, no pipelines will be able
to be executed. And no further commits will be done until it works again.
This risk is critical, as new code updates can not be merged from any partner,
therefore no version control will be done, and no automatical testing will be
done either.
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1 INTRODUCTION 1.7 Methodology and rigour

- Cluster is down
In the scenario where the cluster where pipelines start execution is down,
no further pipelines will start till either solving the issue or configuring it in
another environment, which should be doable as a task within the scope of
this project, but time-consuming, meaning other tasks could be sacrificed.

- FPGAs are down
Depending on whether only one or both FPGAs are down, this situation will
be critical or simply an annoyance, as having a functioning FPGA is enough,
even though development will probably slow down, because of all pipelines
and interactive sessions will end up in the same FPGA.
Otherwise, if both FPGAs are down, no further development requiring them
will be possible, and further tasks will be necessary to repair or replace.

1.7 Methodology and rigour

The EPI project is to be seen as a small, yet important, piece of this ambitious
puzzle. With so many teams working in several pieces at once, some strict or-
ganisation is required. In order to achieve that, an agile methodology will be
followed.

1.7.1 Communication

In the context of EPI, there is a weekly meeting with the partners involved in
the Register-Transfer Level (RTL) validation using FPGAs. This weekly meeting
acts as a valuable way of communication between all partners, as well as being a
comfortable way of showing my progress to all of those interested, in addition to
getting useful feedback.

However, logically my biggest and most reliable source of help comes from both my
co-workers along with my director, co-director and my tutor. Throughout my day
to day at work, I constantly ask for feedback in order to take development decisions
accordingly to the necessities of the overall project. Furthermore, a weekly meeting
with both my director and co-director is held.
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1.7.2 Monitoring tools

The project is hosted on a repository in GitLab, an open-source software based on
Git that allows developing code collaboratively. GitLab provides different moni-
toring tools used in this project. [18]

GitLab merge requests

For the development of a particular feature, a new branch will be created. Al-
together with issues, a merge request will be created, and the implementation of
that feature is to be discussed there, including version control.

Figure 2: Example of a GitLab merge request. It gives information about the
last executed pipeline for that branch, as well as lets the creation of threads for
discussion related to the development of the branch’s features. Screenshot from
EPI’s GitLab.

GitLab issues

Being a GitLab project, the usage of GitLab issues appears to be the best way
of organisation. Issues are created in two different repositories: one with access
for all the partners involved in the RTL validation using FPGAs, and another for
exclusively my team co-workers. This way, the development can adapt to the real
needs of all involved in the project, while offering the opportunity to get a more
personal touch when seeking advice for some aspects of my work.
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1 INTRODUCTION 1.7 Methodology and rigour

Figure 3: Example of a GitLab issue. Screenshot from EPI’s GitLab.

Private GitLab issues also act as a day-to-day method for internal organisation.
The director, co-director and researcher are the only ones who have access there.
All the progress with tasks will be reported there, as every task has its own card,
where all progress will be briefed, as well as the current status of that task will be
stated thanks to a five level system: To Do, Doing, Blocked. Done and Archived.

◦ To Do: Tasks yet to be started.

◦ Doing: Tasks already started, under development.

◦ Blocked: Tasks whose development cannot continue for any reason.

◦ Done: Tasks successfully finished, that are a dependency for a task yet to
be finished.

◦ Archived: Tasks successfully finished, that are no longer a dependency.

1.7.3 Validation methods

As much as possible, everything will be tested locally prior to pushing it to a
repository. Once the new changes are online, that new push will trigger a new
pipeline, whose results will be put into comparison with those obtained locally.

Moreover, corner cases will also be deeply analysed in order to detect as many
bugs as possible.
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2 TEMPORAL PLANNING

2 Temporal planning

The estimated duration of this project is 560 hours, starting at the end of February
and finishing by the start of July. In particular, the starting day is the 14th of
February, 2022, while the ending day is the 1st of July, in the same year. The oral
defence’s date has yet to be defined, so the last possible date for the defence is the
one used as a reference.

2.1 Description of Tasks

Throughout this section, the reader will find a detailed explanation of all the tasks
that have been planned and scheduled for this project. Scheduling implies an
estimation of hours for every task. The dependencies and time estimations for
very task can be observed in Table 1. Planning has been done by considering all
possible dependencies between tasks, specifying them accordingly.

Tasks are divided among four groups: Project planning, Implementation of bench-
marks, Performance analysis automatisation and Documentation.

◦ T1 Project planning
Planning and structuring the work takes place throughout these tasks. They
act as a fundamental step for all the tasks to come. Most of the tasks are
encompassed within GEP.

– T1.1 ICT tools to support project and team management
Initial screening over several digital tools with widespread usage that
will be used to support the project’s development.

– T1.2 Contextualization and project scope
Definition of the project’s main objectives after understanding its place
within the environment where it will be developed. This task includes
the elaboration and delivery of documentation.

– T1.3 Tasking and temporal planning
Characterization of all the necessary tasks to satisfy the project’s main
objectives, each task with an associated estimated time to finish it. This
task includes the elaboration and delivery of documentation.

– T1.4 Economical perspective and sustainability
Study of both the project’s expected sustainability and necessary bud-
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2 TEMPORAL PLANNING 2.1 Description of Tasks

get for the development of all tasks. This task includes the elaboration
and delivery of documentation.

– T1.5 Personal and professional skills for project and team man-
agement
Identification of essential skills and techniques for correct coordination
and communication for working with other people.

– T1.6 Integration in final GEP document
Development of the final GEP documentation of the project by bringing
together all previous deliverables and solving any issues with them.

– T1.7 Meetings
The meetings will extend throughout the duration of the project, from
the first to the last weeks. They serve the purpose of getting valuable
constant input from the two supervisors of the project while also un-
derstanding the specific needs of all the glsepi partners. One with both
my director and co-director, which requires an average of an hour per
week. The second one takes place every Thursday and demands about
two hours a week.

◦ T2 Implementation of benchmarks

– T2.1 Understanding of the CI environment
Understanding the basics of Continuous Integration, as well as YAML
codes.

– T2.2 Understanding of an FPGA environment
Adjusting to the usage of an FPGA and its environment. Learning to
compile benchmarks and executing them in the FPGA. Also, getting
familiar with setting up the infrastructure.

– T2.3 Refactoring benchmark structure
Adapting the original implementation prior to this work to a newer,
simpler and more scalable one.

– T2.4 Selection of benchmarks
Out of all available benchmarks, it is necessary to decide the most useful
ones to detect any possible bug throughout the processor’s features.

– T2.5 Compilation of benchmarks
Once the benchmarking set has been established in T2.4, getting a
functional binary of every benchmark is the next step. This task focuses
on the compilation of the chosen benchmarks and testing them in an
FPGA. If a binary is not functional and that particular benchmark
requires to be recompiled, additional time may be necessary for this
task.
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2 TEMPORAL PLANNING 2.1 Description of Tasks

– T2.6 Implementation in the CI
Implementation of all the binaries obtained in T2.5 in the new CI struc-
ture designed in T2.3 for benchmarking purposes.

– T2.7 CI validation
Ascertain the implementation done in T2.6 is valid. In case it is not, it
may come back to the previous task to solve any problem detected. As
a result of this task, a pipeline should be running with an operational
job for every benchmark.

◦ T3 Performance analysis automatisation

– T3.1 Selection of useful metrics
Analysis of all the metrics provided by the execution of each bench-
mark and selection of the most useful ones to evaluate the processor’s
performance.

– T3.2 Implementation of metrics extraction mechanism
Implementation of the necessary code modifications for all benchmark
jobs to provide the decided metrics in T3.1 as an artifact for later use.

– T3.3 Creation of a new CI stage
Addition of a new stage to the CI pipelines. Plots are going to be
automatically generated and exported in that stage.

– T3.4 Implementation of plot generation mechanism
Ensuring that the new CI stage created in T3.3 automatically pro-
duces a plot for every benchmark job, using the data produced dur-
ing benchmark execution and extracted through the implementation in
T3.2. Plots generated as artifacts should be stored externally.

– T3.5 Implementation of data version history
Necessary modifications through both the CI and the external server
where plots (produced after T3.4) will be stored for guaranteeing a
historical data set from all executed pipelines.

◦ T4 Documentation

– T4.1 Writing the final document
Writing all the work done throughout the project as detailed as possible,
including the final GEP delivery.

– T4.2 Oral defence rehearsal
Planning the defence rehearsal and all the essential information that
should be explained. Designing the slides that will be used as support.
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2 TEMPORAL PLANNING 2.2 Summary of tasks

2.2 Summary of tasks

Id. Description Hours Dependencies
T1 Project Planning 135
T1.1 ICT tools to support project and team management 5 -
T1.2 Contextualization and project scope 25 -
T1.3 Tasking and temporal planning 10 T1.2
T1.4 Economical perspective and sustainability 10 T1.3
T1.5 Personal and professional skills for project and team management 5 -
T1.6 Integration in final GEP document 20 T1.4
T1.7 Meetings 60 -
T2 Implementation of benchmarks 205
T2.1 Understanding of the CI environment 30 -
T2.2 Understanding of an FPGA environment 15 -
T2.3 Refactoring benchmark structure 30 T2.1, T2.2
T2.4 Selection of benchmarks 10 T2.3
T2.5 Compilation of benchmarks 20 T2.4
T2.6 Implementation in the CI 75 T2.5
T2.7 CI validation 25 T2.6
T3 Performance analysis automatisation 105
T3.1 Selection of useful metrics 15 T2.7
T3.2 Implementation of metrics extraction mechanism 20 T3.1
T3.3 Creation of a new CI stage 10 -
T3.4 Implementation of plot generation mechanism 40 T3.2, T3.3
T3.5 Implementation of data version history 20 T3.4
T4 Documentation 115
T4.1 Writing the final document 80 -
T4.2 Oral defense rehearsal 35 -
Total 560 -

Table 1: Summary of all the project tasks, including the estimated working hours
of each task and dependences between them. Source: own compilation.

See Table 4 for the updated summary of tasks.

2.3 Necessary resources

All the necessary resources are defined in Table 2. Resources are classified depend-
ing on their nature: human, hardware, software and additional ones.
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Item Description Tasks
Human resources
Researcher Main project developer All
Director Project supervisor All
Co-Director Project supervisor All
GEP Tutor Project planning supervisor T1.{1..6}
Hardware resources
Computer Laptop DELL Latitude 7490 All
FPGA Two Xilinx Virtex Ultrascale+ VCU128 T2, T3
HCA Server to which the FPGA is connected to T2, T3
Software resources
Git Control version software All
GitLab Remote repositories to access code All
Atenea UPC’s web page with GEP material T1.{1..6}
Thunderbird Mail service used for coordinating meetings T1.7
Vim IDE for both code and text editing All
Latex Software system for document preparation T1.{2..4}, T1.6, T4
GNUplot Plot creation software T3.4, T3.5, T4
Gantt Project Gannt diagrams creation software T1.3
Trello Follow up and coordination tool All
Additional resources
Electricity Basic supply All
Water Basic supply All
Internet Basic supply All
Office supplies Notebooks, pens, desk and chair All

Table 2: Summary of all the necessary resources of this work, including the tasks
that require them. Source: own compilation.
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2 TEMPORAL PLANNING 2.4 Gantt chart

2.4 Gantt chart

Figure 4: Gantt chart. Source: own creation with GanttProject.

2.5 Risk management

Throughout the project, several possible situations could lead to a scenario where a
specific task can not be satisfied as expected. As a way to adapt to those possible
circumstances, the risks must be analysed. Furthermore, possible outcomes at
attempting to solve the problem are also planned.

Out of all possible risks, infrastructure-related ones —in case they were to happen—
are the most likely to imply a significant hold in the project. These risks are related
to both hardware and software structures: the HCA server or the FPGAs on the
hardware side and GitLab repositories on the software side. If the HCA server
stopped functioning, an additional task for repairing the server would be neces-
sary, and the delay would depend on the difficulty of that repairing. Alternatively,
in case fixing it not being feasible, another way to trigger CI pipelines would be
vital, implying another task for setting the new server up. That would be very
time-consuming, and very likely some later stage tasks would not meet the specified
deadline.

The same situation applies with both FPGAs, even though one FPGA being down
is not a critical issue. The project can continue with only one FPGA, but it would
probably slow down the testing phases of the project depending on the FPGA
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usage by other team members. Therefore, the critical scenario would be if both
FPGAs are down, where additional tasks for repairing or replacing them would be
needed.

Finally, the Git repositories being down implies that no further development of
the code can be tested and implemented for all EPI partners. However, setting up
a new repository in another domain is not heavily time-consuming and could be
solved through an auxiliary task that would take a week maximum.

Some minor risks have been specified during the initial task explanation. In its
majority, those risks imply an increase of a couple of hours per task (very rarely
more than a day of additional work). Nevertheless, these minor risks are very
likely to happen compared to the most significant risks, whose probabilities are
relatively low. As a result, the three tasks more likely to encounter issues have
been modified by adding five additional hours to their expected time. Those are
T2.5, T2.6 and T3.2.

Description Tasks Probability Solution Hours
Both FPGA’s down T2,T3 Low Repairing at least one or buying a new one 50
HCA down T2,T3 Low Repairing it or finding an alternative server 25
Git repository down T{2..4} Low Setting up a new repository 10
Compiled binary not functional T2.5 High Re-compiling it 2
CI implementation malfunctions T2.6 Medium Testing and re-implementation 5
PA implementation malfunctions T3.2 Medium Testing and re-implementation 5

PA as Performance Analysis

Table 3: Summary of all possible risks, including estimated hours for solving each.
Consider that every stated solution would become a task of its own, in case that
specific risk became a reality. Source: own compilation.

2.6 Work plan modifications

There have been some changes with the initial planning. During the development
of task block T3, a new priority in the project emerged that was considered of
maximum importance. In particular, T3.4 and T3.5 have been affected. The
development of task T3.4 was interrupted after the implementation of an early
plot generation mechanism after 15 hours of work. Task 3.5 has been cancelled.

During task T2.7 (CI validation), it was detected that the implemented system
did not correctly process failed jobs. Even though some hours had already been
planned for the possibility of solving any bug detected during task T2.7, most of
them had already been used on solving minor bugs. This problem was reported
to both my director and co-director, and some EPI partners were involved in the
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discussion. Meanwhile, development resumed with task block T3 until a consen-
sus was met. The dependency in task T3.1 with task T2.7 was considered not
necessary, so it was removed.

After understanding the importance of a fully functional system that detects and
reports failed jobs correctly, it was decided to prioritise this new feature.

Fundamentally, either this feature was not developed as part of this project, or
some features previously planned had to be removed. Additionally, the most cru-
cial goal of task block T3 lies in task T3.2. If metrics are extracted comfortably,
they can be processed manually in a relatively straightforward manner, so automa-
tisation of the later stage is not fundamental.

In consequence, the decision to add a new task and interrupt the expected devel-
opment at task T3.4 has been made in harmony with all the ones involved with
the project, The new task identified as T5.1 consists of implementing a system to
detect and improve the different cases a job can exit due to a failure. In other
words, to process exit errors such as timeouts or CPU hangs. Task T5.1 has been
named Implementation of a failure detection mechanism, and the remaining avail-
able hours in both tasks T3.4 and T3.5 have been allocated for task T5.1, being a
total of 45 hours. No budget modifications are necessary.

The project’s development will end up as originally planned. Tasks T5.1, T4.1 and
T4.2 are under development. They are expected to be finished within the hours
assigned to them.
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2.6.1 Updated summary of tasks

Id. Description Hours Dependencies
T1 Project Planning 135
T1.1 ICT tools to support project and team management 5 -
T1.2 Contextualization and project scope 25 -
T1.3 Tasking and temporal planning 10 T1.2
T1.4 Economical perspective and sustainability 10 T1.3
T1.5 Personal and professional skills for project and team management 5 -
T1.6 Integration in final GEP document 20 T1.4
T1.7 Meetings 60 -
T2 Implementation of benchmarks 205
T2.1 Understanding of the CI environment 30 -
T2.2 Understanding of an FPGA environment 15 -
T2.3 Refactoring benchmark structure 30 T2.1, T2.2
T2.4 Selection of benchmarks 10 T2.3
T2.5 Compilation of benchmarks 20 T2.4
T2.6 Implementation in the CI 75 T2.5
T2.7 CI validation 25 T2.6
T3 Performance analysis automatisation 105
T3.1 Selection of useful metrics 15 -
T3.2 Implementation of metrics extraction mechanism 20 T3.1
T3.3 Creation of a new CI stage 10 -
T3.4 Implementation of plot generation mechanism 15 T3.2, T3.3
T3.5 Implementation of data version history - -
T4 Documentation 115
T4.1 Writing the final document 80 -
T4.2 Oral defense rehearsal 35 -
T5 Failure detection mechanism 45
T5.1 Implementation of a failure detection mechanism 45 -
Total 560 -

Table 4: Updated summary of all the project tasks, including the estimated work-
ing hours of each task and dependences between them. Source: own compilation.

See Table 1 for the initial summary of tasks.
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3 Economic planning

In order to establish a rigorous budget prediction, both staff and resource costs
have been considered. The expenses are calculated by analysing the basic needs for
each of the tasks described in this project. Accordingly, the hours worth of work
required from every role within the project’s staff is specified for every planned
task. Additionally, the use of technical resources is also determined similarly.

There are four roles that exist within the project’s staff: Programmer, Technical
writer, Project manager and Tester. A brief summary of each role’s responsibilities
is explained below. The costs associated to each of the roles is showed in Table 5.

◦ Programmer
The Programmer is the central role of this project. It is responsible for
implementing all the features required throughout all project tasks. The
Programmer will follow the Project Manager’s planning.
Therefore, its importance is fundamental in tasks within T2 and T3. In case
the Tester detects any anomaly in those already implemented features, it will
be the Programmer’s responsibility to solve that issue and make the code
functional.

◦ Project manager
The Project Manager is responsible for specifying the organisation of the
project tasks; its importance is crucial for the tasks in T1 group.

◦ Tester
The Tester is responsible for validating all the work done by the Programmer.
This role is essential in several T2 and T3 tasks, as some tasks require a bit
of testing to guarantee a successful functionality.
Furthermore, task T2.7 is exclusively the Tester’s commitment, as all the
programming work done in task 2.6 requires an extensive and in-depth inde-
pendent testing process.
Nevertheless, the Tester does not require knowing the details of neither the
implementation nor the code, but a complete understanding of what is ex-
pected from every functionality is crucial. In case a bug is found, the Tester
provides all the information available to the Programmer, whose job is to
solve that error.

◦ Technical writer
The technical writer is the uppermost responsible for writing the final project’s
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documentation and T1 deliverables, based on information nourished from
work done by the programmer, the Tester and the project manager.

Staff Yearly wage (€) Cost (€) / Hour Individual
Programmer 28973 15.09 R
Project Manager 51283 26.71 R, D, T
Tester 31085 16.19 R
Technical writer 35674 18.58 R

R:Researcher; D:Director and Co-director; T:GEP Tutor.

Table 5: Costs associated to every role within project’s staff. [19] Source: own
compilation.

3.1 Human resources

Each role has different importance depending on the task’s purposes. Hence, every
task has a distinct work distribution for every role. The distribution of hours worth
of task’s work for every role are shown in Table 6. The final costs associated to
each role are shown in Table 7.
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Staff hours
Id. Description Total P M T W
T1 Project Planning 135 60 100 60 95
T1.1 ICT tools to support project management 5 - 5 - -
T1.2 Contextualization and project scope 25 - 15 - 10
T1.3 Tasking and temporal planning 10 - 5 - 5
T1.4 Economical perspective and sustainability 10 - 5 - 5
T1.5 Skills for project and team management 5 - 5 - -
T1.6 Integration in final GEP document 20 - 5 - 15
T1.7 Meetings 60 60 60 60 60
T2 Implementation of benchmarks 205 170 - 35 -
T2.1 Understanding of the CI environment 30 30 - - -
T2.2 Understanding of an FPGA environment 15 15 - - -
T2.3 Refactoring benchmark structure 30 25 - 5 -
T2.4 Selection of benchmarks 10 10 - - -
T2.5 Compilation of benchmarks 20 15 - 5 -
T2.6 Implementation in the CI 75 75 - - -
T2.7 CI validation 25 - - 25 -
T3 Performance analysis automatisation 105 90 - 15 -
T3.1 Selection of useful metrics 15 15 - - -
T3.2 Implementation of metrics extraction mechanism 20 15 - 5 -
T3.3 Creation of a new CI stage 10 10 - - -
T3.4 Implementation of plot generation mechanism 40 35 - 5 -
T3.5 Implementation of data version history 20 15 - 5 -
T4 Documentation 115 35 - - 80
T4.1 Writing the final document 80 - - - 80
T4.2 Oral defense rehearsal 35 35 - - -
Total 560 345 100 110 175

P:Programmer; M:Project manager; T:Tester; W:Technical writer.

Table 6: Summary of all the project tasks, including the estimated working hours
of each task and its distribution among different roles within project’s staff. Source:
own compilation.

Staff Cost (€) / Hour Hours Cost (€) Total with SS (€)
Programmer 15.09 345 5206.05 6767.86
Project Manager 26.71 100 2671.00 3472.30
Tester 16.19 110 1780.90 2315.17
Technical writer 18.58 175 3251.50 4226.95
Total 12909.45 16782.28

Table 7: Final costs for every role within project’s staff. Source: own compilation.
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3.2 Material resources

The costs of hardware that will be associated to the budget is defined by amor-
tizations. There are three main hardware elements in this project: a laptop, the
HCA server and two FPGAs. In order two calculate all three amortizations, the
real cost are to be known.

The DELL Latitude 7490 laptop is sold for 749€ at retail pages. [20] The laptop
will be used for the whole duration of the project: 560 hours.

Laptop amortization = 749 € × 560 hours
1760 hours × 4 years = 59, 58 €

Considering a four years period, as well as a total of 1760 hours per year.

All the costs associated with the usage of the HCA server are private and confi-
dential. Therefore, an aproximated 5000€ figure for a six months access period
is used. This cost will not be considered hardware nor software, but as a service
such as internet or electricity.

For both FPGAs, the cost for buying one is $10794.00 [21], which in euro currency
is about 1.10% of that, as of March 2022, totalling 23746.80€ for both FPGAs as
the retail cost.

The FPGAs are directly bought to the US, so importation costs and additional
fees are considered with a 5.00% increase in its cost, being 24934.14€ the final
figure for buying both FPGAs.

Considering that for every new pipeline triggered an FPGA will be working for
about two hours, and that for the total length of task gropus T2 and T3 a new
pipeline will be triggered for every five hours of development, the amortization
calculations are as follows. As there are two FPGAs, the two hours figure for
every pipeline is divided by two.

FPGAs amortization =
24934.14 € × 170 T2 hours + 90 T3 hours

5 hours
1760 hours × 4 years = 184.17 €

Considering a four years period, as well as a total of 1760 hours per year.
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Electricity has been calculated by using the average cost of electricity with a non-
changin hour to hour plan, meaning a constant kWh cost at 0.27€. Considering
the worst case scenario, a laptop at full performance could consume up to 75W per
hour, [22] given the approximate 545 hours worth of work, it amounts for 110.36€
for the whole project.

For the internet figure, a standard cost for top high speed connection plan is used,
totalling 240€ for the project’s total duration. [23]

Item Description Cost (€)
Hardware resources
Computer Laptop DELL Latitude 7490 59.58
FPGA Two Xilinx Virtex Ultrascale+ VCU128 184.17
HCA Server to which the FPGA is connected to 500.00
Software resources
Git Control version software Free to use
GitLab Remote repositories to access code Free to use
Atenea UPC’s web page with GEP material Free to use
Thunderbird Mail service used for coordinating meetings Free to use
Vim IDE for both code and text editing Free to use
Latex Software system for document preparation Free to use
GNUplot Plot creation software Free to use
Gantt Project Gannt diagrams creation software Free to use
Trello Follow up and coordination tool Free to use
Additional resources
Electricity Basic supply 110.36
Internet Basic supply 240.00
Office supplies Notebooks, pens, desk and chair 350.00
Total 1444.11

Table 8: Summary of all costs of the necessary resources of this work. Source: own
compilation.

3.3 Contingency

A contingency fund is defined for prevention against unexpected situations not
considered through the whole planning. The fund is the equivalent of 20% of the
planned budget, as seen in Table 10 totalling 3645.28€.

Contingency = Resources(€)×Fund(%) = (16782.28+1444.11)×0.2 = 3645.28 €
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3.4 Incidentals

The budget has to be also adapted to situations that, in contrast to contingencies,
can be predicted. There are four main incidental situations predicted, with an
arbitray percentage chosen to specify how likely that situation is to happen. The
incidentals have already been described as risks in previous sections of the project,
costs shown in Table 9.

Description Hours Estimated cost (€) Risk (%) Final cost (€)
Both FPGA’s down 50 980.85 5 49.04
HCA down 20 392.34 10 39.23
Repository down 5 98.08 20 18.16
Not meeting project’s deadline 50 980.85 10 98.08
Total 205.95

Table 9: Incidentals defined and its costs. Source: own compilation.

3.5 Final budget

The final budget can be seen in Table 10. It takes into consideration both human
and material resources (16782.28€ and 1444.11€ respectively), contingencies and
incidentals. The budget totals 22077.62€.

Description Cost (€)
Total resources 18226.39
Contingencies 3645.28
Incidentals 205.95
Total 22077.62

Table 10: Final budget. Source: own compilation.

3.6 Management control

A budget for a big project will not always be exact, as there are many unforeseen
situations that can arise throughout development. Accordingly, a set of procedures
are used to control the budget and stablish a comparison between the planned
budget and the final costs.

Human deviation
Tasks will not always meet the exact amount of working hours expected. Therefore,
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the deviation is calculated as follows for every task.

Human deviation (€) =
∑
iεtask

(estWorkHours+realWorkHours)×costWorkHour

Being i any role that takes part in a particular task.

Hardware deviation
In a similar manner, the hardware usage may vary from the expected hoursi. The
deviation is calculated for every hardware used during a specific task, and all
deviations are summed to get the final hardware deviation of that particular task.

Resource deviation (€) =
∑
iεtask

(estUsedHours+realUsedHours)×costUsedHour

Being i any resource used in a particular task.

Task deviation
Both Human and Hardware deviations are used to get the total deviation of a
task.

Task deviation (€) = Human deviation + Resource deviation

Electrical deviation
Electricity is a resource whose cost has been calculated based on the amount of
hours worth of work. Therefore, its deviation can also be calculated.

Electrical deviation (€) = (estUsedHours + realUsedHours) × costUsedHour

Total deviation
Finally, both the overall Electrical deviation and all Task deviations are used to
get the final project’s deviation.

Total deviation (€) =
∑

iεproject

(Task deviation) + Electrical deviation

Being i all the tasks within the project.
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4 Sustainability

4.1 Self-assessment

Luckily, in recent years there has been an enormous increase in people’s concerns
about the consequences of our activities and, most significantly, the effects we as
human beings have on the environment. As a result of this new social perspective,
a self-evaluation is required to analyse my strengths and weaknesses regarding the
sustainability of my work and my knowledge about it.

I do my best to make eco-friendly decisions in my daily life, yet it is not something
I can control in my workplace. Many aspects and indicators used for measuring
and analysing our impact on the environment are still unknown to me. Most
importantly, the extensive list of possible effects my activities have on various
environmental aspects.

Even though this project will reduce the number of computing hours, therefore
decreasing the electricity required, its primary focus was to improve the developer’s
quality of life, so the social perspective was the main reason behind this work. At
the same time, the environmental cause was a secondary one.

From an economic perspective, this has been the first time I have done an analysis
as deep as the previous sections. The quantity of aspects to consider is more
considerable than I had expected.

I hope to develop this project as sustainable as possible based on these new insights.

4.2 Economic dimension

Regarding PPP: Reflection on the cost you have estimated for the com-
pletion of the project?

The overall cost estimated for successfully satisfying the project is 22077.62€,
explained in detal in previous sections, particularly shown in Table 10.

Regarding Useful Life: How are currently solved economic issues (costs...)
related to the problem that you want to address (state of the art)?, and
... How will your solution improve economic issues (costs ...) with
respect other existing solutions?
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The automatization of the bug detection process for every new code push to the
EPI repositories allows for the drastic reduction of working hours, as developers will
not be required to detect which feature has a bug hidden. Instead, the automatic
process will detect that bug the exact moment a push is done to the repository,
allowing developers to simply look at that particular piece of code instead of having
to look once many new pushes have been made.

4.3 Environmental dimension

Regarding PPP: Have you estimated the environmental impact of the
project

Besides the electrical consumption, there is no other environmental impact caused
by this project. Therefore, the environmental footprint will be defined by the
source of the electricity used.

As of 2021, 75.27% of electricity provided in Catalonia comes from non-renewable
sources, so that would be the direct environmental impact of the project. [24]

Regarding PPP: Did you plan to minimize its impact, for example, by
reusing resources?

Several strategies will be followed during development to minimize the project’s
environmental impact, basically focusing on reducing the electricity expenditure
through, for example, reducing computing hours.

One of the strategies will be to avoid triggering unnecessary pipelines, as a pipeline
is automatically triggered with every push to the repository. Several hours ’ worth
of FPGA’s work will be avoided by not automatically triggering pipelines for under
development pushes that were not intended to test anything.

Additionally, when a pipeline is necessary to be executed for testing purposes,
some steps or stages will be avoided as they will not be crucial at that point, being
activated again once development is finished.

Regarding Useful Life: How is currently solved the problem that you
want to address (state of the art)?, and ... How will your solution
improve the environment with respect other existing solutions?

Prior to the implementation of this work, all testing is done manually. The same
situation occurs for performance analysis. All this work has to be done manually;
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everything requires a considerable amount of computing hours and human hours
worth of work.

Furthermore, whenever a bug is encountered, a large amount of testing is necessary
to detect which push was responsible for introducing that bug. Constant automatic
testing drastically reduces the testing hours, saving human and electrical resources,
as it quickly detects the first push where that particular bug occurred.

4.4 Social Dimension

Regarding PPP: What do you think you will achieve -in terms of per-
sonal growth- from doing this project?

This project offers the possibility to learn and develop team skills as communication
with all the actors involved is fundamental for the proper development of this
work. Furthermore, scheduling is also crucial for meeting the deadline with all
tasks successfully achieved.

Regarding Useful Life: How is currently solved the problem that you
want to address (state of the art)?, and ... How will your solution
improve the quality of life (social dimension) with respect other existing
solutions?

Right now, it is a simple system that does not detect all the bugs that could be
otherwise detected with the addition of more benchmarks. This situation implies
that developers will be able to focus on developing and improving the EPI designs
rather than spending time testing the code already developed, which is a tedious
job.

Most importantly, developers have to wait for those trying to detect the bugs
previously introduced into the design to improve the processor’s design further.
This supposes a significant amount of pressure on the later ones, while it also
stops the development of the EPI project.

Regarding Useful Life: Is there a real need for the project?

As previously stated, the automatization of bug detection improves the lives of
the developers involved with the EPI project, while it also supposes the avoidance
of bug detection bottlenecks, where progress can not resume until a specific bug
is detected and solved.
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5 Technical background

5.1 High Performance Computing

High-Performance Computing (HPC) consists in the execution of applications us-
ing a large amount of processors and accelerators working in parallel. The main
objective is performing scientific calculus to, for example, produce simulations of
magnetic fields, climate change, etc.

A scientific application would need too much time to produce its results with-
out HPC, since its essential characteristic is the possibility to use the computing
elements in parallel.

Parallelism can be obtained at different levels, which depend on where they are
extracted:

◦ Data: Processing multiple data simultaneously through vectors, which is
performed through Single Instruction Multiple Data (SIMD) instructions.

◦ Instruction: CPUs are pipelined to allow the execution of numerous instruc-
tions concurrently, among other ways of extracting instruction parallelism.

◦ CPU: A processor is composed of various cores, allowing the execution of
many parallel programs allocated in different cores.

◦ Node: CPUs are typically sold in a socket form factor, which allows them
to be mounted on a motherboard, conforming a compute node. Compute
nodes are independent units of computation and can be connected through
a network such as Ethernet or Infiniband.

These are some examples of parallelism at different levels that can be found in an
HPC cluster.

5.1.1 Instruction Set Architecture

An ISA acts as an interface between hardware and software. It defines how the
hardware is controlled by the software.
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The only way for users to interact with hardware is using an ISA. For this reason,
tools are important because they ease the interaction with the ISA, abstracting
the user from the actual ISA specification.

In the specific case of the HPC industry, the most used ISA has been x86, for exam-
ple Intel and AMD implement processors with it. Therefore, the majority of tools,
such as compilers or libraries, are designed and optimized for a x86 architecture.

The x86 ISA is not the only one currently in the market, new ISAs have arised
in the last years, such as Arm. Generally, in order to use those ISAs, developers
have to pay royalties. An exception is RISC-V.

As RISC-V is an open-source ISA, its usage does not depend on royalties. It is a
modular ISA, because its instruction set is divided in modules, each module targets
a specific set of features. [11] It allows hardware developers to only implement the
modules that they require.

5.1.2 Vector architectures

Figure 5: Vector register file comparison of different architectures. Own compila-
tion.

As previously explained, parallelism can be obtained at data level with SIMD
instructions. In order to be able to execute those SIMD instructions, an specific
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processing unit is required. In other words, the CPU needs an accelerator where
SIMD instructions will be executed: the VPU.

There are different VPU architectures depending on the ISA specification used.
In Figure 5 three vector register files are put into perspective. Depending on the
implementation, each vector register file has a different size.

5.1.3 Clusters

A cluster is a computing system whose main objective is to increase its performance
taking advantage of the number of compute nodes.

A generic cluster diagram can be seen in Figure 6. It shows that each node is
composed by a CPU, an accelerator (graphic card or FPGA), and main memory.
Nodes are connected through an interconnection network, which is also connected
to data storage.

Figure 6: Generic cluster diagram. Own compilation.

HCA, named from Heterogeneous Computer Architectures, is the cluster that man-
ages and contains the two partitions used for this project’s scope: Arriesgado and
Pickle.

They are managed through Slurm, a job scheduling system that lets users work in
both partitions without conflict. [25]
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Figure 7: HCA. Own compilation.

The Arriesgado partition consists of seven Arriesgado nodes, each being a HiFive
Unmatched processor with four scalar cores at 1Ghz. [26] They are used to compile
and test binaries in native RISC-V architecture, avoiding cross-compilation. In
other words, the Arriesgado partition is used in steps 1 and 2 explained in Figure 9
from subsubsection 5.2.2.

The Pickle partition has three nodes. Every node is composed of an x86 CPU
and a VCU128 FPGA board connected through PCIe and Ethernet. The FPGA
is reprogrammed through the x86 core, as well as loading the Linux image and
starting a UART shell. The Pickle partition is used in step 3 explained in Figure 9
from subsubsection 5.2.2.

5.1.4 FPGA

An FPGA is a device with reconfigurable hardware: CLBs and programmable
interconnections. Those components can be programmed using a Hardware De-
scription Language (HDL), such as Verilog or VHDL. The RTL is designed and
developed with HDLs.

The reprogrammability capacity makes FPGAs suitable for implementing custom
RTL to accelerate specific parts of scientific applications. Another FPGA usage
is to test and validate RTL for processors under development. Testing chips in
FPGAs is crucial since it allows a quicker RTL and software testing rather than
in a simulator. Moreover, the environment is closer to the final product: the chip
and the software stack.

In the EPI project scope, FPGAs are used to test both the EPAC processor and
the software stack being developed.
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The FPGA used in this project is a Xilinx Virtex UltraScale+ HBM VCU128 Eval-
uation Kit. [21] An evaluation kit is a board that offers the following: hardware,
IPs, design tools and pre-verified reference designs; in order to enable and ease
development. [27]

An Intellectual Property (IP) is a verified RTL design provided by Xilinx that
eases the usage of FPGA’s elements.

Figure 8: FPGA diagram. Own compilation.

The VCU128 board contains an Xilinx Virtex UltraScale+ VU37P HBM FPGA
where the EPAC core is programmed.

Moreover, it has a DDR4 memory, where the Linux image is loaded. For writing
in the DDR4 memory, the FPGA has a PCI Express port, and the Linux image is
transferred from the host through it; see subsubsection 5.1.3 for more details.

Furthermore, it provides an Ethernet port, used to both establish SSH connection,
and the UART port for the UART shell. UART is a communication protocol
between devices. A UART shell uses the UART protocol in order to have an
interactive session in the Linux image booted in the EPAC core programmed in
the FPGA.
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5.1.5 Bitstream

A bitstream is a file that contains all the configuration information of a particular
FPGA, as well as all the resources to control and command the chip. In order to
use an FPGA, it will be previously programmed, which essentially means to load
a bitstream file to the FPGA.

The generation of a bitstream file requires a complex synthesis process, as the final
design is based on heuristics due to the complexity of the algorithms required (NP-
complete). The tool used for bitstream generation in the EPI project is Vivado, as
the FPGAs used are Xilinx. Vivado is designed to work with the architecture of
FPGAs designed by Xilinx. It has specific IPs for easily configuring all the FPGA
aspects, such as the Ethernet or PCIe, rather than using the physical protocol.
In other words, rather than directly using the phyisical layer of each component,
hiding its complexity.

5.2 European Processor Initiative

The EPI is a European project that aims to design and develop the first European
system-on-chip and accelerator processors for high-performance computing. The
EPI accelerator (EPAC) is a RISC-V-based chip, including, among others, a RISC-
V vector accelerator able to handle vector operands of up to 256 double-precision
elements. The architecture behaves as a general-purpose computing platform and
is supported by a complete system software tool-chain including a standard Linux,
an LLVM-based compiler enabling intrinsics and auto-vectorization, and vectorized
scientific libraries.

The BSC contributes to the EPAC architecture with the design of a Vector Pro-
cessing Unit that support the V extension of the RISC-V Instruction Set Archi-
tecture (ISA). BSC also leads the development of the LLVM compiler for RISC-V
supporting the EPAC vector accelerator including the VPU.

The main body of this project has been developed within BSC in the group de-
veloping the EPI Software Development Vehicles (SDVs). SDVs are software and
hardware tools that allow experimentation with the EPAC architecture and the
EPAC compiler. Even with little knowledge of the underlying architecture, scien-
tists can compile and test their codes and collaborate with EPI experts in analyz-
ing the outcome. The resulting study is a co-design effort providing feedback to
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the domain scientist who plans to efficiently run on long-vector architectures and
architects and system software developers.

In this section, we will introduce the fundamental concepts that are required to
understand the project’s background and that are needed to achieve the project’s
objectives.

5.2.1 RISC-V Vector extension

As RISC-V is a modular ISA, the extension called "V" defines the architecture of
the RISC-V vector unit. It is a vector length agnostic VPU.

The vector length is the register size. In a vector length agnostic VPU, the register
size is not fixed by the architecture, but rather defined by the programmer.

The VPU for the EPAC processor is being developed in BSC. It is an accelerator
and is the biggest part in the core and the FPGA, regarding area usage. The
EPAC VPU is complaiant with the RISC-V "V" extension specification.

This accelerator is a crucial part in the EPI core, since it allows obtaining speedups
that would be innaccesible only with the scalar core.

5.2.2 SDV environment

The Software Development Vehicles (SDV) environment consists of a set of tools
and designs fundamentally developed by the EPI partners to ease and enable
development of both hardware IPs and software applications.

An FPGA-based hardware platform, from now on refered as SDV@FPGA or
FPGA-SDV, is provided for software and hardware development. The SDV@FPGA
is used as an additional tool to test the EPAC processor, rather than exclusively
using an RTL simulator.

An RTL simulator is designed to simulate the design to a very fine detail. This
approach is useful to catch functional bugs at the logical level, but it is not suitable
for executions of large programs such as an operative system.

45



5 TECHNICAL BACKGROUND 5.2 European Processor Initiative

As a reference, the process of booting a lightweight distribution of Linux in the
FPGA design, takes up to 5min. In contrast, the simulation could take hours if
not days.

Consequently, the usage of the SDV@FPGA does also drastically accelerates the
process of debugging any malfunctioning feature of the EPAC core.

The recommended workflow for the SDV environment users, when testing appli-
cations, is founded on three basic steps, as seen in Figure 9.

Scalar binary
@

commercial
RISC-V platform

Vector RISC-V
binary
@

commercial RISC-V
platform + Vehave

Vector RISC-V
binary
@

FPGA development
platform

1 2 3

Figure 9: Recommended workflow for binary testing. Own compilation

Initially, the application is ported to a commercial RISC-V platform. That appli-
cation is now RISC-V compatible, but it still lacks vectorial instructions - it only
contains scalar ones.

The second step is to vectorise the code. Once it has vectorial instructions, a
binary is build with the LLVM compiler developed by BSC and executed through
Vehave, a vector emulation software installed in all RSC-V commercial platforms.
The simulation via Vehave allows for validating the user’s codes.

In other words, Vehave allows the execution of binaries with vector instructions in
a processor that can only execute scalar instructions, because it has no VPU.

Vehave emulates vector instructions via scalar instructions. Hence, the execution
time is inaccurate, but the binary’s execution behaviour is correct.

Finally, moving onto the FPGA development platform, the vectorised binary is
executed in a RISC-V core supporting the "V" ISA extension.

5.2.3 EPI compiler

The programmer must be able to use the VPU. One possibility is inserting assembly
inline, but it is not a comfortable way to program. To ease the generation of
vectorial codes for the user, a custom compiler is being developed.
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The EPI compiler is an LLVM-based compiler developed in BSC. It provides cus-
tom intrisics to use the EPI VPU, so the programmer can generate custom vector
codes. Moreover, the compiler can autovectorise an scalar code.

5.3 Git repositories

A repository is a centralised storing site for code-related projects. Typically, a
repository is managed with a version control software, such as Git.

The scope of this project is mainly encapsulated in three Git repositories, shown
in Figure 10, within the EPI infrastructure.

Figure 10: GitLab repositories diagram. Own compilation.

Each repository and its importance is explained below.

5.3.1 Integration

All the EPAC parts are contained in the Integration repository.

Each EPI partner is responsible for developing some of the core’s features, such as
L2 cache memory, the scalar core, or the VPU.

Every core parts is coded in a different repository. The Integration repository
contains all the features via submodules, as can be seen in Figure 10. A submodule
is a Git repository that acts as a subdirectory within another repository. All core
elements are a submodule pointing to the corresponding repository.
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5.3.2 EPAC_FPGA

The EPAC_FPGA repository is the one with the additional components needed
to generate and use the EPI core in the FPGA.

Firstly, the RTL is needed in the repository to be able to use the main characteris-
tics of the FPGA necessary to use the EPI core. Some of the main characteristics
are the DDR4 memory, the PCIe and the Ethernet connection.

The information for Vivado’s project to successfully generate a bitstream is also
included. Additionally, the tools to ease the FPGA’s usage, mainly to reprogram
the FPGA, boot the Linux image and start a UART shell. Finally, the necessary
files for generating Linux images are contained too.

This repository includes the integration repository as a submodule, as seen in
Figure 10.

Moreover, this is the repository where the CI is implemented. This project will be
mainly developed in this repository.

5.3.3 RISC-V Benchmarks

The RISC-V Benchmarks repository contains benchmarks’ codes and makefiles for
compilation available for any RISC-V processor.

The repository is divided between microbenchmarks and HPC benchmarks. The
first ones are minimal benchmarks for testing specific features. The latter are more
complex benchmarks.
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6 Continuous Integration environment

A Continuous Integration setup is a fundamental tool in any large-scale project
such as the European Processor Iniciative. The epac_fpga repository has a func-
tional CI already implemented. As this repository is hosted in GitLab, the CI used
is specific to it.

This final degree project will implement features on the last step in the epac_fpga
CI pipeline: the benchmarks stage.

Throughout this section two basic aspects necessary for this work to be fully
comprehended will be explained:

1. The structure the pipeline had prior to this work.

2. All the basic YAML concepts for programming a GitLab CI.

6.1 Initial pipeline structure

The initial structure of the CI is shown in Figure 11. Each stage and job is
explained in the following subsections.

Figure 11: Initial CI pipeline. Own compilation.

6.1.1 Build stage

The first stage executed in the pipeline is the Build, as seen in Figure 11. Two
main tasks occur in this stage, which are distributed in several jobs. One task is
to build the SDV bitstream for the VCU128 board. The second task is to build
four different Linux images compatible with the bitstream; and each image is built
in a different job.

Both the bitstream and Linux images are the artifacts of their respective CI jobs
and are used by the following pipeline’s jobs.
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Additionally, a set of reports are also produced as artifacts from the Build Bit-
stream job. Those reports are generated by Vivado during bitstream’s synthesis,
and offer additional information about the process.

The CI is automatically triggered every time a push is made. Not all commits
modify the processor’s RTL. Therefore, the bitstream does not need to be gener-
ated with every commit, only with the ones that modify the RTL. This bypass
mechanism is implemented because the bitstream generation takes from 9 to 10
hours.

Any time a bitstream is built in a CI job, the resulting bitstream artifacts are
saved in the GitLab’s cache.

The cache is a simple method for saving and accessing artifacts from previous
jobs, including jobs from previous pipelines. Accordingly, all subsequent pipelines
will access the cache and download the last built bitstream, until a new push
that modifies the RTL is made. The new triggered pipeline will produce a new
bitstream, and upload it to the cache for future pipelines.

Caching the bitstream builds allows a huge save on both time and computational
resources.

6.1.2 Test Linux stage

Following the Build stage, the Linux images are tested during the Test Linux stage.
The testing consists in booting the Linux images in the FPGA 20 times each. The
FPGA is previously programmed with the latest built bitstream.

In order to guarantee that the Linux image is booting correctly, the CI expects
the command prompt to appear through UART shell. If there is at least one failed
booting, the job fails for that specific Linux image.

6.1.3 Test Utilities stage

The Test Utilities stage tests two fundamental features for both the users and the
following CI stages.
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One the one hand, a job tests the SSH connection to the FPGA. It is a crucial fea-
ture in order to submit asynchronous jobs rather than having to use an interactive
session through UART shell.

On the other hand, a job mounts a directory hosted in the x86 server via NFS. By
having a mounted directory, all binaries hosted there are accessible. Otherwise,
any binary that needed to be tested in the FPGA would have to be embedded in
the Linux image. Each time a binary has to be embedded, the Linux image must
be recompiled. Moreover, the amount of binaries per every Linux image is limited.

6.1.4 Deploy stage

The Deploy stage only takes place in pipelines triggered by a push into master
branch. The bitstream, Linux images and bring-up tools are packed and uploaded
to an FTP server accessible by all EPI partners. That package becomes the latest
release.

6.1.5 Benchmarks stage

The initial setup only includes Stream, a benchmark for measuring sustainable
main memory bandwidth, in the Benchmark stage.

Different Stream versions are executed, depending on the vector length and the
number of computed elements: the first from 16 to 256, and the latter from 2048
(211) to 1048576 (220).

Each combination between vector length and computed elements is executed once.
The output is printed to GitLab’s job log, so no artifact is generated in this job.

6.2 GitLab’s CI YAML

The GitLab’s CI is programmed in YAML files. [28] YAML (YAML Ain’t Markup
Language) is a human-readable data serialization language.

The starting point in a GitLab’s CI is the .gitlab-ci.yml file. Generally, this
file contains the whole CI code in a simple implementation.
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However, for CI implementations with relatively big scopes, the .gitlab-ci.yml
file is used as the CI entry point, and additional YAML files may be used, following
a file hierarchy. Instad of writing a monolithic .gitlab-ci.yml, the CI developer
may use those additional YAML files for distributing CI stages and jobs across
them. For instance, each file is associated with a particular stage in this project.

6.2.1 Job and stage creation

The most basic structure of a CI pipeline are jobs, which are generally grouped in
stages such as in the epac_fpga repository. [29] The simplest implementation of
a job is shown in Listing 1. For this example, the job’s name is job_has_a_name,
the stage’s name where it belongs is first_stage, and the job will execute all the
code lines starting with a hyphen after the script: declaration. In this case, it
will print the message Hello, X!, being X the username specified by $GITLAB_-
USER_LOGIN, a predefined variable that contains the username of the user who
starts the job. [30]

1 job_has_a_name :
2 stage: first_stage
3 script :
4 - echo "Hello , $GITLAB_USER_LOGIN !"

Listing 1: Example code of a single job.

6.2.2 Pipeline creation

The pipeline is created depending on the order the jobs are written in YAML files.
[31] In other words, the first job in a YAML file will be the first job in the pipeline
and the first one on its stage. Runners are distributed according to this order.

1 first_job :
2 stage: first_stage
3 script :
4 - echo "Hello , $GITLAB_USER_LOGIN !"
5

6 second_job :
7 stage: first_stage
8 script :
9 - echo "Hello , $GITLAB_USER_LOGIN !"

10

11 third_job :
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12 stage: second_stage
13 script :
14 - echo "Hello , $GITLAB_USER_LOGIN !"
15

16 fourth_job :
17 stage: third_stage
18 script :
19 - echo "Hello , $GITLAB_USER_LOGIN !"

Listing 2: Example code of multiple jobs across several stages.

To visualize a created pipeline, in Listing 2 a simple CI implementation with
multiple jobs and stages can be observed, and the resulting pipeline is shown in
Figure 12. All jobs of a given stage will run in parallel if enough runners are avail-
able and no dependencies encountered, but two stages will not be simultaneously
executed unless specified otherwise.

Figure 12: Pipeline created from the code in Listing 2. Screenshot from GitLab.

6.2.3 Job artifacts

Jobs can produce files or directories. In order for the user or other jobs to access
those files, a job can store them as artifacts. [32]

For user access, artifacts can be accessed through GitLab’s UI, as seen in Figure 13.

53



6 CONTINUOUS INTEGRATION ENVIRONMENT 6.2 GitLab’s CI YAML

Figure 13: GitLab’s UI. Screenshot from GitLab.

Users can click on the Download button and a ZIP file will download with all the
artifacts from that specific job. Artifacts are deleted by default after three weeks
since they were produced, but the time limit can be easily modified by developers.

The artifacts keyword is used to create job artifacts. In particular, inside the
artifacts environment the paths keyword determines the paths of those files to
be considered artifacts. The paths to files are relative to the repository directories.

A job that generates an artifact can be seen in Listing 3. The file artifact.out
is produced during the job’s script execution in the path path/to/artifact/.

1 job_has_a_name :
2 stage: first_stage
3 artifacts :
4 paths:
5 - path/to/ artifact / artifact .out
6 script :
7 - cd path/to/ artifact
8 - echo "Hello , $GITLAB_USER_LOGIN !" > artifact .out

Listing 3: Example code of an artifact being created.

6.2.4 Job dependencies

As previously explained, if enough runners are available, jobs will execute unless
a dependency is encountered. Dependencies between jobs can either be related to
other jobs or artifacts; see subsubsection 6.2.5 for the later one.
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Job dependencies create directed acyclic graphs, being each graph’s node a job.1
Fundamentally, a job will not start until all the jobs stated under the needs
keyword have finished.

If this keyword is used, parallelism between stages can occur, as shown in Listing 4.
In this example, the linux:rspec job will start once the linux:build job finishes,
even if the mac:build job has not finished. Therefore, it will not wait for the whole
build stage to finish, but only for the jobs specified under the needs clause, unlike
the lint job that will wait for all the jobs in previous stages.

1 linux:build:
2 stage: build
3 script : echo " Building linux ..."
4

5 mac:build:
6 stage: build
7 script : echo " Building mac ..."
8

9 lint:
10 stage: test
11 script : echo " Linting ..."
12

13 linux:rspec:
14 stage: test
15 needs: [" linux:build "]
16 script : echo " Running rspec on linux ..."

Listing 4: Example code of multiple jobs using needs. GitLab’s official webpage.
[2]

6.2.5 Artifact dependencies between jobs

In some situations, jobs may need resources produced as artifacts by other jobs in
the pipeline. In that case, the dependencies field is used to list all the jobs whose
artifacts are fetched.[33] The job will be able to access all the artifacts generated
by the jobs enlisted, having direct access to the directories where those artifacts
have been previously generated.

If a runner is assigned to a job with dependencies that are yet to be produced, the
job will be stuck, and the runner re-assigned to another job, until dependencies

1See GitLab’s official webpage on Directed Acyclic Graphs (DAG) in CI: https://docs.
gitlab.com/ee/ci/directed_acyclic_graph/index.html
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are entirely generated. Once all the required dependencies are available, the job’s
execution will resume again whenever a runner is available.

6.2.6 Artifact dependencies between pipelines: the cache

The dependencies option is only available in case an artifact has been produced in
the same pipeline where another job needs it. In some situations, jobs may need
access to resources produced in previous pipelines. In that case, two possibilities
are available for CI developers.

The first one is to download those artifacts during script execution every time a
job needs them. [34] If two or more jobs require the same artifacts, every job will
download them.

The second method is to use the GitLab cache. [35] From one side, jobs that
produce for future use in a different pipeline will store them at the cache. From
the other side, the first job that needs an artifact stored at the cache requests and
downloads it. Every future access within the pipeline will now have direct access
to that artifact without the need to download it again.

Therefore, cache usage is faster than simple downloads whenever two or more jobs
need a particular artifact from a previous pipeline.

6.2.7 Job templates

A template for a job can be created. Whenever a job is created using that initial
job as a template, the extends keyword is used to refer to the template job. Using
a template job is useful when a set of jobs have a shared structure, avoiding code
replication.

A template is created by starting the job name with a dot. A job uses a template
when the template name is specified under the extends field.

1 . template_job :
2 script : echo "Code from template "
3 stage: test
4

5 job1:
6 extends : . template_job
7 after_script : echo "Code after template by job1"
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8

9 job2:
10 extends : . template_job
11 after_script : echo "Code after template by job2"

Listing 5: Example code of a job template.

In Listing 5 an example with extends can be observed. The job template_job is
used by both job1 and job2 as a template, and the template’s code will be mixed
with the jobs’ code. As a result, both jobs will initially execute the template’s
script code. Afterwards, they will execute their own after_script code.2

The job’s code would look as in Listing 6 if no templates were used and the jobs
itself contained all the necessary code.

1 job1:
2 extends : . template_job
3 script : echo "Code from template "
4 after_script : echo "Code after template by job1"
5

6 job2:
7 extends : . template_job
8 script : echo "Code from template "
9 after_script : echo "Code after template by job2"

Listing 6: Example code of jobs from Listing 5 if no templates were used.

6.2.8 Variables

Environment variables can be set by developers using the variables keyword.
[36] If variables are defined at the top level of the .gitlab-ci.yml they will be
globally available for all jobs to use them.

Otherwise, they can be created in the job template and specified in the non-
template job. Obviously, variables can also be created and specified directly in
the job itself. In the first case, the variable will only be accessible by all the jobs
under the same template, while in the latter case it will only be accessible by the
job itself.

Additionally, variables can be set manually when triggering a pipeline. They will
be globally available for all jobs.

2Besides the script keyword, both before_script and after_script exist. If used, their
codes are respectively executed before and after the code within the script field.
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1 va r i a b l e s :
2 VAR_GLOBAL: " This v a r i ab l e i s g l o b a l l y a v a i l a b l e "
3

4 job1 :
5 va r i a b l e s :
6 VAR_JOB: "Only job1 can use t h i s v a r i ab l e "
7 s c r i p t :
8 − echo "$VAR_GLOBAL" and "$VAR_JOB"

Listing 7: Example code of variable creation and access.

In Listing 7 an example of two variables with different availability possibilities is
shown. VAR_GLOBAL is a globally accessible variable, while VAR_JOB is a variable
whose usage is limited to job1 job.
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7 Implementation

The following sections explain all the work related to the code implementation
throughout this final degree project, divided among the different task groups spec-
ified in the project planning.

7.1 Benchmark’s job refactor

Initially, the GitLab runners executed benchmark jobs in the FPGA as soon as
the pipeline dependencies were satisfied. Furthermore, the infrastructure was at
an early development phase, with no resource management system - like Slurm.

Both circumstances altogether resulted in GitLab runners kicking any user that
was using the FPGA at the moment job execution started. This situation led
to the incorporation of Slurm. Consequently, as a first task, this final degree
project aimed to refactor the way previous developers originally programmed the
benchmark job for adapting it to the introduction of Slurm.

7.1.1 Initial status

The Benchmarks stage contained a single benchmark executed in the stage’s only
job: Stream. Two files formed the whole stage: the benchmarks.yml and the
stream.sh. The first one contained all the stage’s definition in YAML and the
bash code for preparing the FPGA environment, while the second one strictly
included the code to execute the Stream benchmark.

In order to get the FPGA ready for the benchmark’s execution, the job did several
tasks during before_script in benchmarks.yml. It reprogrammed the FPGA,
booted the Linux image, and mounted the shared directory that contained the
benchmark binary.

1 . benchmark :
2 stage: benchmarks
3 tags:
4 - fpga
5 - vivado
6 variables :
7 GIT_SUBMODULE_STRATEGY : none
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8 needs: [ build_bitstream , build_linux .CI -testing -sdv3 -minimal -
network -new , utilities_linux .ssh , utilities_linux .nfs]

9 dependencies :
10 - build_bitstream
11 - build_linux .CI -testing -sdv3 -minimal -network -new
12 before_script :
13 - ./ tools/reprogram -fpga
14 - ./ tools/boot -linux -remote -and -check
15 - ./ tools/ssh -cmd root@10 .0.0.2 "mkdir /epi - shared && mount -

tnfs4 10.0.0.1:/ scratch /epi - shared /epi - shared "
16

17 stream :
18 extends : . benchmark
19 script :
20 - ./ci/ benchmarks / stream .sh

Listing 8: Original code of benchmarks.yml.

The Stream job created in benchmarks.yml executed the file stream.sh during
its script phase, as can be seen in line 20 from Listing 8.

The Stream binary accepts two parameters: the vector length (VL) and the prob-
lem size (SIZE). The stream.sh script executed every combination between VL
and SIZE ten times each.

The binary was executed through ssh, storing both the exit code and the bench-
mark’s output. In case any execution timed out (timeout limit at 30 seconds) or
returned a non-zero exit code, the script booted the Linux image again.

If successful, it would mount the shared directory and continue normal execution.
Otherwise, it would reprogram the FPGA and reboot the Linux image afterwards.
Once again, it would keep normal execution if successful, but finish the script
execution if the second Linux booting failed.

This whole process was due to some instabilities with the FPGA at the moment
of the implementation of this stage. By the time this final degree project started,
the EPI developers had already solved these instabilities.

Once a successful binary execution finished, it parsed the output and printed it in
GitLab’s log.
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7.1.2 Developed solution

Besides the need of improvement on the way the Benchmark stage was programmed,
the addition of Slurm to the Pickle nodes implied that the benchmark’s execution
had to be modified. The Slurm command srun has been used to queue the bench-
mark launch script with a limited execution time of one hour, as shown in line 17
from Listing 9.

1 . benchmark :
2 stage: benchmarks
3 tags:
4 - fpga
5 - vivado
6 variables :
7 GIT_SUBMODULE_STRATEGY : none
8 timeout : 2h
9 needs: [ build_bitstream , build_linux .CI -testing -sdv3 -minimal -

network -new , utilities_linux .ssh , utilities_linux .nfs]
10 dependencies :
11 - build_bitstream
12 - build_linux .CI -testing -sdv3 -minimal -network -new
13

14 stream :
15 extends : . benchmark
16 script :
17 - srun --job -name=CI -Benchmark - STREAM --time =01:00:00 --

partition =fpga ./ci/ benchmarks / stream /run.sh | tee benchmark -
stream .out

18 artifacts :
19 when: always
20 paths:
21 - ./ benchmarks - outputs / stream

Listing 9: Code developed of benchmarks.yml.

Besides the timeout specified by the srun command, a job timeout of two hours
has been defined, as seen in line 8 from Listing 9. In other words, the job will have
a maximum of two hours since its creation to finish all the subsequent scripts and
tasks, otherwise it will abruptly finish execution and fail.

Once the srun command allocates resources for the Slurm job executing the
srun.sh script, it will have a maximum of one hour to finish, always within the
two hours limited by the pipeline job.
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Additionally, all the content within the before_script environment in bench-
marks.yml is removed.

The necessary steps for preparing the FPGA for benchmark execution have been
moved to an independent file, named run.sh, whose code is in Listing 10. That
file also contains the launch of the benchmark script to execute the benchmark,
line 20 of Listing 10.

1 #!/ bin/bash -e
2

3 source /etc/ profile .d/lmod.sh
4 module purge
5 module load vivado /2020.1
6

7 export LC_ALL =en_US.UTF -8
8

9 export SDV_BITSTREAM =./ build/ bitstream / epac_core .bit
10 export SDV_LINUX_IMAGE_PATH =./ build/linux/
11 export SDV_PCIE_HOST =‘hostname ‘
12 export SDV_REBOOT =""
13

14 ./ tools/reprogram -fpga
15 ./ tools/boot -linux -remote -and -check
16 ./ tools/ssh -cmd root@10 .0.0.2 "mkdir / shared && mount -tnfs4

10.0.0.1:/ scratch / shared /gitlab - runner / benchmarks / shared "
17

18 mkdir -p ./ benchmarks - outputs / stream
19 ./ tools/scp -cmd ./ci/ benchmarks / stream / stream .sh root@10 .0.0.2:/

root /.
20 ./ tools/ssh -cmd root@10 .0.0.2 "/ root/ stream .sh" | tee ./ benchmarks

- outputs / stream / stream .csv

Listing 10: Code developed of run.sh.

The usage of artifacts has been added. The benchmark’s output is stored in the
benchmarks-outputs/ directory, in a CSV file named stream.csv.3

The launch of the benchmark script in run.sh redirects the benchmark’s output
to that file through tee command. This file will be the job’s artifact, as seen in
line 20 from Listing 10.

1 #!/ bin/bash
2

3 BENCHMARKS_DIR =/ shared

3CSV: A Comma-Separated Values file is a text file that uses commas to stablish data columns
and lines as data rows.
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4 STREAM_BINARY =${ BENCHMARKS_DIR }/ stream /
5

6 echo "Size VL CopyBW ScaleBW AddBW TriadBW "
7

8 for VL in 16 32 64 128 256; do
9 for SIZE in 2048 4096 8192 16384 32768 65536 131072 262144

524288 1048576; do
10

11 ${ STREAM_BINARY }/ stream -${SIZE}_elems -${VL}_vl > output .txt
12

13 # Parsing the output
14 copy_bw =‘grep Copy: output .txt | awk ’{print $2}’‘
15 scale_bw =‘grep Scale: output .txt | awk ’{print $2}’‘
16 add_bw =‘grep Add: output .txt | awk ’{print $2}’‘
17 triad_bw =‘grep Triad: output .txt | awk ’{print $2}’‘
18

19 echo "${SIZE} ${VL} ${ copy_bw } ${ scale_bw } ${ add_bw } ${
triad_bw }"

20

21 done
22 done
23

24 rm output .txt

Listing 11: Code developed of stream.sh.

To sum up, the three resulting files have specific functionalities.

Firstly, the file benchmarks.yml does only manage the job’s creation and queueing
benchmark scripts to the Slurm queues.

Secondly, the run.sh handles everything related to the configuration of the FPGA
environment.

Finally, the file stream.sh does only have the code for executing the Stream
benchmark.

The objective of splitting the whole CI job has been the modularisation of work
to ease both debugging and the addition of new benchmarks.

7.2 Addition of new benchmarks

At this phase, the Benchmark’s pipeline stage had a single benchmark in a single
job: Stream. As previously explained, a fundamental interest behind this final
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degree project has been to ensure the CI detects as many deficiencies as possible
in the core’s design being developed by the EPI team. Using only one benchmark
does not fully fulfil this objective.

A set of benchmarks has been selected from all the RISC-V compatible benchmarks
available at the risc-v-benchmarks repository at that moment.

The selection has been made according to the guidance of several BSC team mem-
bers and some EPI partners with a high level of insight, as they have previously
been involved in both designing and debugging EPAC core elements.

7.2.1 Selected benchmarks

All the benchmarks selected are briefly explained in this section.

Firstly, three benchmarks strictly test the load and store part of the VPU. It is
a vital part since its latency and functionality are essential in many applications.
They all stress the Network on Chip (NoC), home nodes and the communication
between the scalar core and the VPU.

◦ Buffcopy Unit: It only loads and stores elements in contiguous locations
into and from the vector unit.
It uses the vle.v and vse.v RISC-V vector instructions.

◦ Buffcopy Strided: It only loads elements separated by a constant stride
value into the vector unit. A stride is a constant number of bytes between
one desired element and the next desired one.
It uses the vls.v and vss.v RISC-V vector instructions.

◦ Buffcopy Indexed: It only loads elements indexed in a vector into the
vector unit, also known as gather. A vector gather instruction consists in
arranging different elements of a vector separated by a non-constant distance,
an example is offered in Figure 14.
It uses the vlx.v and vsx.v RISC-V vector instructions.
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Figure 14: Gather instruction diagram. Own compilation.

The last benchmark whose purpose is to stress a single processor part is FMAS.

◦ FMAS: It is an algorithm that executes n FMA (Fused Multiply-Accumulate)
instructions, floating-point multiplications and sums, without dependencies
and measuring the time it takes.
It tests the VPU floating point arithmetic.
It is useful to know the maximum Flops/cycle a specific processor can com-
pute.

The following benchmarks are algorithms that are part of scientific applications.
They stress more than one processor part at once.

◦ Jacobi 2D: It is an iterative method to solve a system of n linear equations
in n unknowns.
It tests the NoC, the VPU’s arithmetic unit and the communication between
the scalar core and the VPU.

◦ FFT (Fast Fourier Transform): Custom FFT vector implementation
developed in BSC. An FFT benchmark implements an algorithm to compute
the Discrete Fourier Transform (DFT).
It tests the NoC, the VPU’s arithmetic unit and the communication between
the scalar core and the VPU.
It is a widely used algorithm in several disciplines, such as engineering or
science, because it converts a signal in its original domain to the frequency
domain.

◦ SpMV (Sparse Matrix-Vector): It is a kernel that performs sparse
matrix-vector multiplications.
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It tests the NoC, the VPU’s arithmetic unit and the communication between
the scalar core and the VPU.
SpMV is the most significant part of HPCG (High Performance Conjugate
Gradients). [37] In HPC it acts as an alternative to HPL (High Performance
Linkpack) to classify the TOP500 supercomputer list.4

Notice that all benchmarks indirectly test the scalar core since all the code sur-
rounding the vectorial code is scalar. Therefore, the scalar core is tested in every
benchmark but in a non-strict way.

Furthermore, the already implemented Stream benchmark has been kept. It
performs load and store operations with a size bigger than the processor’s cache
size. It tests the NoC and the communication between the scalar core and the
VPU.

7.2.2 Scripts generalization

With the addition of several benchmarks in mind, during the early development
of this task, it became clear that the refactor previously implemented could be
improved. The main two reasons are that each benchmark needed a separated
run.sh script, and the srun command in the GitLab CI job had a custom path.

Two simple solutions were designed: to generalize the run.sh script and create a
GitLab CI template.

As a consequence, instead of having a run.sh file for each job, the file has been
slightly modified in order to be used by all the [benchmark].sh scripts, as the
necessary process to prepare the FPGA environment for benchmark execution is
shared among all benchmarks.

In order to allow this, the benchmark name is passed as an argument into run.sh
by every job in benchmarks.yml, as seen in Listing 12.5

1 #!/ bin/bash -e
...

19 mkdir -p ./ benchmarks - outputs /$*

4TOP500 offical webpage: https://www.top500.org/.
5In a Bash script, the parameter $* is used to access the arguments passed to the script in

its invocation.
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20 ./ tools/scp -cmd ./ci/ benchmarks /$*/$*.sh root@10 .0.0.2:/ root /.
21

22 ./ tools/ssh -cmd root@10 .0.0.2 "/ root/$*.sh" > ./ benchmarks -
outputs /$*/$*. csv

Listing 12: Code of the generic run.sh script. Unchanged lines have been omitted
in this listing, check Listing 10 to see them.

Furthermore, the generic run.sh script is now called in the script area shared
among all benchmark jobs and passing as parameter the variable BENCHMARK_NAME,
as seen in line 14 from Listing 13.

1 stage: benchmarks
...

13 script :
14 - srun --job -name=CI -Benchmark -${ BENCHMARK_NAME } --time =01:00:00

--partition =fpga ./ci/ benchmarks /run.sh ${ BENCHMARK_NAME } |
tee benchmark -${ BENCHMARK_NAME }. out

15 artifacts :
16 when: always
17 paths:
18 - ./ benchmarks - outputs /${ BENCHMARK_NAME }
19

20 stream :
21 extends : . benchmark
22 variables :
23 BENCHMARK_NAME : stream

Listing 13: Code of the benchmarks.sh script adapted for a generic run.sh.
Unchanged lines have been omitted in this listing, check Listing 9 to see them.

Every GitLab CI job defines the BENCHMARK_NAME variable with the benchmark’s
name being executed, as seen in line 23 from Listing 13.

7.2.3 Binary generation

After choosing the benchmarks that would be added to the pipeline stage, a binary
had to be generated and their correct behaviour checked.

The steps followed to test each benchmark’s binary are the ones defined in Figure 9
from subsubsection 5.2.2.
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Firstly, the scalar version was compiled with the EPI compiler following the in-
structions provided by BSC team members and executed in Arriesgado. This
scalar version would be used for future comparisons, as it provided the correct
benchmark’s output.

Secondly, the vectorized version was generated with the EPI compiler and tested
with Behave in Arriesgado to check that the vector implementation was correct,
comparing the output with the scalar one.

Thirdly, the vectorized binary was tested in the FPGA, checking that the output
matches the scalar one.

After those verifications, the next step was to create a custom execution script
with the necessary parameters and output parsing for each benchmark.

All the compiled and tested binaries were deployed in the shared folders of the
HCA server, available by all FPGAs. This way, all binaries will be accessible
during the pipeline execution.

7.2.4 Generic benchmark implementation

Every benchmark added to the pipeline requires a new job. Thus, the Stream
benchmark implementation has been used as a reference for all the outcoming
benchmarks.

Every benchmark job will have its own script file, named [benchmark].sh, being
[benchmark] the benchmark’s name. Each benchmark script has different input
parameters and output values, but all share the same structure and design. They
contain different loops to generate combinations between the input parameters,
performing five iterations for each combination.

The output is parsed at each iteration, to store all the measures for every exe-
cuted combination in a file named [benchmark_name].csv, including the execu-
tion parameters of each iteration. The parsed output will be stored in that file as
programmed in the run.sh script, as seen in line 20 from Listing 10.

The characteristics of each benchmark implementation are explained in the follow-
ing sections.
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7.2.5 Buffcopy unit

The Buffcopy unit benchmark has different binaries depending on the pipeline
value: 1, 2, 4 or 8. It defines pipeline consecutive load instructions launched and
then another pipeline store instructions. For instance, a pipeline = 2 is translated
into two load instructions, followed by two store instructions, then another two
loads and two stores, and so on.

The three input parameters that all Buffcopy unit binaries need are explained in
Table 11.

Input Parameters Meaning Values
VL Vector Lenght 2[4,8]

elements Problem size 2[11,16]

ntimes Repetition of the main loop 2[8,4]

Table 11: Buffcopy unit input parameters and their corresponding values.

The corresponding line and argument order to execute this benchmark is:

./BuffCopyUnit_pipelining<pipeline>_binary <elements> <VL> <ntimes>

An example of an output can be seen in Listing 14. It shows the execution result
with a pipelining of 1, 2048 elements, a vector length of 16 and a ntimes of 256.

The meaningful output is in lines 7 and 8 of Listing 14.

1 # ./ BuffCopyUnit_pipelining1 2048 16 256
2 RVL =16 GVL =16
3 SYCALL TELLS = -1
4 retries : 0
5 SYCALL TELLS = -1
6 retries : 0
7 header : Time(s) cycles Time_min (s) cycles_min BW(MB/s) BW(MB/s)(

measure cycles @50MHz ) BW_min (MB/s) BW_min (MB/s) ( measure
cycles @50MHz )

8 results : 0.03826300 1911762 0.00010400 4627 109.61774926
109.69733680 315.07692663 354.09552626

Listing 14: Buffcopy unit output example.

It contains, among other measures: the execution time, the overall number of
cycles, the execution time of the fastest iteration, and the number of cycles of the
same iteration.
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1 #!/ bin/bash
2

3 BENCHMARKS_DIR =/ shared
4 BUFFCOPY_BINARY =${ BENCHMARKS_DIR }/ buffcopy -unit
5

6 # Printing headers for output columns :
7 echo "Pipeline ,VL ,Elem ,NTimes ,Time(s),Cycles , TimeMin (s),CyclesMin ,

BW(MB/s),BWMin(MB/s)"
8

9 for pipeline in 1 2 4 8; do
10 for VL in 16 32 64 128 256; do
11 elements =2048
12 ntimes =256
13 for i in ‘seq 6‘; do
14 for j in ‘seq 5‘; do
15 # Executing the binary ,
16 # output is redirected to a text file:
17 ${ BUFFCOPY_BINARY }/ BuffCopyUnit_pipelining$ { pipeline } ${

elements } ${VL} ${ ntimes } > output .txt
18 # Output parsed and printed ,
19 # with the pipeline and iteration parameters :
20 echo "${ pipeline },${VL},${ elements },${ ntimes },‘grep

results : output .txt | awk ’{print $2","$3","$4","$5","$6","$8
}’‘"

21 done
22 # Decreasing ntimes while increasing elements and VL:
23 elements =$(( $elements * 2 ))
24 ntimes =$(( $ntimes / 2 ))
25 done
26 done
27 done
28

29 # Deleting temporary output file text:
30 rm output .txt

Listing 15: Code of buffcopy-unit.sh.

7.2.6 Buffcopy strided

The Buffcopy strided benchmark has a single binary with two possible input
parameters: elements and ntimes, both explained in Table 12.

Input Parameters Meaning Values
elements Problem size 2[11,16]

ntimes Repetition of the main loop 2[3,9]

Table 12: Buffcopy strided input parameters and their corresponding values.
70



7 IMPLEMENTATION 7.2 Addition of new benchmarks

The benchmark has pre-defined values of 256 for the vector length, and 64 stride
bytes. As the program works with doubles, whose size is 8 bytes, it means that
the stride is 8 elements (64 B stride

8 B double = 8 elements).

The corresponding line and argument order to execute this benchmark is:

./BuffCopyStrided_binary <elements> <ntimes>

An example of an output can be seen in Listing 16. It shows the execution result
with 2048 elements and a ntimes of 8.

1 # ./ BuffCopyStrided 2048 8
2 maxvl = 256
3 Array size =2048( elements ), array_size =0.015625( MiB)
4 accum [0]=16384.000000
5 header : Time(s) BW(MB/s)
6 result : 0.00041800 313.56937008

Listing 16: Buffcopy strided output example.

1 #!/ bin/bash
2

3 BENCHMARKS_DIR =/ shared
4 BUFFCOPY_BINARY =${ BENCHMARKS_DIR }/ buffcopy - strided
5

6 echo "Elements ,Ntimes ,Time(s),BW(MB/s)"
7

8 for elements in 2048 4096 8192 16384 32768 65536; do
9 for ntimes in 8 16 32 64 128 256 512; do

10 for i in ‘seq 5‘; do
11 ${ BUFFCOPY_BINARY }/ BuffCopyStrided ${ elements } ${ ntimes } >

output .txt
12 echo "${ elements },${ ntimes },‘grep result : output .txt | awk

’{print $2","$3}’‘"
13 done
14 done
15 done
16

17 rm output .txt

Listing 17: Code of buffcopy-strided.sh.
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7.2.7 Buffcopy indexed

The Buffcopy indexed benchmark has three possible input parameters: ele-
ments, strideB and ntimes, all three explained in Table 13.

Input Parameters Meaning Values
elements Problem size 2[11,16]

strideB Used in the index vector generation 2[3,9]

ntimes Repetition of the main loop 256

Table 13: Buffcopy indexed input parameters and their corresponding values.

The corresponding line and argument order to execute this benchmark is:

./BuffCopyIndexed_binary <elements> <strideB> <ntimes>

An example of an output can be seen in Listing 18. It shows the execution result
with 2048 elements, a strideB of 8 and a ntimes of 256.

1 # ./ BuffCopyIndexed 2048 8 256
2 stride_bytes =8 stride_pow =3 stride_elements =1
3 effective_elements =2048( elements ), allocated_array =0.015625( MiB)
4 accum [0]=2048.000000
5 header : Time(s) BW(MB/s)
6 result : 0.01775900 236.17905240

Listing 18: Buffcopy indexed output example.

The important measurements printed in the output are the time (in seconds) and
the bandwidth (in megabytes per second). Both measures are printed after binary
execution as seen in lines 5 and 6 from Listing 18. The output is parsed in line 13
from buffcopy-indexed.sh script, whose code is in Listing 19.

1 #!/ bin/bash
2

3 BENCHMARKS_DIR =/ shared
4 BUFFCOPY_BINARY =${ BENCHMARKS_DIR }/ buffcopy - indexed
5

6 echo "Elements , StrideBytes ,NTimes ,Time(s),BW(MB/s)"
7

8 ntimes =256
9 for elements in 2048 4096 8192 16384 32768 65536; do

10 for strideB in 8 16 32 64 128 256 512; do
11 for i in ‘seq 5‘; do
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12 ${ BUFFCOPY_BINARY }/ BuffCopyIndexed ${ elements } ${ strideB } ${
ntimes } > output .txt

13 echo "${ elements },${ strideB },${ ntimes },‘grep result : output .
txt | awk ’{print $2 , $3}’‘"

14 done
15 done
16 done
17

18 rm output .txt

Listing 19: Code of buffcopy-indexed.sh.

7.2.8 FMAS

The FMAS benchmark binary has two input parameters: VL and NUM_LOOPS,
both explained in Table 14.

Input Parameters Meaning Values
VL Vector length 0, 32, 256

NUM_LOOPS Repetition of the main loop 64

Table 14: FMAS input parameters and their corresponding values.

The corresponding line and argument order to execute this benchmark is:

./FMAS_binary <VL> <NUM_LOOPS>

An example of an output can be seen in Listing 20. It shows the execution result
with a VL of 1 and a NUM_LOOPS of 64.

1 /epi - shared /rafel # ./ FpuMicroKernel 1 64
2 requested vl=1, granted vl=1
3 SYCALL TELLS = -1
4 header : cycles Flop/c cycles vpu Flop/cvpu
5 result : 39700 0.19989924 0 inf

Listing 20: FMAS output example.

The valuable output parameters are the total amount of cycles and the performance
in floating point operations per cycle, those are the parsed parameters in line 13,
in the fmas.sh script shown in Listing 21.

1 #!/ bin/bash
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2

3 BENCHMARKS_DIR =/ shared
4 FMAS_BINARY =${ BENCHMARKS_DIR }/ fmas/fmas
5

6 NUM_LOOPS =64
7

8 echo "VL ,NLoops ,Cycles ,Flop/c"
9

10 for i in ‘seq 0 32 256 ‘; do
11 for j in ‘seq 5‘; do
12 ${ FMAS_BINARY } ${i} ${ NUM_LOOPS } > output .txt
13 echo "${i},${ NUM_LOOPS },‘grep result output .txt | awk ’{print

$2 , $3}’‘"
14 done
15 done
16

17 rm output .txt

Listing 21: Code of fmas.sh.

7.2.9 Jacobi 2D

The Jacobi 2D benchmark has two input parameters: N and ITER, both explained
in Table 15.

Input Parameters Meaning Values
N Problem size 2[6,10]

ITER Repetition of the main loop 8

Table 15: Jacobi-2D input parameters and their corresponding values.

The corresponding line and argument order to execute this benchmark is:

./Jacobi2D_binary <N> <ITER>

An example of an output can be seen in Listing 22. It shows the execution result
with an N of 64 and ITER of 8.

1 # ./ jacobi2d_binary 64 8
2 time(s): 0.005487

Listing 22: Jacobi-2D output example.

The benchmark’s output offers a single measurement, the execution time in sec-
onds. It is parsed in line 12 from the jacobi-2d.sh shown in Listing 23.
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1 #!/ bin/bash
2

3 BENCHMARKS_DIR =/ shared
4 JACOBI_BINARY =${ BENCHMARKS_DIR }/ jacobi -2d/ jacobi2d
5

6 ITER =8
7

8 echo "N,Iter ,Time"
9

10 for N in 64 128 256 512 1024; do
11 for i in ‘seq 5‘; do
12 ${ JACOBI_BINARY } ${N} ${ITER} | awk ’{print $2}’ | xargs echo

${N} ${ITER };
13 done
14 done
15

16 rm output .txt

Listing 23: Code of jacobi-2d.sh.

7.2.10 FFT

The FFT benchmark has two input parameters and three flags, the first one
being compulsatory and the last two optional: N, REP, fftp/fftw/both, cycles
and check, all explained in Table 16.

Input Parameters Meaning Values
N Problem size 2[6,13]

REP Repetition of the main loop 1
fft flag FFT version to be executed fftp/fftw/both

cycles flag Measure cycles instead of microseconds cycles
check flag Check the FFTP results against the FFTW6 check

Table 16: FFT input parameters and their corresponding values.

The corresponding line and argument order to execute this benchmark is:

./fft_binary <N> <REP> <fft flag> <cycles flag> <check flag>
6The FFTW, stands for Fastest Fourier Transform in the West and is the standard imple-

mentation of FFT used in science and HPC.
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The check flag enables a comparison between the results of the vectorized FFT
against a scalar FFTW. If there is an above-threshold difference, it identifies which
elements of the transform do not match.

Once the benchmark execution finishes, if the check flag is enabled, it prints
Check:Correct when there are no discrepancies or Check:Incorrect otherwise.

An example of an output can be seen in Listing 24. It shows the execution result
with an N of 64, a REP of 1, the fftp and check flags set.

1 # ./ runfftp -fftw - static_intrinsics 64 1 fftp check
2 fftp_plan_time : 200
3 fftp_exe_time : 87
4 Check: Correct
5 accum_error : 0.00000000
6 avg_error : 0.00000000
7 max_error : 0.00000000

Listing 24: FFT output example.

Line 12 from fft.sh script, shown in Listing 25, offers the command used for
executing the binary in each iteration. Differently than the example provided in
Listing 24, the pipeline job execution uses the cycles flag, as it provides more
reliable information than the time measurement offered otherwise.

Furthemore, the check flag is also enabled. In case any execution offers an Incorrect
output, that information is parsed to the job’s artifact.

The output parameter parsed is the total execution cycles, as shown in line 15
from Listing 25.

1 #!/ bin/bash
2

3 BENCHMARKS_DIR =/ shared
4 FFT_BINARY =${ BENCHMARKS_DIR }/ fft/fft
5

6 REP =1
7

8 echo "N,Rep , ECycles "
9

10 for N in 64 128 256 512 1024 2048 4096 8192; do
11 for i in ‘seq 5‘; do
12 ${ FFT_BINARY } ${N} ${REP} fftp cycles check > output .txt
13 if grep -q " Correct " output .txt; then
14 # In case output is correct , parses it:
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15 echo ${N} ${REP} ‘awk ’/ fftp_exe_cyc / {print $3}’ output .txt
‘ | sed ’s/ /,/g’

16 else
17 # In case output is not correct :
18 echo "${N},${REP} is INCORRECT "
19 fi
20 done
21 done
22

23 rm output .txt

Listing 25: Code of fft.sh.

7.2.11 SPMV

The SPMV benchmark has two input parameters: VL and the input matrix, both
explained in Table 17.

Input Parameters Meaning Values
VL Vector length 256
MTX Matrix used -

Table 17: Jacobi-2D input parameters and their corresponding values.

The corresponding line and argument order to execute this benchmark is:

./spmv_binary <VL> -m <input matrix>

An example of an output can be seen in Listing 26. It shows the execution result
with a VL of 256 and a matrix named Matrix4.mtx, located in spmv/spmv_-
inputs/Matrix_4.

1 # ./ spmv_sellcslib_static 256 -m spmv/ spmv_inputs / Matrix_4 /
Matrix_4 .mtx

2 shift: 6
3 {
4 " Benchmark ": "SPMV EPI",
5 " Algorithm version ": " sellcslib ",
6 " Verification test": "Pass",
7 " Number of threads ": 1,
8 " Problem summary ": {
9 "Input name": " Maragal_4 .mtx",

10 " Matrix Num. Rows": 1964 ,
11 " Matrix Num. Columns ": 1034 ,
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12 "Total non -zero elements ": 26719 ,
13 "Non -zero elements per row": 13,
14 "Num. averaged iterations ": 10
15 },
16 " Memory statistics ": {
17 "Total memory allocated [MB]": 0.000000 ,
18 " Reference version read BW [GB/s]": 0.064049 ,
19 " Reference version read WR [GB/s]": 0.002271 ,
20 " sellcslib version read BW [GB/s]": 0.000000 ,
21 " sellcslib version write BW [GB/s]": 0.000000
22 },
23 " Performance statistics ": {
24 "Time allocating and loading data [s]": 1.915078 ,
25 "Time converting to sellcslib format [s]": 0.052991 ,
26 " Reference version execution time [s]": 0.006920 ,
27 " Reference version GFLOPS /s": 0.007722 ,
28 " sellcslib version execution time [s]": 0.005182 ,
29 " sellcslib version GFLOPS /s": 0.010313
30 },
31 " Version specific stats": {
32 "Row order sigma window ": 16384 ,
33 "Task Size": 16
34 }
35 }

Listing 26: SPMV output example.

The output offers information about the execution configuration, as well as memory
and performance statistics measured during the benchmark’s execution. The two
most insightful output parameters are the total execution time (in seconds) and
the average GFLOPS/s. The parsing can be observed in lines 14 and 15 from the
spmv.sh script, seen in Listing 27.

1 #!/ bin/bash
2

3 BENCHMARKS_DIR =/ shared
4 SPMV_BINARY =${ BENCHMARKS_DIR }/ spmv/spmv
5

6 VL =256
7 MTX=${ BENCHMARKS_DIR }/ spmv/ spmv_inputs
8

9 echo "VL ,Mtx ,Time , GFlops /S"
10

11 for i in ‘seq 6 10‘; do
12 for j in ‘seq 5‘; do
13 ${ SPMV_BINARY } -v ${VL} -m ${MTX }/ cage${i}/ cage${i}. mtx >

output .txt

78



7 IMPLEMENTATION 7.2 Addition of new benchmarks

14 time=‘grep " sellcslib version execution time" output .txt | awk
’{print $6 +0} ’‘

15 gflops =‘grep " sellcslib version GFLOPS /s" output .txt | awk ’{
print $4}’‘

16 echo "${VL},cage${i},${time},${ gflops }"
17 done
18 done
19

20 rm output .txt

Listing 27: Code of spmv.sh.

7.2.12 Stream

The Stream benchmark binary has no input values. Instead, there are different
binaries, each one with the parameters used for execution already defined: SIZE
and VL, explained in Table 18. Therefore, the Stream job will iterate over all
binaries using the decided parameter values, as shown in line 11 from Listing 29.

Parameters Meaning Values
SIZE Problem size 2[11,20]

VL Vector Length 2[4,8]

Table 18: Stream parameters and their corresponding values.

The corresponding line and argument order to execute this benchmark is:

./stream-<SIZE>-elems-<VL>-vl

An example of an output can be seen in Listing 28. It shows the execution result
with an executed binary with a pre-defined SIZE of 2048 elements and a VL of
16.

1 # ./ stream -2048 _elems -16 _vl
2 -------------------------------------------------------------
3 STREAM version $Revision : 5.10 $
4 -------------------------------------------------------------
5 This system uses 8 bytes per array element .
6 -------------------------------------------------------------
7 Array size = 2048 ( elements ), Offset = 0 ( elements )
8 Memory per array = 0.0 MiB (= 0.0 GiB).
9 Total memory required = 0.0 MiB (= 0.0 GiB).

10 Each kernel will be executed 10 times.
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11 The *best* time for each kernel ( excluding the first iteration )
12 will be used to compute the reported bandwidth .
13 -------------------------------------------------------------
14 Your clock granularity / precision appears to be 20 microseconds .
15 Each test below will take on the order of 364 microseconds .
16 (= 18 clock ticks)
17 Increase the size of the arrays if this shows that
18 you are not getting at least 20 clock ticks per test.
19 -------------------------------------------------------------
20 WARNING -- The above is only a rough guideline .
21 For best results , please be sure you know the
22 precision of your system timer.
23 -------------------------------------------------------------
24 Function Best Rate MB/s Avg time Min time Max time
25 Copy: 197.4 0.000197 0.000166 0.000303
26 Scale: 133.2 0.000263 0.000246 0.000393
27 Add: 226.5 0.000264 0.000217 0.000363
28 Triad: 219.4 0.000225 0.000224 0.000229
29 -------------------------------------------------------------
30 Solution Validates : avg error less than 1.000000e -13 on all

three arrays
31 -------------------------------------------------------------

Listing 28: Stream output example.

The Stream benchmark features four different functions. Each function is executed
10 times, and the best bandwith of an iteration obtained out of all executions is
reported. The parsed parameters are the best bandwith for every function during
the whole benchmark’s execution, as shown in lines from 13 to 16 in Listing 29.

1 #!/ bin/bash
2

3 BENCHMARKS_DIR =/ shared
4 STREAM_BINARY =${ BENCHMARKS_DIR }/ stream /
5

6 echo "Size ,VL ,CopyBW ,ScaleBW ,AddBW , TriadBW "
7

8 for VL in 16 32 64 128 256; do
9 for SIZE in 2048 4096 8192 16384 32768 65536 131072 262144

524288 1048576; do
10 for i in ‘seq 5‘; do
11 ${ STREAM_BINARY }/ stream -${SIZE}_elems -${VL}_vl > output .txt
12 # Parsing the output :
13 copyBW =‘grep Copy: output .txt | awk ’{print $2}’‘
14 scaleBW =‘grep Scale: output .txt | awk ’{print $2}’‘
15 addBW=‘grep Add: output .txt | awk ’{print $2}’‘
16 triadBW =‘grep Triad: output .txt | awk ’{print $2}’‘
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17 echo "${SIZE},${VL},${ copyBW },${ scaleBW },${addBW},${ triadBW }
"

18 done
19 done
20 done
21

22 rm output .txt

Listing 29: Code of stream.sh.

7.3 Performance analysis

The work explained so far has been done to improve the capacity of the CI to detect
core malfunctions and bugs. At this point, the implementation required developers
to look at long CSV files produced by each benchmark if they wanted information
about their performance. In order for developers to get a faster way of noticing
whether a commit has improved, not modified, or worsened the core’s performance,
a system to generate automatic plots with the measurements produced during the
benchmarks stage was implemented.

7.3.1 Developed solution

The starting point was the creation of a new stage, named plotting, that be
would execute after the benchmarks stage to process all the CSV files containing
each benchmark’s execution results. The stage has been implemented following the
structure of all the other stages. Initially, it only contained the implementation
for one benchmark, Jacobi-2D, to then scale it to the other ones.

Consequently, the first step was creating a folder named plotting inside the CI
directory, in the epac_fpga repository. Inside, there is a YAML file to describe the
stage and program its jobs, named with the stage’s name accordingly.

The plotting stage contains a single job, whose script section includes a line
to execute a Gnuplot script that will produce the benchmark’s plot. Gnuplot is a
command-line plotting program which can be used as scripting language to auto-
mate generation of plots. The plotting.yml contents are displayed in Listing 30.
The Gnuplot script was named jacobi-2d.gnp, whose code is shown in Listing 31.

1 plotting :
2 stage: plotting
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3 tags:
4 - fpga
5 - vivado
6 needs: [ benchmark .jacobi -2d]
7 script :
8 - gnuplot ci/plots/jacobi -2d.gnp
9

10 artifacts :
11 name: plots
12 paths:
13 - "./ ci/plots/jacobi -2d.png"

Listing 30: Code of plotting.yml.

In order for the plotting job to access the CSV files produced by the benchmark
jobs as artifacts, those jobs have to be specified as needs, as identified in line 6
from Listing 30.

Futhermore, a modification was made in the benchmarks stage, specifically the
jacobi-2d job. The modifications were made to produce an additional artifact
file with the average execution results of each input parameters combination, as
each combination was executed five times. The average calculus was performed in
the Jacobi job rather than in the Gnuplot script because it was more complex to
do with Gnuplot than with bash.

The plotting job produces a PNG file that contains the plot produced by jacobi-
2d.gnp, using the average values contained in jacobi-2d-averages.csv. That
PNG file is the job’s artifact, as seen in line 13 from Listing 30.

1 #!/ bin/ gnuplot
2

3 INPUT_FILE =’jacobi -2d- averages .csv ’
4

5 set terminal pngcairo enhanced dashed crop size 1024 ,768 font "
Ubuntu ,20"

6 set output ’./ci/plots/jacobi -2d.png ’
7 set datafile separator ","
8

9 set xlabel "N"
10 set ylabel "Time (s)"
11 set grid
12 set key outside
13 set key above center title " Benchmark : Jacobi -2D" font " ,18"
14 set key autotitle columnhead font " ,16"
15

16 set style data histograms
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17 set style fill solid border -1
18

19 cd "ci/benchmarks - outputs /jacobi -2d"
20 plot INPUT_FILE using 3: xticlabels (1) title " Current version ", \

21 for [fn in system ("ls -t *jacobi -2d.csv | head -n 5")] fn using
3: xticlabels (1) title fn

Listing 31: Code of jacobi-2d.gnp.

The plot produced by the jacobi-2d-gnp script can be observed in Figure 15.

Furthermore, the jacobi-2d.gnp script includes support for an additional feature:
plotting more than one data set, as seen in lines 20 and 21 from Listing 31. All
the CSV files produced by every pipeline would be stored, and the Gnuplot script
would plot the benchmark’s data set of the last two pipelines in the same branch,
altogether with the current pipeline’s data set. However, the database where all
CSV would be kept had yet to be implemented. In Figure 15, the two historical
data sets were manually named and added for the Gnuplot script to access them.

Figure 15: Plot produced during plotting stage. Own compilation.

The implementation of this task would have continued by adding a [benchmark_-
name].gnp Gnuplot script for every benchmark implemented in benchmarks stage.
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This would allow the plotting stage to produce a plot for every benchmark. In
fact, as several benchmarks produce different output measurements, various plots
could be produced for a few benchmarks.

However, development was stopped at this point, when the decision to develop the
timeout and failure management system was taken.

7.4 Failure and timeout management

During the development of this final degree project, it was noticed that the bench-
mark jobs only failed when the pipeline’s job timed out, but not if the execution of
the benchmark itself failed. Furthermore, the CI jobs did not provide information
when killed by timeout.

In a CI environment that seeks to offer its users additional testing features and
ease development, it is fundamental to provide reliable and intuitive information.

For instance, if the execution of a benchmark is not correct because a core feature is
malfunctioning and the CI is not providing that information to developers, the bug
will go unnoticed. As a consequence, this implementation would not accomplish
the fundamental objectives of this final degree project.

Therefore, proper failure and timeout scenarios management had to be imple-
mented.

This interrupted the expected development of this final degree project; this situa-
tion led to a change in priorities, as explained in subsection 2.6. The development
of the plotting stage became secondary to the benefit of a failure and timeout
management system.

7.4.1 Initial status

The initial implementation had minimal timeout management and no failure man-
agement. This minimal setup was formed by two clauses in benchmarks.yml,
shown in lines 8 and 14 respectively. The first one limits the total execution time of
CI’s jobs to two hours. The key option for the second one is the –time=01:00:00,
which stops the Slurm job execution after one hour.

1 . benchmark :
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2 stage: benchmarks
3 tags:
4 - fpga
5 - vivado
6 variables :
7 BENCHMARK_NAME : none
8 timeout : 2h
9 needs: [ build_bitstream , build_linux .CI -testing -sdv3 -minimal -

network -new , utilities_linux .ssh , utilities_linux .nfs]
10 dependencies :
11 - build_bitstream
12 - build_linux .CI -testing -sdv3 -minimal -network -new
13 script :
14 - srun --job -name=CI -Benchmark -${ BENCHMARK_NAME } --time

=01:00:00 --partition =fpga ./ci/ benchmarks /run.sh ${
BENCHMARK_NAME } | tee benchmark -${ BENCHMARK_NAME }. out

Listing 32: Modified code of benchmarks.yml.

Three possible failure situations were identified, explained in Table 19. These
errors are grouped into two categories: timeout and failure. The timeout group is
formed by the Resources unavailable and Long benchmark execution. The
other error, the Wrong benchmark execution, belongs to the failure group.

The current error management only identified one of the three possible failure
situations. The only one detected was Resources unavailable because of the
timeout YML clause. Therefore, this had to be fixed to detect them, and guar-
antee the job itself communicates to the EPI developers the cause of the wrong
execution of the job itself.

Error Description
Resources unavailable No Pickles available during a long time
Long benchmark execution Benchmark execution takes longer than it should
Wrong benchmark execution Incorrect benchmark execution result

Table 19: Possible failures during the CI job execution.

7.4.2 Timeout management

The main objective was to differentiate when a job was timing out due to unavail-
able resources or unexpected longer benchmark execution.

Firstly, as previously explained, the initial implementation only detected one time-
out situation: the unavailability of resources. And it was detected thanks to the
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timeout YAML parameter. In other words, the time option used in the srun
command, from line 14 in Listing 32, did not have the expected behaviour, which
was detecting the long benchmark execution error.

The srun time option is used to specify the total run time of the job allocation.
Each task being executed is killed once the time limit is met. Hence, a time
slightly higher than the longest execution expected would detect any abnormal
execution that, for example, any hang in the core could cause.

As a first procedure, the unexpected srun behaviour was to be solved. A line as
exit $? was added to the script job’s environment, following the srun command
line. It did not work as expected, because the srun command output was pipelined
to a tee command. This meant that the exit code saved in $? was the tee one,
instead of the desired one: the srun code.

Due to changes already done in the previous refactor, this tee was no longer
necessary, so it was removed.

Then, an if clause statement was added to provide information to the EPI de-
velopers about the errors produced, as seen in Listing 33. The expected exit code
from srun for the long benchmark execution error is 143.

1 script :
2 - srun --job -name=CI -Benchmark -${ BENCHMARK_NAME } --time

=01:00:00 --partition =fpga ./ci/ benchmarks /run.sh ${
BENCHMARK_NAME }

3 - EXIT_CODE =$?
4 - |
5 echo "EXIT CODE:" $EXIT_CODE
6

7 if [ $EXIT_CODE -eq 0 ] ; then
8 echo -e "\e[32 mSUCCESS : Benchmark execution finished

correctly !" # Message in green
9 exit 0

10 elif [ $EXIT_CODE -eq 143 ] ; then
11 echo -e "\e[31 mERROR : Benchmark execution killed by

timeout . Execution was taking longer than it should !" # Message
in red

12 else
13 echo -e "\e[31 mERROR : Something wrong!"
14 fi
15

16 exit 1

Listing 33: Added if clause to benchmarks.yml.
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During the constant validation, an important detail was discovered: the CI job
will immediately fail if any command within the script section returns a non-
zero exit code. Whenever a srun command ends by the time option, its exit code
is non-zero, and therefore the CI job’s script ends abruptly, no further code lines
are executed. The solution was saving the exit status in a variable as shown in
Listing 34.

1 - srun --job -name=CI -Benchmark -${ BENCHMARK_NAME } --time =01:00:00
--partition =fpga ./ci/ benchmarks /run.sh ${ BENCHMARK_NAME } ||

EXIT_CODE =$?

Listing 34: Saving the exit code from srun command.

This worked because if the srun fails, the variable assignment is always performed
correctly, ending with a zero exit code. The assignment can capture any non-zero
exit code from the srun command and continue execution with the if statement.

To identify a resource unavailability situation and notify developers, it could
not be through the timeout YAML clause, so another approach was followed.

The srun command offers some tools to control timeouts. The first possibility was
to use two of them: the time and deadline options.

The deadline option abruptly finishes both the allocation and execution once the
specified date and time are met. Each task being executed is killed once the time
limit is met. Similarly, if the resource allocation is yet to finish, the time option
will stop it. Therefore, the programmer has to consider the maximum execution
time assigned (time option) and the maximum waiting time for resource allocation,
to specify the correct deadline hour.

The srun’s now parameter is used to get the exact date and time the srun command
starts. Adding the desired time limit to now generated the expected deadline, as
seen in Listing 35.

1 \ centerline {srun --job -name=CI -Benchmark -${ BENCHMARK_NAME } --
deadline =now +3 minutes --time =01:00:00 --partition =fpga ./ci/
benchmarks /${ BENCHMARK_NAME }/ run.sh || EXIT_CODE = $?}

Listing 35: The srun command with the time and deadline options.

In other words, the problem would be related to the binary execution if the srun
command fails due to the time option. Otherwise, the problem would be related
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to the impossibility of getting resources for the srun job if the failure is due to the
deadline option.

This first implementation proved partially unsuccessful, as the srun deadline
option was not precise enough and had significant delays. In other words, ending
earlier or later than specified. The problems were most likely related to the CI
environment characteristics, and were far from this project’s scope.

As an alternative to the deadline option, the timeout command from the GNU
core utilities package was chosen.

The srun option time was still used for the previously explained case, while the
timeout command would be used to specify a time limit to the whole srun execu-
tion: the resource allocation and the benchmark execution time. As a consequence,
the timeout command value is specified taking into account the execution time
limit set in the srun time option plus an arbitrary time limit for the srun job to
be queued and allocated, as shown in Listing 36.

1 - timeout 115m srun --job -name=CI -Benchmark -${ BENCHMARK_NAME }
--time =01:00:00 --partition =fpga ./ci/ benchmarks /run.sh ${
BENCHMARK_NAME } || EXIT_CODE =$?

Listing 36: The timeout command used altogether with the srun command.

This method proved successful, and the timeout times were adjusted: srun’s time
option was set to fifteen minutes, while the timeout command was set to one hour
and fifty-five minutes. The YAML’s timeout was kept at two hours, leaving five
minutes to execute all non-srun code.

Finally, another case was included in the if clause to evaluate the timeout com-
mand exit code, which is 124. The final benchmarks stage script is shown in
Listing 37.

1 script :
2 - EXIT_CODE =0
3 - timeout 115m srun --job -name=CI -Benchmark -${ BENCHMARK_NAME }

--time =00:15:00 --partition =fpga ./ci/ benchmarks /run.sh ${
BENCHMARK_NAME } || EXIT_CODE =$?

4 - |
5 echo "EXIT CODE:" $EXIT_CODE
6

7 if [ $EXIT_CODE -eq 0 ] ; then
8 echo -e "\e[32 mSUCCESS : Benchmark execution finished

correctly !" # message in color green
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9 exit 0
10 elif [ $EXIT_CODE -eq 143 ] ; then
11 echo -e "\e[31 mERROR : Benchmark execution killed by

timeout . Execution was taking longer than it should !" # message
in color red

12 elif [ $EXIT_CODE -eq 124 ] ; then
13 echo -e "\e[31 mERROR : Job allocation killed . Waited in

queue for too long! Retry job when resources are available ." #
message in color red

14 else
15 echo -e "\e[31 mERROR : Something wrong!"
16 fi
17

18 exit 1

Listing 37: Code of the if clause implemented in benchmarks.yml.

7.4.3 Failure management

To detect the failure situations, the first step was to catch the binary’s exit
code in [benchmark_name].sh.

The initial concept was to always get the exit code by creating the variable and
assigning the binary’s exit code: EXIT_CODE=$?; by placing the line right after
each binary execution. Additionally, an if clause would check the captured exit
code value. If the exit code had a non-zero value, the job would immediately end
with an exit 1 command, which is the exit code used for failed scripts.

However, the final approach ended up being the addition of || exit 1 code at the
end of the binary execution line, because it provided a more straightforward way
to end the script execution by avoiding an if statement. If the execution failed,
it would execute exit 1; normal script execution would continue otherwise. The
execution line from the Stream’s stream.sh is as follows:

$STREAM_BINARY/stream-$SIZE_elems-$VL_vl > output.txt || exit 1

The next step was to capture the exit code in the run.sh script, as the failed
[benchmark_name].sh script would not be enough for the CI job to end in failure
as expected.

The run.sh is between every [benchmark_name].sh script and the main bench-
marks.yml file, where the CI would be able to report the benchmark’s failure
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to the final CI users. Thus, the exit code the run.sh script receives from the
[benchmark].sh script has to be transmitted to the benchmarks.yml file.

Capturing the exit code from each [benchmark_name].sh script implied some code
changes, as the ./tools/ssh-cmd tool used for launching the benchmark execution
script through ssh would hide the exit code. One possibility was to change that
tool directly, but it was avoided as other CI stages outside this project’s scope use
it.

Instead, the tool’s content was directly written into the run.sh script. The tool
is, in fact, a long single-line sshpass command. The exit code can be caught by
adding a code such as RETVAL=$? in the following line, as shown in Listing 38.
Now, the run.sh is able to pass the exit code to the next step: the benchmarks.yml
file.

1 sshpass -p riscv ssh -o ConnectTimeout =30 -o GlobalKnownHostsFile
=/ dev/null -o UserKnownHostsFile =/ dev/null -o
StrictHostKeyChecking =no -o PreferredAuthentications = password -
c chacha20 - poly1305@openssh .com root@10 .0.0.2 "/root/ stream .sh"

> ./ benchmarks - outputs / stream / stream .csv
2

3 RETVAL =$?
4 exit $RETVAL

Listing 38: Capturing the exit code in run.sh.

Finally, the last step was managing the exit codes in the benchmarks.yml
file, adding another case in the if statement as can be seen in Listing 39.

1 script :
2 - EXIT_CODE =0
3 - timeout 115m srun --job -name=CI -Benchmark -${ BENCHMARK_NAME }

--time =00:15:00 --partition =fpga ./ci/ benchmarks /run.sh ${
BENCHMARK_NAME } || EXIT_CODE =$?

4 - |
5 echo "EXIT CODE:" $EXIT_CODE
6

7 if [ $EXIT_CODE -eq 0 ] ; then
8 echo -e "\e[32 mSUCCESS : Benchmark execution finished

correctly !" # Message in green
9 exit 0

10 elif [ $EXIT_CODE -eq 1 ] ; then
11 echo -e "\e[31 mERROR : Benchmark execution finished

incorrectly !" # Message in red
12 elif [ $EXIT_CODE -eq 143 ] ; then
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13 echo -e "\e[31 mERROR : Benchmark execution killed by
timeout . Execution was taking longer than it should !" # Message

in red
14 elif [ $EXIT_CODE -eq 124 ] ; then
15 echo -e "\e[31 mERROR : Job allocation killed . Waited in

queue for too long! Retry job when resources are available ." #
Message in red

16 else
17 echo -e "\e[31 mERROR : Something wrong!"
18 fi
19

20 exit 1

Listing 39: Implemented if clause in benchmarks.yml.
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8 Evaluation of objectives

This section briefly reviews the final state of the main objectives defined in sub-
subsection 1.6.1.

◦ Improvement of Benchmarks stage
Performance metrics are automatically generated. A CSV file is produced
as an artifact by every benchmark, with every file offering the parsed output
data of each benchmark execution.

◦ Comprehensive automatic bug detection
Seven additional benchmarks have been implemented to the project’s pipeline.
If at least one benchmark fails, the associated job will fail and the commit
will be automatically blocked as a consequence.
In Figure 16 there is a pipeline whose jobs have not failed, in that case the
commit that triggered that pipeline is not blocked, as seen in Figure 17.

Figure 16: A successful pipeline. Screenshot from GitLab. [1]

Figure 17: A commit that has ben accepted. Screenshot from GitLab. [1]
In contrast, a pipeline shown in Figure 18 has failed jobs. As a consequence,
the commit that triggered it has been blocked by the CI, as displayed in
Figure 19.
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Figure 18: A failed pipeline. Screenshot from GitLab. [1]

Figure 19: A commit that has ben blocked. Screenshot from GitLab. [1]
Jobs will fail if a benchmark execution returns a non-zero exit code. Fur-
thermore, jobs also fail if they surpass the various time limits specified.

◦ Automatic generation of performance plots
Plots are automatically generated for one job: Jacobi 2D. A plot will be
produced as a PNG image by every Jacobi 2D job, and stored as an artifact,
as shown in Figure 20.

Figure 20: Plot generated by Jacobi 2D benchmark. Own compilation.
The objectives stated in subsubsection 1.6.1 have been fulfilled. The Benchmarks
stage has been modified to produce and store performance metrics. A wide set of
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benchmarks have been included for an exhaustive core testing. In consequence,
the repository has been made safer.

Moreover, automatic generation of performance plots has been included. However,
in exchange of a safer setup, performance plots are not available for all benchmarks.
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9 Conclusions

This final degree project aimed to contribute to the Continuous Integration of
the European Processor Iniciative project repository, through the addition of a
benchmark set to test individual features (C1) and the creation of an environment
to identify errors in the design (C2).

The two main contributions have been divided in several specific objectives. All
initial objectives have been fullfilled, except for the last tasks of the automatic
generation of performance plots objective (task group T3): T3.4 and T3.5. Instead,
the timeout and failure management has been achieved, a higher priority non-
expected objective.

In the end, this change in priorities allowed this project to meet its primary aim: to
guarantee that the resulting CI implementation is rigorous and eases the Register-
Transfer Level development as much as possible. I have demonstrated the impor-
tance of my contributions with the examples presented in section 8 (Evaluation of
objectives), where I have shown that commits that break the design are blocked
by the Continous Integration pipeline.

Developing this project has allowed me to learn what Continuous Integration is
and its advantages, how to create jobs and stages and how they work, and how to
detect deficiencies with an existing implementation and correct them.

Working with a GitLab’s CI implied learning about YAML coding and improving
my bash scripting skills. Moreover, allowed me to learn about script modulariza-
tion.

Furthermore, it let me learn what an Field Programmable Gate Array is and
how to use it; improve my understanding of benchmarks and how to compile and
execute them, and identify which and why are the relevant metrics reported by
the program.

9.1 Future steps

After finishing this project, the most immediate steps are to resume the develop-
ment of the performance analysis features that have been halted in order for the
failure and timeout management to be developed.
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Most notably, plots could be generated for all the implemented benchmarks. Bench-
marks that output a data set with various magnitudes have a plot for each mea-
surement unit.

Furthermore, an automatically genereted data base of CSV files obtained after
every pipeline execution could also be implemented. It would allow for an easy
access to historical data, as well as allowing for the automatized generation of plots
with previous data sets for reference.

Additionally, extra benchmarks could be added to increase the CI’s capacity to
detect errors in specific core features.
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