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Preface

My fascination for computational mechanics started when I was working at the
Indian Space Research Organization where I used Ansys and Solidworks to simu-
late solid stage casting and, design structures that support solid propulsion stage
in a launch vehicle. It took a decade to convert my interest to reality in the form
of masters and a PhD in this field.

This dissertation titled Computational uncertainty quantification in pressure-
driven fracture processes has been a result of my work from May 2015 to January
2020. This is a part of the Erasmus Mundus Joint Doctorate program Simulation
in Engineering and Entrepreneurship Development (EMJD-SEED). The research
has been carried at Multiscale Engineering Fluid Dynamics group - Eindhoven
University of Technology and Mathematical and Computational Modeling group
- Polytechnic University of Catalonia (UPC).

With an increase in computational power and available data resources, compu-
tational uncertainty quantification has been gaining popularity. Computational
uncertainty quantification is a broad field involving methods of sensitivity analy-
sis, inverse analysis, and uncertainty propagation. In this thesis, state-of-the-art
uncertainty quantification techniques are applied in simulation techniques for
pressure-driven fracturing processes.

This dissertation is a collaboration of all the meetings, insights, constructie
criticism that came from my supervisors. Firstly I would like to express my
gratitude to Harald van Brummelen who has given me this opportunity to work
in his group. My daily supervisor Clemens Verhoosel whose incessant guidance
has helped me to improve my work all along. Next, I would like to thank my
supervisors Pedro Dı́ez and Sergio Zlotnik at UPC. I am glad to be associated
with such experts from this community of computational mechanics.

I sincerely thank my committee members Laura De Lorenzis, Fabio Noble and
David Smeulders for reading my thesis and providing such valuable feedback.

I had thoroughly enjoyed and gained a lot of knowledge in discussions with
my colleagues at Eindhoven and Barcelona. A special mention to Gertjan van
Zwieten for his unwavering support and assistance of Nutils software. While
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supervising Jassin van de Poll’s master thesis, my understanding of Bayesian
methods improved as a result of many fruitful discussions. A special mention to
Albert Sibileau who helped me to expedite my understanding of Proper Gener-
alized Decomposition while I was in Barcelona.

Through my PhD, I learnt that the only certainty is uncertainty, yet there
are ways to quantify and prepare for it. This journey has only increased my
fascination with computational mechanics.

Hope you enjoy reading.

Hasini Garikapati,
Veldhoven, February 2020.
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Chapter 1

Introduction

1.1 Motivation and background
A proper understanding of pressure-driven fracture processes can benefit a wide
range of areas in science and engineering. Pressure-driven fracture processes are
of particular interest in the field of hydraulic stimulation, which has been applied
for decades in the oil and gas industry to increase the productivity of low per-
meability reservoirs. This method can broadly be defined as a well-stimulation
technique that injects a hydraulic fracturing fluid into a well, to create or prop-
agate fractures in the oil or gas reservoir rock, which facilitates the extraction
of oil and gas (see Figure 1.1). For instance, in the United States, the num-
ber of fossil fuel reserves considerably increased due to the advent of hydraulic
fracturing technology. Hydraulic stimulation has also been applied in other ge-
omechanical fields, including the disposal of underground waste drill-cuttings [1],
heat extraction from geothermal reservoirs [2], carbon dioxide sequestration [3],
coal bed methane recovery [4], and gas control in coal mines [5].

Despite the commercial benefits of hydraulic fracturing, it has not passed
the exploratory phase in either The Netherlands or the EU in general. In fact,
there is currently no shale gas extracted in The Netherlands. One of the main
risks associated with hydraulic fracturing is the contamination of groundwater
resources, due to the usage of chemicals in the process. Such risks can be assessed
by developing high fidelity models which can accurately predict the process, so
that sufficient care can be taken in order not to interfere with groundwater re-
sources. However, one of the challenges with the hydraulic fracturing process is
the vast uncertainty associated with the surrounding process parameters, par-
ticularly involving reservoir properties. Since the process happens deep below
the earth’s surface, it is difficult and often expensive to accurately measure the
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8 Introduction. 1

Figure 1.1: Hydraulic fracturing is a reservoir stimulation technique that enhances
reservoir connectivity by fracturing of, typically, low permeable formations. Contain-
ment of the fractures in the layers that are targeted for stimulation is of essence, as
failure to do so may lead to groundwater contamination.

process parameters. Using micro-seismic acoustic monitoring, tiltmeter mapping,
and treatment pressure analysis, however, it is possible to measure certain indi-
rect quantities.

Uncertainty quantification is important in assessing and predicting the per-
formance of complex engineering systems and processes, especially in the absence
of adequate experimental or real-world data. Due to the vast increase in comput-
ing power, computational uncertainty quantification has played an increasingly
important role in decision making processes. Although a myriad of numerical ap-
proaches has been developed for the simulation of the hydraulic fracturing process
[6–11], only limited research has been performed in the direction of uncertainty
quantification [12–18]. Despite most analysts underscoring the significance of
uncertainty, simulation methods in hydraulic fracturing models do not address
them. In this dissertation, we therefore examine computational uncertainty quan-
tification for hydraulic fracturing processes. Furthermore, we investigate the ap-
plication of available indirect measurements, to provide a better understanding of
the uncertainty and sensitivity of predictions of the hydraulic fracturing process.

This introduction first provides background information about hydraulic frac-
turing and uncertainty quantification, in Section 1.2 and 1.3, respectively. Sub-
sequently, Section 1.4 states the objectives of this thesis and presents the outline
and main contributions.
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1.2 Hydraulic fracturing
The hydraulic fracturing (HF) process is challenging to model, as it involves a
range of different aspects, such as poro-mechanical deformations, fluid flow in
fractures, fluid and thermal diffusion processes, and fracture propagation. Fur-
thermore, all of these processes are coupled. The foundation for hydraulic frac-
turing modeling has been laid in the last 50 years by several key publications
[19–22]; see, e.g., Ref. [23–27] for contemporary reviews.

In Section 1.2.1 we first review the most prominent models for hydraulic
fracturing, encompassing two-dimensional and (pseudo-)three-dimensional mod-
els which have been developed for different conditions. In Section 1.2.2 we then
present the most important numerical methods being used to solve these models.

1.2.1 Models for pressure-driven fracture propagation
Over the past decades, two-dimensional models for pressure-driven fractures have
been used extensively in research and engineering. The most prominent two-
dimensional models, all of which evidently make specific assumption on the frac-
ture geometry, are the radial fracture model, the PKN (Perkins-Kern-Nordgren)
model, and the KGD (Kristianovich-Geertsma-de Klerk) model. The radial frac-
ture model describes the evolution of a penny-shaped crack, as introduced by
Sneddon [28]. This model is representative of fractures that propagate evenly
in all directions. The PKN model [29] is based on an adaptation of Sneddon’s
solution for a fracture of fixed height and elliptical cross section which propagates
horizontally in one direction. The original model was proposed by Perkins and
Kern [29] and later amended by Nordgren [30] to include the effects of fluid leak-
off. The PKN model is widely used in the industry for hydraulic fracture design
[31]. The KGD model [32, 33] is similar to the PKN model but with different
assumptions regarding the fracture aperture profile. Like the PKN model, also
the KGD model is used for the design of stimulation treatments.

To overcome the modeling limitations that follow directly from the assumption
of two-dimensional fractures without the need to resort to full three-dimensional
models, so-called pseudo three-dimensional models have been developed. The
P3D and PL3D models are two of the most prominent models in this class. P3D
models [34] generalize the two-dimensional PKN model by allowing for spatial
variations in the fracture height along the length of the fracture. The added
height variation of the fracture can either be linear or parabolic. P3D models
are known to suffer from numerical instabilities when the system contains non-
monotonically varying confining stresses in a layered system or when there is an
unconfined growth of fractures in the height. In the PL3D model [35], a plane
in which fracture propagation can occur is discretized. Within this predefined
plane, the geometry of the induced fracture can be arbitrary, depending on the
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mechanical parameters and loading conditions. The more regular description
of the fracture front in comparison to the P3D model enhances the numerical
stability of this method.

Various three-dimensional models have been proposed that take into account
the full geometric complexity of the hydraulic fracturing process, see, e.g., Ref. [8,
36–38]. Generally, the proposed models are developed based on the theory of lin-
ear elastic fracture mechanics, coupled with the effects of complex fluid flow
patterns inside fractures [39]. In contrast to the pseudo three-dimensional mod-
els, fractures can propagate in arbitrary directions in three-dimensional models
[31, 39]. A disadvantage of three-dimensional models is that they are highly com-
putationally expensive, with simulation times of over a month using dedicated
computational resources being reported in the literature [39, 40]. It is for this
reason that full three-dimensional simulations are currently impractical for the
design and optimization of stimulation treatments. The computational effort of
three-dimensional models also impedes their suitability in the context of uncer-
tainty quantification, which typically involves the consideration of a large number
of simulations.

1.2.2 Numerical methods for pressure-driven fracture
propagation

Hydraulic fracturing models as discussed above are inherently non-linear on ac-
count of the coupling between the various sub-problems and the moving boundary
associated with the evolving fracture. Moreover, the models are generally time-
dependent and subject to singular solution behavior related to the sharp fracture
front. It is for these reasons that hydraulic fracture models, even in their sim-
plified two-dimensional and pseudo three-dimensional forms, are challenging to
solve. Therefore, over the past decades, several numerical methods have been de-
veloped for the simulation of the hydraulic fracturing process, the most significant
of which are discussed below.

When considering geometrically-simplified models such as PKN or KGD, fi-
nite difference methods provide a straightforward solution strategy. In fact, finite
difference techniques are especially popular in industry on account of their con-
ceptual simplicity and their ease of use. Various finite difference simulators are
listed in the test case study by Warpinski [41].

Since mass conservation is an essential ingredient in many of the models for
pressure-driven fracture propagation, finite volume methods, which provide ex-
cellent conservation properties, have been widely considered in the context of
hydraulic fracturing [42]. Specifically, for the fluid flow equations, Cartesian fi-
nite volume formulations are employed, which were introduced by Calhoun and
Le Veque [43]. Volume conservation within a planar fracture is accurately approx-
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imated in this context by using the partially-filled element concept introduced
by Ryder and Napier [44]. The work by Pierce [42] highlights the use of finite
volume methods in hydraulic fracturing simulations.

The versatility of finite element methods – both in terms of geometry repre-
sentation and in terms of its ability to solve both solid and fluid problems – has
made it an attractive solution technique for hydraulic fracturing. Several notable
works based on finite element techniques can be found in, e.g., Refs. [45–47],
with the implicit moving mesh algorithm proposed in Ref. [48] being particularly
noteworthy. Solution techniques based on finite elements generally couple sepa-
rate solid and fluid models, and track the moving fracture edge either by explicit
remeshing strategies or by the extended finite element method (XFEM), see, e.g.,
Refs. [49–51]. An additional advantage of XFEM techniques is that they facilitate
enrichment of the finite element spaces using dedicated shape functions. The use
of singular tip functions, for example, prevents the use of highly refined meshes
in the vicinity of the fracture front. Similarly, steep pressure gradients in the
vicinity of the fracture surface can be captured by discontinuous pressure shape
functions [52, 53].

In recent years, various other advanced discretization techniques have been
studied in the context of fluid-driven fracture propagation. Boundary element
methods – in which finite element techniques are applied to discretize boundary
integral equations – have been considered, for example, to alleviate the compu-
tational burden associated with solving the poro-elastic response of the reservoir
[54]. Phase-field formulations [55–58] have also been considered for hydraulic
fracturing processes, as the smeared representation of fractures in this modeling
paradigm provides a natural framework for the consideration of complex frac-
ture patters, including features such as crack branching and merging, which are
inherent to crack propagation. A downside of phase-field models is that high-
resolution meshes are required in the vicinity of the smeared fractures in order to
accurately represent the phase field. In the context of evolving fractures, from a
computational effort point of view, this requires the use of adaptive finite element
methods.

All methods discussed above provide simulation frameworks for hydraulic frac-
turing problems. The methods that are applied in this dissertation, are selected
to provide an optimal balance between model features, accuracy, and computa-
tional effort in the context of uncertainty quantification.

1.3 Uncertainty quantification
From a historical point of view, uncertainty quantification dates back more than
300 years, in particular to the famous work of Jacob Bernoulli, Ars Conjectandi
(meaning art of conjecturing), which created a completely new approach to prob-



12 Introduction. 1

ability theory [59]. This work was extended by De Moivre with the development
of probabilistic methods, and later by Francis Galton, who developed the con-
cepts of correlation and regression. Ever since, uncertainty quantification has
been applied in a wide range of areas such as climate, weather, finance, planetary
science, and many more.

The main objective of computational uncertainty quantification is to predict
and assess processes that are surrounded by uncertainty. In this dissertation we
investigate the methods by which we can represent and propagate uncertainties
in pressure-driven fracturing processes. This section presents an overview of
computational uncertainty quantification techniques, with an emphasis on the
ones applied in this thesis.

1.3.1 Computational uncertainty quantification approaches
Observation, theory and computational methods are generally recognized as the
three cornerstones of science (Oden et al. [60]). The scientific procedure to study
any system would combine all these three elements. In this regard, let us assess
the different types of mathematical modeling of any physical reality. Forward
modeling is the use of physical laws in order to simulate an outcome. We use
theory and model parameters to make predictions of the results of observable pa-
rameters. Inverse modeling, on the other hand, is the use of available observables
in combination with model parameters and theory to infer the actual values of the
model parameters. Inverse modeling typically involves the frequent evaluation of
the forward model, which motivates the development of reduced-order models to
significantly reduce the computational effort.

Following the concepts of forward and inverse modeling discussed above, there
exist two major types of problems in uncertainty quantification, viz.: (i) the
forward propagation of uncertainties, where the various sources of uncertainty are
propagated through the model to predict the overall uncertainty in the system’s
response, and (ii) the inverse assessment of uncertain model parameters by using
the model to calibrate those parameters to observational data. There has been a
proliferation of research on the former problem and a large number of uncertainty-
analysis techniques were developed for it. On the other hand, the latter problem is
drawing increasing attention in the computational engineering community, since
uncertainty quantification of a model and the subsequent predictions of the true
system’s response are of great interest.

When building a mathematical model to describe the behavior of a physical
system, one has to face a certain level of uncertainty in the characterization of the
model parameters. Besides, there can be imperfections and incompleteness with
respect to the model itself. Uncertainties arise, for example, from imprecise data
and observations, errors in measurement devices, and errors in numerical methods
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in the form of discretization errors. All these uncertainties can be broadly divided
in two categories [61], viz.: (i) aleatoric uncertainties, which are associated to
natural randomness and are therefore inherent to a system, and (ii) epistemic
uncertainties, which are related to incompleteness in the information about a
system. Both types of uncertainties can typically described using probability
distributions.

In uncertainty quantification, the abstract notion of uncertainty is precisely
expressed in the form of a probability measure. Using this measure, the un-
certainty can be quantified, such that it can be expressed by a probability dis-
tribution. In this dissertation we follow the Bayesian approach to uncertainty
quantification, which targets the logical combination of prior information on the
model parameters with observational data, all represented as probability distri-
butions. Mathematical-physical models fit in seamlessly in this approach, as they
provide the relation between the model parameters and the data. The reader is
referred to, e.g., Ref. [62–66], for discussions regarding alternative approaches to
uncertainty quantification such as the Frequentist approach.

1.3.2 Numerical methods for uncertainty quantification
The computational uncertainty framework considered in this work incorporates
various stochastic analysis techniques, such as sensitivity analysis, Monte Carlo
sampling, spectral methods, and Bayesian inference. Here we will briefly discuss
these techniques in order to put them into the context of the framework to be de-
veloped. The reader is referred to, e.g., Refs. [60, 67–70] for reviews of stochastic
techniques and computational methods for uncertainty quantification.

An important first step in uncertainty quantification is to establish the influ-
ence of model input parameter on model observables through a sensitivity analysis
[71]. Such an analysis – in which variations on the input are made to assess their
influence on the model output – is instrumental in assessing which variables and
models to consider in the uncertainty analysis. A parameter with significant vari-
ations can have little effect on the quantities of interest, or vice versa. Besides
providing understanding regarding the influence of the model parameters, sensi-
tivity analyses can, in many cases, also be used to directly assess the statistical
moments of response quantities by considering the parameter sensitivities in the
context of perturbation methods [72, 73]. Similarly, sensitivity analyses provide a
basis for reliability analyses [74] and regression analyses [75].

To study the propagation of uncertainties through the considered models we
employ Monte Carlo sampling methods. The pivotal idea of such sampling tech-
niques is to represent the uncertain parameters (stochastic variables) by sequences
of realizations, and to use the model to relate each realization of the input pa-
rameters to their corresponding output parameters [76]. Monte Carlo methods
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provide a means of integrating probability distributions over high-dimensional
model parameter domains. Although Monte Carlo methods are generally com-
putationally demanding on account of the requirement to solve the underlying
deterministic model many times they are appraised for their versatility in the
sense that they do not impose fundamental restrictions on the class of problems
that can be considered [77]. An additional advantage of sampling techniques
is that they are generally non-intrusive from an implementation point of view,
which allows to use them in combination with existing deterministic solvers.

As an alternative to representing uncertainties by samples or by sensitivities,
they can also be approximated using shape functions defined over the parameter
domain. The most prominent class of stochastic methods that are based on the
shape function concept are spectral methods [78–80], in which, generally, globally
(over the parameter domain) defined modes are employed to represent the ran-
domness in the system. Spectral stochastic methods can be used to approximate
the propagation of input uncertainties through a model [80], but will in this dis-
sertation only be considered in the context of representing random input fields
using Karhunen-Loève (KL) expansions [81]. Such KL expansions facilitate the
low-dimensional representation of correlated random fields, which, in the context
of this work is particularly useful for the representation of the spatially varying
heterogeneities.

In addition to a representation of the stochastic variables, a methodology
is required to determine the stochastic parameters from the stochastic outputs
(data). In this work we employ the Bayesian approach to the stochastic inverse
problem. Bayesian techniques systematically combine prior model parameter
information with observational data based on Bayes’ theorem

P (A|B) = P (B|A)P (A)
P (B) , (1.1)

in which, in this context, A represents the information on the model parameters
and B the observational data. Bayes’ theorem can be conceived of as an update of
the prior information on A, represented by the probability distribution P (A), with
the probability distribution on the data, P (B), to acquire updated information on
the model parameters in the form of the conditional posterior P (A|B). In order to
attain this posterior one must establish the likelihood of the model parameters in
the form of the conditional probability distribution, P (B|A), which is a measure
for the evidence of the model parameters provided by the data.

A schematic representation of this Bayesian inference method is shown in Fig-
ure 1.2. The essential characteristic of Bayesian methods is that all information
is provided through probability distributions. From a procedural perspective,
Bayesian inference can be considered as a three-step procedure [82]:
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P (A)

Prior probability

Bayesian inference
(Markov chain Monte Carlo)

B Measured data

P (A|B)

Posterior probability

Figure 1.2: Schematic representation of the Bayesian inference method

1. The probability of all information has to be represented. That is, both
the prior knowledge on the input parameters (typically based on experts’
opinions) and the observational data must be represented in the form of
probability distributions. These sources of information must then be com-
bined in a joint model-data probability distribution.

2. The prior information is conditioned on the observed data through the
application of Bayes’ theorem (1.1), which results in an updated distribution
i.e., the posterior distribution of the model parameters.

3. The adequacy of the posterior distribution is assessed based on its fit with
the model and data. If the posterior is found to be inadequate, for example
because the compatibility between the prior information and the data is
insufficient, the inference procedure must be repeated with updated infor-
mation.

An essential computational ingredient in this procedure is the inverse solver used
to condition the model information in the second step. In general, Bayes’ up-
date rule cannot be evaluated analytically. Like for forward uncertainty anal-
ysis, Monte Carlo techniques provide a versatile framework to approximate the
Bayesian inference rule in the form of sample representations. In this disserta-
tion we resort to Markov chain Monte Carlo methods [83], and specifically the
Metropolis-Hastings algorithm [84], as these methods provide a natural computa-
tional framework for the combination of prior information, model relations, and
observational data. The reader is referred to, e.g., Refs. [85, 86] for an overview of
sampling techniques, such as, for example, rejection sampling [87], the Metropolis
algorithm [84, 88–90], and Gibbs sampling [67, 91–94].
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1.4 Objectives and outline
This introduction has discussed the motivation to consider uncertainty quantifi-
cation in the context of hydraulic fracturing, the available models for hydraulic
stimulation, and the techniques for computational uncertainty quantification. Ef-
fectively and efficiently combining the models and solution strategies for hydraulic
fracturing with the methods for uncertainty quantification is far from trivial, as
modeling aspects, model discretization techniques and stochastic solution pro-
cedures and intricately related. This gives rise to the primary objective of this
dissertation, which is stated as:

To develop a computational uncertainty quantification frame-
work for pressure-driven fracture propagation processes based on the
method of Bayesian inference.

The development of this uncertainty quantification framework encompasses the
following research questions:

• What is a typical setting for the uncertainty quantification framework in the
context of hydraulic stimulation procedures? That is, what physical system
parameters are generally known with certainty, what quantities can be ob-
served, and what uncertain quantities are to be derived through Bayesian
inference?

• What models for hydraulic fracturing are practical in the context of the
typical setting of uncertainty quantification? The considered Bayesian in-
ference technique on the one hand puts requirements on the physical model-
ing capabilities, while, on the other hand, the involved computational effort
should remain practical.

• Can reduced-order modeling (ROM) techniques be used to enhance the
computational tractability of uncertainty quantification for hydraulic frac-
turing, and can the offline-online paradigm be used to consider Bayesian
inference in real-time applications?

• How does one setup a stochastic inverse solver for computational uncer-
tainty quantification for hydraulic fracturing, and how can the probabilistic
information handled by this solver (prior, likelihood, posterior) be repre-
sented? Moreover, the question arises how one controls the accuracy and
computational effort of the stochastic solver.
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To address these research question, in Chapter 2 we commence with a study
of uncertainty propagation in hydraulic fracturing based on the Perkins-Kern-
Nordgren (PKN) model. This chapter discusses the governing equations and the
assumptions involved in the PKN model, and puts a special focus on the incorpo-
ration of rock heterogeneities. Furthermore, an enhanced finite element technique
is proposed that enables the study of sensitivities of the model to various input
parameters. The influence of random input variables on the model is discussed,
where rock properties are considered as random fields using the Karhunen-Loève
expansion. Numerical results are presented to study the influence of input un-
certainties on the hydraulic fracturing process.

In Chapter 3 we explore the possibilities of using a reduced-order model for the
mechanical deformation and fracture propagation components of the hydraulic
fracturing model, based on the theory of linear elastic fracture mechanics. The
method of choice is the Proper Generalized Decomposition (PGD) technique,
which is a reduced-order modeling technique specifically designed to reduce the
high-dimensionality induced by the typically large number of system parameters.
We study the various features of PGD and consider it in a stochastic setting,
where we again use the Karhunen-Loève expansion to represent random het-
erogeneous material properties. Furthermore, we present results using a Monte
Carlo technique to illustrate the efficiency of this PGD technique in a stochastic
setting.

In Chapter 4 we present the PKN model in an inverse uncertainty quantifi-
cation setting. This chapter outlines the Bayesian inference setting for the PKN
model for hydraulic fracturing. Using a stochastic inverse solver in the form of
a Markov chain Monte Carlo method, we combine the model with available ob-
servations to update prior information about uncertain parameters. Based on
test cases with synthetic data, we illustrate how the Bayesian framework can be
combined with hydraulic fracturing models to assist in the prediction of well-
stimulation processes.

Finally, we present our conclusions and recommendations for further research
in Chapter 5.





Chapter 2

Sampling-based stochastic
analysis of the PKN model
for hydraulic fracturing

Hydraulic fracturing processes are surrounded by uncertainty, as available
data is typically scant. In this work we present a sampling-based stochastic
analysis of the hydraulic fracturing process by considering various system pa-
rameters to be random. Our analysis is based on the Perkins-Kern-Nordgren
(PKN) model for hydraulic fracturing. This baseline model enables computation
of high fidelity solutions, which avoids pollution of our stochastic results by in-
accuracies in the deterministic solution procedure. In order to obtain the desired
degree of accuracy of the computed solution we supplement the employed time-
dependent moving-mesh finite element method with two new enhancements: i)
global conservation of volume is enforced through a Lagrange-multiplier; ii) the
weakly-singular behavior of the solution at the fracture tip is resolved by supple-
menting the solution space with a tip enrichment function. This tip enrichment
function enables the computation of the tip-speed directly from its associated
solution coefficient. A novel incremental-iterative solution procedure based on a
backward-Euler time-integrator with sub-iterations is employed to solve the PKN
model. Direct Monte Carlo sampling is performed based on random variable and
random field input parameters. The presented stochastic results quantify the de-
pendence of the fracture evolution process – in particular the fracture length and
fracture opening – on variations in the elastic properties and leak-off coefficient
of the formation, and the height of the fracture.

This chapter is reproduced from [95]: H. Garikapati, C.V. Verhoosel, E.H. van Brummelen,
S. Zlotnik and P. Dı́ez. Sampling-based stochastic analysis of the PKN model for hydraulic
fracturing. Computational Geosciences, 2019.
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2.1 Introduction

Hydraulic fracturing processes – i.e. the fracturing of rock formations by a pres-
surized liquid to improve connectivity of reservoirs and geothermal formations –
are surrounded by uncertainty, as rock formations are highly heterogeneous and
available formation data is limited. Further improvement of models and simu-
lation tools to understand this process is instrumental to increasing operational
effectivity and to reliably quantify the risks and uncertainties that are involved.

Hydraulic fracturing models involve the coupling of three sub-models: i) a
solid mechanics model which describes the deformation of the rock formation
induced by the fluid load; ii) a fluid flow model to describe the fracturing-fluid in
the crack, as well as its leak-off into the rock formation; iii) a fracture mechanics
model including a fracture propagation criterion. Intrinsic characteristics of such
models are the (strong) non-linearities related to the coupling between the solid
and fluid, the singularities in the physical fields near the fracture front, the moving
(fracture) domain boundaries, the degeneration of the governing equations near
the tip region, and pronounced multiscale effects with the length scales varying
from millimeters for the fracture opening near the tip to kilometers for the length
of the fracture.

Various practical model simplifications – most commonly restricting the model
to a single two-dimensional planar fracture – have been proposed, the most promi-
nent of which are: i) The Perkins-Kern-Nordgren (PKN) model [96, 97] for a frac-
ture of fixed height and elliptical cross section (leveraging the Sneddon solution
for the elasticity problem [98]) which propagates horizontally in one direction;
ii) The radial model for a horizontal Penny-shaped crack that evolves evenly in
all directions in accordance with Sneddon’s solution [99]; iii) The Khristianovic-
Geertsma-De Klerk (KGD) model [100–102] for a vertical fracture of fixed height
that propagates horizontally in one direction. Various pseudo-three-dimensional
(P3D) models [103] and planar-three-dimensional (PL3D) models [104, 105] have
been proposed over the years to enable consideration of more complex fracture
patterns and fractures in multi-layer formations. These P3D models typically
extend the above-mentioned two-dimensional models by considering a variation
of fracture height in combination with fracture length and width. Although these
classical models are generally based on restrictive and often ad-hoc assumptions,
they are still widely used in the industry [106].

Despite the simplifications in the above-mentioned models, analytical solu-
tions can only be obtained in limiting cases (e.g., [97, 100, 101]). General solution
strategies for these models rely on the use of computational techniques. Versa-
tile and reliable simulators for hydraulic fracturing processes are indispensable in
gaining further understanding of the process, in particular because direct observa-
tion possibilities (typically several kilometers below the earth surface) are limited.
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The most prominent computational techniques used for hydraulic fracturing are
Finite Volume Methods (e.g., [107]), Finite Element Methods (e.g., [108–110]),
Boundary Integral Methods (e.g., [111]) and Discrete Element Methods (e.g.,
[112]). Recent advancements in numerical methods for hydraulic fracturing that
are particularly noteworthy are the eXtended Finite Element Techniques (X-
FEM) (e.g., [52, 53, 113, 114]) and phase-field methods (e.g., [115–118]).

Although the importance of considering realistic geological situations is ac-
knowledged [119], hydraulic fracture evolution in formations with uncertain het-
erogeneous rock properties (e.g., elastic moduli, compression/tensile strength,
porosity, permeability) have not been studied in detail. In [120] a reliability anal-
ysis is conducted using analytical models for hydraulic fracturing. The possibility
of considering stochastic heterogeneities in combination with computational mod-
els has been explored in [121], where the initiation and evolution of fracture has
been studied using Monte Carlo sampling. The main challenge in such studies
relates to the computational feasibility, in the sense that the computational effort
of the deterministic simulations (whose error must be controlled in relation to the
stochastic variations) is prohibitive in the context of sampling-based stochastic
techniques.

In this work we present a detailed probabilistic analysis of the hydraulic frac-
turing process based on Monte Carlo simulations. The computational tractabil-
ity of the stochastic framework considered herein motivates the use of the two-
dimensional PKN model. We represent the (epistemic) uncertain parameters of
the PKN model as random variables and/or random fields, and investigate the
influence of these uncertain input parameters on the fracture geometry (in partic-
ular the fracture length and opening at the well bore). As part of the stochastic
analysis we present a sensitivity analysis of the deterministic model. It is worth
mentioning that similar analyses can be found in the literature for the determin-
istic setting [122, 123]. The primary focus of this work is the direct analysis of
the propagation of heterogeneous uncertainties in the hydraulic fracturing pro-
cess. As part of this study we present a detailed derivation of the PKN model
in the context of random (spatially correlated) heterogeneous data. Control over
accuracy of the numerical approximation of the PKN model is of paramount
importance, because excessive numerical errors would pollute the stochastic un-
certainty quantification. In this regard we propose to use two new features in
the numerical method for the PKN model to control its accuracy: i) a Lagrange
multiplier method to enforce the conservation of volume; ii) a special enrichment
function for the finite element discretization of the PKN model to overcome tip
singularity issues.

In Section 2.2 the governing equations are discussed, with a special
focus on the incorporation of rock heterogeneities in the PKN model. In
Section 2.3, the weak formulation and finite element discretization of the
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model are presented including various algorithmic details. The stochastic
setting and Monte Carlo method are introduced in Section 2.4, where
the random field discretization of the heterogeneous properties using the
Karhunen-Loève expansion is also discussed. Numerical simulations are
presented in Section 2.5 to study the influence of input uncertainties in
hydraulic fracturing. Finally, conclusions are presented in Section 2.6.

2.2 The PKN model for hydraulic fracturing
In this section we review the PKN model for hydraulic fracturing in the context of
stochastic analyses with heterogeneous random fields. The PKN model – which
was originally formulated by Perkins and Kern [96] and later amended with a
leak-off model by Nordgren [97] and a propagation condition by Kemp [124] –
is a practical candidate for preliminary studies of the probabilistic behavior of
hydraulic fracturing by virtue of its computational tractability. Although highly
simplified, the PKN model is based on fundamental physical principles and is
capable of generating practically meaningful results [125].

2.2.1 Problem definition
The key assumption of the PKN model is that it considers a planar fracture with
a constant height H; see Figure 2.1. Displacements and displacement gradients in
the surrounding solid are assumed to remain small, and the material is assumed
to be linear elastic and isotropic. The fracture surface resides in the xy-plane,
while the fracture opens in the z-direction. The fracture aperture in the fracture
plane is denoted by w(x, y, t), and the aperture at the y = 0 center line by ŵ(x, t).
The fracture connects to the well at x = 0 and its evolving front is situated at
x = L(t).

A Newtonian fluid is injected into the fracture at the well with a controlled
flow rate i(t), and the flow inside the permeable crack is assumed to be lami-
nar. The fracture process is assumed to be in the viscosity-based regime, where
toughness effects can be neglected (propagation is governed by friction and leak-
off effects). At the front of the fracture fluid lag is assumed to be zero, i.e., the
fracture front coincides with the fluid front. Moreover, spurt losses due to the
creation of new fracture surface (see e.g. [125]) are ignored.

2.2.2 Governing equations
In this section the governing equations of the sub-models are reviewed. In the
presented derivations we focus on those aspects of the sub-models that need
careful consideration in the context of the stochastic analysis discussed in the
remainder of this work.
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i(t)
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L(t)

H

ŵ(x, t) = w(x, 0, t)

w(x, y, t)

Figure 2.1: Schematic representation of the fracture geometry and boundary condi-
tions for the PKN model. Note that both the fracture aperture, w, and the fracture
length, L, are time dependent.
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Fluid flow model

The PKN model is based on the conservation of mass of the fluid, which estab-
lishes a link between the injected volume, the created fracture volume and the
leak-off volume. The differential material balance for the fracturing fluid is given
by

∂q

∂x
+ ∂A

∂t
= −scl (2.1)

for all x ∈ (0, L(t)), where q(x, t) is the volume rate of flow through the cross-
sectional area A(x, t) =

∫H/2
−H/2 w(x, y, t) dy and scl(x, t) is the rate of fluid volume

loss per unit length of the fracture. At the well (x = 0) the flow rate is equal to
the injection rate according to q(0, t) = i(t).

The flow rate inside the fracture is related to the pressure gradient by as-
suming Poiseuille flow [126]. For such a flow the advective terms are assumed to
remain small, so that the incompressible Navier-Stokes equations reduce to the
Stokes equations. The PKN model moreover assumes a horizontal slot flow [127]
with a parabolic fluid velocity profile

v = − 1
2µf

∂p

∂x

(
w2

4 − z
2
)

(2.2)

where w(x, y, t) is the opening of the fracture and µf is the fluid viscosity. As will
be discussed in more detail in the context of the solid model (Section 2.2.2), the
assumptions of the PKN model lead to an ellipsoidal cross-section. The fracture
aperture is then given by

w = ŵ
√

1− 4y2/H2, (2.3)

where ŵ(x, t) is the maximum aperture at y = 0. The cross-sectional area is
A(x, t) = π

4Hŵ(x, t) and the fluid flow follows by integration of the fluid velocity
in equation (2.2) as

q =
H/2∫
−H/2

w/2∫
−w/2

v dydz = − 1
12µf

∂p

∂x

H/2∫
−H/2

w3 dy

= −πHŵ
3

64µf
∂p

∂x
.

(2.4)

The leak-off volume rate per unit length of fracture in equation (2.1) follows the
phenomenological law proposed by Carter [128]:

scl = 2Hcl√
t− τ

(2.5)
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In this expression cl is the leak-off coefficient and τ(x) is the arrival time of the
fracture tip at location L, i.e., τ(x) = L−1(x). The main assumptions behind
this model are that: i) the fracturing fluid deposits a thin layer of relatively
low permeability material (known as the filter cake) on the inner faces of the
fracture, with the deposition rate being proportional to the leak-off rate, and
ii) the viscosity of the filtrate is high enough to fully displace the fluid already
present in the rock pores.

Substitution of equations (2.4) and (2.5) in the material balance (2.1) then
yields the fluid flow mass balance for all x ∈ (0, L(t)):

πH

64µf
∂

∂x

(
ŵ3 ∂p

∂x

)
= 2Hcl√

t− τ(x)
+ πH

4
∂ŵ

∂t
(2.6)

Solid deformation model

To derive the relation between the fluid pressure and the solid deformation as used
in the PKN model we consider the infinite domain Ω = R+×R×R with material
coordinates x = (x, y, z) and an evolving fracture surface (see Figure 2.1):

Γc(t) = {x ∈ Ω | x ≤ L(t),−H2 ≤ y ≤
H

2 , z = 0} (2.7)

Assuming inertia and gravity effects to be negligible, the solid deformation, u =
(ξ, η, ζ), follows from the momentum balance

∇ · σ = 0 in Ω, (2.8)

where σ is the Cauchy stress tensor. The Cauchy stress follows Hooke’s law for
isotropic materials

σ = 2µsε+ λstr(ε)I, (2.9)

where ε = ∇su is the infinitesimal strain tensor. In the context of the stochastic
analysis considered herein, the Lamé parameters µs(x) and λs(x) are heteroge-
neous fields directly related to the Young’s modulus, E(x), and Poisson’s ratio,
ν(x). Under the horizontal slot-flow assumption, the viscous contribution to the
normal stress along the fracture surface vanishes, and the solid is loaded by the
fluid pressure, i.e., σn = −pn on Γc where n is the normal vector internal to
the fluid domain.

An important aspect of the PKN model is that it relies on a planar defor-
mation solid mechanics sub-model, which provides a local relation between the
pressure and the fracture aperture. This reduction of the elasticity problem (2.8)
– which in the literature is generally considered with homogeneous material prop-
erties – is key to the computational tractability of the PKN model, but evidently
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hinges on the postulation of additional modeling assumptions, viz.: i) The defor-
mations are planar, in the sense that the solid does not deform in the direction of
the fracture propagation (ξ = 0), and that a plane strain condition in that direc-
tion applies (εxx = εxy = εxz = 0); ii) Heterogeneous variations perpendicular to
the fracture propagation direction are assumed to be negligible, i.e., the model
parameters are independent of the y and z coordinates.

The assumptions that lead to the local solid mechanics model evidently re-
strict the applicability of the model. Even in the generally considered case of
heterogeneous material properties, the planarity assumption is debatable in the
vicinity of the fracture tip, where both the geometry and pressure loading vary
significantly in the x-direction (see, e.g., [129]). Although highly simplified, the
local elasticity model is widely recognized to yield meaningful results in a vari-
ety of simulation scenarios [125]. An important point to make in the context of
this contribution is that we consider the material properties to be random fields
(see Section 2.4), which are parametrized by a mean value, a standard devia-
tion, and an auto-correlation length, `. This auto-correlation length is a measure
of the correlation between any two material points in a random field, where a
large correlation length implies that the spatial frequency of the heterogeneous
field is low. In order for the planarity assumption to be meaningful, we consider
sufficiently large auto-correlation lengths. More specifically, high wavenumber
variations in the material properties along the x-axis are not considered herein.
Moreover, the heterogeneities in the planes perpendicular to the x-direction are
assumed to be negligible, at least in the sense that their influence is averaged
out when considering the integrated opening of the fracture. In line with these
assumptions, in this manuscript we only consider random heterogeneities in the
direction of propagation with sufficiently large auto-correlation lengths.

Under the assumptions discussed above, the deformation in an arbitrary
plane perpendicular to the x-direction can be deduced from the momentum bal-
ance (2.8) and constitutive relation (2.9), which, written out in components,
yields:

2µs(x)∂
2η

∂y2 + λs(x)
(
∂2η

∂y2 + ∂2ζ

∂y∂z

)
+ µs(x)

(
∂2η

∂z2 + ∂2ζ

∂y∂z

)
= 0

µs(x)
(
∂2η

∂y∂z
+ ∂2ζ

∂y2

)
+ 2µs(x)∂

2ζ

∂z2 + λs(x)
(
∂2η

∂y∂z
+ ∂2ζ

∂z2

)
= 0

(2.10)

Supplemented with the boundary conditions σzz(x) = −p(x)nz and σyz = 0 on
the fracture boundary and vanishing far field conditions, this problem can be
solved analytically. The fracture opening in the case of a constant pressure in
the yz-plane is given by (see e.g. Lowengrub [130] and Sneddon [98] for details)
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w(x, y) = 4p(x)
∫ H/2

y

ȳ(1− ν(x)2)
E(x)

√
ȳ2 − y2

dȳ

= 2Hp(x)
E′(x)

√
1− 4y2/H2 |y| ≤ H

2 ,
(2.11)

where E′(x) = E(x)/(1 − ν(x)2) is the plane strain modulus which is heteroge-
neous only in the x-direction. We note that the elliptical profile in equation (2.3)
is a direct result of the setting of the elasticity problem considered here, with the
maximum aperture equal to

ŵ(x) = 2Hp(x)
E′(x) . (2.12)

An essential property of this solution is that along the crack path the fracture
aperture is linearly related to the pressure. The local nature of this relation is
a direct consequence of the assumed planar deformation. Note that the stress
field and displacement field can be derived in the form of integral representations
[131].

Fracture propagation model

In the PKN model it is assumed that once the fracture has exceeded a certain
distance, the energy dissipation associated with the fracture of the rock material
is small compared to energy dissipation associated with the viscous flow of the
fracturing fluid. This effectively neglects the fracture toughness, and fracture
propagation is purely driven by the fluid velocity. Herein we adopt the standard
assumption of zero fluid lag [97] – i.e., the velocity of the fluid at the fluid front
and the tip propagation speed are equal – so that tip propagation follows the
Stefan condition

v(L(t), t) = lim
x→L(t)

q(x, t)
A(x, t) = L̇(t). (2.13)

Substitution of the flow rate (2.4) and surface area then yields:

L̇(t) = − 1
16µf

lim
x→L(t)

ŵ2 ∂p

∂x
(2.14)

The limits in (2.13) and (2.4) are one-sided, from below.

2.2.3 The coupled initial boundary value problem
The hydraulic fracture problem is characterized by a strong coupling of the sub-
models discussed above. The solid deformation is coupled to the fluid through the
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pressure loading along the fracture surface, while the fluid depends on the fracture
opening though the Poiseuille flow profile. The fracture propagation condition is
coupled directly to the fluid flow through the Stefan condition (2.13), and in turn
influences the fluid flow by virtue of the fact that fracture propagation extends
the fluid flow domain. The pointwise relation between pressure and the fracture
opening in equation (2.12) allows the formulation of a single-field free-boundary
problem. Herein we consider the initial boundary value problem for the fracture
opening on the time interval (0, T ) 3 t with evolving domain (0, L(t)) 3 x:

π

128µf
∂

∂x

(
ŵ3 ∂ (E′ŵ)

∂x

)
= 2Hcl√

t− τ
+ πH

4
∂ŵ

∂t

∀x ∈ (0, L(t))
∀t ∈ ×(0, T )

− π

128µf

(
ŵ3 ∂ (E′ŵ)

∂x

)∣∣∣∣
x=0

= i(t) ∀t ∈ (0, T )

ŵ(L(t), t) = 0 ∀t ∈ (0, T )
ŵ(x, 0) = 0 ∀x ∈ (0, L0)

L̇(t) = − 1
96µfH

∂
(
E′ŵ3)
∂x

∣∣∣∣∣
x=L(t)

∀t ∈ (0, T )

L(0) = L0

(2.15a)

(2.15b)

(2.15c)
(2.15d)

(2.15e)

(2.15f)

Note that the omission of fluid lag in the model results in the tip boundary
condition ŵ(L(t), t) = 0, reflecting zero fracture opening at the tip. This bound-
ary condition leads to singular behavior of the fracture opening (and pressure)
at the tip, which is an important characteristic of the coupled problem (2.15).
In Refs. [106, 132, 133] it is shown that in the viscosity-dominated regime, the
toughness of the solid is small enough that the solution of a hydraulic fracture
can be approximated by the zero toughness solution and the aperture solution in
the proximity of the tip is proportional to:

ŵ(x, t) ∝ 3
√
L(t)− x (2.16)

We note that, due to the nature of this singularity, and assuming a finite plane
strain modulus, the tip-propagation relation (2.15e) results in a finite propagation
speed.

2.3 Deterministic computational methodology
In this section we present a methodology that enables the computation of so-
lutions of the PKN model with an accuracy that makes it suitable for con-
ducting a sampling-based stochastic analysis. In Section 2.3.1 we first discuss
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the incremental-iterative solution procedure which is used to integrate the time-
dependent moving-boundary problem. In Section 2.3.2 we then discuss the spa-
tial finite element discretization of the nonlinear system of equations introduced
above, including two essential enhancements, viz. incorporation of a Lagrange
multiplier to enforce the volume-conservation constraint, and a solution space
enrichment to resolve the singularity at the fracture tip.

2.3.1 Incremental-iterative solution procedure
To solve the time-dependent moving-boundary problem (2.15) we employ the
incremental-iterative solution procedure outlined in Algorithm 1. We denote the
time step size and index by ∆t and ı = 0, . . . , nt, respectively, such that tı = ı∆t
and T = nt∆t. The solution at time step ı and sub-iteration  = 0, 1, 2, . . .
is written as wı(x) and Lı. The sub-iteration index  is omitted for converged
solutions, i.e., wı(x) and Lı.

We consider the implicit time-integration of both the fracture aperture and
the fracture length, such that the coupled system (2.15) is discretized in time as



π
128µf

∂
∂x

(
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(2.17a)

(2.17b)

(2.17c)

(2.17d)

for all ı = 1, . . . , nt with initial conditions ŵ0(x) = 0 and L0 = L0.
To solve this moving-boundary problem at time step ı = 1, . . . , nt, within

each time step we sub-iterate between the aperture problem (2.17a)–(2.17c) and
the propagation problem (2.17d) until convergence is achieved. The solution of
the aperture problem (solve aperture in Algorithm 1) is approximated using a
finite element discretization in combination with a Newton-Raphson procedure
to resolve the non-linearity. Details regarding the finite element discretization
will be discussed in Section 2.3.2. The propagation problem is solved by using
the regula falsi method to find the root of the residual function

rı = r(Lı) = Lı − (Lı−1 + ∆tL̇ı). (2.18)
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Input: m = {L0, T, . . .}, n = {∆t,∆L, tolL, . . .} # model parameters,
numerical parameters

Output: {(Lı, wı(x))}ntı=1 # discrete solution

# Initialization (tı = ı∆t = 0)
L0 = L0
τ0(x) = 0
w0(x) = 0

# Time-iteration loop
for ı from 1 to T/∆t:

# Sub-iteration initialization ( = 0, 1)
Lı0 = Lı−1

wı0(x) = solve aperture(Lı0, wı−1(x), τ ı−1(x), m, n)
L̇ı0 = evaluate tip speed(wı0(x), m)
rı0 = −∆tL̇ı0
Lı1 = Lı−1 + ∆L
wı1(x) = solve aperture(Lı1, wı−1(x), τ ı−1(x), m, n)
L̇ı1 = evaluate tip speed(wı1(x), m)
rı1 = ∆L−∆tL̇ı1

# Sub-iteration loop
while |Lı − Lı−1| ≥ tolL:

# Increment sub-iteration index ( = 2, 3, . . .)
 = + 1
# Secant computation
Lı = Lı−1 − rı−1(Lı−2 − Lı−1)/(rı−2 − rı−1)
wı(x) = solve aperture(Lı, wı−1(x), τ ı−1(x), m, n)
L̇ı = evaluate tip speed(wı(x), m)
rı = Lı − Lı−1 −∆tL̇ı
# False position update
if rı · rı−1 > 0:

Lı−1 = Lı−2
rı−1 = rı−2

end
end
# Set converged solution
Lı = Lı
wı(x) = wı(x)
τ ı(x) = update tau(τ ı−1(x), Lı)

end

Algorithm 1: Incremental-iterative solution procedure
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Given an iterate for the fracture length, Lı, the corresponding fracture aperture
wı is computed using the solve aperture procedure, after which the procedure
evaluate tip speed is called to determine the associated tip speed in accordance
with:

L̇ı = − 1
96µfH

∂
(
E′
(
ŵı
)3)

∂x

∣∣∣∣∣∣
x=Lı

(2.19)

The regula falsi procedure is initialized with the fracture length at the previous
time step, Lı0 = Lı−1, and with the forced propagation, Lı1 = Lı−1 + ∆L. We
note that the residual rı0 = −∆tL̇ı is non-negative as a consequence of the non-
negativity of the propagation speed. The residual rı1 = ∆L −∆tL̇ı is forced to
be positive by selecting the numerical parameter ∆L > 0 to be sufficiently large.
For all simulations in Section 2.5 we set ∆L equal to the element size at the
fracture tip, and take a time-step that is sufficiently small to ensure positivity of
the residual rı1.

The sub-iteration procedure is terminated when the fracture length converges
to a specified tolerance, i.e., |Lı−Lı−1| < tolL. The converged iterates ŵı(x) and
Lı for the fracture aperture and length are then used as the initial conditions for
the next time step. The fracture arrival function τ ı(x) for the next time step is
updated in the update tau routine. Since the arrival time function is evaluated
by linear interpolation in the list {(Lı̂, tı̂)}ıı̂=0, this update routine merely appends
the converged fracture length to this list. Note that we assume zero leak-off in the
initial crack, so that we do not need to evaluate the arrival function for x ≤ L0.
For x > Lı−1 the arrival time is taken as the time at which the crack reached
Lı−1. As a result tı − τ ı−1(x) ≥ ∆t, everywhere in the interval (L0, Lı) which
effectively bypasses the occurrence of a singularity in the leak-off term at the
fracture tip.

2.3.2 Finite element discretization

The solve aperture routine uses the finite element method to compute the
fracture aperture ŵı based on the fracture length Lı and the aperture and arrival
time at the previous time step, wı−1 and τ ı−1, respectively. To derive the finite
element formulation the weak form of (2.17) is considered, where the sub-iteration
index has been dropped for notational convenience:
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(2.20)

The time-dependent test and trial space Vı specified below are defined such that
the Dirichlet boundary conditions at the tip are satisfied, and all integrals in the
above formulation are bounded. Note that the right-hand-side integral involving
the fracture aperture at the previous time step is computed over the fracture
domain at the previous time step, which reflects the fact that ahead of the fracture
tip the aperture is equal to zero. Moreover, the initial crack is excluded from
the integration domain for the right-hand-side term involving the leak-off, which
results from the assumption that there is no leak-off in the initial crack.

The weak formulation (2.20) is discretized using the finite element method by
approximating the maximum aperture as

ŵı,h(x) =
∑
i∈Iı

N ı
i (x)aıi, (2.21)

where the index set Iı contains the indices of the shape functions {Ni}i∈Iı con-
structed over a mesh T ı that partitions the evolving domain (0, Lı). The corre-
sponding discrete trial and test space are given by Vı,h = span ({Ni}i∈Iı) ⊂ Vı.

The finite element discretization considered in this work is based on linear
Lagrange finite elements, where the linear basis function associated with the tip
node is constrained in accordance with the zero-aperture Dirichlet condition at
the tip. Because of the nature of the solution we grade the mesh toward the
tip by specifying the element size at the tip, the increase ratio between two
adjacent elements, and the maximal element size that is approached toward the
inflow boundary. A schematic representation of such a graded mesh is shown in
Figure 2.2. Note that the first right-hand-side integral term in equation (2.20)
involves the product of functions defined on two different meshes, and hence
requires evaluation on an overlay mesh.

A discretization of the problem (2.20) based on linear finite elements – even
though graded toward the tip – leads to an unacceptable loss of accuracy at
meshes that are computationally tractable within the scope of this work. This
performance deterioration is a consequence of: i) the flux (2.4) being highly non-
linearly dependent on the fracture aperture; and ii) the singular behavior at the
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ϕı
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ı

Figure 2.2: Schematic representation of the time-dependent graded finite element
mesh with a linear finite element basis and a tip enrichment function.

tip not being represented by the linear finite element basis. In the remainder
of this subsection we propose two enhancements to ameliorate this performance
degradation. In Section 2.5.1 the numerical performance of these enhancements
will be assessed in the scope of a benchmark simulation.

Mass conservation constraint

Although the weak formulation (2.20) is consistently derived from the mass bal-
ance equation (2.6), the finite element approximation of (2.20) does not strictly
comply with the local mass balance and its integrated global version. Since
adequate representation of the conservation of mass is of critical importance for
obtaining accurate solutions, we herein propose to explicitly enforce global conser-
vation in our approximation. We obtain the global balance of mass by integration
of the time-discrete version of (2.6) over the entire domain:

i(tı) = 2Hcl
Lı∫
L0

1√
tı − τ ı−1

dx+ πH

4∆t

Lı−1∫
0

ŵı − ŵı−1 dx+ πH

4∆t

Lı∫
Lı−1

ŵı dx (2.22)

This global balance clearly shows that the injected volume is conserved by leak-
off through the fracture (first term), fracture opening (second term), and fracture
propagation (third term). We explicitly enforce the global conservation law (2.22)
in the weak formulation (2.20) by means of a Lagrange multiplier, Λı:
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ŵı − ŵı−1 dx− πH
4∆t

Lı∫
Lı−1
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Singular tip enrichment

As discussed in Section 2.2.3, the aperture solution to the problem (2.15) is singu-
lar at the tip in accordance with equation (2.16). Evidently, this singular solution
behavior is approximated poorly by the linear finite element basis. As a mat-
ter of fact, when solely using the linear finite element basis, the tip propagation
speed will always vanish when evaluated through equation (2.15e). To improve
the finite element approximation, we enrich the test and trial space Vı with the
tip asymptote (2.16):

ϕı(x) = 3
√
Lı − x (2.24)

We localize this enrichment function to the tip region using the partition-of-unity
method (see, e.g., [134]). The enriched finite element interpolation of the aperture
is then given by

ŵı,h(x) =
∑
i∈Iı

N ı
i (x)aıi +

∑
j∈J ı

N ı
j(x)ϕı(x)bıj (2.25)

where the index set J ı ⊂ Iı contains the indices of the nodes that are enriched. In
the numerical simulations considered in Section 2.5 we only enrich the linear finite
element function associated with the tip, which we have found to be effective. A
schematic representation of this enrichment is shown in Figure 2.2.

2.4 Stochastic setting
In this section we introduce the stochastic setting of the PKN problem. Sec-
tion 2.4.1 introduces the Monte Carlo method that we use in this work. In
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Section 2.4.2 we discuss the random variables and random fields for the model
parameters. We do this in an abstract setting, where we denote the set of model
parameters by m = {m1,m2, . . .}. For a given set of model parameters we can
compute the response of the system, which is characterized by the fracture length
L(t) and space-time-dependent fracture aperture function ŵ(x, t) : [0, L(t)]→ R
defined over the moving domain. From this response we can deduce the observable
parameters as d = {d1, d2, . . .}. In the remainder of this work we will consider
some of the model parameters to be uncertain, viz. the plane strain modulus Ẽ′,
the leak-off coefficient, c̃l, and the fracture height H̃. We use the tilde diacritic
to indicate that these parameters are stochastic. As observable parameters we
will focus on the final fracture length, L̃(T ), and the maximum fracture mouth
opening, ˜̂w(T ).

2.4.1 Direct Monte Carlo sampling
In this work we use direct Monte Carlo sampling to compute the stochastic re-
sponse of the PKN model. The primary reason for using direct Monte Carlo
sampling is that it does not pose any restrictions on the distributions of the
model parameters and the observables. Moreover, the non-intrusive character
of the method enables its direct application to the PKN model. More advanced
stochastic techniques such as perturbation methods or spectral methods (see [135]
for an overview) can aid in reducing the computational effort of the stochas-
tic problem, but application of such techniques to the highly non-linear moving
boundary problem considered here is non-standard and beyond the scope of the
current work.

We denote a realization, or sample, of the random set of model parame-
ters m̃ by mk, where the subscript k is the index of the sample. The di-
rect Monte Carlo method generates a sequence of model parameter realizations,
{m1,m2, . . . ,mN}, and applies the model to construct the corresponding se-
quence of observables, {d1,d2, . . . ,dN}, where N denotes the number of sam-
ples. An estimate of the stochastic set of observables, d̃, can then be obtained
through statistical analysis of the sequence of samples. In particular, the mean
and standard deviation of an observable, d̃i, are computed by the estimators

µdi ≈
1
N

N∑
k=1

dik, σdi ≈

√√√√ 1
N − 1

N∑
k=1

(
dik − µdi

)2
, (2.26)

where the symbols µdi and σdi denote the mean and standard deviation, re-
spectively. Evidently, the accuracy of the estimators depends on the number of
samples N . Given a confidence level Cµ for the estimated mean µ (omitting the
subscript di for notational convenience) – meaning that the estimated mean has
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a relative accuracy of ±(1−Cµ)/2 with probability Cµ – the minimal number of
samples can be estimated by [136, 137]

N &

(
Φ−1( 1+Cµ

2 )
1− Cµ

)2

V 2
di , (2.27)

where Φ is the cumulative density function of a standard normal random variable,
and Vdi = σdi/µdi is the coefficient of variation of the random observable d̃i. A
rough estimate of this coefficient of variation can be obtained using a Monte Carlo
simulation with a small number of samples.

From (4.48) it becomes apparent that a draw-back of the direct Monte Carlo
method is the slow convergence of the sampling error (an increase in confidence
level) with increase in the number of samples. In the context of computational
models such as that considered in this work this practically means that the
stochastic simulations are computationally very intensive in the case of practically
meaningful confidence levels. The fact that Monte Carlo sampling is non-intrusive
– in the sense that it is a method that does not interfere with the deterministic
model – makes parallelization possible. We have implemented a parallel mas-
ter/slave algorithm for our simulations, which shows excellent scalability.

2.4.2 Random variable and random field parametrization
In this work we represent the considered scalar model parameters, m̃i, by means
of log-normal distributions, which are parametrized by the mean value and the
standard deviation. Log-normal distributions are considered to avoid physically
impossible negative realizations. We employ standard random number generators
[138] to obtain the sequence of samples required for Monte Carlo sampling.

In the case of heterogeneous random fields, m̃i(x), we employ stationary
log-normal random fields whose spatial correlation is represented by the auto-
correlation function

ρmi(x1, x2) = exp
(
−|x1 − x2|

lmi

)
, (2.28)

where x1 and x2 are two points in a background domain which is larger than all
fracture length realizations, and lmi is the correlation length. To generate samples
of the random field, m̃i(x), it must be discretized. To obtain a discretization
the log-normal random field is considered as the exponential of an underlying
stationary normal random field g̃i:

m̃i(x) = exp(g̃i(x)) (2.29)
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The statistical moments of the underlying Gaussian distribution can be expressed
in terms of those of the random field m̃i(x) by (see, e.g., [139])

µgi = ln(µmi)−
1
2 ln(1 + V 2

mi), Vgi =
√

ln(1 + V 2
mi), (2.30)

where Vmi = σmi/µmi is the coefficient of variation of the model parameter mi.
Similarly the auto-correlation function can be written as

ρgi(x1, x2) =
ln (1 + ρmi(x1, x2)V 2

mi)
ln(1 + V 2

mi)
. (2.31)

Discretization of the underlying Gaussian random field g̃i(x) is then achieved by
means of the Karhunen-Loève expansion (see, e.g., [140])

g̃i(x) ≈ g(x, z̃) = µgi +
n∑
j=1

√
ξjrj(x)z̃j , (2.32)

where z̃ is a vector of n independent standard normal random variables, and
where ξj and rj(x) are the eigenvalues and eigenfunctions corresponding to the
spatial covariance function σ2

giρgi(x1, x2), respectively. We discretize the eigen-
functions in space by means of a uniform linear finite element discretization over
the background domain, which results in a generalized eigenvalue problem that
we solve using a direct eigenvalue solver (see, e.g., Ref. [135] for details). In
Figure 2.3a the first 12 numerically determined eigenfunctions are shown for the
auto-correlation function (2.28) with lmi = 10 m. To illustrate the effectiveness of
the Karhunen-Loève expansion, Figure 2.3b shows the auto-correlation function
reconstructed from the Karhunen-Loève expansion (blue dots), which conveys
that for this selection of the correlation length, an excellent approximation of the
auto-correlation function is attained using 12 modes.

The log-normal random field m̃i(x) is then obtained by back-substitution of
(2.32) into the transformation (2.29):

m̃i(x) ≈ µmi√
1 + V 2

mi

n∏
j=1

exp(
√
ξjrj(x)z̃j). (2.33)

Realizations of the random field m̃i(x) can now be generated by sampling a
sequence of n independent standard normal random variables.

2.5 Numerical simulations
In this section we present numerical results based on the methodology presented
above. In Section 2.5.1 we first validate our methodology in a deterministic
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(a) Karhunen-Loève modes (b) Auto-correlation function

Figure 2.3: (a) Karhunen-Loève modes, rj(x), and a single realization (solid black
line) in accordance with the expansion (2.32). (b) Prescribed and approximated auto-
correlation function ρmi(x1, x2) for a correlation length of lmi = 10 m.

setting by consideration of the benchmark results presented in the comparative
study by Warpinski et al. [141]. In this section we demonstrate the necessity to
use a tip enrichment function and enforcement of volume conservation, and we
study the influence of the mesh size and time-step size on the numerical results.
In Section 2.5.2 the sensitivity of the observables – in particular the fracture
length and aperture – to the uncertain model parameters is studied, which serves
as a starting point for the stochastic simulations discussed in Section 2.5.3. In
the stochastic setting the uncertain model parameters are represented by discrete
random fields.

2.5.1 Deterministic benchmark
To demonstrate the validity of the presented methodology we consider the bench-
mark case studied by Warpinski et al. [141], which is based on a staged-field
experiment of the Gas Research Institute [141, p. 26]. The considered model
parameters are assembled in Table 2.1. The injection rate is gradually increased
until the indicated value, and then held constant for 200 minutes. The material
parameters resemble that of a tight gas sand reservoir, for which spurt losses are
omitted.

In Figure 2.4 we show the evolution of the fracture in time, where it should
be noted that the height of the fracture, H, is constant. Since the width is
symmetric with respect to the x axis, Figure 2.4 displays half of the aperture.
The shown results are based on a mesh size of ∆x = 1 m and a time step
size of ∆t = 1 s. As we will study in detail below, these results are objective
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Leak-off coefficient cl 9.84× 10−6 m/s1/2

Spurt losses Sp 0 m
Fracture height H 51.8 m
Plane strain modulus E′ 6.13× 1010 Pa
Viscosity µf 0.2 Pa.s
Injection rate i 0.0662 m3/s
Pumping time T 12000 s

Table 2.1: Reservoir data used for the validation of the deterministic problem

Figure 2.4: Aperture profiles evolving in time for the PKN benchmark simulation.
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(a)

(b)

Figure 2.5: Evolution of (a) the fracture length and (b) the maximum aperture over
time as computed by the finite element methodology proposed in this contribution (solid
blue line). The benchmark results reported in Ref. [141] are displayed for references.
See Appendix 2.A for further details.
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(a) Without Lagrange multiplier (b) With Lagrange multiplier

Figure 2.6: Influence of the Lagrange multiplier on the conservation of volume.

with respect to these numerical parameters. Figure 2.5 shows the corresponding
increase in fracture length and fracture mouth opening over time. The observed
time evolution corresponds well with the results reported for various simulators
in [141] (displayed in Figure 2.5 for reference). It is noted that the reported
results in [141] vary significantly as a result of variations in model assumptions
and simulation frameworks. The fracture length of 1429 m as computed here also
corresponds reasonably well with the analytical model in [125], which – using
additional simplifying assumptions – predicts a fracture length of 1340 m. Note
that in the absence of leak-off our model predicts a fracture length of 1730 m. This
stipulates that leak-off is appropriately represented in our numerical simulations.
The fracture length and fracture opening computed by our methodology are in
the higher part of the spectrum of simulators considered in [141] and analytical
models, which we attribute to the explicit enforcement of the volume constraint,
which will be discussed in detail below.

Our benchmark results are based on the formulation including the enrichment
of the tip functions and the enforcement of the global volume conservation con-
straint; see Section 2.3. The results in Figure 2.6 and Figure 2.7 serve to illustrate
that both these aspects are essential to obtain numerical results with an accept-
able level of accuracy for meshes and time step sizes that are computationally
tractable in the scope of stochastic simulations.

Figure 2.6 displays the behavior of the global volume conservation without and
with Lagrange multiplier constraint. The total volume rate – which is the sum
of the leak-off rate and fracture-widening rate – should equate to the input flow
rate. Note that in the absence of the Lagrange multiplier constraint, a significant
mismatch between the total rate and the inflow rate is observed. The presented
figure is based on on a mesh size of ∆x = 1 m and a time step size of ∆t = 1 s.
The mismatch between the rates depends on these discretization parameters, as it
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(a) Without enrichment (b) With enrichment

Figure 2.7: Influence of the enrichment function on the tip propagation velocity.

originates from significant errors in the local volume balance in the finite element
discretization (2.17). These local inaccuracies in the finite element solution are
closely related to the highly nonlinear character of the constitutive relation. By
enforcing global conservation of volume using a Lagrange multiplier – as shown
in Figure 2.6b – the global loss of volume is rigorously resolved. As observed the
total volume rate in this case matches that of the inflow rate.

In Figure 2.7 we display the tip velocity over time, without and with tip
enrichment function. For both simulations a mesh size of ∆x = 1 m and a time
step size of ∆t = 1 s is used. In the case of tip enrichment, equation (2.14)
is used to compute the tip speed. In the absence of enrichment the tip speed
cannot be obtained by this equation, as the adequate singular tip behavior is
then not represented in the discrete solution space. The speed results presented
in Figure 2.7a are based on the finite difference approximation

L̇(t) = − E′

96µfH

(
ŵ3|L(t) − ŵ3|(L(t)−∆x)

∆x

)
(2.34)

From Figure 2.7 it is observed that without the use of the enrichment function, for
the computational setting considered here significant oscillations in the fracture
propagation speed occur. Enriching the solution space with the tip singular-
ity dramatically reduces these oscillations, and hence significantly improves the
quality of the obtained result.

The enforcement of the volume constraint by means of a Lagrange multiplier,
and the representation of the tip behavior by means of an enrichment function,
provide numerical approximations with a level of accuracy that enables studying
stochastic variations. In Figure 2.8 and Figure 2.9 we show the dependence of the
results on independent variations in the time step size and mesh size, respectively.
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(a) (b)

Figure 2.8: (a) Fracture length with time for constant mesh size ∆x = 1 m, and (b)
Tip velocity profile with time for constant mesh size ∆x = 1 m

Note that in all simulations we consider a duration of 50 s only, in order to make
the converge studies feasible in terms of computational effort.

Figure 2.8 displays the results for a mesh size of ∆x = 1 m using three time
step sizes, viz. ∆t = 1.0, 0.5, 0.25 s. From both the length evolution plot and
the tip speed evolution plot it is observed that the variations with the time
step size are very limited. The most notable difference is observed at the onset
of fracture, where the maximum tip speed for ∆t = 0.25 s is observed to be 2%
higher than that for ∆t = 1.0 s. This difference is significantly smaller once steady
propagation occurs, e.g. at t = 50 s, where the difference is only 0.8%. Since the
length of the fracture is generally not dominated by the onset phase, the observed
variation in fracture length is generally also very small. At t = 50 s, the fracture
length for ∆t = 1.0 underestimates that of ∆t = 0.25 by 0.5%. Although not
presented here for the sake of brevity, similar results can be established for other
indicators such as the fracture mouth opening.

The evolution of the fracture length and tip speed for ∆t = 0.5 s and ∆x =
0.5, 1, 2m are depicted in Figure 2.9. The figures show that although a mesh size
of ∆x = 2.0 m correctly mimics the tip speed behavior, fluctuations in the speed
can be observed as a consequence of the mesh coarseness. These fluctuations
can be attributed to the fact that due to the limited number of elements in this
simulation (i.e., only 10 elements at t = 50 s) the spatial discretization errors
resulting from the employed moving mesh approach are significant. Upon mesh
refinement these fluctuations vanish. The maximum tip speed at the onset of
fracture for a mesh with ∆x = 0.5 m is only 0.5% lower than that using a twice
coarser mesh. When the fracture is steady at t = 50 s, this relative difference is
even smaller. In terms of the fracture length at t = 50 s, the result for ∆x = 1.0 m
underestimates that for ∆x = 0.5 m by a mere 0.5%.
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(a) (b)

Figure 2.9: (a) Fracture length with time for constant time step ∆t = 0.5 s, and (b)
Tip velocity profile for constant time step ∆t = 0.5 s

In the context of the sensitivity studies and stochastic simulations considered
in the remainder of this section, it is essential that the numerical errors do not
pollute the results. This means that the variations discussed above should be
negligible in comparison to the stochastic variations in the input parameters.
On the other hand, making the mesh sizes and time step sizes too small will
dramatically increase the computational effort due to the large number of samples
that is required in accordance with (4.48). Herein we select a mesh size of ∆x =
1.0 m and a time step size ∆t = 1.0 s, which provides a good balance between
numerical accuracy (see above) and computational effort.

2.5.2 Sensitivity analysis
In this section we apply the deterministic model outlined above to identify the
input factors that drive the variation in the output. As output observables we
consider the fracture length and fracture aperture. As input parameters we con-
sider the model parameters that cannot be established with a high degree of
certainty in reality, viz. the plane strain modulus E′, the fracture height, H, and
the leak-off coefficient, cl. In our sensitivity analysis we independently vary the
input factors and study their impact on the output observables. This screening
procedure is often considered as the first step in a forward uncertainty analysis,
since it identifies the dominant sources of randomness.

In Figure 2.10 we consider the effect of the plane strain modulus on the frac-
ture geometry, while keeping all other model parameters unchanged. A range of
plane strain moduli from 1× 103 MPa to 1× 104 MPa is considered. Figure 2.10
conveys that a stiffer formation results in a longer and narrower fracture, com-
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(a) (b)

Figure 2.10: (a) Fracture length and aperture with varying plane strain modulus, and
(b) Fracture geometry profile with varying plane strain modulus

pared to a more compliant formation. Considering the nature of the model –
which revolves around the conservation of volume – this is plausible, since in the
case of a stiff formation fracture propagation is favored over fracture widening.
From Figure 2.10a we observe that the dependence of the output observables on
the plane strain modulus is highly nonlinear, in the sense that the rate of change
of the output observables is significantly lower than that of the plane strain mod-
ulus. For example, an increase of 45% in the fracture length is observed when
increasing the plane strain modulus by a factor of 8. This same increase in plane
strain modulus moreover leads to a reduction of the fracture mouth opening by
only 35%. As a result, the well pressure – which is proportional to the product of
the fracture mouth opening and plane strain modulus – increases with an increase
in formation stiffness, which is in line with the experimental results in [141]. In
addition, this sensitivity analysis conveys that the response of the observables is
non-symmetric, in the sense that the rate of change of the length and fracture
mouth opening for stiff formations is smaller than for compliant formations.

Figure 2.11 shows the dependence of the output observables on a range of leak-
off coefficients, ranging from the impermeable case (cl = 0 m/s1/2) to cl = 5e−5

m/s1/2, which is 50% more than the value taken in the GRI experiment [141]
based on tight gas sands. As anticipated from the conservation of volume, an
increasing leak-off coefficient yields a shorter and narrower crack. Increasing the
deterministic value considered in the previous section by a factor of 5 yields a
decrease in fracture length of 14% and a decrease in fracture mouth opening of
7%. From Figure 2.11b it is observed that the fracture profile shape is insensitive
to the leak-off coefficient. In contrast to the dependence on the plane strain
modulus considered above, the rate of change of the observables is practically
constant for the considered range of leak-off coefficients.
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(a) (b)

Figure 2.11: (a) Fracture length and aperture with varying leak-off coefficient, and
(b) Fracture geometry profile with varying leak-off coefficient

(a) (b)

Figure 2.12: (a) Fracture length and aperture with varying fracture height, and (b)
Fracture geometry profile with varying fracture height
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Figure 2.12 displays the variation of the output observables for fracture heights
ranging from 25 m to 95 m. Doubling the fracture height from 25 m reduces the
fracture mouth opening by 15% and the fracture length by 44%. As expected
from volume conservation (where in this particular case leak-off effects are not
pronounced) the product of these two observables is approximately reduced by
a factor of two. The direct impact of the fracture height on the volume con-
servation model results in a strong sensitivity of the output observables. The
non-symmetry of the response observables is consistent with the expected be-
havior in the extreme cases, for which a large height should yield a very short
and narrow crack, and a small height should yield an extremely long and wide
fracture.

2.5.3 Stochastic setting
In this section we present the results of Monte Carlo simulations. In Section 2.5.3
we first study the stochastic results for the case where each of the uncertain
input parameters is varied independently, which closely connects this section
to the sensitivity analysis presented above. The stochastic analysis presented
here provides insight into the evolution of the randomness in time, and on the
dependence of the uncertain observables on the magnitude of the random input
variables. In Section 2.5.3 we then consider the case of a random field for the
plane strain modulus, which elucidates the dependence of the observables on the
spatial correlation of the uncertain input parameter. The reported sample sizes
are all based on the estimate (4.48) with a confidence level for the estimator of
the mean fracture length.

Independent variation of uncertain parameters

We first consider the plane strain modulus, E′, to be the only uncertain pa-
rameter. Since the plane strain modulus is positive by definition, we repre-
sent this uncertain parameter by a log-normal distribution with mean value
µE′ = 6.13 × 104 MPa and coefficient of variation VE′ = 50%. To achieve a
confidence level of 98% for the mean fracture length, a sample size of N = 304 is
required. To avoid pollution of the stochastic results by excessive discretization
errors for this 98% confidence interval, a mesh size ∆x = 1 m and a time step
size ∆t = 1 s is used in combination with the volume conservation constraint and
tip enrichment function. In this computational setting, a single realization with
T = 800 s requires 96 minutes on a Intel Core i5 vPro processor. Without the use
of the volume constraint and enrichment function, significantly smaller mesh and
time step sizes would be required to achieve the numerical accuracy required for
a 98% confidence interval, which would dramatically increase the total simulation
time of the Monte Carlo simulation.
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Figure 2.13: Evolution of the mean (solid blue line) and 98% confidence interval
(shaded area) of the fracture length in time corresponding to a variation in the plane
strain modulus of VE′ = 50%.

t µL σL VL µŵ σŵ Vŵ
100 33.619 3.348 9.9 0.0056 0.0005 8.9
200 59.040 5.790 9.8 0.0066 0.0006 9.1
400 110.166 10.030 9.1 0.0076 0.0007 9.2

Table 2.2: Statistical moments of the fracture length and fracture aperture corre-
sponding to a coefficient of variation V ′E = 50% for the plane strain modulus.

In Figure 2.13 we show the evolution of the fracture length in time, where
the mean value is represented by the solid line, and the shaded area indicates
the 98% confidence interval of the fracture length. Typical distributions for the
fracture length and fracture mouth opening at t = 100 s are displayed in Fig-
ure 2.14, from which we infer that the distributions are unimodal. The error bars
in Figure 2.13 show that the standard deviation of the fracture length (and with
that its confidence interval) increases proportionally with the mean. This obser-
vation is confirmed in Table 2.2, from which it is observed that the coefficients
of variation of the length and fracture mouth opening only vary moderately.

In Figure 2.15 we study the dependence of the results on the coefficient of
variation of the plane strain modulus at two time instances. Note that the used
sample size is different for each coefficient of variation in order to achieve the
same confidence level for the mean estimator of the fracture length. At both
time instances we observe that the coefficient of variation of the fracture length
is proportional to that of the input parameter. This behavior can be explained
by considering the dependence of the mean and the standard deviation on the
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(a) Fracture length, L (b) Maximum aperture, ŵ

Figure 2.14: Histograms of the fracture length and maximum fracture aperture for
50% variation of the plane strain modulus, E′, at t = 100 s

(a) t = 100 s (b) t = 500 s

Figure 2.15: Coefficients of variation of the fracture length, L, and maximum aperture,
ŵ, as a function of the variation of the plane strain modulus, E′, at different time
instances.
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(a) Mean (b) Standard deviation

Figure 2.16: Statistical moments of the fracture length, L, and maximum aperture,
ŵ, as a function of the variation of the plane strain modulus, E′, at t = 100 s. The
perturbation results, Lp and ŵp, are indicated by the dashed lines.

coefficient of variation of the input, as displayed in Figure 2.16. This figure
conveys that the standard deviation of the fracture length increases with an
increasing variation of the plane strain modulus. Using the results from the
sensitivity analysis presented above, we verify the correspondence of the observed
behavior with that predicted by a first-order perturbation analysis [135],

σL ≈
∣∣∣∣ ∂L∂E′

∣∣∣∣
E′=µE′

∂E

∂z
≈
∣∣∣∣ ∂L∂E′

∣∣∣∣
E′=µE′

σE′ , (2.35)

which is displayed in Figure 2.16b by the dashed lines. The observed decrease
in the mean value is also in good agreement with the results of the sensitivity
analysis, as shown by the dashed lines in the Figure 2.16a, where the mean values
are approximated using second-order perturbation theory [135]:

µL ≈ L|E′=µE′ + 1
2
∂2L

∂E′2
σ2
E′ (2.36)

For the case considered here the variation in the mean of the fracture length
is moderate (Figure 2.16a), as a result of which the observed behavior of the
coefficient of variation in Figure 2.15 is governed by the behavior of the standard
deviation of the fracture length. Similarly, the results for the fracture mouth
opening are also observed to correspond well with the sensitivity analysis.

In Figure 2.17 we show the evolution of the fracture length for the case in
which the leak-off coefficient is described by a log-normal distribution with mean
value µcl = 9.84 × 10−6 m/s1/2 and coefficient of variation Vcl = 50%. The
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Figure 2.17: Evolution of the mean (solid blue line) and 98% confidence interval
(shaded area) of the fracture length in time corresponding to a variation in the leak-off
coefficient of Vcl = 50%.

probability distributions at t = 100 s are shown in Figure 2.18. Figure 2.19
presents the corresponding relation between the coefficients of variation of the
observables, viz. the fracture length and maximum aperture, and that of the leak-
off coefficient at two time instances, where the sample sizes have been selected
in accordance with the confidence level of the mean estimator of the fracture
length. From Figure 2.19 one can observe that the coefficients of variation of the
output observables increase only modestly (by approximately a factor of 2 from
t = 100 s to t = 500 s) in time. The observed relation between the coefficients of
variation of the input and output is explained by the fact that the mean value is
affected minimally by the coefficient of variation of the leak-off coefficient, while
the standard deviation increases proportionally with it. From Figure 2.20 it is
observed that the behavior of the mean and standard deviation of the observables
is in good agreement with the perturbation results following from the sensitivity
analysis.

We finally consider the independent random variation of the fracture height,
which is represented by a log-normal distribution with mean µH = 51.8 m and
coefficient of variation VH = 50%. A sample size of N = 553 (providing a
confidence level of 95%) is selected to compute the time evolution of the fracture
length as shown in Figure 2.21, for which the probability distributions of fracture
length L and maximum aperture ŵ at time t = 100 s are shown in Figure 2.22.
The coefficient of variation is essentially invariant in time, which is confirmed by
comparison of the relation between the input and output coefficients of variation
at two time instances as shown in Figure 2.23. From Figure 2.24 we observe that
both the mean and the standard deviation of the observables match well with
the results from the sensitivity analysis.
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(a) Fracture length, L (b) Maximum aperture, ŵ

Figure 2.18: Histograms of the fracture length and maximum fracture aperture for
50% variation of the leak-off coefficient, cl, at t = 100 s.

(a) t = 100 s (b) t = 500 s

Figure 2.19: Coefficients of variation of the fracture length, L, and maximum aperture,
ŵ, as a function of the variation of the leak-off coefficient, cl, at different time instances.
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(a) Mean (b) Standard deviation

Figure 2.20: Statistical moments of the fracture length, L, and maximum aperture, ŵ,
as a function of the variation of the leak-off coefficient, cl, at t = 100 s. The perturbation
results, Lp and ŵp, are indicated by the dashed lines.

Figure 2.21: Evolution of the mean (solid blue line) and 95% confidence interval
(shaded area) of the fracture length in time corresponding to a variation in the fracture
height of VH = 50%.
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(a) Fracture length, L (b) Maximum aperture, ŵ

Figure 2.22: Histograms of the fracture length and maximum fracture aperture for
50% variation of the fracture height, H, at t = 100 s.

(a) t = 100 s (b) t = 500 s

Figure 2.23: Coefficients of variation of the fracture length, L, and maximum aperture,
ŵ, as a function of the variation of the fracture height, H, at different time instances.
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(a) Mean (b) Standard deviation

Figure 2.24: Statistical moments of the fracture length, L, and maximum aperture, ŵ,
as a function of the variation of the fracture height, H, at t = 100 s. The perturbation
results, Lp and ŵp, are indicated by the dashed lines.

Comparing the effects of the random input variable on the fracture length
reveals that it is more sensitive to randomness in the plane strain modulus (Fig-
ure 2.15 on page 49) than to randomness in the leak-off coefficient (Figure 2.19
on page 52), in the sense that a coefficient of variation in the fracture length of
VL ≈ 2.5% corresponds to a coefficient of variation of the plane strain modulus
of VE′ ≈ 15% and a coefficient of variation of the leak-off coefficient of Vcl = 50%
(results at t = 500 s). The sensitivity to the fracture height is observed to be
even stronger (Figure 2.23 on the facing page), in the sense that VL ≈ 10% cor-
responds to coefficients of variation of VE′ ≈ 50% and VH ≈ 15% for the plane
strain modulus and fracture height, respectively.

Heterogeneous random plane strain modulus field

We now consider the case in which the plane strain modulus, E′, is described by
a heterogeneous random field instead of a scalar variable. We consider a random
field with mean µE′ = 6.13×103 MPa and coefficient of variation VE′ = 50%. We
vary the length scale of the auto-correlation function in equation (4.50) from lE′ =
5 m to lE′ = 25 m. The random field for the plane strain modulus is discretized
using 12 Karhunen-Loève modes, which is sufficient for the representation of
the random field corresponding to the smallest correlation length considered.
Table 2.3 lists the statistical moments of the observables at t = 100 s based on
a Monte-Carlo simulation with N = 384, which is in accordance with a 95%
confidence level for the mean estimator in the fracture length.
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lE′ [m] µL [m] σL [m] VL[%] µŵ [m] σŵ [m] Vŵ[%]
5 27.545 6.682 24.3 0.0071 0.0030 42.3
10 28.496 7.177 25.2 0.0078 0.0041 52.6
15 29.319 6.204 21.2 0.0075 0.0037 49.3
20 29.735 6.601 22.2 0.0074 0.0029 39.2
25 31.091 6.158 19.8 0.0067 0.0021 31.3
∞ 33.619 3.348 9.9 0.0056 0.0005 8.9

Table 2.3: Statistical moments of the fracture length, L, and the maximum aperture,
ŵ, at t = 100 s corresponding to a variation of the plane strain modulus of VE′ = 50%
for random fields with varying correlation lengths, lE′ . Note that the case of lE′ = ∞
corresponds to the homogeneous case discussed in Section 2.5.3.

The most notable observation from the results in Table 2.3 is that the coef-
ficient of variation of the output observables is significantly higher than in the
case of a homogeneous plane strain modulus with equal coefficient of variation
(see Table 2.2). To better understand this observation, in Figure 2.25 we per-
form a closer inspection of the realizations that lead to Table 2.3. In the rows of
this figure we collect the Monte-Carlo results for the correlation lengths reported
in Table 2.3, starting with the smallest correlation length. In the second and
third column we show the probability distributions for the fracture length and
the fracture mouth opening, respectively. The first column displays the plane
strain modulus field that leads to three distinct realizations in the sample, viz.
the smallest fracture length, the largest fracture length, and the fracture length
closest to the mean value. We observe that the realizations of the plane strain
modulus field that lead to the smallest fracture lengths in all cases correspond to
the situation in which the elastic modulus is very small near the well. When this
happens the injected fluid causes fracture widening near the well, rather than
fracture propagation into the formation. More generally, in the case of hetero-
geneous fields, local zones in which the formation is very compliant can lead to
blockage of propagation, as the injected fluid volume can be locally accumulated
in this zone. Long fractures are obtained in the case that the plane strain modu-
lus is large near the well, and high (in a spatially averaged sense) compared to the
mean value. In such situations the blockage of propagation due to a compliant
zone does not occur, and the injected fluid volume is effectively transferred to
the crack tip.

In terms of the dependence of the results on the correlation length it is ob-
served that the mean fracture length decreases as the correlation length decreases.
This is explained by the fact that in the case of a smaller correlation length, the
chance of a locally compliant zone in the formation increases. The blockage of
propagation in such zones is then more frequent, which leads to a reduction in
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fracture length expectation. From Table 2.3 we moreover observe a moderate
increase in coefficient of variation of the fracture length as the correlation length
increases.

From the distributions of the fracture mouth opening in Figure 2.25 (c1–c5) we
observe a notable difference in comparison to that for the homogeneous random
plane strain modulus case (Figure 2.14b). In the homogeneous case there exists
a strong correlation between the fracture length and the fracture mouth opening,
in the sense that long cracks are narrow by virtue of the fact that their volume
is similar (assuming leak-off effects to be limited). Figure 2.10 in the sensitivity
study clearly confirms this observation; see also the discussion in Section 2.5.2.
Although the fracture length and fracture width in the case of a heterogeneous
field are not uncorrelated, the fracture mouth opening is most strongly influenced
by the local plane strain modulus near the well. Since the fracture opening in
the PKN model depends locally on the plane strain modulus, the log-normal
distribution of the plane strain modulus reflects directly on that of the fracture
mouth opening, as can be seen in the third column of Figure 2.25. The sensitivity
of the fracture mouth opening to local variations in the plane strain modulus field
also results in coefficients of variation that are significantly higher than those in
the homogeneous case (see Table 2.3).

2.6 Conclusions
We have presented a sampling-based stochastic analysis of the hydraulic fractur-
ing process based on the Perkins-Kern-Nordgren (PKN) model. The considera-
tion of this model is motivated by the fact that in the deterministic case high-
accuracy solutions can be computed with feasible computational effort, which
makes its application in the context of direct Monte Carlo sampling practical. Al-
though this model significantly simplifies the hydraulic fracturing process, it bears
practical relevance, especially for fractures in the viscosity-dominated regime. A
limitation of the model pertains to the local elasticity relation in the PKN model,
which restricts its application to low-frequency spatial variations of the model pa-
rameters.

In order to compute high-fidelity solutions that do not pollute stochastic anal-
yses with numerical errors, a moving-mesh finite element method is developed.
The employed backward-Euler time integration scheme is supplemented with a
sub-iteration technique, such that the mesh propagation relation becomes im-
plicit. The non-linearity of the model is solved using Newton iterations. We
have performed detailed mesh size and time integration step convergence studies.
We have found that in order to attain solutions with acceptable accuracy in the
context of the stochastic analysis, the finite element methodology had to be en-
hanced in two manners. First, the global conservation of volume was found to be
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(a1) (b1) (c1)

(a2) (b2) (c2)

(a3) (b3) (c3)

(a4) (b4) (c4)

(a5) (b5) (c5)

Figure 2.25: (a1-a5) Examples of realization for lE′ = (5, 10, 15, 20, 25) m, respectively.
(b1-b5) Histograms of the fracture length for lE′ = (5, 10, 15, 20, 25) m, respectively.
(c1-c5) Histograms of the maximum aperture for lE′ = (5, 10, 15, 20, 25) m, respectively.
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significantly violated due to the highly non-linear character of the model. The ob-
served loss of volume led to significant underestimation of the fracture length. To
circumvent this problem, volume conservation was enforced explicitly by means
of a Lagrange multiplier approach. Second, the weakly singular behavior of the
fracture opening and pressure at the tip was found to be troublesome in the case
of a standard finite element basis. On one hand the improper representation of
the singularity by the basis required the use of an ad hoc tip velocity relation.
On the other hand, the mesh resolution of the uniform finite element mesh was
found to be insufficient. These issues were resolved by enrichment of the stan-
dard finite element space with a singular tip function. We established that in the
deterministic setting, our finite element simulations show very good agreement
with results reported in literature for a realistic test case even on relatively coarse
meshes.

The sensitivity of the fracture evolution process with respect to various ran-
dom input parameters was studied. From the direct Monte Carlo simulations it
was found that the mean and standard deviation of the fracture length and frac-
ture mouth opening correspond well to those values obtained using perturbation
theory. This observation conveys that – at least for the test case considered –
linearization of the model provides meaningful information on the behavior of
the stochastic moments, despite the complexity of the model and its solution
procedure.

To demonstrate the suitability of the developed methodology for studying
random heterogeneities in formation properties we have considered a test case
in which the formation stiffness was described by a random field. The random
dimension was discretized using a Karhunen-Loéve expansion. The sampling re-
sults demonstrate that the response uncertainty is amplified by the heterogeneous
character of the random material property field. For the fracture length this is
explained by the fact that fracture propagation is sensitive to local variations
in the elastic properties of the formation because locally compliant regions can
inhibit transfer of the fracturing fluid and, hence, propagation of the crack. For
the fracture mouth opening an even stronger amplification is observed as a con-
sequence of the fact that the fracture opening is directly related to the material
property. Although this observation can be explained well based on the struc-
ture of the PKN model, it requires further study to understand to what extend
a similar conclusion can be drawn for more sophisticated hydraulic fracturing
models.

Although the results presented herein provide fundamental insight into the
primary characteristics of the stochastic behavior of the hydraulic fracturing pro-
cess, it is evident that more detailed information can be obtained by more versa-
tile models and simulation strategies. In particular the PKN model does not rely
on a fracture mechanics model based on the material’s fracture toughness, which
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restricts the scope of this work to fractures in the viscosity-dominated regime.
When considering uncertainty quantification using physically richer models it will
remain key to not pollute the results with numerical errors, which will inevitably
lead to computationally complex Monte Carlo methods. The use of alternative
stochastic techniques, such as the perturbation method can be expected to yield
meaningful results at a much lower cost than direct Monte Carlo sampling.

2.A Benchmark results
In Section 2.5.1 we have considered the deterministic benchmark result based
on the case study by Warpinski et al. [141]. The parameters for the considered
simulation can be found in Table 2.1. Figure 2.5 in Section 2.5.1 shows the results
for this benchmark case as obtained using the finite element technique developed
in this manuscript, as well as the results for the simulators included in Ref. [141].
Note that the results of these simulators have been reported with intervals of
1200 s. For completeness, in Table 2.4 we report the results obtained by the
method proposed herein with a mesh size of ∆x = 1 m and a time step size of
∆t = 1 s. Note that the presented results have been rounded off to 4 decimals.

Time Fracture height Fracture length Maximum aperture
t [s] H [m] L [m] ŵ [m]

0 51.8 2.0000 0.0037
1200 51.8 246.1651 0.0089
2400 51.8 421.3913 0.0101
3600 51.8 575.4035 0.0109
4800 51.8 716.5376 0.0114
6000 51.8 848.7358 0.0119
7200 51.8 974.0853 0.0122
8400 51.8 1093.9648 0.0126
9600 51.8 1209.3184 0.0129

10400 51.8 1320.8104 0.0131
12000 51.8 1428.9438 0.0134

Table 2.4: Numerical output of the model considered in this manuscript formatted
consistently with the results in Ref. [141].



Chapter 3

A PGD approach to crack
propagation in brittle
materials

Understanding the failure of brittle heterogeneous materials is essential in
many applications. Heterogeneities in material properties are frequently modeled
through random fields, which typically induces the need to solve finite element
problems for a large number of realizations. In this context, we make use of
reduced order modeling to solve these problems at an affordable computational
cost. This paper proposes a reduced order modeling framework to predict crack
propagation in brittle materials with random heterogeneities. The framework is
based on a combination of the Proper Generalized Decomposition (PGD) method
with Griffith’s global energy criterion. The PGD framework provides an explicit
parametric solution for the physical response of the system. We illustrate that
a non-intrusive sampling-based technique can be applied as a post-processing
operation on the explicit solution provided by PGD. We first validate the frame-
work using a global energy approach on a deterministic two-dimensional linear
elastic fracture mechanics benchmark. Subsequently, we apply the reduced order
modeling approach to a stochastic fracture propagation problem.

This chapter is reproduced from [142]: H. Garikapati, C.V. Verhoosel, E.H. van Brumme-
len, S. Zlotnik and P. Dı́ez. A Proper Generalized Decomposition (PGD) approach to crack
propagation in brittle materials: With application to random field material properties. Com-
putational Mechanics 2019.
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3.1 Introduction

One of the important goals in engineering design is to avoid catastrophic fail-
ure. Besides, in many applications, it is often crucial to understand the failure
processes. To realistically model failure processes in engineering systems it is
often essential to study the impact of uncertainties in the system parameters,
such as loading conditions, specimen geometry, material properties, etc. Taking
into account such uncertainties in an analysis typically implies that the number
of times that a solution must be computed increases rapidly with an increase in
the number of uncertain parameters. The use of reduced order models is then
indispensable as these make it practical to solve the problem for many parameter
realizations at an affordable computational effort.

While Reduced Order Modeling (ROM) is a well-established concept in the
field of linear elastic solid mechanics [143–145], its application to fracture me-
chanics problems has remained essentially unexplored, with Ref. [146] providing
a notable exception. In the present work, a new ROM technique for fracture prop-
agation is presented which allows failure to be studied as a post-processing oper-
ation of a parameterized solution that incorporates varying loads, crack lengths
and material uncertainties. We propose a parameterization of the crack on the
one hand, and a method to take into account the fracture propagation criterion
in the reduced order model setting on the other hand. Furthermore, we extend
the framework to include random heterogeneities in the material properties.

The reduction method of choice in this work is the Proper Generalized De-
composition (PGD) method, which is a reduced order modeling technique specif-
ically designed to counter the curse of dimensionality induced by the increase in
system parameters to be considered in an analysis [147]. The PGD method is
comprised of two stages: i) An offline stage, where the solution is obtained in
the whole computational vademecum [148, 149] in an efficient way which breaks
down the computational complexity of the high-dimensional parametric problem.
This is achieved by a separated representation of the solution. ii) An online stage,
where, in real time, the solution can be readily obtained as a post-processed result
[150, 151].

Our work is based on the concept of linear elastic fracture mechanics (LEFM),
which is a frequently used model for brittle fracture [152]. We consider Griffith’s
fracture propagation criterion, which evaluates the stability of a fracture based
on an energy balance between the work done by external loads, the elastic energy
stored within the system, and the energy dissipated through the fracture surface.
Griffith’s theory in its basic form is restricted to elastic brittle materials in which
there is no plastic deformation near the crack tip. The simulation of fracture
evolution in the LEFM framework typically involves a stepwise incrementation
of the crack path based on the evaluation of the fracture criterion, which implies
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that a linear elasticity problem (with a tip singularity) must be solved at each
step in the propagation process. This finite element procedure is typically compu-
tationally expensive because, on account of accuracy and stability requirements,
the crack length increments must generally be small, and because some form of
mesh adaptation is required to accommodate changes in fracture geometry. The
PGD approach in this work conveniently bypasses these problems, as the fracture
length is considered as one of the coordinates of the obtained parametric solu-
tion, and differentiation with respect to the fracture length provides a suitable
propagation measure in the form of the energy release rate at all configurations
in the parametric domain.

This paper is organized as follows. The model problem considered in this work
is introduced in Section 3.2. Section 3.3 demonstrates how a separable form of the
problem can be obtained in regard to the fracture length, which is a prerequisite
for the application of the PGD method discussed in Section 3.4. We herein adapt
the PGD formulation to solve a linear system of equations, which we refer to
as the PGD solver [153]. Section 3.5 studies the accuracy of the fracture length
parametrization in the setting of a stationary fracture. Section 3.6 then describes
the application of the PGD framework to Griffith’s fracture model, along with the
consideration of an LEFM benchmark test case [154]. Section 3.7 then presents an
application in the stochastic setting, where we use the Karhunen-Loève expansion
[140, 155] to discretize random field material properties. A Monte Carlo based
stochastic analysis is then performed that demonstrates the efficiency of the PGD
framework. Conclusions are presented in Section 3.8.

3.2 Model fracture problem
As a model problem we consider a straight fracture in a homogeneous linear elastic
two-dimensional (d = 2) continuum, see Figure 3.1. The crack propagates in
response to an external traction imposed on the system. Inertia, gravity and body
forces are neglected. Assuming small deformations and deformation gradients,
along with plane strain assumptions, the solid deformation is governed by the
momentum balance

∇ · σ = 0 in Ω,

where the Cauchy stress, σ, follows Hooke’s law for isotropic materials

σ = 2µ ε+ λ tr(ε) I,

ε = ∇su = 1
2(∇u+ (∇u)T),

(3.1)

where u = (ux, uy) denotes the displacement field, and ε the infinitesimal strain
field. The Lamé parameters µ and λ are directly related to the Young’s modulus,
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Figure 3.1: Setup of the model fracture problem. Note that the computational domain,
Ω, is taken as a quarter of the specimen because of symmetry conditions.

E, and Poisson’s ratio, ν. Exploiting the symmetry of the two-dimensional model,
the boundary conditions are given by

σn = t on Γtop,

σn = 0 on Γright ∪ Γcrack,

u · n = 0 on Γbottom ∪ Γleft,

σn× n = 0 on Γbottom ∪ Γleft,

where n is the outward pointing normal vector and t is the imposed boundary
traction.

Defining the function space for the vector-valued displacement field as

V := {u ∈ [H1(Ω)]d : u · n = 0 on Γbottom ∪ Γleft},

the weak form of the problem reads as follows:{
findu ∈ V such that,

a(u,v) = `(v) ∀v ∈ V. (3.2)

The bilinear and linear operators in (3.2) are defined as,

a(u,v) :=
∫

Ω
∇v : C : ∇sudΩ and `(v) :=

∫
Γtop

v · tdΓ (3.3)
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where C is the fourth-order elasticity tensor in accordance with Hooke’s law (3.1),
i.e., σ = C : ε.

The finite element discretization of the displacement field is given by

u(x) =
n∑
i=1

Ni(x)ûi, (3.4)

where {Ni(x)}ni=1 denotes the set of n vector-valued finite element basis functions
that conform to the space V, and {ûi}ni=1 are the corresponding coefficients.
Discretization of the weak problem (3.2) then yields the linear system of equations

Kû = f , (3.5)

where the vector û = (û1, · · · , ûn) contains the solution coefficients, and the
coefficients of the stiffness matrix K and load vector f are given by:

Kij = a(Ni,Nj), fi = `(Ni). (3.6)

Evidently, the finite element problem (3.5) depends on the parameters of the
model. In the case that one is interested in a single parameter configuration,
this would simply require the assembly of the finite element system for that
particular setting, and then to solve that system to find the approximate solution.
In the context of this work, however, the central idea is that the system (3.5)
must be assembled and solved for many different parameters. To this end, we
introduce the parametric solution to the problem, u(x;µ), where the (scalar)
problem parameters µ = (µ1, · · · , µnµ) are defined over the parameter domains
Iµ = Iµ1 × · · · × Iµnµ .

The pivotal idea of the PGD method is to attain u(x;µ) as the solution to
a problem posed on the higher-dimensional domain Ω × Iµ, the spatial semi-
discretization of which can be written as:

K(µ)û(µ) = f(µ) ∀µ ∈ Iµ. (3.7)

The general PGD strategy to obtaining this solution is to formulate a higher-
dimensional weak form problem corresponding to (3.2), and then to discretize
this higher-dimensional problem in space and in the parametric dimensions; see,
e.g., [147, 156] for the fundamentals of PGD. An essential aspect of the PGD
framework is that in order to efficiently compute the parametric solution, a sep-
arable form of the weak form problem (or its discrete version) must be available.
With respect to the spatially discretized system (3.5) this means that the stiffness
matrix and force vector should be of the form:
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K(µ) =
nk∑
i=1

Ki

nµ∏
j=1

φij(µj), (3.8a)

f(µ) =
nf∑
i=1

f i
nµ∏
j=1

ψij(µj), (3.8b)

where nk and nf denote the total number of terms needed to represent the para-
metric stiffness matrix and parametric force vector, respectively. Note that when
these affine representations are not available, it is possible to construct affine
separable forms that approximate the stiffness matrix and force vector.

A non-standard aspect in relation to the fracture problem considered in this
work, is that the crack length parameter, lc, enters the problem through the
definition of the domain. As a consequence, the separable forms (3.8), with lc as
one of the parameters, will not follow naturally from (3.5). Obtaining separable
forms instead requires recasting of the formulation in a canonical form through a
pull back of the problem to a reference configuration. This reformulation of the
problem is considered in the next section.

3.3 Fracture length parametrization

In this section we consider the parametrization of the system of equations with
respect to the fracture length, lc ∈ Ilc = [lmin

c , lmax
c ]. For the sake of simplicity,

we here consider this fracture length to be the only parameter, such that (3.8)
reduces to:

K(lc) =
nk∑
i=1

Ki φi(lc) and f(lc) =
nf∑
i=1

f i ψi(lc). (3.9)

The matrices Ki and the vectors f i do not depend on the parameter lc, and the
functions φi(lc) and ψi(lc) depend on the parameter only.

In order to determine the parametric forms in (3.9), a reference domain and
a mapping function are introduced as illustrated in Figure 3.2. The mapping
function, M : Ωref → Ω, which depends on the parameter lc, transforms the
parameter-independent reference domain, Ωref 3 X = (X,Y), into a physical
domain, Ω 3 x = (x, y), where the length of the crack is equal to lc. Through
this mapping, the crack length can be described by applying the corresponding
mapping to the reference domain. We here consider the following choice for the
mapping x =M(X, lc):
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Figure 3.2: Mapping from a unit reference domain Ωref with a fracture of length 0.5
to the physical domain Ω with variable fracture length lc.

x =
{

2 lcX for X ≤ 0.5
Hx + 2(Hx − lc)(X − 1) for X > 0.5,

y = Hy Y.

(3.10)

The Jacobian of this mapping follows as:

J(X; lc) = ∂x

∂X
=



[
2lc 0
0 Hy

]
X ≤ 0.5

[
2(Hx − lc) 0

0 Hy

]
X > 0.5.

(3.11)

The inverse of this Jacobian can be obtained analytically and allows for an exact
separable representation as the sum of products of matrices that do not depend
on the parameter lc and functions that depend only on that parameter:

J−1(X; lc) =



[
0 0
0 1

Hy

]
+ 1

lc

[
1
2 0
0 0

]
for X ≤ 0.5

[
0 0
0 1

Hy

]
+ 1

(Hx−lc)

[
1
2 0
0 0

]
for X > 0.5.

(3.12)

A separable form of the determinant of the Jacobian can similarly be obtained:

det J(X; lc) =
{

2Hylc for X ≤ 0.5
2Hy(Hx − lc) for X > 0.5.

(3.13)
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Figure 3.3: Schematic representation of the finite element mesh constructed over the
reference domain. The crack tip coincides with a mesh line in the X direction by virtue
of the fact that an even number of elements is used in that direction. The mapping onto
the physical domain results in non-uniformly spaced elements in the physical mesh.

The matrix and vector components in equation (3.6) can now be transformed
via the mappingM(X, lc) into equivalent integrals over the reference domain as

Kij =
∫

Ωref
J−1∇Ni : C : J−1∇sNj det (J) dΩref, (3.14a)

fi =
∫

Γref
top

Ni · (t ◦M) ∂x

∂X
(X; lc) dΓref , (3.14b)

where use has been made of the operators defined in (3.3), and where Γref
top =

[0, 1] is the top boundary of the reference domain. The basis functions N here
are defined over the reference domain. Note that the mapping function affects
the entire domain and that therefore the traction at the top boundary needs to
be mapped onto the reference domain to be integrated via the surface measure
dΓ = ∂x(X;lc)

∂X dΓref .
The linear system of equations corresponding to (3.14) is discretized using

a finite element mesh constructed over the reference domain Ωref. A regular,
uniformly spaced, mesh is used, with an even number of elements in each direction
(see Figure 3.3). As a result, the boundary at X = 0.5, across which the mapping
function (3.10) is non-smooth, coincides with an element boundary. This has
been found to be advantageous from an implementation point of view, as an
element is either completely in the left side of the reference domain, Ωref

left =
{X ∈ Ωref | X ≤ 0.5}, or completely in the right side of the reference domain,
Ωref

right = {X ∈ Ωref | X > 0.5}. Although this particular choice of the reference-
domain mesh is favorable from the vantage point of implementation and accuracy,
the methodology presented herein is not restricted to this choice of the mesh, and
could equally well be applied to unstructured meshes.
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A fundamental difference between the finite element discretization over the
reference grid, equation (3.14), and the system obtained using a direct discretiza-
tion over the physical domain, equation (3.6), is that the crack length parameter
in (3.14) appears inside the integrands of the matrix components, and not in the
domain boundary (and constraints) definitions. This makes it possible to obtain
the separable forms of the stiffness matrix and force vector required for the PGD
framework.

Substitution of the definitions of the inverse Jacobian (3.12), and the deter-
minant of the Jacobian (3.13) into equation (3.14) yields a system of the form
(3.9). From this substitution it directly follows that the separable form of the
stiffness matrix is composed of nk = 4 parametric basis functions:

φ1(lc) = 1, φ2(lc) = lc, φ3(lc) = 1
Hx − lc

, φ4(lc) = 1
lc
. (3.15)

The corresponding stiffness matrices are obtained as:

K1
ij =

∫
Ωref

[
Hy 0
0 0

]
∇Ni : C :

[
0 0
0 2

]
∇sNj dΩref, (3.16a)

K2
ij =

∫
Ωref

[
0 0
0 2

]
∇Ni : C :

[
0 0
0 2

]
∇sNj dΩref, (3.16b)

K3
ij =

∫
Ωref

left

[
Hy 0
0 0

]
∇Ni : C :

[
Hy 0
0 0

]
∇sNj dΩref

left, (3.16c)

K4
ij =

∫
Ωref

right

[
Hy 0
0 0

]
∇Ni : C :

[
Hy 0
0 0

]
∇sNj dΩref

right. (3.16d)

Similarly, nf = 2 parametric shape functions are found for the force vector:

ψ1(lc) = 1, ψ2(lc) = lc.

The corresponding vector components are found as:

f1
i =

∫
Γref

topright

2Hx Ni · (t ◦M) dΓref
topright, (3.17a)

f2
i =

∫
Γref

topleft

2 Ni · (t ◦M) dΓref
topleft −

∫
Γref

topright

2 Ni · (t ◦M) dΓref
topright. (3.17b)

The system composed of these separable forms for the stiffness matrix and force
vector assumes the canonical form (3.7).
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3.4 The Proper Generalized Decomposition
(PGD) method

The parametric problem (3.7) is solved here using the Proper Generalized De-
composition (PGD) method [157–159]. The particular use of the PGD method
considered here follows the idea presented in [153, 160], where the method is
applied to a discretized (in both space and parametric dimensions) system of
linear equations. This differs from the standard use of PGD, where the method
is applied to the weak form of the problem (e.g., [148, 149, 161, 162]).

The separated form of the PGD approximation, ûpgd(µ), takes a form similar
to the separated versions of the stiffness matrix, K, and external force vector, f ,
in equation (3.8), viz.:

ûpgd(µ) =
npgd∑
i=1

ûi
nµ∏
j=1

Gij(µj) =
npgd∑
i=1

βiūi
nµ∏
j=1

Ḡij(µj), (3.18)

where the vectors ûi, for i = 1, . . . , npgd, are constant vectors of the same size
as a standard spatial finite element solution, and the scalar functions Gij(µj) are
independent of space with µ1, µ2, . . . , µnµ as parameters and nµ being the total
number of parameters. Note that the parametric functionsGij(µj) are represented
discretely by a nodal vector associated with a mesh over the parameter domains
Iµj in accordance with

Gij(µj) =
mj∑
k=1

Mj,k(µj)Ĝij,k, (3.19)

where {Mj,k}
mj
k=1 is the set of linear finite element basis functions over the param-

eter domain Iµj , and where ĝij = (Ĝij,1, · · · , Ĝij,mj ) is the corresponding vector
of coefficients. In equation (3.18) the vectors ūi and functions Ḡij(µj) are the
spatial and parametric modes normalized with respect to the Euclidean norms
‖ûi‖ and ‖ĝij‖, respectively, such that the modal amplitudes, βi, are given by:

βi = ‖ûi‖
nµ∏
j=1
‖ĝij‖. (3.20)

We employ the PGD solver algorithm as presented in Ref. [153], the main ingre-
dients of which are:
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• The PGD algorithm requires the determination of separable forms of the
stiffness matrix and force vector as input. As discussed in detail in Section
3.3, the discrete operator K(lc) for the parametric problem with the crack
length lc as a parameter admits an exact separable representation. This
is not generally the case, as we will discuss, for example, in the stochastic
test case considered in Section 3.7. In situations where the linear sys-
tem cannot be separated analytically, it is often replaced by a separable
approximation (e.g., [148, 163]). There exist several methods to compute
such separated approximations. For higher-dimensional parameter domains
various methods have been proposed in the literature, such as: an approx-
imation based on the PGD concept [164], Singular Value Decomposition
(SVD) type approximations [165], approximations based on the CANDE-
COMP/PARAFAC methods [166, 167], and Tucker decomposition type
approximations [168]. An overview of these techniques can be found in,
e.g., Ref. [169]. It is noted that in the case of high-dimensional parame-
ter domains, the computation of separable forms can be computationally
demanding.

• A greedy algorithm [150, 170] is used to sequentially compute the terms to
the PGD approximation ûpgd in equation (3.18). Given the PGD approxi-
mation with npgd − 1 terms, here denoted by

ûnpgd−1
pgd (µ) =

npgd−1∑
i=1

ûi
nµ∏
j=1

Gij(µj). (3.21)

an enrichment term ûnpgd
∏nµ
j=1G

npgd
j is computed as to obtain the PGD

approximation with npgd terms:

ûnpgdpgd (µ) = ûnpgd−1
pgd (µ) + ûnpgd

nµ∏
j=1

G
npgd
j (µj). (3.22)

Each enrichment term is computed one at a time, constructing the summa-
tion progressively until the convergence criterion

βnpgd

β1 =
‖ûnpgd‖

∏nµ
j=1 ‖ĝ

npgd
j ‖

‖û1‖
∏nµ
j=1 ‖ĝ

1
j‖

≤ εglob, (3.23)

is met with a user-defined tolerance of εglob. Each step in the greedy al-
gorithm, i.e., computing each of the enrichment terms, involves the com-
putation of the enrichment modes in space, ûi in discrete form, and in the
parameter spaces, Gij(µj). We herein compute these enrichments iteratively
using an alternate direction solver, which is discussed in detail below.
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• An alternating direction solution strategy [171] is used to compute the
enrichment terms ûnpgd

∏nµ
j=1G

npgd
j . Leveraging the separable forms, in

this alternating direction strategy the spatial and parametric directions are
treated sequentially as to reduce the higher-dimensional parametric prob-
lem to a series of low dimensional problems. This iterative process is re-
peated until a fixed point is reached within a defined tolerance. For the
explanation of this alternating direction strategy we will consider nµ = 1
with the fracture length µ1 = lc as the only parameter.
For the alternate direction solution strategy, the parametric problem (3.7)
is considered in its weighted residual form:∫
Ilc

δv̂(lc)T
[
K(lc)

(
ûnpgd−1

pgd (lc) + ~̂unpgdG
npgd
lc

(lc)
)
− f(lc)

]
dlc = 0 ∀δv̂(lc).

(3.24)

The unknowns in this system are the spatial and parametric enrichment
modes, ~̂unpgd and Gnpgdlc

(lc), respectively. The corresponding test functions
are defined as:

δv̂(lc) = δ
(
~̂unpgdG

npgd
lc

(lc)
)

= δ~̂unpgdG
npgd
lc

(lc) + ~̂unpgdδG
npgd
lc

(lc). (3.25)

In the alternate direction strategy, the system (3.24) is solved per spatial
or parametric dimension:

– Given an approximation (or initial guess) for the parametric enrich-
ment mode Gnpgdlc

, the system (3.24) reduces to the linear system:∫
Ilc

G
npgd
lc

(lc)
[
K(lc)

(
ûnpgd−1

pgd (lc) + ~̂unpgdG
npgd
lc

(lc)
)
− f(lc)

]
dlc = 0.

(3.26)

Using the separable forms for the stiffness matrix and force vector in
equation (3.9), this system can be rewritten as[

nk∑
i=1

Ki

∫
Ilc

G
npgd
lc

(lc)φi(lc)G
npgd
lc

(lc)dlc

]
~̂unpgd =

nf∑
i=1

f i
∫
Ilc

G
npgd
lc

(lc)ψi(lc)dlc

−
nk∑
i=1

Ki

∫
Ilc

G
npgd
lc

(lc)φi(lc)û
npgd−1
pgd (lc)dlc.

(3.27)
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with nk = 4 and nf = 2. An essential idea of the PGD method is
that the parametric integrals in this equation can be evaluated effi-
ciently on account of the fact that these are low-dimensional integrals
(in this particular case one-dimensional). We herein use a standard
trapezoidal integration rule for the evaluation of these integrals.

– Given the spatial enrichment mode ~̂unpgd computed through the sys-
tem (3.27), the parametric enrichment mode Gnpgdlc

can be obtained
from the system (3.24). From (3.24) it follows that for all δGnpgdlc

(lc):∫
Ilc

δG
npgd
lc

(lc)
[
(ûnpgd)T K(lc)

(
ûnpgd−1

pgd (lc) + ~̂unpgdG
npgd
lc

(lc)
)
− f(lc)

]
dlc = 0.

(3.28)
Equivalently, it holds that for each fracture length lc[

(ûnpgd)T K(lc)
(
ûnpgd−1

pgd (lc) + ~̂unpgdG
npgd
lc

(lc)
)
− f(lc)

]
= 0, (3.29)

from which the parametric enrichment mode follows directly as:

G
npgd
lc

(lc) =
(ûnpgd)T

(
f(lc)−K(lc)û

npgd−1
pgd

)
‖ûnpgd‖2

. (3.30)

Substitution of the separable forms for the stiffness matrix and force
vector then finally yields:

G
npgd
lc

(lc) =
(ûnpgd)T

(∑nf
i=1 f iψj(lc)−

∑nk
i=1 φ

i(lc)Kiûnpgd−1
pgd

)
‖ûnpgd‖2

.

(3.31)
This expression for the parametric enrichment mode can be evaluated
quickly by virtue of the fact that the dimensions are separated in the
sense that it is not required to reassemble the finite element system for
each fracture length. The parametric enrichment mode is represented
discretely by projection onto the parametric basis in equation (3.19).
Since this discretization pertains to a linear finite element basis, the
coefficients ĝnpgdlc

can be computed by evaluation of equation (3.31) in
the parametric nodes.

The above alternate direction steps are repeated until the relative difference
between two successive steps is smaller than a prescribed tolerance, εlocal,∥∥∥ ûnpgdGnpgdlc

(lc)
∣∣
iter+1 − û

npgdG
npgd
lc

(lc)
∣∣
iter

∥∥∥∥∥∥ ûnpgdGnpgdlc
(lc)
∣∣
iter+1

∥∥∥ < εlocal, (3.32)
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Domain width Hx 4 m
Domain height Hy 4 m
Young’s modulus E 1 GPa
Poisson ratio ν 0.1
Traction on top boundary t (0, 100) MPa
Parameter domain Ilc [1,3] m
Enrichment tolerance εglob 10−3

Fixed-point tolerance εlocal 10−6

Table 3.1: Convergence study parameter settings

with the subscript iter denoting the alternate direction step, and with the
norms defined as:∥∥ûnpgdGnpgdlc

(lc)
∥∥ = ‖ûnpgd‖

∫
Ilc
|Gnpgdlc

(lc)|dlc. (3.33)

3.5 Numerical analysis of the PGD
approximation behavior

Before considering the application of the PGD framework to fracture problems,
in this section we first present a numerical study on the approximation properties
of the PGD expansion introduced above. We specifically study the convergence
behavior of the approximation under finite element mesh refinement, and the
approximation behavior with respect to the number of PGD terms, npgd. All
results presented in this section are based on the consideration of the fracture
length, lc, as the single quantity to be parametrized. Table 3.1 lists all parameters
that are fixed throughout this section.

In the setting considered here, the separable form derived in Section 3.3 is
exact up to integration accuracy. Since the integrals are herein evaluated with
Gauss schemes of sufficiently high degree, the separable forms are accurate up
to floating point precision. In general, however, the separable form (3.9) is not
exact, as we will consider, for example, in the context of the stochastic analysis
presented in Section 3.7. An important first step in studying the approximation
behavior of the PGD approximation is then to study the accuracy of the separable
form (3.9). This accuracy can be assessed by comparison of the matrix and right
hand side obtained through the separable form (3.9) with their corresponding
original finite element counterparts. Evidently, one has to perform this accuracy
assessment in such a way that the parameter variations admitted by the PGD
expansion are properly taken into account.
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3.5.1 Spatial mesh size dependence
We first study the dependence of the PGD approximation (3.18) on the spatial
finite element mesh size parameter, h, defined as the average element size in
horizontal direction (h = Hx/nelems,x). For the discretization of the parameter
domain, Ilc , we consider 136 elements, and we use the PGD solver presented
above to obtain an expansion comprising npgd = 10 terms. In Figure 3.4 the
various components of this expansion are illustrated, viz. (a) the spatial modes
ûi, (b) the parameter modes Gilc(lc), and (c) the amplitudes βi. The amplitudes
convey that the influence of the modes decreases significantly for increasing mode
numbers, indicating that the displacement of the system is well characterized in
the considered setting with 10 modes. A detailed study of the dependence of the
PGD approximation on the modes is considered below.

To study the approximation behavior of the PGD expansion, we consider the
relative energy error with respect to the original finite element solution:

epgd(lc) =
‖ûpgd(lc)− û(lc)‖K

‖û(lc)‖K
,

=

√
[ûpgd(lc)− û(lc)]T K(lc) [ûpgd(lc)− û(lc)]√

û(lc)TK(lc)û(lc)
,

(3.34)

where ûpgd(lc) is the parametric solution provided by PGD and û(lc) is the
solution provided by the direct FE analysis (3.5) when the parameter is fixed to
the value lc. Note that while the evaluation of ûpgd(lc) for a certain crack length
lc involves merely the evaluation of the PGD expansion (3.18), the computation
of û(lc) involves the assembly and solution of a finite element system. In addition
to the parameter-dependent error (3.34) we consider the mean energy error over
the parameter domain:

Epgd = 1
lmax
c − lmin

c

∫
Ilc

epgd(lc) dlc. (3.35)

In contrast to (3.34), this error measure provides one scalar error value for the
complete parametric solution and has no dependency on lc. Figure 3.5 displays
both error measures for various spatial mesh sizes, h, and a fixed parametric mesh
size hlc ≈ 0.015 m. The parameter dependent error (3.34) displayed in Figure 3.5a
conveys that for a certain mesh size, the error in the PGD solution is dependent
on the crack length. The reason for this is that the uniformity of the mesh in
the physical domain is affected by the parameter-dependent mapping function
(3.10), which in general causes the error to increase when the crack tip position
deviates from lc/Hx = 0.5 (i.c., lc = 2) provided that the mesh resolution is of
sufficient accuracy. The error epgd(lc) is especially significant at the boundaries
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i = 1 i = 2 i = 3

i = 6 i = 7 i = 10

(a) Normalized displacement modes ūi(x) of the PGD expansion. Note that only a
selection of modes is shown.

(b) Normalized parametric modes Ḡi(lc). (c) Modal amplitudes βi.

Figure 3.4: The three components of the upgd(lc) solution for npgd = 10. Only a selec-
tion of modes is shown for conciseness. Note that all plotted functions are normalized.
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(a) epgd(lc) vs crack length lc (b) Epgd vs mesh size h

Figure 3.5: Energy errors of the PGD approximation with respect to the original finite
element solution as defined in equations (3.34) and (3.35).

of the parameter domain, Ilc, because at those points the non-uniformity caused
by the mapping onto the physical domain (see Figure 3.3) is largest.

When we compute the mean of the error epgd(lc) over the complete parameter
domain, i.e., error measure (3.35), we observe from Figure 3.5b that this mean
energy error is essentially independent of the mesh size for the finer meshes (h .
0.25). This conveys that for these meshes the studied error is dominated by the
PGD approximation, which is expected, as we compare the PGD solution with
the FE solution on the same mesh.

To study the mesh size contribution to the PGD approximation error, in Fig-
ure 3.6 we display the mean L2 error between a PGD approximation upgd(x; lc)
computed with mesh size h and a PGD approximation, u?pgd(x; lc), with a high
resolution mesh with h? = 0.03125:

Eh = 1
lmax
c − lmin

c

∫
Ilc

∥∥upgd(lc)− u?pgd(lc)
∥∥ dlc. (3.36)

Both the number of PGD terms and the discretization of the parametric mesh are
identical for both of the compared solutions, so that this error measure pertains
to the mesh size contribution only. For comparison the finite element convergence
plots for various settings of the fracture length are displayed in Figure 3.6. This
comparison conveys that the PGD solution converges with the mesh size with
the same rate as the finite element approximation. The observed error offsets
for various settings of the fracture length in the finite element simulations are a
result of the non-uniformity of the mesh resulting from the geometric mapping
considered in this work.



78 A PGD approach to crack propagation in brittle materials. 3

Figure 3.6: Convergence of the mean L2 error, Eh of the PGD approximation (mark-
ers) under mesh refinement with respect to the PGD solution computed with a high
resolution spatial mesh (h? = 0.03125). The convergence results for direct FE analyses
with various fracture lengths (lines) are shown for comparison.

In Figure 3.7 the mean energy error Epgd is plotted versus the number of PGD
terms, npgd, for various mesh sizes. The observed systematic decrease in this error
with the increase in number of terms is as expected, as the PGD approximation
(3.18) converges toward the finite element solution. The fluctuations with respect
to the mesh size are in agreement with the errors plotted in Figure 3.5.

3.5.2 Parametric mesh size dependence

All results presented above were based on a fixed parametric mesh size of hlc ≈
0.015 and variations in the spatial mesh size. We now consider the influence of
variations in the parametric mesh size under a fixed spatial mesh size of h =
0.0625 m.

Figure 3.8 shows that both the parameter-dependent energy error (3.34) and
mean energy error (3.35) are virtually independent of the parametric mesh size
even on parametric meshes as coarse as hlc = 0.125 m (8 elements). This conveys
that, in the setting considered here, the accuracy is governed by the number of
PGD modes rather than by the resolution of the parametric mesh.
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Figure 3.7: Mean energy error for various numbers of PGD modes and different mesh
sizes.

(a) epgd(lc) (b) Epgd

Figure 3.8: Energy errors of the PGD approximation with respect to the original
finite element solution as defined in equations (3.34) and (3.35), considering various
parametric mesh sizes.
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3.6 Application of the PGD framework to
propagating fractures

In this section we apply the PGD framework outlined above to the simulation of
fracture propagation using Griffith’s energy criterion [172]. In Section 3.6.1 we
commence with the formulation of the propagation criterion based on the PGD
solution. Since the evolution of the fracture is driven by the external load, we
herein use the PGD framework to compute the parametric solution with respect
to both the fracture length (as already considered above) and with respect to the
external load,

ûnpgdpgd (lc , λ) =
npgd∑
i=1

βiûiGi1(lc)Gi2(λ), (3.37)

where λ denotes a load scale parameter such that t = λt̂ with t̂ being a load
vector defined as t̂ = (0, 1) MPa. For simplicity in notation, from hereon we
denote ûpgd for ûnpgdpgd . The separable forms of the stiffness matrix and force
vector are a straightforward extension of those in Section 3.3 as a consequence of
the fact that the external force vector scales linearly with the load scale λ. As a
result, we only have to consider a single linear parametric shape function for the
load scale parameter for the force vector in equation (3.8b), such that:

ψ1(lc) = λ, ψ2(lc) = λlc.

In Section 3.6.2 we will demonstrate the application of the PGD framework to
a fracture propagation benchmark problem, where the advantages of the PGD
framework become apparent as it allows for the fast evaluation of the fracture
propagation criterion throughout the evolution process of the fracture, without
the need for solving additional finite element problems. For all the simulations we
assume plane strain conditions with Young’s modulus E = 2 GPa and the other
input values taken from Table 3.1. For the parametric domain of the load scale we
use Iλ = [6.25 , 62.5]. Furthermore, we define the resultant force F =

∫
Γtop

t·ndΓ
as a quantity of interest, where we assume the specimen to be of unit thickness.

3.6.1 The fracture propagation criterion
We consider Griffith’s model [172] for crack propagation in brittle materials. The
conceptual idea of this model is that a fracture will propagate if the energy stored
in the material is sufficiently large to overcome the fracture energy associated with
the creation of new fracture surface. For linear elastic materials an equivalent
interpretation of this energy-based model is provided through the concept of
stress intensity factors [173]. In the context of the PGD framework we find the
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energy perspective most suitable, as it provides the possibility to evaluate the
propagation criterion directly based on the parametric solution (3.37).

For a fracture in a given configuration, i.e., with a certain length lc and a given
load scale λ, it can be determined whether or not the fracture will propagate by
evaluation of the energy release rate. To derive the PGD form of the energy
release rate, we consider the energy of the system:

P (lc, λ) = 1
2 ûpgd(lc, λ)TK(lc)ûpgd(lc, λ)− ûpgd(lc, λ)Tf(lc, λ). (3.38)

The energy release rate is then defined as :

G(lc, λ) = −∂P
∂lc

(lc, λ)

= −∂ûpgd(lc, λ)
∂lc

T
[K(lc)ûpgd(lc, λ)− f(lc, λ)]

− 1
2 ûpgd(lc, λ)T ∂K(lc)

∂lc
ûpgd(lc, λ) + ûpgd(lc, λ)T ∂f(lc, λ)

∂lc
.

(3.39)

When the parametric problem K(lc)(lc, λ)ûpgd ≈ f(lc, λ) is solved using the PGD
solver with sufficient accuracy, i.e., with small enough tolerances, the energy
release rate is given by,

G(lc, λ) = −1
2 ûpgd(lc, λ)T ∂K(lc)

∂lc
ûpgd(lc, λ) + ûpgd(lc, λ)T ∂f(lc, λ)

∂lc
. (3.40)

According to Griffith’s energy balance, a crack will propagate when the energy
release rate surpasses the critical energy release rate or fracture toughness, Gc,
i.e.:

G(lc, λ) ≥ Gc. (3.41)
This implies that for any crack configuration in the parametric space, i.e., (lc, λ) ∈
Ilc × Iλ, it can be readily evaluated whether or not the crack propagates. The
PGD expansion (3.37) is crucial in this regard as: i) The expansion allows for
the analytical evaluation of the shape derivatives

(
∂
∂lc

)
in equation (3.40), this in

contrast to the traditional FE setting, in which this derivative is typically eval-
uated using alternative techniques (e.g., J-integrals [173]). ii) Evaluation of the
fracture criterion at an arbitrary parametric coordinate is merely an evaluation
of the expansion, and hence, does not require the solution of an FE model.

3.6.2 Numerical example: a center-crack under tensile loading
The numerical example discussed here demonstrates the PGD-based evaluation
of the energy release rate G in two ways: (i) the energy release rate, G, is used
to compute the stress intensity factor; (ii) PGD is used to mimic the fracture
propagation process while loading the specimen.
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Stress intensity factors

As a means to assess the PGD approximation of the energy release rate, we study
the stress intensity factor for a given fracture length lc, and various ratio’s of hor-
izontal and vertical specimen dimensions, Hx and Hy, respectively. The results
presented in this section consider the parameters Hx and Hy as additional pa-
rameters in the PGD expansion. The separable forms based on these parameters
can be obtained without special treatment, and are omitted here for the sake of
brevity. The stress intensity factor is defined as

K1(lc, Hx, Hy) =
√
G(lc, Hx, Hy)E′, (3.42)

and hence is directly related to the energy release rate (3.40). The material
parameter E′ in equation (3.42) is defined as E′ = E/(1 − ν2) for the plane
strain problems considered herein.

Figure 3.9 shows the dimensionless stress intensity factors K1/K0 for various
parameter configurations, i.e., different lc/Hx and Hx/Hy (see Ref. [154] for a
benchmark result). Note that the plotted factors are non-dimensionalized using
K0 = (λt̂ · n)

√
πlc, where λt̂ · n gives the magnitude of the applied tensile trac-

tion. Figure 3.9 compares the PGD results based on the settings mentioned in
Table 3.1 for a mesh size h = 0.0625 m. However, note that this plot of non-
dimensional stress intensity factors is independent of the input values, i.e., even
for different values of geometry and load, similar curves for K1/K0 are obtained.
This figure conveys that for the given PGD settings, the stress intensity factor
can be computed accurately using the PGD expansion (3.37). While each point in
Figure 3.9 would typically represent a finite element simulation in the traditional
FEM setting, in the PGD case these are all mere evaluations of the expansion.

Fracture propagation

Now that we have established that the PGD expansion accurately approximates
the stress intensity factor, we will here use it to predict the evaluation of the
loading force under fracture propagation. To this end, we define the energy
functional

E(lc, λ) = P (lc, λ)− lcGc, (3.43)

such that we can distinguish between three cases in the energy landscape over
the Ilc × Iλ parameter domain:

1. The region where the crack is stable:

∂E
∂lc

< 0 or G(lc, λ) < Gc.
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Figure 3.9: Dimensionless stress intensity factors K1/K0 for various crack lengths in
specimens of various dimensions loaded in tension. The solid lines represent the results
computed through the PGD framework, while the markers indicate the reference values
reported in Ref. [154].
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2. The region where the energy balance is critical:

∂E
∂lc

= 0 or G(lc, λ) = Gc.

3. The unstable propagation region:

∂E
∂lc

> 0 or G(lc, λ) > Gc.

The energy landscape is plotted in Figure 3.10a along with the values indicating
the energy in kJ of the system. Note that plotting this landscape is compu-
tationally feasible using the PGD expansion, but would require a large num-
ber of FE solves in the case of a non-reduced model. The presented results
are based on the assumption of plane strain conditions with material parame-
ter E′ = 2.01 GPa and the other settings listed in Table 3.1 with a fracture
toughness of Gc = 700 kJ/m2, and with the parameter ranges for lc and λ de-
fined as Ilc = [1, 3] m and Iλ = [6.25, 62.5] respectively (so the range of the force
F = [25, 250] MN).

For a particular load scale, until the critical point is reached the crack is
stable (green region in Figure 3.10a), and beyond the maximum point the crack
is unstable (red region in Figure 3.10a). The critical energy states are connected
in the form of a curve which gives the critical load value for each fracture length.
This curve can be identified in Figure 3.10a as the line separating the green
area from the red area. The key insight is to recognize that, for a shorter crack
length, which is left of the critical value point, the total energy (3.43) of the
system increases with increasing crack length. Therefore, additional energy must
be stored into the material before the crack can propagate, and hence the crack
is stable. However, at longer crack lengths, which is right of the maximum value,
an increase in crack length leads to a decrease in total energy, which therefore
leads to unstable crack propagation. Evidently, the load-bearing capacity of the
specimen decreases as the fracture propagates.

A common way of representing the fracture evolution process is by plotting the
load versus the average displacement of the loading boundary, which is depicted
in Figure 3.10b for a initial crack length of l0c = 2.495 m. Note that the elastic
loading branch (label I. in Figure 3.10) corresponds to the region where the crack
is stable, i.e, the force varies with ∂E

∂lc
< 0. The resultant force at which the crack

becomes unstable, i.e., when ∂E
∂lc

= 0, is defined as the critical loading force, Fc.
This corresponds to the maximum force in Figure 3.10b. This critical loading
force is related to the dimensionless stress intensity factors of Figure 3.9 by:

Fc = K0

K1

Hx

√
GcE′

(t̂ · n)
√
πlc

. (3.44)
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The softening branch (label II. in Figure 3.10) reflects the critical values in Fig-
ure 3.10a for lc ≥ l0c . This part of the curve resembles the unstable propagation
part of the process. The total area under the force displacement curve represents
the energy carried by the system, which, upon complete failure is equal to the to-
tal energy dissipated by the fracturing, i.e., Gc(Hx− l0c). Such force-displacement
curves can be plotted for all l0c ∈ Ilc by virtue of the explicit availability of the
energy functional in (3.43) in the PGD framework.

3.7 Application to fracture propagation in
random heterogeneous materials

In this section we extend the PGD framework for crack propagation to a stochas-
tic setting. We introduce randomness in the material properties by representation
of the Young’s modulus by a random field Ẽ(x), where the tilde indicates the
randomness. A truncated Karhunen-Loève expansion [140] is used for the pa-
rameterization of the Gaussian field Ẽ(x), which is defined as

Ẽ(x) = µE +
nkl∑
α=1

√
ξαrα(x)z̃α, (3.45)

where µE is the stationary mean of the Young’s modulus and where ξα and
rα(x) are the eigenvalues and eigenfunctions corresponding to the spatial covari-
ance function σ2

EρE(x1,x2), with σE the stationary standard deviation. The
autocorrelation function is taken as

ρE(x1,x2) = exp
(
−|x1 − x2|

lE

)
, (3.46)

where x1 and x2 are two points in the domain and lE is the correlation length.
The nkl Karhunen-Loève modes, Rα(x) =

√
ξαrα (x), in equation (3.45) are

scaled by independent standard normal random variables z̃α.
On account of (3.45) the Young’s modulus at any fixed location, Ẽ(x), is

normally distributed. The variation σ2
E is selected such that physically impossi-

ble negative realizations are avoided. Although not considered herein, the PGD
framework can be applied without modification to, e.g., log-normal random fields.
It is noted that we herein construct the random field over the computational do-
main, thereby implicitly assuming that the random material properties adhere
to the symmetries of the homogeneous problem. Preservation of the symme-
tries is in line with the considered parametrization of the fracture problem, as
non-symmetries would result in deviations of the fracture path from the x-axis.
Although such variations are evidently physical, consideration of these within the
PGD framework is beyond the scope of this manuscript.
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(a) Energy functional (3.43) over the (F, lc)-parameter domain.

(b) Loading force vs. average displacement over the loading
boundary for an initial crack length of l0c = 2.495 m.

Figure 3.10: Representation of the loading and fracture evolution process in terms
of (a) the energy landscape and (b) the force-displacement curve. The elastic loading
branch is labeled as I., whereas the softening/propagation branch is labeled as II. The
observed critical loading force of Fc ≈ 36.3 MN is in agreement with equation (3.44)
and the corresponding stress intensity factor reported in Figure 3.9.
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In the context of the stochastic analysis considered here, we use the PGD
framework to compute the parametric solution with respect to the fracture length,
external load, and with the random variables z̃α that parametrize the random
Young’s modulus field:

ûpgd(lc, λ, z̃) =
npgd∑
i=1

βiûiGi1(lc)Gi2(λ)
nkl∏
α=1

Giα+2(z̃α) (3.47)

A prerequisite to apply our framework is to express the stiffness matrix and force
vector also in this separated format. The separable forms of the stiffness matrix
and force vector required here cannot be obtained in an analytical way like in
Sections 3.3 and 3.6. Therefore, in Section 3.7.1 we first discuss how the ran-
dom heterogeneities, which are parametrized by the random variables z̃, can be
expressed in a separable form for the stiffness matrix numerically. Furthermore,
in Section 3.7.2 we outline the computational procedure for a sampling-based
stochastic analysis based on the Monte-Carlo method. This stochastic analysis is
highly efficient as it leverages the PGD approximation to quickly compute crit-
ical force values for realizations of the heterogeneous field of elastic properties.
Numerical results for the stochastic test case are presented in Section 3.7.3.

3.7.1 Separable representation of the random system of
equations

The random field (3.45) enters the formulation through the elasticity tensor in the
bilinear operator (3.14a), which, in the context of the stochastic setting considered
here, is expressed as

C̃(X; lc, z̃) = Ẽ(X; lc, z̃)D =
(
µE +

nkl∑
α=1
{R ◦M}αz̃α

)
D, (3.48)

where the constant tensor D depends on the Poisson ratio and on the assumed
plane strain state. Since the elasticity tensor is evaluated over the reference
domain, the KL modes {R◦M}nklα=1 are pulled back to the reference configuration
using the geometric mapping function (3.10). Since this mapping function is
dependent on the fracture length parameter lc, the random elasticity tensor (3.48)
also becomes dependent on the fracture length.

Substitution of the random tensor (3.48) into equation (3.14a) yields a random
stiffness matrix of the form

K̃(lc, z̃) = K0(lc) +
nkl∑
α=1

Kα(lc)z̃α, (3.49)
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with the stiffness matrix contributions defined as

K0,ij =
∫

Ωref
J−1∇Ni : [µED] : J−1∇sNj det (J) dΩref, (3.50a)

Kα,ij =
∫

Ωref
J−1∇Ni : [{R ◦M}α] : J−1∇sNj det (J) dΩref, (3.50b)

where the index 0 corresponds to the mean contribution, and the index α =
1, · · · , nkl to the stiffness contributions of the KL modes.

The separable form (3.8a) of the mean stiffness matrix (3.50a) is identical
to that presented in equations (3.15) and (3.16) with the elasticity tensor set to
C = µED, which we denote by

K0(lc) =
nk∑
i=1

Ki
0φ
i(lc). (3.51)

The derivation of an analytical separable form for the KL contributions to the
stiffness matrix, equation (3.50b), is obstructed by the appearance of the geomet-
ric mapping,M, in the Karhunen-Loève modes, Ri. A semi-analytical separable
form can, however, be obtained through the singular-value decomposition of the
discretized KL modes. For the construction of this decomposition, we first in-
terpolate the KL modes on the spatial mesh and crack length parameter domain
mesh used for the PGD approximation as:

Rα(X, lc) ≈
n∑
i=1

m∑
j=1

Ni(X)Mj(lc)Rα,ij . (3.52)

The coefficients of this interpolation, represented by the matrix R̂α, are computed
using the KL modes constructed on a significantly refined mesh compared to that
used for the PGD approximation. Since (bi)linear Lagrangian basis functions are
used for both the spatial domain and the parameter domain, the coefficients
are determined by evaluation in all nodal coordinates, (X, lc), in the higher-
dimensional parameter domain, where the mapping (3.10) is used to transfer
data between the physical domain and the reference domain. The interpolation
(3.52) on the mesh used for the PGD approximation is convenient from an im-
plementation perspective, but the usage of this specific mesh is not necessary to
attain the separable form of the stiffness matrix.

A separable form of the discrete KL modes (3.52) is then obtained through
the singular-value decomposition

R̂α,ij =
min(n,m)∑
β=1

σ(α,β)ĥ(α,β),i m̂(α,β),j , (3.53)



3.7. Application to fracture propagation in random heterogeneous materials. 89

where σ(α,β) is the β-th singular value for KL mode α, and where ~̂h(α,β) and
~̂m(α,β) are the corresponding spatial and parametric modal vectors, respectively.
For reasons of efficiency this singular-value decomposition is truncated to a num-
ber of terms, nsvd, that is significantly smaller than the total system size. Sub-
stitution of this decomposition into equation (3.52) then yields the singular-value
decomposition for the KL modal functions,

Rα(X, lc) ≈
nsvd∑
β=1

σ(α,β)h(α,β)(X)m(α,β)(lc), (3.54)

where the modal functions are defined as

h(α,β)(X) =
n∑
i=1

Ni(X)ĥ(α,β),i, (3.55a)

m(α,β)(lc) =
m∑
j=1

Mj(lc)m̂(α,β),j . (3.55b)

The singular value decomposition of the Karhunen-Loève modes (3.54) involves
two approximations, viz.: i) an approximation related to the interpolation step
(3.52); and ii) an approximation associated with the truncation of the decompo-
sition (3.53).

Now that we have obtained an approximate separable form for the KL modes
in the form of equation (3.54), separation of the stiffness matrix follows from sub-
stitution of this decomposition into the KL stiffness matrix contributions (3.50b):

Kα(lc) =
nsvd∑
β=1

σ(α,β)m(α,β)(lc)K(α,β)(lc). (3.56)

The components of the matrices K(α,β)(lc) are given by:

K(α,β),ij(lc) =
∫

Ωref
J−1∇Ni :

[
h(α,β)(X)D

]
: J−1∇sNj det (J) dΩref. (3.57)

Since the spatial modes, h(α,β)(X), are independent of the parameter lc, the
matrices K(α,β) can be separated analogously to the equations (3.15) and (3.16)
with the elasticity tensor set to C = Dh(i,β)(X). Similarly to the separable form
of the mean stiffness contribution in equation (3.51), we express this separable
form as:

K(α,β)(lc) =
nk∑
j=1

Kj
(α,β)φ

j(lc). (3.58)
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Substitution of this separable form for the SVD mode β into equation (3.56) then
yields

Kα(lc) =
nsvd∑
β=1

σ(α,β)m(α,β)(lc)
nk∑
j=1

Kj
(α,β)φ

j(lc), (3.59)

with nk = 4 in accordance with equation (3.15). Further substitution into the
expansion of the random stiffness matrix (3.49) gives:

K̃(lc, z̃) =
nk∑
i=1

Ki
0 +

nkl∑
α=1

nsvd∑
β=1

σ(α,β)m(α,β)(lc)Ki
(α,β)z̃α

φj(lc). (3.60)

Note that this equation is of the same form as the separable form (3.8a), with
the parameter functions given by combinations of the functions in (3.15), the
random variables, z̃α, and the singular-value modes for the length parameter,
m(α,β). From (3.60) it is observed that the total number of terms in the separable
form is equal to nk(1 +nklnsvd). Since the stiffness contributions Ki

0 and Ki
(α,β)

are independent of the considered parameters, these can be precomputed. Hence,
construction of the stiffness matrix in the PGD solver requires evaluation of (3.60)
only, and not the assembly of a finite element system.

3.7.2 Monte Carlo analysis of the critical load

Using the separable form for the stiffness matrix as discussed in Section 3.7.1, the
PGD solver discussed in Section 3.4 is used to attain the PGD solution (3.47).
We here use this parametrized solution to perform a Monte Carlo simulation to
attain the probability distribution and statistical moments of the critical loading
force for specimens with various initial fracture lengths.

To construct the PGD solution (3.47) it is necessary to consider a finite dimen-
sional domain for the random parameters, z̃, which parametrize the Karhunen-
Loève expansion for the Young’s modulus (3.45). We herein truncate the random
domain to Iz̃i = [−5, 5] for i = 1, · · · , nkl, based on the idea that realizations
beyond this range are unlikely and will have a minor effect on the mean and
standard deviation of the critical force. We generate realizations of the uncor-
related random variables z̃ using a random number generator, and we discard
realizations outside of the truncated random domain.

Using the realizations of the random variables z̃ we then employ Griffith’s
fracture model as discussed in Section 3.6 to compute the corresponding critical
forces, Fc. The mean and standard deviation for the critical force are then
obtained as
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µFc = 1
nsample

nsample∑
ı=1

Fc,ı , σFc =

√√√√ 1
nsample − 1

nsample∑
ı=1

(Fc,ı − µFc)
2
, (3.61)

where nsample is the Monte-Carlo sample size.
In a typical FE-based Monte Carlo simulation, evaluation of the critical loads

is computationally demanding, which practically restricts the sample sizes that
can be considered. Therefore, in such cases, a sample size is selected that strikes
an adequate balance between the confidence level of the attained statistical mo-
ments and the required computational effort. In the PGD setting considered
here, the computational effort involved in determining the critical force for a
given realization of the random field is negligible compared to the corresponding
full finite element simulation. This allows for the consideration of sample sizes
that are orders of magnitude larger than those that could be considered using
direct FE analysis, which in turn enables the computation of the statistical mo-
ments with confidence levels that are practically beyond the reach of direct FE
analyses. Evidently, the selection of the sample size should be based on a trade-
off between the error in the PGD approximation and the confidence level of the
Monte Carlo method.

3.7.3 Numerical example: a center-crack under tensile loading
We consider the same numerical experiment as introduced in Section 3.6.2 (see
Table 3.1), but now with a random field of elastic properties. For the ran-
dom field (3.45) we set the mean to µE = 2 GPa and the standard deviation
as σE = 0.2 GPa (a coefficient of variation of 10%). We consider moderate spa-
tial fluctuations in the random field by selecting the correlation length in equation
(3.46) as lE = 1.5Hx = 6 m. The parameter domain for the load scale is taken
as Iλ = [6.25, 62.5].

We consider a Karhunen-Loève discretization consisting of nkl = 3 modes,
which are shown in Figure 3.11. In Figure 3.12 we show two realizations of the
KL expansion, as well as a sampling-based reconstruction of the auto-correlation
function (3.46). On account of the low spatial frequency of the variations, the
KL expansion with only 3 terms is observed to already appropriately reproduce
the auto-correlation function.

Using the tolerances specified in Table 3.1, the PGD solution (3.47) is trun-
cated at npgd = 27 terms. The various components of the PGD solution are
displayed in Figure 3.13. From the modal amplitudes it can be observed that the
PGD approximation based on 27 terms approximates the finite element prob-
lem well, in the sense that the amplitudes of even higher-order modes will be
negligible compared to the considered modes.
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(a) R1(x) (b) R2(x)

(c) R3(x)

Figure 3.11: Karhunen-Loève modes for the Young’s modulus field (3.45) with nkl = 3.
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(a) Realization E1(x) Pa (b) Realization E2(x) Pa

(c) Auto-correlation function

Figure 3.12: (a+b) Examples of realizations of the random elasticity field in accor-
dance with (3.45). (c) Reconstruction of the auto-correlation kernel (3.46).
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Figure 3.14 displays the probability distribution of the critical load for various
settings of the initial crack length. The displayed results are based on a sample
size of 5000. Note that for each of the displayed subplots in Figure 3.14 a separate
Monte Carlo simulation is required, which would be computationally impracti-
cal using a direct FE approach. The efficiency with which realizations can be
computed from the PGD approximation (3.47) allows us to perform Monte Carlo
analyses for different settings in the parameter space. This results, for example,
in the evaluation of the critical force versus the initial crack length as displayed
in Figure 3.15a. The confidence level of the mean values displayed in this plot is
approximately 98% based on a sample size of 5000 realizations. Such confidence
levels are impractical to obtain using direct FE Monte Carlo.

Figures 3.14 and 3.15 show that the average critical load bearing capacity
decreases with an increase in crack length, while a decrease in the standard de-
viation is observed. The deterministic result is plotted for reference, from which
it is observed that the computed mean is slightly smaller than the deterministic
value. The observed results from the Monte Carlo simulation are in good agree-
ment with perturbation analysis results (see [135] for an overview) based on the
analytical fracture loads for homogeneous specimens, which is to be expected on
account of the considered low spatial frequency of the random input.

i = 1 i = 2 i = 3

i = 6 i = 7 i = 10

(a) Normalized displacement modes ūi(x) of the PGD expansion. Note that only a
selection of modes is shown.
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(b) Parametric modes for lc. (c) Parametric modes for z̃1.

(d) Parametric modes for z̃2. (e) Parametric modes for z̃3.

(f) Parametric modes for λ. (g) Modal amplitudes βi.

Figure 3.13: The seven components of the upgd(lc, z̃1, z̃2, z̃3, λ) solution for npgd = 27.
Only a selection of modes is shown for conciseness. Note that all plotted functions are
normalized.
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(a) l0c = 1 m (b) l0c = 1.25 m

(c) l0c = 1.5 m (d) l0c = 1.75 m

Figure 3.14: Histograms of the critical force for different initial crack lengths l0c cor-
responding to a 10% variation in the Young’s modulus.
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(a) Coefficient of variation: 10% (b) Coefficient of variation: 5%

Figure 3.15: Dependence of the mean critical force (solid blue line) on the initial crack
length with a 98% confidence interval (shaded area) for 10% variation and 5% variation
in the Young’s modulus.

The Monte Carlo analysis allows us to inspect which realizations of the input
lead to a certain response in terms of the fracture load. Figure 3.16 shows three
interesting realizations for the case of an initial crack length of l0c = 1 m and a
coefficient of variation of the Young’s modulus of 10%, viz.:

a. The realization closest to the mean fracture load of 77.5 MN corresponds to
a Young’s modulus field which is very close to its mean value everywhere
in the specimen.

b. The realization with the largest fracture load of 88.5 MN corresponds to
a Young’s modulus field which is very high throughout the specimen (on
average approximately 25% higher than its mean value), and is particularly
large near the tip of the initial crack.

c. The realization with the smallest fracture load of 66.6 MN corresponds to
a Young’s modulus field which is very low throughout the specimen (on
average approximately 25% lower than its mean value), and particularly
near the tip.

In the context of the PGD approach employed in this work it is noted that, in
order to inspect these realizations, only the parameters corresponding to the re-
alization (random variable realizations) have to be stored. The input and output
corresponding to these parameters is generated through post-processing of the
PGD approximation. This contrasts the direct FE setting, in which either the
FE solution would have to be stored, or the FE problem would have to be solved
again to acquire all results corresponding to a realization.
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(a) Eı(x) Pa closest to mean Fc (b) Eı(x) Pa for maximum Fc

(c) Eı(x) Pa for minimum Fc

Figure 3.16: Realizations of the Young’s modulus field corresponding to the mean
fracture load, maximum fracture load and minimum fracture load. All results pertain
to an initial fracture length of l0c = 1 m.
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3.8 Conclusions
In this work we have proposed a reduced-order modeling technique for a pro-
totypical linear elastic fracture mechanics problem. An essential ingredient in
the proposed approach is to introduce the parametrization of the crack through
a geometric mapping. For the considered model problem it then follows that a
separable form of the stiffness matrix and external force vector can be obtained
analytically, which makes it possible to apply the Proper Generalized Decompo-
sition method to obtain a solution to the parametric problem.

The suitability and performance of the proposed framework is demonstrated
using a series of numerical test cases, starting with a convergence study for the
parametric decomposition. This study conveys that the introduced geometric
mapping function for the fracture parameter behaves in accordance with the
well-understood behavior of the PGD framework. The PGD fracture framework
is further demonstrated using two propagating fracture test cases.

In the first test case it is demonstrated how Griffith’s propagation criterion can
be evaluated efficiently using the PGD approximation. The representation of the
fracture length in the PGD solution enables the straightforward computation of
the energy release rate, which is in contrast with standard finite element methods,
which generally require dedicated numerical techniques for the evaluation of the
corresponding shape derivative.

In the second test case the PGD approximation is used to efficiently perform
a fracture analysis in the presence of random material heterogeneities. Using a
singular value decomposition for the interpolation of the random field of elastic
properties pulled back to the reference configuration, an approximate separable
form of the stiffness matrix is obtained. The random variable coefficients of
the Karhunun-Loève field for the modulus of elasticity appear as parameters in
this separable form. Since the fracture load can be computed as a post-processing
operation on the PGD approximation, Monte-Carlo simulations can be performed
with sample sizes (and confidence levels) that are beyond the typical reach of
direct sampling-based stochastic finite element analyses.

Although the presented study clearly demonstrates that the PGD framework
can be applied efficiently for the simulation of fractures in the considered model
problem, the question naturally arises to what extend the proposed technique
can be generalized to more complicated fracture problems. In this regard there
are two aspects that must be considered in particular:

• While the considered fracture is parametrized by a single variable, namely
the fracture length, this is evidently not possible in the case of more complex
fractures. Of course, the range of applicability of the proposed technique
can be extended to a reasonably sized class of fracture problems using a rel-
atively low dimensional parameter space for the fracture geometry. Think
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for example of slanted fractures in plane strain or plane stress settings,
which, besides the length, would require the fracture angle as an additional
parameter. In general, however, representing more complex fracture geome-
tries will rapidly increase the number of parameters, which is detrimental
to the performance of the PGD framework. This is particularly the case
when one opts to consider a piecewise representation of fractures, which is
natural to finite element methods.

• For more complex fracture patterns, constructing a suitable geometric map-
ping function will be considerably more challenging than in the prototypical
benchmark considered in this work. Constructing a mapping analytically
is very restrictive, but it is very well imaginable that one can construct
discrete mapping operators (mapping nodal reference coordinates to nodal
physical coordinates). Such more advanced mappings – the construction
of which evidently warrants further investigation – will, however, pose sev-
eral difficulties. For example, the analytical separation of the system of
equations as obtained in this work will not be generally obtainable, which
hence requires the consideration of potentially computationally demand-
ing approximations for the separable forms. Moreover, an open research
question remains how to deal with fractures with changing topology (e.g.,
branching, merging), as topological changes can in general not be captured
by the proposed mapping technique.

These complications when extending to more complex fractures are evidently very
serious. Although future research developments can ameliorate some of these dif-
ficulties, obtaining PGD approximations that are able to accurately parametrize
the complete high-dimensional solution space for complex fracture patterns will
likely remain impractical. It should, however, be noted that reduced-order models
typically do not serve the role of a direct replacement of high-fidelity finite ele-
ment models. Instead, reduced-order models typically play the role of a relatively
cheap surrogate to evaluate approximations of the corresponding high-fidelity
model. In this regard it is imaginable that the high-dimensional parameter space
associated with the fracture geometry in the finite element model can be reduced
significantly, without compromising the properties of the reduced-order model
to serve as a cheap approximation of the full model or to provide an improved
prior.



Chapter 4

Uncertainty quantification
for pressure-driven fracture
processes

Fluid-driven fracture propagation processes are challenging to model on ac-
count of their multi-physics and moving boundary character. Moreover, in par-
ticular in the context of subsurface engineering, the hydraulic fracturing process
is surrounded by uncertainties, as information on reservoir properties is typi-
cally incomplete. We develop a computational uncertainty quantification (UQ)
framework capable of providing quantitative predictions of hydraulic fracturing
processes based on the Perkins-Kern-Nordgren model. The Bayesian approach to
uncertainty quantification is used to infer reservoir properties by combining prior
information with well-pressure observations. The prior information on the model
uncertainties is represented by Karhunen-Loève expansions of the random fields,
and the observational data by a reduced-basis method. A Metropolis-Hastings
sampler is used to infer the posterior distributions of the model uncertainties, and
to attain distributions of quantities of interest such as the fracture length and
aperture. The uncertainty quantification framework is tested in two scenarios
with synthetically manufactured data, namely a data-abundant scenario and a
data-scant scenario. These test cases illustrate the effectivity of the framework
in combining prior model information with observational data.

This chapter is reproduced from [174]: H. Garikapati, J. van de Poll, E.H. van Brummelen,
S. Zlotnik, P. Dı́ez and C.V. Verhoosel .Uncertainty quantification for pressure-driven fracture
processes: Sampling-based Bayesian inference using the PKN model. in preparation, .
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4.1 Introduction

Pressure-driven fracture processes are often surrounded by uncertainties, espe-
cially in the context of subsurface engineering, where the information available
on reservoir properties is frequently scant. The ability to quantitatively predict
the behavior of such processes using models is highly needed, as this modeling is
instrumental for risk assessment and operational decision-making.

Uncertainty quantification for pressure-driven fractures is particularly chal-
lenging on account of the fact that it combines the complications associated with
stochastic analyses with mathematical-physical models that are non-trivial to
solve. The models that are capable of incorporating the sources of uncertainty in
a meaningful manner are time-dependent, involve a moving boundary in the form
of a propagating fracture, are non-linear on account of the slit flow, and give rise to
singular solution behavior in the vicinity of the fracture tip (see, e.g., Ref. [125]).
In Ref. [95] we have performed a stochastic analysis for such a model, viz. the
Perkins-Kern-Nordgren (PKN) model [29, 30], by using a Monte Carlo method to
compute the probabilistic response of the fracture process (e.g., the probability
distribution of the fracture length) related to uncertain model parameters (e.g.,
random field reservoir properties). Similar types of forward uncertainty analyses
for pressure-driven fracture processes are presented in Refs. [120, 121].

The capability of forward stochastic techniques to provide quantitative predic-
tions is impeded when limited information on the system parameters is available.
This is particularly the case in subsurface-engineering applications, where reser-
voir properties are highly uncertain, and measurements to assess such properties
with meaningful accuracy are frequently unavailable or impractical. In such set-
tings, one must resort to inverse uncertainty quantification procedures, which
allow for the incorporation of measurement data to enhance the quantitative pre-
dictive capabilities of the modeling framework. In the context of pressure-driven
fractures, such observations would typically pertain to injection rates and pres-
sures, possibly supplemented with seismic data. Combining these measurements
with the available model through the inversion process leads to data-calibrated
reservoir properties, which in turn provide a model capable of quantitatively
predicting the fracture evolution.

While computational uncertainty quantification (UQ) is a well-studied topic,
see, e.g., the reviews by Oden [60] and Tarantola [175], application of UQ in
the context of pressure-driven fracturing is limited. While there have been no
results presented in the literature for the PKN model or models of similar com-
plexity, UQ for hydraulic fracturing processes has been considered in the context
of related mathematical-physical models. Lecampion et al. [14, 15] have stud-
ied a real-time Bayesian inference framework to optimize stimulation procedures
based on injected volume measurements. Ballester et al. [16] studied genetic algo-
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rithms for non-linear inverse problems in the context of reservoir characterization.
Other noteworthy contributions to inverse modeling for reservoir stimulation are
Ref. [17] and Ref. [18], which discuss the inference of permeabilities using the
Buckley-Leverett model for two-phase flows in porous media and the inference of
fracture geometry using titlmeter measurements, respectively.

In this manuscript we propose a Bayesian inference framework for the uncer-
tainty quantification of fluid-driven fracture propagation processes represented
by the PKN model. The key ingredients of the proposed framework are: (i) the
probabilistic characterizations of the system parameters (e.g., reservoir proper-
ties) and the observable parameters (e.g., well pressures); and (ii) the application
of an inverse solver in the form of the Metropolis-Hastings sampling method.
With respect to the characterization aspect, we propose to consider spatially
varying random fields for the reservoir properties, and a reduced-basis method
for the pressure data. To adequately incorporate these probabilistic sources of
information in the inference framework, a Galerkin discretization of the PKN
model is proposed. On the one hand this discretization endows the model with
the capability to incorporate the specified information, while, on the other hand,
it can be evaluated sufficiently fast in order to be applicable in the sampling
algorithm.

This manuscript is outlined as follows. In Section 4.2 we commence with
the introduction of the PKN model and its Ritz-Galerkin discretization. In
Section 4.3 we then introduce the Bayesian inference framework, including de-
tailed discussions on the representation of the uncertain parameters. Section 4.4
presents the inverse solver, with a particular focus on the computational aspects
that are relevant in relation to the hydraulic stimulation context. In Section 4.5
we present a series of numerical test cases to assess the performance of the pro-
posed framework. We consider two scenarios with manufactured data, which
allow us to assess the accuracy of the results and to study the influence of a
range of parameters. Conclusions are finally presented in Section 4.6.

4.2 The PKN model for hydraulic fracturing sim-
ulation

In this section we introduce the Perkins-Kern-Nordgren (PKN) model for hy-
draulic fracturing [29, 30], a prototypical model that is generally appraised for its
balance between model simplicity and practical applicability. In Section 4.2.1 we
present the mathematical-physical model formulation, where we briefly discuss
the assumptions underlying this model. We refer the reader to Ref. [95] for a
detailed discussion regarding the PKN model in a typical uncertainty quantifi-
cation setting. In Section 4.2.2 we then introduce the solution method that is
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employed to solve the PKN model.

4.2.1 Formulation of the PKN model

The PKN model mimics the horizontal (x-direction) propagation of a vertical
(y-direction) fracture of fixed height, H [m], under the influence of a prescribed
injection rate i(t) [m3/s], as illustrated schematically in Figure 4.1. The length of
the fracture is denoted by L(t) [m] and the fracture aperture along the center-line
of the fracture by ŵ(x, t) [m]. The opening profile of the fracture is assumed to
be elliptic (in the yz-plane), and the opening is assumed to vanish at the tip of
the fracture. In the initial situation, a completely closed fracture of length L0 [m]
is assumed, and propagation is considered until the final time T [s].

In terms of the fluid flow model, the PKN equations assume a Newtonian fluid,
with viscosity µf [Pa · s], and Stokes flow through the elliptic cross-sectional pro-
file of the fracture. These assumptions result in the well-known cubical scaling of
the flow rate with the opening of the fracture [126]. Fluid leak-off to the reservoir
is modeled through Carter’s leak-off relation [128] with parameter cl [m/s

1
2 ] and

with the fracture arrival time τ(x) [s] defined as the time at which the fracture
tip reaches to position x.

The PKN model relies on the usage of a planar deformation model, in the
sense that for every point x along the fracture, the fracture aperture, ŵ(x, t) [m],
is related to the pressure inside the fracture, p(x, t) [Pa], by the point-wise relation

ŵ(x, t) = 2Hp(x, t)
E′(x) , (4.1)

where E′(x) [Pa] is the plane strain modulus of the formation. See Ref. [95] for
a detailed discussion regarding the assumptions underlying this highly simplified
mechanical model, in particular in relation to the consideration of a spatially
varying field of elastic properties.

Fracture propagation is assumed to be viscosity driven in the PKN model,
meaning that fracture toughness effects are ignored. Combination of the prop-
agation model with the fluid model and the solid deformation model yields the
initial boundary value problem for the fracture aperture ŵ(x, t) and length L(t):
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i(t)

x

y

z

L(t)

H

ŵ(x, t) = w(x, 0, t)

w(x, y, t)

Figure 4.1: Schematic representation of the Perkins-Kern-Nordgren model for hy-
draulic fracturing
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Note that, although the above initial boundary value problem is posed over a
one-dimensional domain, determination of its solution is challenging on account
of the fact that: (i) the domain has a moving boundary in the form of the fracture
tip L(t); (ii) the differential equation is non-linear due to the cubic dependence
of the flow rate on the fracture opening; (iii) the solution is weakly singular at
the fracture tip. These complications hinder the use of analytical methods and
instead require the consideration of numerical solution techniques. In the next
section we will discuss the computational methods used to solve the PKN model
(4.2) in the context of the uncertainty quantification framework considered in
this work.

4.2.2 Time discretization of the PKN model
To solve the moving boundary problem (4.2) we discretize the time interval [0, T ]
using time steps of size ∆t, such that tı = ı∆t, with ı = 0, 1, . . . , nt. Let ŵı(x)
and Lı denote the approximations of ŵ(x, tı) and L(tı), respectively. We consider
a backward Euler discretization in time for the fracture aperture and a forward
Euler scheme for the fracture length. That is, equations (4.2a) and (4.2e) are
semi-discretized in time as:

π
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4
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Lı − Lı−1

∆t = − ∆t
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d
(
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x=Lı−1

. (4.4)
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respectively. Starting from the initial conditions L0 = L0 and ŵ0 = 0, the
solution of the moving boundary problem is solved by sequentially updating the
fracture length and the fracture aperture. Both these updates are discussed in
the remainder of this section.

Updating the fracture length

Given the fracture aperture and fracture length at the time step ı− 1, i.e., ŵı−1

and Lı−1, the discretization of the Stefan condition (4.4) can be used directly to
obtain the fracture length at time step ı according to:

Lı = Lı−1 − ∆t
96µfH

d
(
E′(ŵı−1)3)

dx

∣∣∣∣∣
x=Lı−1

. (4.5)

Based on the updated fracture length, subsequently the fracture aperture is up-
dated.

Updating the fracture aperture

Given the fracture aperture at the time step ı − 1, i.e., ŵı−1, and the updated
fracture length, Lı, the mass conservation balance in (4.2a) is solved to determine
the updated fracture aperture ŵı.

In Ref. [95] we have proposed to solve the aperture problem using an en-
riched finite element discretization. This study confirms that, for moderate spa-
tial variations in the input parameters, the fracture aperture can be accurately
approximated by

ŵı(x) = ŵı0
3

√
1− x

Lı
(4.6)

with ŵı0 = ŵı(0) the aperture at the inflow boundary (x = 0). For the sake of
computational efficiency, in this work we resort to a Galerkin discretization based
on this single mode shape. That is, we define the solution space for the fracture
aperture as

Vı = span
({

3

√
1− x

Lı

})
(4.7)
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and use this space to solve the weak formulation corresponding to (4.2):
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Note that, since the dimension of the considered space (4.7) is equal to 1, this
weak form problem in fact translates into a scalar problem for the maximum
aperture ŵ0 as defined in equation (4.6). In order to determine the solution to
this scalar problem, at every time step the integrals in the weak form (4.8) must
be evaluated. On account of the material heterogeneities, E′(x), and arrival time
function τ(x), these integrals require numerical evaluation.

4.3 The stochastic inverse problem
In this section we outline the uncertainty quantification framework considered
for the hydraulic fracturing model introduced above. We first put the framework
in the setting of the PKN model in Section 4.3.1 by defining the uncertain input
and output quantities, along with defining the role of the model introduced in
Section 4.2. We then introduce the inverse problem in the form of the Bayesian
inference method in Section 4.3.2. Subsequently, in Section 4.3.3 we discuss in
detail the data representations being considered in this work.

4.3.1 Model parameters, data parameters & the forward
operator

As uncertain model parameters we, in general, consider the plane strain modulus,
Ẽ′(x), the fracture height, H̃(x), and the leak-off coefficient, c̃l(x), all being
considered as random (indicated by the tilde) fields over the spatial domain Ω.
We denote these uncertain model parameters by

m = {Ẽ′(x), H̃(x), c̃l(x)}, (4.9)

which can be considered as an np-dimensional, not necessarily Cartesian, coordi-
nate in the model space, i.e., m ∈M. Note that the random fields in the model
parameters are generally discretized, which implies that they are represented by
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a finite number of random variables. The remaining model parameters, viz. the
fluid viscosity, µf , the initial fracture length, L0, and the injection rate, i(t), are
assumed to be deterministic, in the sense that their variability is negligible in
comparison to the uncertain parameters in m, and are therefore omitted from
the parameter set.

The time-dependent pressure, p̃(t), is considered as an observable system pa-
rameter, in the sense that measurement data for this parameter can be acquired.
As additional quantities of interest, for which observations are not available, we
consider the time response of the fracture opening, w̃(t), and the evolution of the
fracture length, L̃(t). These derived quantities of interest are part of the output
of the model and are therefore considered as part of the data space, despite the
fact that there might be no observations available on these output parameters.
The observations and quantities of interest are all considered as temporal random
fields, and are represented by the data parameters

d = {p̃(t), w̃(t), L̃(t)}, (4.10)

which are to be interpreted as a coordinate in the data space, i.e., d ∈ D.
The model space and data space are related through physical laws, which,

assuming model inadequacies to be negligible, we represent by the forward model
operator, g, such that:

d = g(m) (4.11)

For a particular model, as encoded by the parameter values m, the forward
operator, g, determines the corresponding observable parameters, d. In the case
of the model discussed in Section 4.2 it is assumed that given a realization of the
uncertain parameters in (4.9) and the deterministic parameters not included in
m, the response in the form of the quantities of interest in the data parameters
in (4.10) can be be obtained with certainty. This implies that uncertainties with
respect to the model, for example related to the employed solution procedure, are
assumed to be negligible in comparison to the variations in the model parameters
and related quantities of interest.

In the context of the stochastic inverse problem, the deterministic mapping
(4.11) can be considered as a special case of the joint probability density function
that relates the data space to the model space, i.e.,

Θ(d,m) = δ(d− g(m))µM (m), (4.12)

with δ denoting the delta distribution, and with µM the homogeneous probability
density for the model space. The corresponding conditional probability density
is given by

θ(d |m) = δ(d− g(m)). (4.13)
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4.3.2 Bayesian inference: combining prior information with
observational data

We consider the inverse problem in a Bayesian inference setting, in an analogous
manner as in Ref. [175]. In the stochastic inverse problem, prior information on
the model parameters m is provided through the probability density function
ρM (m). This prior information on the model is generally based on experts’
opinion, which is, for example, motivated by earlier experiences with the model.

The prior information considered in this work is represented by random fields
for the relevant reservoir parameters, i.e., the plane strain modulus, the fracture
height, and the leak-off coefficient. Each of these fields is characterized by a
Karhunen-Loève (KL) expansion [176], which is, in general, parametrized by
a mean value, a standard deviation, and a spatial correlation length. Details
regarding these expansions are discussed in Section 4.3.3.

Through the use of Karhunen-Loève expansions we provide information con-
tent to the model parameters in the form of the underlying point-wise proba-
bility distribution and by the specified auto-correlation function. A measure of
the information content in the prior is provided through Shannon’s measure of
information content [175], which is zero in the case of a non-informative prior
(the homogeneous probability distribution), and positive when the prior is infor-
mative. In the case of KL expansions of the uncertain model parameters, the
information content increases with a decrease in the variation of the underlying
normal distribution, and with an increase in the correlation length.

In the stochastic inverse problem, also the observable data, D, is provided
through a probability density, ρD(d). The data parameters considered herein on
the one hand pertain to the pressure observations, p̃(t), which are assumed to
be available as noisy experimental data. A singular value decomposition is used
to represent this source of information through the probability density function,
ρp(p), details of which will be discussed in Section 4.3.3. On the other hand,
the other quantities of interest, viz., the pressure aperture and fracture length,
are deterministically related to the pressure observations, in the sense that their
values are acquired through the deterministic forward model operator (4.11).
In terms of the probabilistic representation, this implies that the conditional
probability density function for these derived quantities of interest is represented
by a delta distribution, which can be combined with the pressure probability
density to acquire the joint probability density function ρD(d) on the entire data
space.

Given that the observations are generally independent of the prior informa-
tion, the correspondence between the data and the model space is captured by
the joint probability density function

ρ(d,m) = ρD(d)ρM (m). (4.14)
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The pivotal idea of Bayesian inversion [177] is to combine this information on
the data-model space with the forward operator (4.13) to establish the posterior
model distribution density

σM (m) = kρM (m)L(m) (4.15)

with likelihood function

L(m) =
∫
D

ρD(d)θ(d |m)
µD(d) dd (4.16)

and with normalization constant k and homogeneous data space probability den-
sity µD(d). Under the assumption of negligible forward model inadequacies, i.e.,
equation (4.13), the likelihood reduces to

L(m) =
∫
D

ρD(d)δ(d− g(m))
µD(d) dd = ρD(g(m))

µD(g(m)) , (4.17)

and the normalization constant in (4.15) to

k−1 =
∫
M

ρM (m)L(m)dm =
∫
M

ρM (m)ρD(g(m))
µD(g(m)) dm. (4.18)

The likelihood function (4.17) establishes a measure for how well a model, m, fits
the data, D. From this expression it is apparent that the maximum likelihood
of a model is, in general, different from the maximum of the probability density
function of the corresponding observable, as it is scaled by the homogeneous data
space distribution. In the case of a linear data space, as will also be considered
in this work, the homogeneous data space distribution µD is constant. Upon
substitution of (4.17) and (4.18) into the expression for the posterior (4.15), it
follows that the posterior distribution is independent of µD.

The posterior model distribution (4.15) is regarded as the solution to the
stochastic inverse problem, in the sense that this is the probability distribution
that logically combines the observational data, prior information, and forward
model operator. In contrast to deterministic inverse problems, the stochastic
inverse problem is generally well-posed, in the sense that the posterior σM pro-
vides unique information on the model, and that this posterior exists (i.e., is
not empty) provided that the input sources of information are compatible [175].
In this regard, it is generally required that the prior information is sufficiently
uninformative, meaning that the variations in the prior random fields should be
sufficiently large.

4.3.3 Representation of probabilistic quantities
An essential aspect of the stochastic inverse problem is that all quantities are
represented by probability distributions. For the sake of self-containedness and
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to establish notation, in the remainder of this section we review the most im-
portant aspects of the representation of the random quantities. In Section 4.3.3
we first discuss the Karhunen-Loève (KL) expansions used to represent the prior
information on the spatially varying model parameters. Using the KL expansion,
these fields are discretized using a finite number of standard normal random vari-
ables. We then discuss the singular value decomposition (SVD) used to represent
time-dependent well-pressure data in Section 4.3.3. For all considered random
variables (including discretized random fields) we rely on the usage of analytical
probability distributions (e.g., uniform, normal, log-normal) and data binning
to represent their probability density. Details regarding the employed binning
procedure are discussed in Section 4.3.3.

Karhunen-Loève expansion of a spatial random field

To elaborate the details of the used KL expansions, we consider the random
plane strain modulus field, Ẽ′(x), with x ∈ Ω. This field is characterized by
a stationary (i.e., constant in space) probability density function, fE′(E′), with
mean µE′ , standard deviation σE′ , and auto-correlation function

ρE′E′(x1,x2) = exp
(
−‖x1 − x2‖2

l2E′

)
, (4.19)

with correlation length lE′ and the exponential function being used as an example
of a typical decaying function. The corresponding spatial covariance is then given
by ΣE′E′(x1,x2) = σ2

E′ρE′E′(x1,x2).
In order to discretize the random field, Ẽ′(x), we assume that we can express

this field as a function of an underlying Gaussian random field, G̃(x), through
the mapping

Ẽ(x) = `(G̃(x)) ∀x ∈ Ω, (4.20)

such that the mean, µG, and covariance function, ΣGG(x1,x2), are expressible
in terms of the mean and covariance of the field Ẽ′(x). For the plane strain
modulus we generally consider a log-normal random field, for which the function
` is taken equal to the exponential function, i.e.,

Ẽ′(x) = exp (G̃(x)), (4.21)

and the Gaussian field mean and covariance follow as [178]

µG = ln(µE′)−
1
2 ln(1 + V 2

E′) σ2
G = ln(1 + V 2

E′), (4.22)
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with coefficient of variation VE′ = σE′/µE′ . Let us note that in the identity (4.21)
the units of the left member have tacitly been suppressed. Similarly, the auto-
correlation function of the Gaussian field follows as:

ρGG(x1,x2) = ln (1 + ρE′E′(x1,x2)V 2
E′)

ln(1 + V 2
E′)

. (4.23)

We discretize the Gaussian random field, G̃(x), using the Karhunen-Loève
expansion [179],

G̃(x) = µG +
nkl∑
α=1

ζα(x)z̃α (4.24)

with {z̃α}nklα=1 a set of nkl independent standard normal random variables, and
{ζα(x)}nklα=1 a corresponding set of spatial modes. The KL modes follow from the
integral eigenvalue problem∫

Ω
ΣGG(x1,x2)ζα(x2) dx2 = λαζα(x1) α = 1, . . . , nkl, (4.25)

where ΣGG is the covariance function according to ΣGG = σ2
GρGG. The modes

in (4.25) are normalized according to∫
Ω
ζα(x)2 dx = λα α = 1, . . . , nkl. (4.26)

In specific cases, mainly in one dimension, the integral equation (4.25) can
be solved analytically (see, e.g., [180]). However, in this contribution we follow
the more general approach of constructing the KL expansion using a spatial
discretization of the modes of the form

ζα(x) =
n∑
i=1

φi(x)ζ̂αi = φ(x)T ζ̂α α = 1, . . . , nkl, (4.27)

with spatial basis functions φ(x) = {φi(x)}ni=1 and corresponding coefficients
vector ζ̂α = {ζ̂αi}ni=1 for every α = 1, · · · , nkl. Using this spatial discretization,
Galerkin’s method can then be employed to approximate the integral problem
(4.25) through the solution of the generalized eigenvalue problem[∫

Ω

∫
Ω

ΣGG(x1,x2)φ(x1)φ(x2)T dx1dx2

]
ζ̂α =

λα

[∫
Ω
φ(x1)φ(x1)T dx1

]
ζ̂α α = 1, . . . , nkl,

(4.28)

where the eigenvectors ζ̂α are normalized in accordance with∫
Ω

(
φ(x)T ζ̂α

)2
dx = λα α = 1, . . . , nkl. (4.29)
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Reduced-basis representation of discrete-time signals

We consider the random pressure observation, p̃(t), to elaborate the details of the
employed singular value decompositions for time-dependent random processes.
The pressure process, p̃(t), is discretized in time using a uniform partitioning
of the time domain, t = (i − 1)∆t, with i = 1, . . . , nt, such that the signal is
represented by the random vector p̃ = (p̃1, p̃2, . . . , p̃nt) ∈ Rnt . The randomness
of the signal can then be described by a joint probability density function fp(p)
defined over the parameter domain Ξp ∈ Rnt .

In the case that the random time-discrete process is characterized by a sample
of realizations, {pı}

np
ı=1, the probability density function fp(p) can be approxi-

mated using data binning, as will be discussed in Section 4.3.3. Binning will
be impractical, however, in cases where the number of time steps is large, as
the sample size required to appropriately approximate the probability density
function is affected by the dimensionality of the parameter domain Ξp ⊂ Rnt .

When the process is spatially correlated, a lower dimensional representation
of the process can be obtained using a truncated singular value decomposition.
This approach is similar to reduced-basis methods in reduced order modeling,
principal component analysis in statistics, and proper orthogonal decomposition
in dynamics. In contrast to the original data set, this lower dimensional repre-
sentation of the process poses less severe restrictions on the required sample size
on account of the reduction in dimensionality of the random process.

To construct the singular value decomposition of the process p̃, we collect the
data of all realizations, {pı}

np
ı=1, in a matrix, D ∈ Rnp×nt , of size np×nt, so that

each row in this matrix corresponds to a realization of the process. The singular
value decomposition of this matrix then reads

D =
min (nt,np)∑

α=1
σαuαv

T
α , (4.30)

where σα are the singular values sorted in descending order, and uα ∈ Rnp
and vα ∈ Rnt are the corresponding left and right singular vectors. The right
singular vectors, vα, or, equivalently, the vectors DTuα, form an orthonormal
basis for the process realizations, where the singular values σα assign importance
to the modes. For temporally correlated processes, this means that typically the
process can be captured well by considering a truncated basis that only contains
the modes corresponding to the nsvd � min (nt, np) largest singular values. This
truncated singular value representation can be expressed as

pı ≈
nsvd∑
α=1

vαξıα ı = 1, . . . , np, (4.31)
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where the coefficient vectors ξı ∈ Rnsvd are determined by the minimization
problem

ξı = argmin
y∈Rnsvd

‖pı −
nsvd∑
α=1

vαyα‖, (4.32)

with ‖ · ‖ denoting the L2 vector norm. Making use of the orthonormality of the
left singular vectors, the minimization problem (4.32) solves as

ξıα = vTαpı. (4.33)

Since it follows from (4.30) that ξıα = σαuαı, the relative truncation error cor-
responding to (4.31) can be expressed in relation to the singular values of the
system as

√∑np
ı=1 ‖pı −

∑nsvd
α=1 vαξıα‖

2√∑np
ı=1 ‖pı‖

2
=

√∑np
ı=1

∥∥∥∑min (nt,np)
α=nsvd+1 vασαuαı

∥∥∥2

√∑np
ı=1

∥∥∥∑min (nt,np)
α=1 vασαuαı

∥∥∥2

=

√∑min (nt,np)
α=nsvd+1 σ2

α ‖vα‖
2 ‖uα‖2√∑min (nt,np)

α=1 σ2
α ‖vα‖

2 ‖uα‖2

=

√∑min (nt,np)
α=nsvd+1 σ2

α√∑min (nt,np)
α=1 σ2

α

≤ ε (4.34)

where the error 0 < ε < 1 governs the selection of the relevant singular modes in
accordance with

nsvd∑
α=1

σ2
α ≥ (1− ε2)

min (nt,np)∑
α=1

σ2
α. (4.35)

If the realizations {pı}
np
ı are representative for the process p̃ in the sense that the

sample provides an adequate estimator for the average squared L2-norm of the
discrete pressure signal approximation error, inequality (4.34) implies the error
estimate (see Ref. [181]):√∫

Ξp
‖p−

∑nsvd
α=1 vαξα(p)‖2 dp√∫

Ξp
‖p‖2 dp

≤ ε (4.36)
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This error estimate conveys that the accuracy of the SVD approximation can be
controlled directly and uniformly through the selection of the number of SVD
modes in accordance with (4.35).

When the process, p̃ ∈ Rnt , is temporally correlated, its realizations, pı ∈
Rnt , can accurately be represented in the modal coordinates ξi ∈ Rnsvd with
nsvd � nt. Hence, in such situations the process p̃ can accurately be described
by the modal coordinate process ξ̃, the dimensionality of which is significantly
reduced in comparison to p̃. Consequently, this modal coordinate process is more
suitable for data binning.

Remark 4.1 (Computation of the right singular vectors). The right singular
vectors required in equation (4.33) can alternatively be computed by first evalu-
ating the left singular vectors in equation (4.30) as the singular vectors of the
system DDT , which can be decomposed as

DDT =
nξ∑
α=1

σ2
αuαu

T
α .

Subsequently, the right singular vectors can be computed as vα = Duα. Since the
matrix DDT is of the size np × np, the computation of the singular vectors of
(4.30) through this alternative evaluation procedure is computationally favorable
when np � nt.

Remark 4.2 (Noise filtering). Besides its capabilities of reducing the dimension
of the data space, the singular value decomposition filters high frequency noise.
For up to moderate noise levels, the noise-free signal dominates the largest singu-
lar values and corresponding singular vectors. By truncation of the SVD (4.31),
high frequency noise is therefore filtered. See, e.g., [182] for details regarding
the noise filtering properties of the singular value decomposition in the context
of additive white noise. For high noise levels, additional noise filtering steps
are generally required in a pre-processing step, see, e.g., Ref. [183, 184] for an
overview of noise filtering techniques.

Data binning of random variable samples

Let us consider the vector-valued random variable ξ̃ ∈ Ξ ⊆ Rdξ (dξ ≥ 1), for
example the SVD-reduced pressure process discussed in Section 4.3.3, with prob-
ability density function fξ(ξ). This probability density can be discretized by
partitioning the random domain into elements Ξe (∪eΞe = Ξ and Ξe1 ∩Ξe2 = ∅
if e1 6= e2). A probability can then be assigned to each element as

P (Ξe) =
∫

Ξe
fξ(ξ) dξ, (4.37)
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such that the probability density for each point ξ ∈ Ξe is found as fξ(ξ) ≈
P (Ξe)/Ve with Ve =

∫
Ξe dξ. Similarly, when the probabilistic information on ξ

is provided by a point cloud {ξı}
nξ
ı=1 of realizations, the discretized probability

density function for ξ ∈ Ξe is given by #{ξı ∈ Ξe}/nξ.
In this work we will restrict ourselves to regular partitions of the rectangular

random variable domain Ξ = ⊗dξδ=1(ξmin
δ , ξmax

δ ), for which the elements are given
by

Ξe = ⊗dξδ=1

(
ξmin
δ + eδh

ξ
δ, ξ

min
δ + (eδ + 1)hξδ

)
, (4.38)

where the element index e is interpreted as a multi-index (e1, e2, · · · , edξ). The
mesh size hξδ is related to the number of bins per direction, nbins

δ , by hξδ =
(ξmax
δ − ξmin

δ )/nbins
δ . The corresponding binned probability density is commonly

visualized by a histogram with uniform bin sizes.
The choice of the bin size is particularly important in the case that a probabil-

ity density function is created from a point cloud. In general, for a given number
of points, a too large bin width results in a loss of accuracy, while a too small
bin width yields a non-smooth representation of the probability distribution.

Various techniques to determine optimal bin sizes exist, see, e.g., Refs. [185–
188]. We employ the optimal bin size selection technique proposed in Ref. [186],
which is based on the minimization of the mean integrated square error of the
likelihood

eMISE =
∫

Ξ
(f̂ξ(ξ)− fξ(ξ))2 dξ, (4.39)

where f̂ξ(ξ) represents the binned density function. See Ref. [186] for a discussion
on minimization procedures to determine the optimal bin size from (4.39). The
minimization of this error measure results in a decrease in bin width with an
increase in sample size in accordance with [189]:

hξ ∝ n−1/(dξ+2)
sample . (4.40)

This scaling relation conveys that, in the context of the reduced-basis approx-
imation discussed in Section 4.3.3, with an increase in the number of singular
value modes, and hence an increase in the dimensions of the parameter domain,
dξ = nsvd, the resolution of the binned representation decreases, in the sense
that the optimum bin size increases. This, of course, implies that, for a fixed
sample size, the accuracy with which the probability distribution is represented
decreases with an increase in number of considered singular value modes.
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4.4 The inverse solver: Markov chain Monte Carlo
sampling

The solution to the inverse problem (4.15) can generally not be computed analyt-
ically. On the one hand, for problems such as considered in this work, analytical
solutions cannot be obtained due to the complexity of the forward model op-
erator (4.11). On the other hand, the input data for the inverse problem, in
particular the data space, is frequently available as sampled data rather than as
an analytical probability density function.

In this work we will resort to sampling techniques to compute approximate
solutions to the inverse problem. Specifically, we consider a Markov chain Monte
Carlo method [190, 191] in the form of the Metropolis-Hastings algorithm [192,
193], which is a random walk sampler designed for problems where the dimension-
ality of the sampled space – in essence the number of uncertain model parameters
– is high. In Section 4.4.1 we commence with the introduction of the Metropolis-
Hastings algorithm as considered in this work. Next, in Section 4.4.2 we discuss
the most prominent computational aspects related to the application of this algo-
rithm for the computation of the posterior model parameters through the inverse
problem (4.15).

4.4.1 The Metropolis-Hastings algorithm
The Metropolis-Hastings sampler that is used to solve the stochastic inverse prob-
lem is presented in Algorithm 2. From the definition of the inverse problem (4.15)
and the associated Likelihood function (4.17) it can be seen that the input to the
Metropolis-Hastings algorithm consists of probability densities for the prior in-
formation on the model parameters and for the observations in the data space,
ρM (m) and ρD(d), respectively. In this work, the prior information is provided
through Karhunen-Loève expansions for the considered spatial random fields; see
Section 4.3.3. In the case that a large number of discrete-time pressure observa-
tions is available, this observational data is considered as a binned representation
of the SVD-compressed data; see Section 4.3.3.

The Metropolis-Hastings algorithm is in essence a Monte Carlo method in
which the model space is explored using a random walk procedure. The design
of the random walk – which, amongst other aspects, involves the selection of an
appropriate proposal distribution π(m1,m2) and the specification of how many
samples to reject in order to ensure independence between the realizations – is of
essential importance for the effectivity and efficiency of the sampler. The design
of the random walk will be discussed in Section 4.4.2.

Besides the random walk procedure, the other key ingredient of the Metropolis-
Hastings algorithm is the acceptance condition for a proposed realization,mproposal.
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Input: ρM (m), ρD(d) # prior distribution, data
π(m1 |m2), nmc, nburn−in, nlag # numerical parameters

Output: σM (m) ∼ {mı}
nsample
ı=1 , {dı}

nsample
ı=1 # posterior distribution

# initialization
m0 = sample distribution(ρM (m)) # random walk starting point

# MCMC loop
for ı in {1, . . . , nmc}:

# sample from the proposal distribution
mproposal = sample distribution(π(m|mı−1))

# evaluate the forward operator, Eq. (4.11)
dproposal = g(mproposal)

# evaluate the proposal likelihood, Eq. (4.17)
Lproposal = ρD(dproposal)

# evaluate the proposal acceptance probability

r = ρM (mproposal)
ρM (mı−1)

Lproposal
Lı−1

π(mı−1|mproposal)
π(mproposal|mı−1) if ı > 1 else 1

if r ≥ sample distribution(U(0, 1)):
# accept the proposal
mı = mproposal

# store the data
dı = dproposal

# store the likelihood
Lı = Lproposal

else
# repeat the previous step
mı = mı−1

dı = dı−1

Lı = Lı−1
end

end

# removing burn-in and thinning
{mı}

nsample
ı=1 , {dı}

nsample
ı=1 = thin sample({mi}nmc

ı=nburn−in , {di}nmc
ı=nburn−in , nlag)

Algorithm 2: Metropolis-Hastings sampling algorithm
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This proposal is randomly accepted when

ρM (mproposal)
ρM (mı−1)

Lproposal

Lı−1

π(mı−1|mproposal)
π(mproposal|mı−1) > P, (4.41)

with P a realization of the uniform distribution U(0, 1) on the unit interval, and
with Lproposal = g(mproposal) and Lı−1 = g(mı−1). This acceptance condition
conveys that the chance of a proposal being accepted is related to the likelihood of
the proposal. Details regarding the evaluation of the likelihood in the algorithm
will be discussed in Section 4.4.2.

The output of Algorithm 2 consists of a sample of realizations of the posterior
probability distribution for the model space, σM (m), i.e., {mı}

nsample
ı=1 , where the

number of realizations nsample is, in general, significantly smaller than the length
of the Markov chain, nmc, on account of the post-processing operations performed
to remove initialization effects and auto-correlation effects (see Section 4.4.2 for
details). A further discussion on the sample size will be presented in Section 4.4.2.

In addition to the sampling of the model space, the algorithm also provides a
sampling of the data space, {dı}

nsample
ı=1 . Recall that this data space encompasses

both the observational data and the derived quantities of interest on which no
observations are available (see Section 4.3).

Remark 4.3 (The posterior normalization factor (4.18)). An important aspect
of the Metropolis-Hastings algorithm is that the normalization constant k for the
posterior distribution (4.15) does not need to be computed, as it cancels out in the
acceptance condition (4.41). This is important, as evaluation of k is generally
computationally demanding.

Remark 4.4 (Symmetry of the proposal distribution). In the case of a symmetric
proposal distribution, i.e., π(m1|m2) = π(m2|m1), for example in the form of
a normal distribution centered around the latest accepted realization, the ratio of
proposal distribution densities in (4.41) equates to one.

4.4.2 Algorithmic aspects
Design of the random walk

The efficiency with which the model space is explored depends strongly on the
design of the random walk. The random walk considered herein is based on
the construction of a multi-variate, uncorrelated, normal proposal distribution
centered around the previous realization, µproposal = mı−1, and with covariance
Σproposal = diag(σ2

proposal) with user-specified standard deviation σproposal per
model parameter, so that the proposal probability density conforms to:

π(m|mı−1) ∼ N (mı−1,Σproposal) (4.42)
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The covariance of the proposal distribution governs the size of the steps in the
random walk. Selection of an appropriate step size in the random walk process is
a difficult, and problem-specific, task. Taking the covariance too large will result
in large steps in the walk, which results in detours through the empty regions in
the model space, resulting in large rejection rates with respect to the condition
(4.41). Taking the proposal covariance too small will lead to correlation between
subsequent realizations in the model space, thereby leading to faulty results. In
order to attain uncorrelated samples, accepted proposals are only incorporated in
the sample every once in nlag ≥ 1 times. In Algorithm 2, this so-called thinning
of the sample is considered by the post-processing operation thin sample with
parameter nlag.

Small steps in the random walk procedure are also potentially problematic
with respect to the starting position of the random walk, m0, which is sampled
directly from the prior distribution. The initial steps in the procedure will gener-
ally not follow the posterior distribution, which implies that a significant number
of proposals that satisfy (4.41) should be rejected at the start of the procedure.
In our algorithm this so-called burn-in period is controlled by the parameter
nburn−in.

Evaluation of the Likelihood function

The likelihood of a proposal, mproposal, is evaluated as the probability density
associated with the corresponding data proposal, dproposal, which is determined
using the forward model operator (4.11). When the observable data consists
of multiple observations on the pressure process, p̃(t), it is represented in the
data space by the SVD-compressed coordinate ξ̃ ∈ Rnsvd , i.e., d = {ξ̃} (see
Section 4.3.3). To evaluate the likelihood of the proposal, ρD(dproposal), the time-
discrete proposal pressure, p ∈ Rnt , is first projected onto the reduced coordinate
ξ ∈ Rnsvd using equation (4.33), after which the corresponding probability density
is obtained as a lookup in the binned representation of ρD(d).

Convergence of the Markov chain: the effective sample size

Algorithm 2 generates Markov chains of length nmc. As already discussed in
Section 4.4.2, the random walk has an effect on the accuracy of the posterior
and on the efficiency of the algorithm (i.e., on the rejection rate). The pa-
rameters nburn−in and nlag provide control over the accuracy and efficiency of
the algorithm. To assess the accuracy of the posterior distribution provided by
the Markov chain Monte Carlo method, we conduct two post-processing proce-
dures, viz.: a convergence check based on the Gelman and Rubin diagnostic tool
[194, 195], and an auto-correlation check and related estimate of the effective
sample size [196, 197].
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Both above-mentioned post-processing procedures are discussed below based
on a random quantity of interest, Q̃ = Q(m̃), that can be deduced from the
model parameters. It is noted, however, that these procedures can be generalized
for the case of multiple quantities of interest.

The Gelman-Rubin convergence diagnostic Let us denote the Markov
chain of length nmc resulting from Algorithm 2 by C. The Gelman-Rubin con-
vergence diagnostic provides a convergence measure based on the comparison of
within-chain and between-chain variances for nC independently (i.e., with differ-
ent starting positions) generated chains, {Cα}nCα=1 of length nmc.

Denoting the quantity of interest at step ı of chain α by Qαı, the within-chain
variance of the parameter Q̃ is estimated by

W = 1
nC

nC∑
α=1

σ2
α, (4.43)

with chain variance σ2
α = 1

nmc−1
∑nmc
ı=1 (Qαı − µα)2 and chain mean µα = 1

nmc

∑nmc
ı=1 Qαı.

The between-chain variance can be estimated by

B = nmc

nC − 1

nC∑
α=1

(µα − µ)2
, (4.44)

with aggregated mean estimator µ = 1
nC

∑nC
α=1 µα.

The variance of Q̃ can then be estimated as σ2 = nmc−1
nmc

W + nC+1
nCnmc

B [194],
from which an adequate measure for convergence of the Markov chain can be
derived in the form of the potential scale reduction factor (PSRF):

R = σ2

W
= nmc − 1

nmc
+ nC + 1
nCnmc

B

W
(4.45)

This reduction factor converges to one when the chains, {Cα}nCα=1, converge to
the posterior distribution on account of the between-chain variance, B, going to
zero.

In our simulations we use the Gelman-Rubin diagnostic in the form of a plot
of the PSRF versus the number of Markov chain steps primarily to assess the
appropriateness of the burn-in size, nburn−in. Specifically, we verify that after
nburn−in steps, the PSRF is close to one (typically within 5%). If this is indeed
the case, it is concluded that the burn-in size was selected appropriately. Other-
wise, the diagnostic will provide a means to reassess the selection of the burn-in
size. When, based on the PSRF, the chains are concluded to be converged, the
nC chains can be aggregated. From a computational effort point of view, a dis-
advantage of this diagnostic is, however, that nburn−in realizations are omitted
from each chain.
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Auto-correlation check and effective sample size The accuracy of the
Markov chain can be assessed based on the mean value estimator for the quantity
of interest

µ = 1
nsample

nsample∑
ı=1

Qı, (4.46)

the mean and variation of which can be estimated by

µµ = µ σ2
µ = σ2

neff
, (4.47)

with the variation of the estimator of the quantity of interest given by σ2 =
1

nsample−1
∑nsample
ı=1 (Qı − µ)2, and neff denoting the effective sample size. Using

(4.47) the confidence level, Cµ, for the mean estimator (4.46) can be related to
the effective sample size by [198]

Φ
(√

neff

V
(1− Cµ)

)
= 1 + Cµ

2 , (4.48)

where Φ is the cumulative density function of a standard normal random variable,
and V = σ/µ is the coefficient of variation of the quantity of interest.

In Markov chain Monte Carlo methods, the effective sample size neff is typi-
cally smaller than the actual sample size nsample, on account of the fact that the
realizations in the chain are not completely uncorrelated and hence realizations
must be discarded to restore independence. An estimate of the effective sample
size is given by (see Ref. [196, 197] for details)

neff = nsample

1 + 2
∑`max
`=1 ρ`

(4.49)

with ρ` the lag-` auto-correlation of the quantity of interest (with 1 � `max �
nsample), defined as

ρ` = 1
σ2

1
(nsample − `)

nsample−`∑
ı=1

(Qı − µ)(Qı+` − µ). (4.50)

The definition (4.49) conveys that if the lag-` correlation vanishes sufficiently fast,
the effective size remains close to the actual sample size. In the limiting case of an
uncorrelated sample, neff = nsample. In the case that there is correlation within
the sample, neff < nsample.

As discussed above, auto-correlation within the sample can be controlled by
thinning the sample, i.e., by selecting every nlag-th value. This thinning operation
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Plane strain modulus E′ 61.3× 109 Pa
Leak-off coefficient cl 9.84× 10−6 m/s1/2

Fracture height H 51.8 m
Viscosity µf 2.00× 10−1 Pa.s
Injection rate i 6.62× 10−2 m3/s
Injection time T 12.0× 103 s

Table 4.1: Simulation data used for the deterministic model validation

would reduce the auto-correlation on the one hand, but would simultaneously
reduce the sample size by a factor of nlag. These two effects compete with each
other in terms of the effective sample size, which implies that one has to properly
assess the effect of thinning on the effective sample size.

4.5 Numerical simulations
In this section we demonstrate the capabilities of the developed uncertainty quan-
tification framework for the simulation of fluid-driven fracture propagation. In
Section 4.5.1 we first assess the adequacy of the PKN model and the associ-
ated solution procedure in a deterministic setting. Subsequently, we consider
the uncertainty quantification framework based on synthetically created pressure
observations for two scenarios, viz.: a data-abundant scenario and a data-scant
scenario. The data-abundant scenario – for which parameters are inferred from
multiple pressure observations – is motivated and studied in Section 4.5.2. The
data-scant setting – which is based on a single pressure observation – is then
considered in Section 4.5.3.

4.5.1 Deterministic PKN model simulation
Before we proceed with the numerical demonstration of the Bayesian inference
framework, we first study the numerical solution of the deterministic forward
model. In order to assess the accuracy of the numerical model presented in
Section 4.2, we consider the benchmark case presented by Warpinski et al. [199],
the model parameters of which are collected in Table 4.1.

In Figure 4.2 we show the pressure in the fracture and fracture aperture for
various time instances. The illustrated results are based on a time step size
of ∆t = 1 [s], such that the complete fracture evolution process is solved in
nt = 12 × 103 steps. On a single core desktop computer a typical simulation
takes a few seconds, where the majority of the computational effort is attributed
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(a) (b)

Figure 4.2: Comparison of the scalar model proposed in Section 4.2.2 with the high-
fidelity finite element model in Ref. [95] based on the evolution of (a) the fracture
aperture and (b) the pressure in the fracture.

to the evaluation of the weak-form integrals using element-wise Gauss quadrature
rules. The results obtained using the enriched finite element method of Ref. [95]
using resolved spatial grid sizes and time step sizes is shown for comparison. This
comparison conveys that the simplified model of Section 4.2.2 approximates the
initial boundary value problem (4.2) well, in the sense that the obtained results
are within 10% of those obtained using the high-fidelity finite element solver
over the complete time interval. Qualitatively the simplified model captures
the fracture behavior well. For reference we note that the high-fidelity FEM
results require approximately 11 minutes per simulation on an Intel Core i5 vPro
processor.

In Figure 4.3 we compare the time evolution of the fracture length and frac-
ture opening at the inlet with the results presented in the benchmark study of
Ref. [199] and the finite-element results of [95]. The results obtained using the
scalar model of Section 4.2.2 closely resemble the finite element results, as well
as the benchmark results. It is noted though that significant differences exist
between the solvers considered in the benchmark study [199], which is due to
both differences in modeling assumptions and method accuracy. In the context
of uncertainty quantification it is important to note that the model uncertainties
do influence the inferred results. Although we have herein assumed model in-
adequacies to be negligible, the Bayesian framework does, in principle, facilitate
the consideration of model uncertainties. Although not considered in the current
work, the results of the benchmark study by Warpinski et al. [199] do motivate
to take such model inadequacies into account.
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(a) (b)

Figure 4.3: Comparison of the scalar model results with the benchmark studies re-
ported by Warpinski et al. [199] and FEM results of [95] for (a) the evolution of the
fracture length, and (b) the time response of the opening of the fracture at the fluid
inlet.

4.5.2 Bayesian inference: the data-abundant scenario

In hydraulic fracturing it is typical that a large number of wells is drilled in an
oil or gas field. For example, an extreme case with 162,000 wells in a reservoir of
approximately 168,000 square kilometers, and with well-densities going as high
as 56 wells per square kilometer, has been reported [200]. Typically, for each
well in a reservoir, the pressure is recorded while injecting volume. Based on
these observations, the Bayesian inference framework can be used to quantify
the elastic properties of the entire reservoir, and to predict quantities of interest
such as fracture propagation distances. We refer to this setting of the Bayesian
inference framework as the data-abundant scenario.

Because in this scenario all wells correspond to the same field and their sep-
aration is assumed to be large relative to the heterogeneity of the field, the well
properties can be conceived of as independent and identically distributed (i.i.d.)
random parameters. It is assumed that the length scale associated with a single
well, i.e., the typical length of a hydraulic fracture, is of the same order as the
length scale associated with the dominant spatial variations in the elastic prop-
erties of the field. Correspondingly, for each well the elastic field is conceived of
as an i.i.d. spatially-correlated random field characterized by a mean, a standard
deviation, and an auto-correlation length.

Since we do not have real data, we content ourselves with synthetic data.
This synthetic data is manufactured by assuming the parameters of the random
heterogeneous field for the elastic properties to be known, as to generate a plane
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(a) (b)

Figure 4.4: A Karhunen-Loéve expansion is used to represent the random field for
the plane strain modulus. (a) The Karhunen-Loève modes of the underlying Gaussian
random field (4.20) and (b) the original and reconstructed auto-correlation function
(4.50) for the random field for the plane strain modulus.

strain modulus field for each well. The forward model is then evaluated to attain
pressure observations for all wells. Let us note that this manufactured-data set-
ting can also be used for the verification of the implementation of the Bayesian
inference framework, as the attained posterior distribution can be compared to
the random fields for the model parameters from which the manufactured data
is constructed.

For the data-abundant scenario we consider fracture evolution over a time
interval of T = 100 [s] in order to limit computation time. Corresponding to
this time interval, the random field of elastic properties, Ẽ′(x), is defined over
the domain [0, 50] [m]. The field is characterized by a log-normal random field
with mean µE′ = 90 [GPa], standard deviation σE′ = 4.5 [GPa] (such that the
coefficient of variation is VE′ = 5 × 10−2), and with a correlation length of
lE′ = 10 [m] in correspondence with the auto-correlation function (4.50). For the
construction of the synthetic data, we employ nkl = 6 Karhunen-Loève terms for
the discretization of this random field. The Karhunen-Loève modes and recon-
structed auto-correlation function are displayed in Figure 4.4, from which it is
observed that using nkl = 6 modes, the auto-correlation structure of the random
field is approximated well. In the remainder of this section, all other parameters
are assumed to be deterministic, with their values as listed in Table 4.1.
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(a) (b)

Figure 4.5: Synthetic data is generated by sampling (a) realizations of the plane strain
modulus and subsequently using the forward model to compute (b) the corresponding
pressure observations. White noise is added to the pressure data to mimic measurement
errors. Only a selection of the observations is displayed.

Synthetic data generation: forward uncertainty propagation

To construct synthetic data for the Bayesian inference framework we sample
np = 500 realizations from the random field of elastic properties, and solve the
forward model discussed in Section 4.2.2 with a time step size of ∆t = 1 [s]
to obtain np discrete pressure signals of length nt = 100. White noise with a
standard deviation of 9 [kPa] is added to the computed pressure signals yielding
a sequence of np noisy pressure signals, {pı}

np
ı=1 ⊂ Rnt .

Figure 4.5 displays instances of the sampled random fields and correspond-
ing random pressure observations, along with their mean values and standard
deviations. Note that, in accordance with its properties, the white noise in the
pressure signals does not influence the mean of the pressure observations.

With the computation of the synthetically created pressure observations, we
also obtain corresponding samples of the fracture length and fracture aperture.
Although we will not use these derived quantities as observations in the Bayesian
inference framework, they will be used to assess the quality of the attained pos-
terior distributions.

Uncertainty quantification using Bayesian inference

Based on the manufactured pressure signal data we can now employ the Metropolis-
Hastings algorithm to infer the uncertainties in the model parameters, i.e., the
random field for the plane strain modulus. We will discuss this inference pro-
cedure in three steps, viz.: (i) the construction of the likelihood function (4.17)
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(a) (b)

Figure 4.6: (a) Singular values and (b) singular modes used for the reduced-basis
approximation of the synthetically generated pressure data. Only the first 10 modes
are displayed. For the inversion, only modes v1(t) and v2(t) are used.

based on the pressure observations; (ii) the postulation of the prior information
on the uncertain model parameters and the inference of the posterior; and (iii)
the uncertainty quantification of the derived quantities of interest.

(i) Construction of the likelihood function As discussed in Section 4.3.3 it
is beneficial to represent random processes in low dimensional parameter spaces.
We therefore employ the reduced-basis method discussed in Section 4.3.3 to rep-
resent the pressure observations shown in Figure 4.5b. Figure 4.6 displays the
singular values and singular modes computed based on the set of np = 500
pressure observations. In correspondence with (4.36), by selecting the modes
corresponding to the nsvd = 2 largest singular values, the relative ensemble error
is bounded from above by ε = 2.5 × 10−3. Let us note that the modes vi(t) are
displayed in Figure 4.6 as time-dependent functions, but represented as vectors
vi in accordance with the discretization of the pressure output; see Section 4.3.3.

Figure 4.7 shows a selection of the noisy pressure observations and their cor-
responding reconstructed values based on the reduced-basis method with two
modes. The comparison between the original and reconstructed signals clearly
demonstrates the noise-filtering property of the singular value decomposition.
The low dimensional representations of the pressure observations provide excel-
lent approximations to the noise-filtered original data.

Figure 4.8a shows the pressure observations in the reduced-basis domain, i.e.
Figure 4.8a displays the coefficients {ξi1, ξi2} of the reduced-basis approxima-
tions pi ≈ ξi1v1 + ξi2v2 of the pressure data relative to the reduce basis vectors
v1 and v2 in Figure 4.6b. Hence, each point in Figure 4.8a (accurately) rep-
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(a) (b)

Figure 4.7: A selection of (a) the original noisy synthetic pressure observations, and
(b) the corresponding signals reconstructed using nsvd = 2 singular modes.

resents a noise-filtered pressure observation. In accordance with the bin size
selection discussed in Section 4.3.3, we define the reduced parameter domain
as [−41.14,−32.51] × [−0.33, 0.27] [MPa]2 and subdivide it into 23 × 23 bins of
equal size. Figure 4.8b displays the binned likelihood function for the pressure
observations, which will serve as the basis to infer the model uncertainties.

(ii) Prior postulation and inference of posterior distributions To demon-
strate the Bayesian inference framework we postulate a prior that is significantly
different from the model parameters used to generate the synthetic data. More
specifically, we consider as prior information a log-normal random field for the
plane strain modulus with a mean of µE′,prior = 50 [GPa], a standard devia-
tion of σE′,prior = 25 [GPa] (such that the coefficient of variation is equal to
VE′,prior = 0.5), and a spatial correlation length of lE′,prior = 10 [m]. Note that
the mean of this prior information field has a significant offset with respect to
that of the expected outcome, and that the coefficient of variation is significantly
larger than that of the outcome. The increased variation of this prior reduces its
information content. Let us also note that we have treated the correlation length
as specified deterministic data and have set its prior value lE′,prior in accordance
with that of the synthetic data. Alternatively, however, the correlation length
can also be treated as an uncertain parameter.

We consider nkl = 3 Karhunen-Loève modes to represent the prior for the
plane-strain modulus field. This implies that the uncertainty in the system is
parametrized by nkl random variables, {z̃α}nklα=1, in accordance with the expan-
sion (4.24). In the prior state, these random variables are taken as independent
standard normal random variables, which will lead to a close resemblance of the
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(a) (b)

Figure 4.8: (a) Pressure observations visualized on the reduced-basis coordinates and
(b) the binned likelihood function corresponding to the pressure observations.

Mean plane-strain modulus Ẽ′ µE′,prior 50× 109 Pa
Coefficient of variation VE′,prior 0.5 −
Markov chain size nmc 5× 103 −
Standard deviation of proposal distribution σz̃α,proposal 0.35 −
Correlation length of plane-strain modulus lE′ 10 m
Number of KL modes nkl 3 −

Table 4.2: Numerical parameters of the Metropolis-Hastings algorithm as used for the
data-abundant synthetic data study

intended prior random field. The distribution of these random variables is up-
dated in the inference process in accordance with the likelihood. Let us note that
the mean of the Karhunen-Loève expansion is not included in the inference pro-
cess. We have opted to disregard the mean, to investigate to what extent the KL
modes are capable of approximating the distribution of the plane-strain-modulus
field of the synthetic data.

Using the likelihood for the pressure observations and the prior for the un-
certain plane strain modulus field as input, the Metropolis-Hastings algorithm
is used to compute the posterior plane strain modulus field. The numerical pa-
rameters used for this algorithm are listed in Table 4.2. An nkl-variate Gaussian
proposal distribution with covariance 0.352 × I is selected. Since the standard
deviation associated with this proposal is small in comparison to that of the prior
information (which is unity by construction), this implies that relatively small
steps are made in the random walk.

Panel (a) of Figure 4.9 shows the projection of the random walk {z̃1, z̃2, . . .}
in the model parameter coordinates on the (z1, z2)-plane. Panel 4.9b shows the
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corresponding random walk in the reduced-basis coordinates associated with the
likelihood function. These figures convey that the random walk, which starts at
a realization sampled from the prior distribution, gradually moves toward the
region of high likelihood. Due to the discrepancy between the prior distribution
and the likelihood, the random walk initially traverses an area of the (ξ1, ξ2)-
plane that is non-realizable according to the likelihood, i.e. a region outside of
the support of the likelihood. In the model parameter coordinates, this region
is associated with a significant offset from the prior mean at z = 0. From the
random walk it is immediately observed that it takes a significant number of steps
to move from the starting point toward the region of high likelihood, which is an
indicator for the burn-in period.

Figures 4.10 and 4.11 present diagnostics of the Markov chains. In Fig-
ure 4.10a we study the potential scale reduction factor (PSRF) according to (4.45)
based on 3 Markov chains. Panel 4.10b presents the z1 components of the se-
quence of samples corresponding to the three chains. The PSRF becomes sta-
tionary in the sense that it stays within 5% of unity after approximately 3× 102

realizations, indicating that a burn-in period of approximately nburn−in = 3×102

steps is required. From Figure 4.10b it can be observed that up to nburn−in,
the Markov chains display a significant dependence on the starting point. Fig-
ure 4.11a displays the sample auto-correlation function according to (4.50). The
figure shows that the correlation between two realizations z̃ı and z̃ in the Markov
chain is significant if the lag |ı− | is small. Based on the auto-correlation in Fig-
ure 4.11a, the sample sequence is thinned by using a lag interval nlag = 134,
thus reducing the auto-correlation between the retained samples to ≤ 0.2. Fig-
ure 4.11b plots the auto-correlation of the thinned sequence versus the lag. The
figure conveys that for the thinned sequence, the auto-correlation is essentially
independent of the lag and that its absolute value is indeed bounded by 0.2.
Based on the effective sample size for auto-correlated sequences (4.49), we esti-
mate that, in conjunction with the thinning procedure and the burn-in removal,
the effective sample size corresponding to the three considered chains is equal to
212. This implies that approximately 70 forward-model solves are required for
each member of the final sequence of realizations.

After thinning the Markov chain to account for the burn-in period and auto-
correlation lag, a random walk is obtained that samples the posterior distribution,
i.e. the random walk generates a sequence of identically distributed random vari-
ables conforming to the posterior probability distribution. Figure 4.12 displays
the posterior marginals obtained by binning the components z1, z2, z3 of the 212
realizations in the thinned sequence. The prior distribution of the coefficients,
viz. the standard normal distribution N (0, 1), is displayed for comparison. This
figure conveys that, based on the data, a significant shift in the random model
parameters is induced from their respective prior distributions in order to provide
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(a) (b)

(c)

Figure 4.9: Random walk for the Bayesian inversion process before burn-in removal
and thinning: (a) The model parameter coordinates representing the plane strain mod-
ulus field. The accepted proposals are plotted in green, whereas the rejected proposals
are plotted in blue; (b) The reduced-basis coordinates for the pressure observations
showing only the accepted proposals; Panel (c) provides a zoom of (b) in the support
of the likelihood function. The likelihood function is displayed for reference in the
background of the pressure-observation plot in Panel (c).
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(a) (b)

Figure 4.10: Random walk diagnostic in the form of (a) the potential scale reduction
factor (PSRF) and (b) trace plot of the z1 parameter for multiple chains.

(a) (b)

Figure 4.11: Random walk diagnostics in the form of (a) auto-correlation and (b)
auto-correlation after thinning for a lag of 134.
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a closer match with the distribution of the pressure observations.
Figure 4.13 displays the mean and standard deviation of the posterior ran-

dom field corresponding to Figure 4.12. This figure conveys that the plane strain
modulus field exhibits significant spatial variations, while the field used to gener-
ate the synthetic data is spatially uniform. The spatial average of the posterior
mean plane strain modulus is equal to 112 GPa with a standard deviation of
21 GPa (such that the coefficient of variation is equal to 0.19), which indicates
that the pressure data improves upon the prior information (µE′,prior = 50 [GPa]
and VE′,prior = 0.5) in a spatially-averaged sense. The spatial variations in the
plane-strain modulus can be attributed to the fact that the three considered KL
modes (cf. Figure 4.4a) do not enable a spatially-uniform shift of the mean plane
strain modulus. As a result, substantial spatial variations in the posterior field
are attained in the inference process. To improve the inferred posterior, the num-
ber of modes should be increased or an alternative representation of the random
field should be employed.

(iii) Uncertainty quantification of fracture length and aperture In the
process of the Bayesian inference procedure, also the probability distributions for
the derived quantities of interest are generated by post-processing operations on
the forward model evaluations. In the context of fluid-driven fracture propaga-
tion, two natural quantities of interest to consider are the fracture length and the
fracture aperture.

In Figure 4.14 we consider the time evolution of the fracture length and frac-
ture aperture, where we show the mean value and the standard deviation over
time. Figure 4.15 presents an alternate view of the quantities of interest based
on the histograms for the fracture aperture at the inflow and the fracture length
at the final time T = 100 [s]. The reference results computed in the construc-
tion of the synthetic data are shown for comparison in Figure 4.15. As can be
seen, the uncertainty quantification framework is capable of finding a reasonable
match to the reference results by using the pressure observations, despite the
(deliberate) poor prior information and the restriction to three Karhunen-Loève
modes, excluding the mean (note that 6 KL modes were used to generate the
synthetic data). A closer match can be achieved by providing the model with a
better informed prior or by extending the model by including additional random
parameters, e.g. the mean of the posterior distribution or additional Karhunen-
Loève modes.

4.5.3 Bayesian inference: the data-scant scenario
We now consider the scenario of a fracture-stimulation operation in a single well.
In this so-called data-scant scenario, only a single pressure observation is avail-
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(a) (b)

(c)

Figure 4.12: Binned representation of the marginal posterior distributions for the co-
efficients of the Karhunen-Loève expansion. The blue curves represent the prior distri-
bution of the coefficients, N (0, 1). Note that because of the different KL discretizations
used for the synthetic data and for the prior/posterior, the observational data is not
shown in this plot.
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Figure 4.13: Mean µE′ and confidence interval µE′ ± σE′ of the posterior and prior
distributions of the plane-strain-modulus field. The observation of the elastic field
pertains to the synthetically created data.

(a) (b)

Figure 4.14: Evolution of the mean and standard deviation of (a) the fracture length
and (b) the fracture aperture at the inflow boundary obtained from the uncertainty
quantification framework.
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(a) (b)

Figure 4.15: Probability density functions at time T = 100 [s] for (a) the fracture
length, (b) the fracture aperture. The manufactured reference data is shown for com-
parison.

able. The objective of the Bayesian inference problem is to quantify the unknown
subsurface properties and to infer the attained fracture propagation length for
this single-well operation.

In contrast to the data-abundant (multiple-well) scenario of Section 4.5.2, in
the case of a single well, we assume there to be one true, but unknown, het-
erogeneous field of elastic properties. Since we do not have real data, we syn-
thesize this true field by selection of a realization of a log-normal random field
with µE′ = 90 [GPa], standard deviation σE′ = 4.5 [GPa], and auto-correlation
length lE′ = 10 [m]. As for the data-abundant scenario, an injection interval of
T = 100 [s] is considered, such that it suffices to construct a random field of elas-
tic properties over the interval [0,50] [m] using a Karhunen-Loève expansion with
6 modes. The constructed true elastic field is shown in Figure 4.16a. Note that
high wave-number modes are removed from this heterogeneous field by virtue of
the smoothness of the KL-representation.

Synthetic data generation: measurement noise

The pressure observation is generated by solving the forward problem with time
steps of ∆t = 1 [s] based on the true elastic field E′(x). Note that this forward
simulation also provides us with the true fracture opening and length. White
noise with a standard deviation of σnoise is added to the discrete pressure function
computed by the forward model as to obtain a single synthetic discrete pressure
signal pobs ∈ Rnt containing experimental noise. This pressure signal is shown
in Figure 4.16b for various noise levels.
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(a) (b)

Figure 4.16: (a) The “true” plane strain modulus considered in the data-scant sce-
nario. (b) The synthetically generated pressure signal for various noise levels.

Uncertainty quantification using Bayesian inference

We again consider the same three steps in the uncertainty quantification proce-
dure as outlined in Section 4.5.2:

(i) Construction of the likelihood function The construction of the likeli-
hood function in the data-scant setting considered here is fundamentally different
from that considered in the data-abundant scenario. Instead of forming the likeli-
hood based on multiple pressure observations, it is postulated that the likelihood
for a given model mı with corresponding pressure signal pı is given by (see, e.g.,
[60]):

Lı =
nt∏
i=1

1√
(2π)σnoise

exp
(
− (pı,i − pobs,i)2

2σ2
noise

)
= 1√

(2π)ntσntnoise
exp

(
− (pı − pobs)T (pı − pobs)

2σ2
noise

)
(4.51)

Since this likelihood function involves a product of nt probabilities, it will typi-
cally be very small. In order to avoid underflow of the floating point representa-
tion of the likelihood function, the log-likelihood function is considered instead:

ln (Lı) = −nt2 ln (2π)− nt ln (σnoise)− (pı − pobs)T (pı − pobs)
2σ2

noise

Note that the acceptance condition (4.41) is also considered in its logarithmic
form as to effectively make use of this log representation of the likelihood.
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(a) σnoise = 1% (b) σnoise = 5%

Figure 4.17: Random walk for the inversion procedure in the data-scant scenario
for two different noise levels before burn-in removal and thinning. The figures display
both the accepted (in green) and the rejected (in blue) proposals for a chain of length
104. Note that the previously accepted sample is retained in the chain upon rejection
(see Algorithm 2), so that the accepted points in the above plots in general have a
multiplicity greater than one.

(ii) Prior postulation and inference of the posterior distributions We
consider the same prior information for the plane strain modulus field as for
the data-abundant scenario, i.e., a log-normal random field with mean µE′ =
50 [GPa], standard deviation σE′ = 25 [GPa], and auto-correlation length lE′ =
10 [m]. This prior field and the inferred posterior are discretized using nkl = 3
Karhunen-Loève modes. A Gaussian proposal distribution with covariance I ∈
Rnkl×nkl is considered, which is relatively high in comparison to that considered
for the data-abundant case. The reason for selecting this higher proposal variation
is to limit the burn-in period for all considered noise levels. We note that this
comes at the expense of having a high rejection rate once the region in which the
majority of the mass of the likelihood function resides is reached.

Figure 4.17 shows the random walk for two different noise levels (σnoise = 1%
and σnoise = 5%) in the (z1, z2)-plane. The plot shows all 104 proposed sam-
ples of a single chain, i.e., both accepted and rejected. The observed clustering
of the samples is in accordance with the expected shifts in the random vari-
ables of the Karhunen-Loève discretization, very similar to that observed for
the data-abundant case. The observed spread depends on the selected proposal
distribution, and is hence similar for the two noise levels.

Figure 4.18 displays the diagnostics for 4 chains of length 104 for the case of
1 percent noise. From Figure 4.18a it is observed that the PSRF becomes sta-
tionary (deviation from unity of less than 5%) at approximately 500 realizations,
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(a) PSRF (b) Trace plot

(c) Trace plot of the accepted samples (d) Auto-correlation of the original chain

Figure 4.18: Random walk diagnostics for the data-scant simulation with 1 percent
noise based on 4 chains with 104 realizations.

which is a proper indication for the required burn-in size. This burn-in period
is also observable from the trace plots shown in Figure 4.18b and Figure 4.18c.
Figure 4.18d displays the auto-correlation of the samples versus lag, indicating a
significant lag of, for example, approximately 800 samples for chain 1 (note that
the lag of chain 4 exceeds the lag range of the auto-correlation plot). This lag is
explained by the fact that the variation of the employed proposal distribution is
very large compared to that of the posterior. As a consequence, once the region
of high-likelihood is reached, it is very unlikely to accept proposals. The effective
sample size after burn-in removal and thinning of the 4 chains combined is equal
to 61 for the case of 1 percent noise, and 107 for 5 percent noise.

The posterior distributions of the random variables z are displayed in Fig-
ure 4.19 for the 1% noise case and in Figure 4.20 for the 5% noise case. Both cases
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show a posterior shift similar to that observed in the data-abundant scenario. The
corresponding moments of the posterior distributions are shown in Figure 4.21.
For the 1% noise case the spatially-averaged mean is equal to 151 [Gpa] (with a co-
efficient of variation 0.13), and for the 5% noise case the spatially-averaged mean
is 88 [GPa] (with a coefficient of variation of 0.28). The synthetically generated
plane strain modulus has a spatial average of 90 [GPa]. In a spatially-averaged
sense, the posterior plane strain modulus thus significantly improves upon the
prior information for the 5% noise case. For the 1% noise case the spatially-
averaged posterior significantly overestimates the true plane strain modulus. As
for the data-abundant case, substantial spatial fluctuations in the moments of
the posterior plane strain modulus field emerge on account of the inability of the
three employed KL modes to represent a spatially-uniform shift. In particular in
the 1% noise case this results in substantial deviations from the synthetic data.
The difference in noise level is reflected in these plots by the increased stan-
dard deviation of the posterior plane strain modulus field for the 5% noise case.
Note, however, that due to the high rejection rate of the sampling procedure, the
obtained posterior distributions are still under-sampled.

(iii) Uncertainty quantification of fracture length and aperture Fig-
ure 4.22 finally shows the mean and standard deviation of the fracture length
and the fracture aperture at the well. It is observed that for both noise levels
the inference process based on the synthetically-generated noisy pressure data is
capable of attaining a reasonable approximation of the real fracture length and
fracture aperture, despite the poorly-informed prior. The influence of the noise
is also observed in the considered quantities of interest, as the standard deviation
is higher for the moderate noise level than for the low noise level.

4.6 Conclusions
Based on a prototypical model for fluid-driven fracture propagation, the Perkins-
Kern-Nordgren (PKN) model, we have developed an uncertainty quantification
(UQ) framework for hydraulic fracturing based on the theory of Bayesian infer-
ence. The developed framework has the ability to systematically combine prior
information on the uncertain model parameters (most notably the reservoir prop-
erties) with observational data (most importantly well pressures and injection
rates).

Application of Bayesian UQ to the considered problem class requires the infor-
mation, both in the prior and in the observations, to be represented in forms that
are adequate in relation to the employed stochastic inverse solver. In this work,
we consider a representation of the random fields for the reservoir properties via a
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(a) (b)

(c)

Figure 4.19: Binned representation of the marginal posterior distributions for the
coefficients of the Karhunen-Loève expansion at 1% noise.
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(a) (b)

(c)

Figure 4.20: Binned representation of the marginal posterior distributions for the
coefficients of the Karhunen-Loève expansion at 5% noise.
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(a) 1% noise (b) 5% noise

Figure 4.21: Mean µE′ and confidence interval µE′ ± σE′ of the posterior and prior
distributions of the plane-strain-modulus field for the data-scant scenario with two dif-
ferent noise levels.

Karhunen-Loève expansion. A reduced-basis representation based on the singu-
lar value decomposition was considered for the low-dimensional parametrization
of the time-dependent pressure observations.

As a stochastic inverse solver to infer the model uncertainties we have con-
sidered the Metropolis-Hastings algorithm, which is a Markov chain Monte Carlo
method that naturally fits the Bayesian inference setting. In essence, the Metropolis-
Hastings algorithm can be directly applied to the considered problem, but several
aspects have to be considered in order to render the solver effective and efficient,
viz.:

(i) The forward model should be computationally efficient, as the sampler typ-
ically requires a large number of forward model evaluations. We have con-
sidered an assumed-mode Galerkin discretization in space to achieve this.

(ii) The initial part of the random walk, referred to as the burn-in period,
must be discarded from the sample as this initial part does not follow the
posterior distribution. We employ the Gelman and Rubin diagnostic tool
to assess the burn-in period.

(iii) The steps in the random walk must be sufficiently large to ensure inde-
pendence between the accepted realizations. We consider the sample auto-
correlation to assess this independence and apply an acceptance lag to re-
move auto-correlation if needed.

The uncertainty quantification framework has been tested using two scenarios
with synthetic data. In the first scenario the elastic properties of a reservoir
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(a) 1% noise (b) 1% noise

(c) 5% noise (d) 5% noise

Figure 4.22: Evolution of the mean and standard deviation of the fracture length and
the fracture aperture at the inflow boundary obtained from the uncertainty quantifica-
tion framework.



4.6. Conclusions. 147

are inferred based on multiple well observations. This so-called data-abundant
scenario corresponds to the typical hydraulic stimulation setting in which a large
number of wells is present in a reservoir, and a large number of experimental
observations is available. The second scenario pertains to the consideration of a
single well. In this so-called data-scant scenario only a single pressure observation
is available for the inference process of the elastic properties in the reservoir near
the well. The proposed UQ framework is applicable to both scenarios, with
the most substantial difference being the construction of the likelihood from the
observations.

For both considered scenarios the Bayesian-inference process was deliberately
provided with an ill-informed prior to assess the robustness of the method. The
results convey that in a spatially-averaged sense the plane strain modulus can be
inferred by combining prior information with pressure observations. However, the
inability of the considered low-dimensional Karhunen-Loève expansion to repre-
sent a spatially-uniform shift of the elastic properties, results in substantial spatial
fluctuations in the inferred elastic field. To improve the posterior elastic field,
the number of KL modes should be increased or an alternative representation of
the random field should be considered.

Application of the framework to real data sets is part of ongoing work. Al-
though the presented framework can be applied in an identical manner to real
pressure observations, an aspect to carefully regard is that the employed for-
ward model should appropriately capture the essential influences of the model
parameters on the observational outcomes. The suitability of the PKN model to
uncertainty quantification based on real data is questionable in this regard. On
the other hand, the present investigation underscores the importance of model
efficiency, as in the Markov chain Monte-Carlo method many forward problems
must be solved for each effective realization, typically 100:1 in the present study.

In relation to the general suitability of the PKN model, it would be preferable
if one would have a class of models of varying complexity available. Model selec-
tion can then be treated as an integral part of the UQ framework [60], which has
the potential to only use more sophisticated (computationally intensive) models
when needed, and resort to simpler (computationally cheap) models otherwise.
Such a hierarchical consideration of models can improve the UQ framework both
in terms of accuracy and in terms of computational effort.





Chapter 5

Conclusions &
recommendations

Pressure-driven fracture processes are surrounded by uncertainties, particularly
in the context of subsurface engineering, where available information on reser-
voir properties is typically scant. There is a strong need to quantitatively an-
alyze such processes, as such analyses are instrumental to risk assessment and
operational optimizations. The uncertainty quantification framework developed
in this dissertation – which specifically targets the systematic combination of
prior information, observed data, and mathematical-physical models – provides
a computational analysis tool for the quantitative assessment of pressure-driven
fracture processes.

In Section 5.1 we draw conclusions from the work discussed in this disserta-
tion, after which we discuss the recommendations and topics for further study in
Section 5.2.

5.1 Conclusions
In a typical pressure-driven fracture process in subsurface engineering, uncertain-
ties pertain primarily to reservoir properties, as observations on such parameters
(especially away from a well) are not generally available. Some quantities of in-
terest can be measured, such as injection pressures and volumes, but others, such
as fracture geometries, are hard (and/or expensive) to monitor. Information on
quantities of interest that are not directly measurable must therefore be inferred
from the available data. Physical models are essential in this regard, as they
bridge the gap between the uncertain quantities of interest and the observational
data.

149
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An uncertainty quantification framework capable of providing information on
quantities of interest that are not directly measurable must contain the following
components: (i) a mathematical-physical model capable of reliably mapping the
system parameters onto output variables for both the uncertain quantities of
interest and the measurement data; (ii) an inverse solver capable of inferring
the uncertain system parameters from the observed system data; and (iii) a
systematic way of reducing the complexity of the used models, as to enable the
rapid evaluation of the mathematical physical model. Our conclusions regarding
each of these components are discussed below.

The mathematical-physical model and forward uncertainty analysis In
selecting a suitable mathematical-physical model for uncertainty quantification
it is essential that the model is capable of adequately incorporating the promi-
nent sources of uncertainty. Moreover, the model should be capable of deriving
the quantities of interest – encompassing both the observables and the uncer-
tain quantities of interest – from the model input. Based on these requirements
we have considered the Perkins-Kern-Nordgren (PKN) model [29, 30] for planar
fractures.

Although the PKN model is based on various limiting assumptions, most
notably regarding the geometry of the fracture, high-fidelity solutions require the
consideration of computational methods. The reason for this is that the model is
time-dependent, has a moving boundary in the form of the evolving fracture, is
non-linear, and has singular solution behavior in the vicinity of the fracture tip.
We have herein proposed a finite element method to solve the PKN model.

In relation to uncertainty quantification it is essential that the errors with
respect to the solution procedure do not pollute the stochastic response of the
system. At the same time, the model should remain computationally tractable,
as it is typically required to evaluate the model many times when uncertainty
analysis is considered. Our results and the analysis thereof lead to the conclusion
that it is necessary to enforce volume conservation through a Lagrange multiplier
constraint, and that it is required to enrich the solution space with a tip function
that mimics the singular behavior of the solution to strike the balance between
accuracy and computational effort. Comparison of the proposed computational
model with benchmark results presented in the literature indicates that some of
the contemporary available models lack the accuracy required for consideration
in a UQ context.

The proposed finite element discretization of the PKN model has been as-
sessed in the context of a two-stage forward uncertainty analysis. In the first
stage, the model is used to perform a sensitivity analysis of the model param-
eters, including random fields for the reservoir properties. In the second stage,
a Monte Carlo analysis is performed to study the impact of the random input
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parameters on the quantities of interest. An important insight derived from this
study, is that the uncertainty analysis does not only yield information on the
stochastic properties of the output, but it also elucidates the relation between
the model-parameter realizations and particular system behavior.

Both types of stochastic analysis, i.e., sensitivity analysis and Monte Carlo
sampling, are considered to be non-intrusive, in the sense that they can be applied
to existing solvers. Although alternative stochastic techniques, such as, e.g.,
spectral stochastic finite elements, have the potential to enhance the efficiency
of the forward uncertainty analysis, the non-intrusive character of such methods
degrades their attractiveness.

The Bayesian inference method The forward stochastic analysis is an essen-
tial ingredient of the uncertainty quantification framework, but from a practical
perspective the prior information on the model parameters, most notably the
reservoir parameters, is frequently of insufficient quality to provide useful infor-
mation on the quantities of interest. It is therefore essential that observational
data can be integrated in the analysis, as to obtain quantitatively meaningful
results. The Bayesian inference method provides a natural framework to incor-
porate such information.

In order to use the Bayesian update rule to combine prior information on
the model parameters with measurement data into posterior model parameter
probabilities, it is essential that the employed model can map the input data
to the observables. In this regard, the considered PKN model is suitable for
the incorporation of well observables such as pressures and injection rates. The
model as considered here is not suitable for the incorporation of seismic data, as
seismicity is not incorporated in the model. With respect to the incorporation
of a large number of pressure measurements, it has been found to be important
to represent the data observables in a low-dimensional stochastic space, as the
dimensionality of that space impacts the accuracy with which the probabilistic
information can be represented. An important conclusion we draw in this data-
abundant setting is that the singular value decomposition is a powerful method
for the representation of correlated signals, with the additional advantage that it
naturally filters noise from the observations.

We have employed the Metropolis-Hastings algorithm to solve the stochastic
inverse problem. This algorithm is a Markov-chain Monte Carlo (MCMC) method
that naturally fits the Bayesian update rule. As for the forward uncertainty
analysis, an advantage of the Metropolis-Hastings algorithm is that it is non-
intrusive with respect to the computational model. A disadvantage of the method
is that the involved sampling routine requires the evaluation of many forward
problems. In order to be able to evaluate the posterior model information with
reasonable computational effort, in the context of the Bayesian inference method
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we have therefore considered a Ritz-Galerkin technique to attain the solution to
the PKN model.

The Bayesian inference framework is tested using manufactured data, which
allows us to assess the quality of the obtained posterior distribution. We have
found that reliable posterior updates can be obtained, provided that the numer-
ical parameters in the Metropolis-Hastings algorithm are selected adequately. In
this regard it is particularly important to properly select the burn-in period for
the random walk, as initial steps in the MCMC procedure do not follow the pos-
terior distribution. Also thinning of the obtained sample can be important as
to remove auto-correlation within the random walk and to reduce memory us-
age. We can conclude that the Bayesian framework we developed in combination
with all these elements would help to improve the knowledge about the process
parameters.

Reduced order modeling In relation to the uncertainty quantification for
pressure-driven fractures, various assumptions made in relation to the PKN model
limit its usability. Consideration of a full (three-dimensional) finite element model
is impractical, however, on account of the computational effort involved when
using such models in combination with Monte Carlo techniques. Reduced order
modeling (ROM) techniques can be employed to generate model representations
that appropriately balance computational effort and accuracy.

As a step toward the incorporation of ROMs in the developed uncertainty
quantification framework, we have studied the possibilities of applying ROMs
to fracture problems in specimens that are loaded on their external boundaries.
We have found the online-offline paradigm provided by the proper generalized
decomposition (PGD) method to be an ideal companion to the sampling-based
techniques considered in this work, as realizations can be evaluated very quickly
once the decomposition has been established in a (computationally intensive)
pre-processing step.

An essential aspect of the application of the PGD technique to propagat-
ing fractures is the mapping between a reference domain in which the fracture
is stationary and the physical domain in which the fracture propagates. This
mapping has been demonstrated to enable high quality PGD approximations for
the case of a horizontally propagating fracture. An advantageous property of the
PGD approximation in the context of linear elastic fracture mechanics is that the
fracture length is parametrized through the geometry mapping, which facilitates
the (semi-)analytical evaluation of the energy release rate. In general, we con-
clude that the PGD setting we presented requires negligible computational effort
when applied in a Monte Carlo setting when compared to the corresponding finite
element simulations.
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Extension of the PGD framework to more general classes of fracture problems
is feasible to some extent, but will require the design of case-specific fracture ge-
ometry mappings. Although application of the PGD technique to geometrically
complex fracture problems is not evident, this does not necessarily impede its
application in the context of UQ, where the ROM can serve the purpose of a sim-
plified surrogate model. Integration of the PGD technique in the UQ framework
considered in this work requires the consideration of pressure-loaded fractures.
Extension of the studied PGD framework is particularly challenging on account
of the non-constant, and even singular, distribution of the pressure load in typical
fluid-driven fracture problems.

Overall we conclude that uncertainty quantification for the typical setting of a
pressure-driven fracture process, specifically in the context of subsurface engineer-
ing, requires the combination of prior information on the model parameters with
observational data. The Bayesian inference inverse problem, which can be solved
using Markov-chain Monte Carlo methods, provides a natural framework to com-
bine these sources of information. The selection of the mathematical-physical
model (and the associated solution strategy) used to relate the model parameters
to the observable data is subject to requirements in terms of modeling accuracy
and computational effort. In this regard the UQ framework should be combined
with model order reduction techniques, as this offers the opportunity to select
a (reduced) model with a tailored balance between accuracy and computational
effort.

5.2 Recommendations & future research
The choice for the PKN model in this work is driven by the requirement to bal-
ance model versatility with computational feasibility in a many-query setting.
Although the PKN model is of practical use, in the sense that it represents a
relevant class of stimulation processes, the assumptions underlying this model do
restrict its application to a limited range of pressure-driven fracture problems.
Moreover, the PKN model in its natural form does not incorporate poromechan-
ical reservoir behavior and seismicity, which prevents the usage of datasets based
on tiltmeters and seismic data. In this regard (computational) models should be
explored that are of a more generic character than the PKN model. One should
bear in mind that, in the UQ context, these models should remain practical from
a computational effort point of view. Moreover, their robustness, in the sense
of the ability to find reliable solutions for a large range of model parameters, is
of essence in the context of the considered sampling methods. Phase-field meth-
ods, which have been successfully demonstrated in the context of pressure-driven
fracture processes over the past years [55–58], form a prominent class of models
to be considered.
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As already addressed above, reduced-order modeling would provide the user
with the possibility to find a suitable balance between model accuracy and com-
putational effort. Moreover, application of the online-offline paradigm is essen-
tial if the UQ framework is to be applied in real time. Our work on PGD for
mechanically-driven fractures pioneers ROMs for fracture problems, and stipu-
lates the need for extensive further research in this direction. In the UQ context,
a minimally-intrusive reduced order modeling approach would be beneficial, as
the ability to use existing solvers in combination with data would promote adop-
tion of the proposed Bayesian framework. Currently, in terms of intrusiveness,
the ROM is not up to par with the considered sampling-based solution strategy.

Both the development and consideration of more sophisticated models and
the development of improved ROM functionality underline the most prominent
restriction of the framework as it is currently considered, namely that there is
only one mathematical-physical model, rather than a hierarchy of models. In
the context of uncertainty quantification, methods have already been developed
to accommodate model hierarchies [60, 201]. Such UQ strategies enhance the
efficiency of the framework by selecting models based on their adequacy. Detailed
models, which are generally computationally expensive, could only be used when
the data indicates a need therefore, and simpler models (like PKN) would be
considered otherwise.

Model hierarchies can also be used to improve the efficiency of the inverse
solver. For example, a simple model can be used to translate an uninformative
prior into a data-calibrated posterior. This posterior, which is considerably more
informative than the original prior, would then be used as prior information
for an inversion with a more advanced model. The better quality of the prior
for the advanced model can be used to enhance the efficiency of the sampling
method. Multi-level Monte Carlo techniques [202, 203] form another class of
solution strategies that can enhance the efficiency of the framework.
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and new challenges in the use of the proper generalized decomposition for
solving multidimensional models. Archives of Computational Methods in
Engineering, 17(4):327–350, Dec 2010.

[160] Pedro Dı́ez, Zlotnik Sergio, Alberto Garćıa-González, and Antonio Huerta.
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Summary

Improved understanding of pressure-driven fracture processes is important in
a wide range of fields, such as environmental engineering, biomechanical engi-
neering, and geomechanics. This thesis focuses on the simulation of hydraulic
fracturing as a technique to enhance reservoir connectivity. Simulation of fluid-
driven fracturing is challenging as it involves the coupling of various models, viz.:
i) a solid model for the deformation of the rock due to induced pressure by the
fluid; ii) a flow model for the fluid which includes a model for fluid leak off into
the rock formation; iii) a fracture propagation model. Moreover, the param-
eters involved in hydraulic fracturing processes are surrounded by uncertainty,
as available data on, e.g., rock formations are scant and available models are
still rudimentary. Because of the risks involved in the hydraulic fracturing pro-
cess, there is an increasing need to quantify the uncertainty in pressure-driven
fracturing models and to improve their predictive capabilities.

The primary objective of this doctoral thesis is to develop a computational
framework that combines simulation techniques for pressure-driven fracturing
processes with state-of-the-art uncertainty quantification techniques. The critical
elements in the developed computational uncertainty quantification framework
are: i) a forward model that predicts the evolution of a pressure-driven fracture
in the presence of parameter uncertainty, e.g., random formation properties; ii) a
model order reduction step to reduce the complexity of the computational prob-
lem, and iii) an inverse model capable of using measurements, e.g. well pressures,
to infer uncertain system parameters. The effective combination of these compu-
tational techniques improves the knowledge of the uncertain parameters involved
in the fracturing process.

For the forward model, we consider the Perkins-Kern-Nordgren (PKN) model
for hydraulic fracturing, as this is a well-established model in the petroleum in-
dustry. The PKN model is strongly non-linear on account of its free-boundary
character, its time-dependence, and the presence of a solution singularity at the
moving tip. We have proposed a simulation technique for the PKN model based
on the Finite Element Method (FEM). To endow the computational model with
predictive capabilities in the context of the developed uncertainty quantification
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framework, it is essential to enrich the computational basis in order to adequately
represent the singular tip behavior, and to enforce the global mass balance in the
simulation through a Lagrange multiplier technique. This computational PKN
model - which is validated based on results reported in the literature - is used
in a sensitivity analysis to quantify the influence of various parameters on the
fracturing process. Furthermore, a detailed probabilistic analysis of the hydraulic
fracturing process is performed using the Monte Carlo sampling method. The
results acquired from this forward problem setting provide insight into the un-
certain system parameters and their influence on the fracture process.

To infer uncertain system parameters based on observables, an inverse prob-
lem must be solved. From an algorithmic perspective, the considered inverse
solution procedure solves the forward problem many times (typically thousands).
In this regard, it is essential that the forward model provides a practical bal-
ance between model accuracy and affordability in terms of computational effort.
For finite element simulation this typically implies that a model order reduc-
tion step must be conducted. In this thesis we propose a model order reduction
framework for fracture problems which combines the Proper Generalized Decom-
position (PGD) reduction technique with the Griffith’s model for crack propaga-
tion in brittle materials. The developed framework provides explicit parametric
solutions, which can efficiently be employed in non-intrusive sampling-based tech-
niques (e.g., Monte Carlo type sampling techniques).

The considered inverse model is based on Bayesian inference techniques, which
in essence provide a framework to update information regarding uncertain model
parameters using measurement data. The uncertain parameter inference is con-
ducted through the Markov chain Monte Carlo sampling technique, in which the
forward model is used to assess the likelihood of a parameter realization in rela-
tion to the observables. We have explored various data representations for both
the uncertain system parameters and for the observables, where in particular the
representation of the observables based on a Singular Value Decomposition is a
novel contribution that makes the proposed framework practical in the context
of data-abundant pressure-driven fracture propagation models.

The computational uncertainty quantification framework is demonstrated for
hydraulic fracturing applications, where it is shown that the systematic combina-
tion of the model properties with the observed data provides a better estimation
of the fracturing process than would be obtained by either the model or the
data separately. The suitability of the proposed framework for uncertainty quan-
tification for pressure-driven fractures is verified based on two scenarios with
synthetically generated data, namely a data-abundant and a data-scant setting.
For both cases, the Bayesian inference framework is capable of improving upon
the prior information by using the measurement data.
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