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Abstract—Failure risk must be tiny in high-integrity systems,
such as those in cars, satellites and aircraft. Hence, safety
measures must be deployed to avoid a single fault leading to a
failure. Redundancy has been often used to address this concern,
but it has been proven insufficient if a single fault can cause
the same error in all redundant elements, which defeats the
purpose of redundancy for error detection. Hence, to avoid this
scenario, diversity is implemented along with redundancy, being
lockstep execution the most popular diverse redundancy solution
for computing cores. However, classic lockstep solutions have
non-negligible limitations if implemented in hardware (e.g., half
of the cores can only be used for redundant execution and are
not even visible at user level), or in software (e.g., the software
loop to enforce staggering is long and costs performance).

This paper tackles the limitations of classic lockstep solutions
by providing an extended analysis and evaluation of SafeDE,
a Diversity Enforcement hardware module combining the short
loop to enforce diversity of hardware solutions, and the non-
intrusiveness of software solutions. Hence, cores can operate in
lockstep mode efficiently or run independent tasks. In this paper,
we present SafeDE and its rationale, its application to N-modular
systems, its hardware and software integration, and an evaluation
showing its performance and area efficiency, and its behavior in
the presence of faults.

Index Terms—functional safety, redundancy, diversity, faults

I. INTRODUCTION

High-performance multicores are needed to deliver the
increasing performance demands of highly-automated and
autonomous systems in automotive, avionics and space, among
other domains. However, performance demands come along
with safety requirements in those domains, as dictated in
corresponding functional safety standards (e.g., ISO26262 in
automotive [16]). One such requirement for high-integrity
systems consists of avoiding the unacceptable risk (aka
unreasonable risk in ISO26262 terminology) of common cause
failures (CCFs), where a CCF stands for a failure caused by
a single fault affecting all redundant components analogously.
Note that CCFs relate to the effect, i.e. the failure, not to
the source, i.e. the fault. Hence, CCFs could be caused, for
instance, by a soft error affecting clock logic of two cores, or
by a defect causing voltage sporadic droops.

CCFs are generally mitigated by using diverse
redundancy [5], so that, even if a fault affects all redundant
components (e.g., a voltage droop), since they have different
state, potential errors differ and can be detected. Error
correction codes (ECC) for storage, Cyclic Redundancy
Coding (CRC) for communications, and lockstepping for

computation are the most common solutions [2]. The latter –
lockstep execution [15], [17], [18], [36] – is the focus of this
work.

Lockstep execution (hardware-only) builds upon identical
redundant cores running the same software with some
staggering – i.e. the head core runs N cycles ahead of the
trail one – being one of them the one effectively sending
and receiving external signals (e.g., load/store data, interrupts,
etc.). The outputs of the other core are just used for comparison
for error detection reasons. However, in such a scheme only
one core is visible at user level, thus not allowing to use both
cores to run independent tasks if lockstep execution is not
needed.

A light-weight lockstep execution scheme has been recently
proposed to overcome the limitations of regular hardware-only
lockstepping [3]. Such solution builds on software redundancy
(i.e., the task is run redundantly from the software layers), and
on a software monitor enforcing sufficient staggering between
redundant processes. However, due to the slow software
monitoring loop, staggering is significant (e.g., 100µs - 1ms),
which imposes a performance loss as significant as such
staggering (as opposed to the hardware-only solution whose
staggering is few cycles), and requires an additional core to
run the monitor periodically.

This paper presents extensive details and evaluation
of SafeDE, a Diversity Enforcement hardware module
overcoming the limitations of the previous two schemes. In
particular, SafeDE, which we first introduced in [6] and
extend in this work, implements the light-weight lockstep
execution scheme, but with a hardware monitor (SafeDE
module) rather than a software module, hence allowing for
few-cycles staggering and not needing any additional core to
run any monitor software. Moreover, the integration of SafeDE
does not require modifying the cores being monitored, hence
being a lowly intrusive solution. The main contributions of
this work are as follows:

• We present SafeDE, the monitoring module to enable
lowly-intrusive diverse redundancy with a flexible scheme
that can be enabled or disabled at convenience. We further
detail how to extend it to arbitrary redundancy (e.g., with
3 or more cores instead of only 2).

• We implement it at VHDL in a SoC for the space domain
based on CAES Gaisler’s NOEL-V cores [11], and
provide details on its bare metal and Linux integrations.
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(a) Hardware-only (b) Software-only
Fig. 1. Schematic of the existing lockstep schemes.

• We assess SafeDE’s performance and area overheads, as
well as effectiveness through a fault injection campaign.

The rest of the paper is organized as follows. Background is
presented in Section II. SafeDE and its hardware and software
integrations are introduced in Section III. Section IV evaluates
SafeDE. Related work is presented in Section V. Section VI
summarizes this work.

II. BACKGROUND

This section reviews the main concepts and approaches
related to lockstep execution relevant for this work.

A. Redundancy, Diversity and Sphere of Replication

The design, as well as the verification and validation
(V&V) stages for safety-related systems arguably remove
unreasonable risk of any kind of systematic fault, either
software or hardware related. However, random hardware
faults are unavoidable in nature, so they must be managed
with suitable safety measures, being diverse redundancy a
mandatory safety measure for the highest Safety Integrity
Levels (SIL for short).

Diverse redundancy can be realized by using diverse
hardware and/or software, but these approaches may double
part of the design, and V&V costs. Alternatively, diverse
redundancy can also be realized by executing the same
software in identical hardware, but with some staggering,
hence guaranteeing that replicas hold different state at any
time instant so that any common fault will lead to diverse
errors (if any). This approach, if realized with two cores, is
referred to as Dual Core LockStepping (DCLS) and is used in
several commercial processors [15], [36], [38].

The sphere of replication determines what outputs of the
replicas are compared to detect errors. In the case of hardware-
based lockstep, such sphere includes only a core, so any off-
core activity (data fetch or store beyond in-core caches, I/O
activity, interrupts, etc.) is compared across cores for error
detection. In the case of light-weight lockstep execution, it is
limited to programs or code regions without I/O, and detects
errors by comparing data outputs at the end of the execution.

B. Lockstep Schemes

Tight hardware-based lockstep execution. This approach,
implemented in processors such as, for instance, the Infineon
AURIX family [15], uses two physical cores (head and trail
cores) out of which only one (e.g., head core) is visible at

user level and the other one (e.g., trail core) is a shadow
core. They perform exactly the same activity but shifted by
N cycles, so that the state of the trail core matches that of the
head core N cycles before. External requests (data load/store,
interrupts, etc.) are compared before being exposed externally,
hence needing some buffering to store head requests during N
cycles. Analogously, responses are delivered immediately to
the head core when they arrive, but queued during N cycles
before being delivered to the trail core, which also needs
some buffering. Such scheme is depicted in Figure 1(a). Note
that staggering is typically low (e.g., 2 or 3 cycles) to keep
buffering overheads low.

Light-weight software-based lockstep execution. In this
approach, redundancy is created at software level by running
a given program (task) twice on different cores [3]. Those task
replicas run along with a monitor thread, which is deployed in
a third core, to enforce some staggering across replicas so that
one of them becomes the head and the other one the trail task
(and core). Note that the monitor itself is unprotected, so this
approach requires the execution of the monitor to occur on
a core with hardware-based lockstepping, either in the same
or another chip. In detail, the operation of this scheme is as
follows (see Figure 1(b)): the monitor schedules redundant
processes (replicas) in two different cores, but only allows
the head core to make progress. The monitor collects the
number of instructions executed by each core (#instr in the
figure), and only allows the trail core to execute its task if
#instrhead − #instrtrail, namely the staggering in terms
of number of instructions, exceeds a given threshold THstag .
Such condition is checked by the monitor every Tcheck cycles
to decide whether the trail core is allowed to proceed during
the following interval. Only when the head core finishes
its execution, the trail core is allowed to run unrestrictedly.
Results from both executions are compared when both cores
complete their execution. Note that between two consecutive
checks of the staggering, the trail core could execute up to
Tcheck · CommitWidth instructions, where CommitWidth
stands for the maximum number of instructions that can
be retired per cycle. THstag must be strictly higher than
Tcheck ·CommitWidth. As shown in [3], due to the software
overheads to collect #instrhead and #instrtrail, and to stall a
process – if needed, THstag must be a number of instructions
taking at least around 100µs to run.

III. SAFEDE: A DIVERSITY ENFORCEMENT HARDWARE
MODULE

This section presents the architecture of SafeDE, its features
and limitations, its extension towards N-modular redundancy,
and its implementation and integration (both hardware and
software) details.

A. SafeDE Architecture

SafeDE builds on the light-weight lockstepping concept,
which has only been implemented in software so far [3], with
the aim of preserving its advantages and removing its main
limitations, i.e., the need for an extra core to run the monitor
and a long feedback loop imposing a large staggering. SafeDE
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Fig. 2. SafeDE architecture.

is architected as a tiny component connected to the two
monitored cores, as shown in Figure 2. SafeDE collects the
instruction counts from the two cores, namely #instrhead and
#instrtrail, and generates the stall signal for the trail core.
As for the software-only solution, SafeDE checks whether the
head core is at least THstag instructions ahead of the trail
one. If this is not the case, the stall signal for the trail core is
raised, which stalls its pipeline by stalling one or several of
its stages (e.g., stalling the commit stage).

SafeDE parameters. The configuration registers of SafeDE
are THstag , active, CritSec1 and CritSec2, and they
operate as follows:

• THstag corresponds to the minimum staggering (in
terms of number of instructions) to be enforced between
the head and trail cores. Typically, it has a very
low value (e.g., 10 instructions), hence implementing a
staggering distance much smaller than that of software-
only solutions, and comparable to that of tight hardware-
based lockstep execution.

• active determines whether SafeDE is active. If this signal
is reset, SafeDE is completely neutral since it can never
stall that trail core.

• CritSec1 (CritSec2) is set by the head (trail) core when
it enters the code region needing lockstep, and reset when
leaving it. Hence, lockstepping must be enforced when
CritSec1 and CritSec2 are both set, as this indicates
that both cores are executing the code region needing
lockstep execution.

SafeDE operation. While active = 0, SafeDE is inactive.
Eventually, THstag is programmed and active is set, hence
activating SafeDE. Activating SafeDE automatically resets
CritSec1 and CritSec2 keeping SafeDE ready but innocuous
until CritSec2 is activated. Eventually, one of the two cores
activates its CritSec register, becomes the head core, and its
instruction counter (#instrhead) is reset and starts counting.
Whenever the other core sets its CritSec register, it becomes
the trail core, and its instruction counter (#instrtrail) is
also reset. If the head core is not ahead THstag instructions
of the trail core, SafeDE sets the stall signal for the trail
core. Note that, since any of the two cores could be the
trail core depending on which one sets its CritSec first,
the stall signal exists for both cores. Note that, if the
staggering is too low when the trail core sets its CritSec

(#instrhead−#instrtrail < THstag), the stall signal for the
trail core will be raised immediately. Whenever the staggering
is enough, the trail core is allowed to resume its execution.
Note that SafeDE checks every cycle whether the staggering is
enough. This allows using tiny staggering (THstag) values, in
contrast with the large staggering needed by the software-only
solution. Moreover, SafeDE controls this condition, hence not
needing any additional core to run any monitor software. Also
note that by performing such check every cycle, negligible
switching power is induced since #instrhead and #instrtrail
barely change. Eventually, the head core reaches the end of
its protected code region and resets its CritSec register. At
that point, SafeDE becomes innocuous again not raising any
stall signal, hence letting the trail core reaching also the end
of its protected region.

Software process. At software level, end users need to
configure and set SafeDE active with the corresponding driver,
and typically, use an API to schedule both redundant processes
to the corresponding cores managing CritSec registers
accordingly. Those software components are described later in
this section in the context of bare metal and Linux integrations.

B. Features and Limitations Analysis

This section presents the key features and limitations of
SafeDE, and how they compare against the software-only
solution [3].

1) SafeDE features:
• Low cost. SafeDE is a tiny hardware module

implementing light-weight lockstep execution that avoids
the need for an extra core to run a monitor at specific
(tight) time intervals, as opposed to the software-only
solution.

• Low staggering. By controlling the feedback loop at
hardware level, it is checked every cycle and hence,
staggering can be kept to a minimum (e.g., 10 or 20
instructions). Note that the software-only solution needs
a staggering value of many thousands of instructions to
reach a staggering above 100µs, as discussed before.

• Flexibility. SafeDE can be easily enabled and disabled.
Hence, the main overheads relate to the creation of the
redundant processes at software level, as needed in the
context of light-weight lockstep execution, but not to the
actual implementation of SafeDE, which does not impose
further limitations.

• Low intrusiveness. SafeDE needs some signals to be
exported from cores, such as those to read and reset
instruction counts, and the pipeline stalling signal. These
modifications are much lighter than those needed in the
case of tight lockstep execution. While the software-
only solution does not require any hardware change, as
opposed to SafeDE, it may need modifying the operating
system to enable the management of the instruction
counts remotely from other cores. SafeDE does not need
any such operating system modification.

2) SafeDE limitations:
• Non-null intrusiveness. While hardware modifications

needed by SafeDE are light, it needs hardware support,
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and hence, cannot be used on COTS multicores, as
opposed to the software-only solution.

• Limited applicability. Light-weight lockstepping relies
on the redundant processes executing identical instruction
streams to guarantee the effectiveness of the approach.
While this is usually the case, it precludes the use of
this scheme for programs whose control path is non-
deterministic (e.g., based on random choices independent
across redundant processes). Also, SafeDE may not be
used for parallel programs if the number of instructions
of any thread may vary depending on the order in which
they get a specific lock, since this could make redundant
threads execute a different number of instructions.
Also, since light-weight lockstepping exposes all activity
redundantly, it should not be used along with I/O
operations that may change the functionality of the
system if repeated. In any case, note that those limitations
relate to the light-weight lockstepping scheme rather
than to SafeDE, and hence, affect also the software-only
solution.

• Limited diversity. By using two cores with staggered
execution, SafeDE, as well as the software-only solution,
provide physical and time diversity. However, if CCFs can
be induced by the core design (e.g., physically weak gates
identical in both cores), other types of diversity, such as
layout diversity, are needed, and such diversity cannot
be reached without appropriate (and intrusive) hardware
modifications.

• SafeDE hardening. SafeDE must be hardened to mitigate
the risk of a single fault in SafeDE leading to a failure.
Alternatively, SafeDE can also be implemented with
physical diverse redundancy, as for tight lockstepping
replicating the scheme in Figure 1(a), but applied to
SafeDE instead of to the cores.

3) Scope of applicability: As discussed before, light-
weight lockstepping has limited applicability, hence affecting
both SafeDE and the software-only solution. Therefore,
SafeDE can only be used for some code regions rather
than for the full program. Code regions exercising light-
weight lockstepping limitations must be run on cores
implementing tight lockstepping. Hence, at least two cores
must implement tight hardware-based lockstepping. However,
compute intensive parts of the code can be managed with
SafeDE. This opens the door to using deployments with two
tightly lockstepped cores (e.g., to run I/O-related code regions)
and the remaining cores building on SafeDE. For instance, an
8-core multicore would offer 7 user-visible cores by shadowing
only one of the cores for tight lockstepping. Hence, one could
run a varying number of lockstepped and non-lockstepped
tasks, ranging from 4 lockstepped to 1 lockstepped and 6 non-
lockstepped. Instead, if tight lockstepping is used for all cores,
then only 4 cores are visible at user level regardless of whether
tasks need such support.

C. Towards N-modular Redundancy

Note that, while we implement and assess SafeDE in the
context of dual-modular redundancy (DMR), it can be easily

Fig. 3. N-modular redundancy scheme example with SafeDE.

extended to N-modular redundancy, which may be needed for
N > 2 in some domains such as, for instance, avionics or
medical, where 3-modular or even 5-modular redundancy may
be needed.

Regardless of the value of N , SafeDE must manage the
N cores so that one of them is the head core, one of them
is the trail core, and the remaining ones inherit both, head
and trail behavior. For instance, in the case of triple-modular
redundancy (TMR), core 1 is the head core w.r.t. core 2, core
2 is the trail core w.r.t. core 1 and the head core w.r.t. core 3,
and core 3 is the trail core w.r.t. core 2. Therefore, given N
cores, SafeDE must activate the stalli signal for corei if the
following condition holds: #instri−1 − #instri < THstag ,
where #instri−1 and #instri correspond to the instruction
counts of corei−1 and corei respectively, and 1 ≤ i < N .

In the context of N-modular redundancy, note that the
operation with CritSec is analogous to DMR, hence cores
take the role of corei when they are the ith core setting
their corresponding CritSec register. A core corei cannot
be further stalled when corei−1 leaves its critical region by
resetting its CritSec register. However, the remaining cores
(from corei+1 to coreN ) can still be stalled if their staggering
becomes too low w.r.t. their respective head cores.

One potential realization of the overall concept with flexible
N-modular redundancy could impose that the cores in the
multicore are physically paired for SafeDE operation so
that core1 is the head of core2, core2 of core3, and
so on and so forth. Then, N − 1 SafeDE modules are
deployed connecting each pair of consecutive cores. Finally,
by activating appropriate SafeDE modules, one could have any
combination of N-modular redundancy at will. For instance,
Figure 3 illustrates a case where an 8-core multicore uses 3
cores with TMR (cores 1-3), two pairs of 2 cores with DMR
(cores 4-5 and 7-8), and 1 core running independently (core 6).
This is achieved by enabling specific SafeDE modules (light-
colored ones) and keeping others inactive (black ones).

D. Implementation and Integration

As a proof of concept, we have integrated SafeDE in an
industrial space MultiProcessor System on Chip (MPSoC)
based on CAES Gaisler RISC-V NOEL-V cores [11]. This
platform consists of a consistent set of reusable VHDL IP
cores by Gaisler whose main interface is a set of common on-
chip buses. Those buses implement the standard AMBA 2.0,
and SafeDE has been implemented in VHDL as another IP
core compatible with such bus interface.

1) System on Chip: SafeDE is integrated and evaluated
in a specific MPSoC instance including 2 Gaisler’s NOEL-
V 64-bit cores. Those cores are dual-issue, implement the
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Fig. 4. High-level representation of SafeDE integrated into the system.

RISC-V Instruction Set Architecture (ISA), include 7 pipeline
stages, and local L1 data and instruction caches. Cores
are connected among them, and to a shared L2 cache and
the memory subsystem through a 128-bit AMBA Advanced
High-performance Bus (AHB). Components requiring low
bandwidth, such as for instance, SafeDE, are connected instead
through an AMBA Advanced Peripheral Bus (APB).

2) Hardware integration: SafeDE interface builds on the
standard APB interface to make it highly portable. In
particular, SafeDE is an APB slave in the SoC. SafeDE is
also directly connected to the cores to collect their instruction
counters, which are mapped to SafeDE as inputs, to stall the
trail core whenever needed. The instruction counters determine
the number of instructions executed by each core and used
to compute the real staggering across head and trail cores.
Regarding the stall signal produced by SafeDE, it is ORed
with an internal core signal in charge of freezing the pipeline
by not allowing register values to be updated. Overall, the
only modifications needed in the cores include exporting
the instruction counter1 to SafeDE, and placing an OR gate
appropriately to stall the pipeline whenever needed. The SoC
including SafeDE is depicted in Figure 4 for completeness.

3) Configuration and operation: SafeDE configuration
registers, namely THstag , active, CritSec1 and CritSec2,
are mapped to specific memory addresses. Their operation is
detailed in Section III-A. Apart from those functional registers,
SafeDE also includes several statistics registers collecting
information such as the maximum and minimum staggering
observed, number of stall signal activations (i.e., how many
times the stall signal is raised), number of stall cycles for
the trail core, executed instructions of each core, etc. Since
SafeDE has an APB interface and memory-mapped registers,
all its registers can be read and written with regular load and
store operations.

E. Software Integration

We have developed the software interface to control the
SafeDE IP. We considered two scenarios where SafeDE can be

1Note that the instruction counter, along with the cycle counter, are the
main counters in any processor and are generally implemented in any SoC.

deployed: bare-metal systems, and systems with an operating
system (Linux in our case). Hence, we implemented two
software integrations. A C library, which is enough for a bare
metal setup, and a driver for a Linux setup.

1) Bare Metal Integration: To integrate SafeDE software in
a bare metal setup we have created an API that consists of a
C library to configure the internal SafeDE registers. The API
contains functions to enable and reset SafeDE, configure the
staggering, indicate when the critical section starts and finishes
for each core, and gather the execution results (statistics). At
run time, SafeDE must be initialized first. Such initialization
includes configuring the staggering, and setting the reset and
enable bits using the API. Whenever a core starts or finishes
the critical region, a function from the API has to be executed
to notify the SafeDE module. Once the task has finished, the
statistics from the safe execution can be retrieved, again, using
a function provided in the API library.

2) Linux Integration: In Linux, it is not possible to access
directly the memory positions mapped to SafeDE registers
from the user space. To allow the user to access SafeDE
registers, we need to access the kernel space using a driver.
We have programmed a Linux driver and a C library (API)
that allow the user to communicate with the SafeDE module.

For the Linux API, we use a set of functions analogous
to those for the bare metal integration, but this time managed
through the driver. The API calls communicate with the driver
by writing the commands into a Linux device file, a special file
in the Linux file system created during the driver initialization
process. Later, the driver reads the commands from the device
file and modifies the SafeDE registers accordingly.

As stated before, one of the SafeDE limitations is that both
cores have to execute the exact same instructions. However,
in a preemptive operating system, a process in the critical
region may be preempted. Since the critical region is active,
instructions executed in that core would be counted as part
of the critical region, hence de-synchronizing staggering in
an arbitrary manner. Deactivating the corresponding CritSec
register would not be a better solution since it would not occur
immediately, hence altering the instruction count anyway, and
would lead to the virtual finalization of the lockstep execution.
Some guidelines to avoid this situation are as follows:

1) In Linux, each process has a mask indicating in which
subset of the cores that process can be executed (a.k.a.
process affinity). The particular case in which this subset
is only one core, is named binding. In our strategy, we
bind the two critical processes into two cores and modify
all the other processes (including kernel processes)
affinity to avoid preemption of the critical processes.

2) In order to give the highest priority to the two
redundant critical tasks so that they start immediately
and unnecessary stalls do not occur, we must enqueue
those tasks into the highest priority queue, which is
SCHED FIFO queue. We perform that employing the
Linux system call sched setscheduler().

Note that, if a real-time operating system (RTOS) for safety-
related systems was used instead of Linux (e.g., fentISS’
XtratuM, SYSGO’s PikeOS, RTEMS), such problem would
not exist and simpler mechanisms related to task scheduling
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and priority assignment would suffice to guarantee the non-
preemptive execution of light-weight lockstepped processes.

IV. EVALUATION

This section assesses SafeDE in the context of the
aforementioned MPSoC. For that purpose, we synthesized the
MPSoC including SafeDE into a Xilinx Kintex UltraScale
KCU105 evaluation kit.

A. Functional Validation

SafeDE implementation in the FPGA is validated with
usual VHDL testbenches. To validate its correct operation
with representative programs, we have used a bare metal
setup and have ported the TACLeBench benchmark suite [8].
TACLeBench suite is a set of self-contained and open source
benchmarks for real-time systems. These benchmarks have
their inputs hardcoded along with the source code, thus easing
their porting onto a bare metal setup. Their execution times
are typically between few hundreds and few millions of
cycles, hence easing debugging and the analysis of unexpected
results during simulation or emulation. In our evaluation,
we use a staggering of 20 cycles (THstag = 20), and
recorded the lowest staggering observed during the execution
building on the SafeDE statistics register recording this value.
Our experiments confirm that the real staggering experienced
across all executions of all benchmarks has been never below
20 cycles, therefore confirming the efficacy of SafeDE to
preserve a sufficient staggering.

B. Fault injection

We have performed a simulation-based fault injection
campaign to evaluate the CCF detection capabilities of the
aforementioned platform integrating SafeDE. We have added
non-synthesizable logic into the VHDL files of the CAES
Gaisler NOEL-V cores to inject faults in four different
locations of the pipeline:

• ALU: The fault is injected in a random bit, of one of the
inputs of one of the two ALUs randomly selected (both
the input and the ALU).

• Late ALU: Analogous to the previous one, but for late
ALUs in the pipeline instead of regular ones.

• Memory: In the memory stage, the fault is injected in a
random bit of the data to be written in the cache.

• Write back: In the write back stage, the fault is injected
in a random bit in a random write port of the register file.

In our fault injection campaign, three fault models have been
considered: stuck-at-0, stuck-at-1, and bit flip. They set the
value of the bit selected for injection to 0, 1 and its logical
complementary value respectively. We have enforced the fault
during 1 cycle only, but since most of the faults became
quickly masked, we have repeated the experiments making
faults last 10 cycles instead. In the case of bit flip, we flip the
bit and keep such value for 10 cycles regardless of whether
the bit is modified.

Since simulations are slow, we have performed our fault
injection campaign in one specific benchmark: FAC. In

TABLE I
FAULT INJECTION RESULTS CLASSIFIED BY FAULT MODEL.

principle, no CCFs should escape SafeDE itself, and we
expected to find only CCFs that cannot be detected by light-
weight and/or tight lockstepping, regardless of how this is
implemented. As shown next, all those insights are already
observed with this benchmark. FAC computes the factorial of
several numbers and accumulates their results. The benchmark
code is replicated in memory and executed in both cores
simultaneously with SafeDE active and imposing a minimum
staggering of 20 instructions. Faults are injected in a cycle
selected randomly in the period where both redundant tasks
are active, i.e. since the trail core starts until the head core
finishes. The fault location, namely ALU, late ALU, memory
or write back, is randomly selected. The fault is injected in
the same location and cycle in both cores to emulate a CCF2.

We have analyzed the results of each simulation considering
the comparison of results with the golden run outputs, memory
dump comparison, and monitoring the AHB transmission
during the simulation (to check for invalid memory accesses).

The possible outcomes considered are based on the
categories in [21], which we extend conveniently to consider
additional categories relevant for CCFs:

• Timeout: The simulation exceeds 90 seconds. Note that
the fault-free simulation takes 35 seconds.

• Crash: The simulation process is terminated abnormally.
• Software detected: Error detected by software

comparison between the results of both cores, including
differences across data in memory.

• Identical memory SDC: Both executions produce the
same memory corruptions (SDC). They are identified in
the post-analysis using the memory dumps.

• DUE: One of the cores wrote outside its memory limits
causing a non recoverable error. It is detected with the
AHB transaction monitoring.

• Masked: Outputs were identical to the golden
run outputs, including memory dumps and AHB
transmissions.

• Undetected error: The software comparison did not raise
any error but the result is different from the golden run.

Note that, only undetected error and identical memory SDC
categories correspond to CCFs.

2Note, however, that, by having different core states, some faults affecting
both cores (e.g., voltage droops) could easily lead to different faults in
the cores (e.g., different effects in different locations), hence reducing the
probability of a CCF.
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Table I summarizes the fault injection results. For each fault
model and fault duration (either 1 or 10 cycles), we performed
4,000 simulations. As shown, out of the 24,000 simulations
performed, some simulations led to timeout or crash, hence
making the error easily detectable. The number of such cases
is higher for a larger fault duration. Some other faults led to
errors detected by comparing the outputs, including data in
memory (SW detected). Some simulations produced errors in
memory, but none of those cases had the two memory dumps
equal. Hence, identical memory SDC – one of the two CCF
categories – is always zero. During the injection campaign, no
DUE appeared. Still, some injections that were classified in the
timeout, crash or error detected categories also wrote out of
their memory limits. Most of the faults injected were masked.
This is particularly true if the fault duration is short (1 cycle).
Finally, only in six of the simulations the error produced could
not be detected by the software comparison. In all occasions,
the faults were injected in the write back stage. Since these
six experiments would correspond to a CCF despite using
lockstepping, we analyze them in detail.

The benchmark FAC calculates and accumulates the
factorials of the numbers from 12 to 0 using recursion.
As shown in Figure 5, the assembly code obtained after
compilation has three main sections: initialization, an outer
loop to accumulate the factorials and an inner loop to derive
the factorials. The fault injected (a bit flip) in the head core
is applied while the factorial of 8 is being processed in the
inner loop. The least significant bit of the second write port
of the register file becomes 1 instead of 0, and the value store
is erroneous for up to 10 cycles. However, those values are
read through a bypass in the inner loop instead of from the
register file, so no impact is observed in the inner loop. In the
last iteration of the inner loop, the result of the factorial is
stored in register a4 (line 8) with an erroneous value (due to
the duration of the fault). Later, the register a4 is read as an
operand for addw instruction in line 17, which accumulates
all the calculated factorials. Therefore, this error is propagated
to the output. Particularly, the erroneous result contains one
bit flip in the least significant bit with respect to the correct
result.

In the trail core, the fault is injected while the core is
executing the outer loop. The fault affects several instructions,
but all the errors except one are masked because they are either
overwritten or not read since they are forwarded like in the
head core. The error not masked is produced in line 17 when
the result of the addition is written back to the a6 register,
which stores the accumulation of the factorials. Again, the final
value contains one bit flip with respect to the correct output in
the least significant bit. Therefore, even though the fault affects
both cores differently, in the end, it produces the same bit flip
in the accumulated register (a6), which stores the output value.
Thus, the software is not capable of detecting the error, not
because of a malfunctioning of SafeDE, but because of the
semantics of the benchmark FAC. In fact, even if we used
tight lockstepping, external core activity would be identical
for both cores and no error would be detected.

We content that, despite we could produce this apparent
CCF in our fault injection campaign, such effect would be

Fig. 5. Excerpt of the assembly code of the benchmark FAC.

very unlikely to occur in practice since both cores have
different states when the fault occurs, and this should lead to
heterogeneous electric impact, hence causing heterogeneous
errors (e.g., affecting only one core, or affecting different bits
or locations of both cores).

C. Execution time overhead

We have measured the performance of the TACLeBench in
three different scenarios: (1) Isolation, where only one core
runs the benchmark; (2) Redundancy without diversity, where
two cores run the benchmark without enforcing any staggering;
and (3) Redundancy with diversity enforced by SafeDE with
THstag = 20. Such THstag is set large enough so that both
cores cannot hold any common instruction in their pipelines
to avoid a case where such instruction causes all the activity
and hence, a CCF is possible. Since the pipeline has 7 stages,
and each stage can hold up to 2 instructions, any value above
14 suffices to guarantee that instructions executed across cores
at any time differ.

To discount the effect of effects such as DRAM refreshes
and other minor performance variations, we run each
benchmark 1,000 times and report average cycle counts. In
any case, variations observed are up to few tens of cycles
across runs.

As shown in Figure 6, performance degrades only by 0.3%
on average (up to 1.3% for BITONIC) w.r.t. isolation runs,
and 0.003%, so ≈0% (up to 0.6% for IIR) w.r.t. redundancy
without diversity. Performance variations across runs, and even
marginal performance gains with SafeDE relate to the initial
state of the branch predictor, and to memory alignment of the
binaries impacting the instruction cache behavior, since in the
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Fig. 6. Average execution time of different TACLeBench benchmarks
normalized w.r.t. their execution time in isolation.

TABLE II
CLASSIFICATION OF REDUNDANT EXECUTION TECHNIQUES.

Strategy Target Diversity Approaches

HW
CPU

Yes (tight) [18], [24], [36]
Yes (light) Our approach (low staggering)

No [9], [10], [22], [25], [28], [31]

GPU Partially [1]
No [20], [23], [27], [37]

SW-Only CPU
Yes (light) [3] (high staggering)

No [12], [29], [32], [33],
[4], [26], [34], [35]

GPU Partially [2]
No [7], [19], [39], [40]

case of SafeDE we execute additional instructions to configure
SafeDE. The relative effect of those variations can be larger
for short programs, as it is the case for FAC, with variations
in the range of 1%. In fact, those variations have a higher
impact than the tiny performance degradation of SafeDE w.r.t.
redundancy without diversity.

Overall, performance overheads are tiny due the very low
staggering threshold needed by SafeDE (20 cycles in our case),
which is far lower than that for the software-only solution (e.g.,
100µs or more) [3].

D. Hardware costs

We have used the Vivado 2018.1 Toolchain to synthesize
our MPSoC for the Xilinx UltraScale KCU105 FPGA. SafeDE
required 261 LUTs and 417 registers, whereas the whole SoC
required approximately 114,000 LUTs and 74,000 registers,
and each core individually 38,000 LUTs and 17,000 registers.
Hence, SafeDE has negligible hardware costs (0.23% of the
LUTs and 0.56% of the registers of the entire SoC). Those
results could be further improved by dropping the statistics
additions of SafeDE.

V. RELATED WORK

Some works investigate redundancy for CPUs, yet without
diversity including Redundant Multi-Threading in a core [28],
[31], across different cores [10], [22], [25], and providing only
partial redundancy [9], [24]. Those works lack diversity by
reexecuting on the same hardware, or using different cores
without staggering. Software-only solutions for CPUs build
on the compiler to enforce redundancy creating monitoring
threads or resorting to transactional memory [12], [26], [29],

[33]–[35]. Unfortunately, at least CCFs affecting redundant
computing units are not covered by those solutions.

Some works targeting GPUs provide hardware support for
redundancy [20], [27], [37], [40] or software-only support [7],
[19], [40], but they fail to guarantee diversity. Diverse
redundancy on GPUs has been proven doable with [1] and
without hardware support [2]. Note that those solutions are
GPU-specific, so cannot be applied to CPUs.

As discussed before, some processors implement tight
lockstep in the form of DMR (Infineon AURIX processor
family [15], ST Microelectronics SPC56XL70 [36]), or TMR
(Arm Cortex-R5 based designs [17], [18]). Other works focus
on how to expose latent errors to shorten detection time [14],
and how to enhance error recovery [13]. Finally, Reviriego
et al. [30] focus on how to perform recovery efficiently for
DCLS (diverse DMR) designs. However, as detailed before,
tight lockstepping halves (for DMR) the number of user-visible
cores, which impacts flexibility and, ultimately, performance.

Light-weight lockstepping for CPUs has been addressed
with software-only solutions so far [3], but staggering is
significant and an additional core is needed to run the
monitor. Our solution, SafeDE, drastically reduces staggering
and removes the need for an additional core at the expense
of introducing a lowly intrusive hardware module. Table II
summarizes related work and puts SafeDE in context.

VI. CONCLUSIONS

Safety-related systems must implement diverse redundancy
for the highest integrity functionalities to avoid CCFs. Tight
lockstepping is the de facto solution for CPUs, but it makes
half of the cores not visible at user level, so significant
performance is lost when none or few high-integrity tasks
are run. Light-weight lockstepping has been proposed recently
to overcome such limitation and gain flexibility. However,
existing solutions build on slow software feedback loops that
impose large staggering and require an additional core to run
the monitoring process.

This paper introduces SafeDE, a tiny module implementing
light-weight lockstepping with a very short feedback loop
(e.g., 20 cycles), hence causing negligible performance impact,
and not needing any additional core since SafeDE itself
controls the feedback loop. Our results show that SafeDE
incurs both negligible performance degradation (0.5% on
average) and hardware overheads (≈0.5% extra SoC area)
w.r.t. to a non-redundant industrial SoC, and effectively
captures all CCFs that would also be captured by tight lockstep
execution.
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